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Abstract

Quantum computing is one of the most promising technologies for the upcoming decades, with

applications ranging from pharmacy to finance. However, its physical realization is an enormous

challenge. The microscopic systems used to process information in these devices are subject to

decoherence due to the interaction with their environment, spoiling the results of any intended

calculation. Our objective in this thesis work has been to apply optimal control theory to a

system described by Lindblad’s equation, a strategy that has been proposed to deal with errors.

We will address the particular case of spin qubits on molecular nanomagnets. First, we have

built a model to describe their dynamics in the presence of noise. Then, making use of it, we

have designed and programmed an algorithm capable of simulating these systems and finding

the optimal way to implement operations on them, minimizing errors. The results are promising,

since we have obtained fidelities over 90%.
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1 Introduction: How to Build a Quantum Computer

1.1 Quantum Information in a Nutshell

This thesis is oriented towards the physical realization of universal quantum computers. Let us

start by summarizing some key concepts about quantum information [1].

Classical computers carry out operations with binary digits (bits), that is, zeros and ones. The

proposal for quantum computing is to use quantum bits (qubits), which are a different kind of

information units. These are not only capable of using a zero or a one, but any superposition

of them, |ψ〉 = α|0〉 + β|1〉, following the rules of quantum mechanics (QM). The reason why

this technology has awaken so much interest is that a computer operating with qubits can

perform tasks that a classical computer cannot. In fact, certain mathematical problems that

show exponential complexity in classical computers can be solved in quantum devices with a

non-exponential amount of operations.

In order to carry out complex and useful calculations, quantum computers must be able to

cope with more than one qubit simultaneously. As it is stated in QM, a state representing n

qubits will live in
(
C2
)⊗n

. In order to simplify the notation, we will use the “computational

basis”, that is, any product state inside an n-qubit space, say |an−1〉 ⊗ ... ⊗ |a0〉 ≡ |an−1...a0〉,
ak ∈ {0, 1}∀k, will be called |x〉, where x = an−1 · 2n−1 + ...+ a0 · 20. For example, in a 3-qubit

system, |010〉 = |2〉 and |111〉 = |7〉.

The “logic gate” is the basic operation in information theory, and is defined by a transformation

of a set of bit states into another set. This is the core of every algorithm in both classical

and quantum computers. In fact, most classical logic gates have a quantum counterpart. For

example, the classical NOT gate, which acts on one single bit as NOT(0)=1 and NOT(1)=0,

becomes the following operator when “quantized”:{
NOT|0〉 = |1〉
NOT|1〉 = |0〉

, |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
−→ UNOT ≡ ⊕ ≡

[
0 1

1 0

]
The diagram for this gate as a quantum circuit is the following:

|ψ0〉 = α |0〉+ β |1〉 |ψf 〉 = UNOT |ψ0〉 = α |1〉+ β |0〉

Every logic gate can be represented as a unitary matrix U in the computational basis. There are

also gates involving more qubits, which permit to couple their states. Controlled gates operate

on a target qubit (or set of qubits) depending on the state of another, control, one(s). Two

important controlled gates are the CNOT and TOFFOLI (TFF) gates:

UCNOT ≡


1

1

0 1

1 0


|0〉 ≡ |00〉
|1〉 ≡ |01〉
|2〉 ≡ |10〉
|3〉 ≡ |11〉

|ψc〉 = α |0〉+ β |1〉 |ψc〉∣∣ψt0〉 = γ |0〉+ δ |1〉 |ψtf 〉

|ψtf 〉 = [α · I + β ·UNOT] |ψt0〉 −→
∣∣ψtf〉 depends on |ψc〉 via α and β
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UTFF ≡


1

. . .

1

0 1

1 0


|0〉 ≡ |000〉
...

...

|5〉 ≡ |101〉
|6〉 ≡ |110〉
|7〉 ≡ |111〉

|ψc1〉 = α1 |0〉+ β1 |1〉 |ψc1〉
|ψc2〉 = α2 |0〉+ β2 |1〉 |ψc2〉∣∣ψt0〉 = γ |0〉+ δ |1〉 |ψtf 〉

|ψft 〉 = [(α1α2 + α1β2 + β1α2) · I + β1β2 ·UNOT] |ψ0
t 〉

Any combination and concatenation of quantum logic gates constitutes a quantum circuit.

To execute any algorithm on a quantum computer, one must design a specific circuit for it,

decomposing its unitary operations into sequences of gates. The main difficulty nowadays lies in

buiding a physical implementation of gates and qubits. Quantum systems experience noise, and

so will do the results of our operations if we do nothing to mitigate it. In fact, noisy calculations

usually return useless results. We have a great challenge ahead.

1.2 Physical Qubits: Molecular Nanomagnets

We will focus on a specific physical implementation of qubits: spin qubits. An S = 1/2 spin is a

two-level system, so we can encode a qubit within it. We can assign, for example, |0〉 ≡ |+1/2〉
and |1〉 ≡ |−1/2〉. In this work, we consider spins on molecular nanomagnets, as the ones

studied by the QMAD group at INMA [2, 3, 4] and several others worldwide. Each molecule

consists of a core, made of one or several magnetic ions, surrounded and stabilized by a shell

of organic ligand molecules. Chemical design offers nearly unbound possibilites to tune their

physical properties via changes in composition and structure. In particular, the use of rare-earch

ions is very promising due to their high coherence times.

A good candidate is the GdW30 complex [2], whose molecular structure is shown in figure 1a.

Its core is a Gd3+ ion with a 4f7 configuration, whose groundstate has L = 0 and S = 7/2.

This d-level system (d = 2S + 1 = 8 = 23) can be considered a qudit, which can encode three

qubits in one single molecule. The ability of embedding non trivial quantum functionalities in

a microscopic and fully reproducible system is a big advantage of molecular nanomagnets, since

a quantum computer made of these components might be much more scalable [4].

Under the effect of a DC magnetic field ~H, the spin Hamiltonian of this molecule can be well

approximated by a orthorrombic zero field splitting plus a Zeeman contribution [5, chap. 2]:

Ĥ0 = D

[
Ŝ2
z −

1

3
S(S + 1)

]
+ E

(
Ŝ2
x − Ŝ2

y

)
− gµB

~̂S · ~H (1.1)

where D = 1281 MHz and E = 294 MHz are experimental values [2]. The splitting of the energy

levels is shown in figure 1b.

But this static (bare) Hamiltonian is not enough to operate with qubits. We also need a time-

dependent term, able to modify the qubit states and implement the gates. In our case, the

molecules will be coupled to a superconducting circuit, capable of making microwave pulses pass

through them. The magnetic component of these pulses will interact with the molecular spin,
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inducing a certain time evolution on it. This will be our steering wheel to perform operations.

To execute any unitary U acting on the mathematical state of the qubits, we must find the

microwave pulse that yields the necessary physical evolution on the states of the molecule.

Therefore, we must introduce a time-dependent perturbation into the system:

Ĥ(t) = Ĥ0 + g(t)V̂ , V̂ = −gµB
~̂
S · ~Hmw (1.2)

The function g(t), which encodes the time dependent amplitude of the magnetic field ~Hmw, is

what we are going to control to perform the target unitaries.

Splitting of the Energy Levels

(b)
E 

(G
H

z)

Hx (T)

(a)

S=7/2

Figure 1: (a) Molecular structure of the GdW30 complex. Notice that “GdW30” is just an
abbreviation: its actual chemical formula is K12Gd(H2O)P5W30O110 · 27.5H2O. (b) Splitting of
the GdW30 energy levels when an external static magnetic field is applied. This molecule has
been tailored to have a certain anisotropy around the Gd3+ ion for its energy levels to show a
zero-field splitting. Furthermore, under the effect of a DC magnetic field ~H ‖ x̂ they split due to
the Zeeman interaction and all the degeneracies are broken. The transition frequencies among
all the levels are different and have an affordable magnitude, which makes them all addressable
with microwave (GHz) pulses. This enables the realization of quantum operations within the
S = 7/2 spin manifold.

Our molecules are not isolated, but embedded within a chip inside a dilution refrigerator, with

the whole universe around. We do not have a closed system, but an open one, and the interaction

of the molecule with its environment will have an important effect on the state of our qubits.

This is the aforementioned “noise”, and it will make errors arise in our calculations.

The goal of this thesis work is to design optimal hardware-specific operations to mitigate the

effect of noise in our qudits. In section 2 we will present a mathematical description of the

interaction of a quantum system with its environment. Then, in section 3, we will design an

algorithm capable of finding the optimal perturbation g(t) in (1.2) that performs any desired

operation on the qubits. Finally, section 4 shows the results we have obtained making use of it.
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2 Open Quantum Systems: Noise and Errors

In this section, we will present the basics of the theory of open quantum systems: how they

behave and evolve in time when they are coupled to their environment and how dissipative

effects emerge. Making use of this theory, we will later search for a mathematical description of

the GdW30 complex, based on previous experimental measurements.

2.1 System and Environment: Statistical Description

A quantum system is said to be open when it interacts with its environment. In other words,

it is a part of a larger system that contains both the system itself, and its environment. Let

us denote the system by S; its states will live inside the Hilbert space HS, and its behaviour

will be determined by the Hamiltonian ĤS, in the absence of interaction with its environment.

Likewise, the environment (bath) B will live inside HB, and evolve according to ĤB. If there is

an interaction between them, the total space will be HS ⊗ HB, and the Hamiltonian will take

the form ĤS ⊗ Î + Î⊗ ĤB + Ĥint, where Ĥint is the interaction term.

In principle, one could model the full S+B “universe” as a closed system, but this is impossible,

due to the lack of knowledge about the environment, and its size. The environment has a huge

number of degrees of freedom, so we will never be able to describe it in detail. This is why we

need to use thermodynamics and statistics. The state of our system S will not be well-known

anymore, but will obey probability distributions instead. Here, the “ket” description of the

system is substituted by the density operator formalism. Due to space constraints, we cannot

summarize here the foundations of statistical quantum mechanics, but we have written a quick

overview about it in appendix 6.1.

2.2 Time Evolution in Open Systems: Master Equation

If ρ is the density matrix that describes the state of the universe S + B, the state of the

system itself is obtained by taking the partial trace over the environment degrees of freedom

ρS = TrB (ρ). The expectation value of an operator Ô defined on the system can then be

computed by taking 〈Ô〉 = Tr[ρSÔ]. Now that we know how to describe the states of our system

and how to evaluate observables on it, the last ingredient that we need is an equation of motion,

that is, a way to describe how the state of the system evolves in time.

Figure 2: Graphical representation of an open system.
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Let us recall the problem that we are facing. Figure 2 sketches the behaviour of an open

system. Suppose we start at time t0, with a separable state ρ(t0) = ρS(t0) ⊗ ρB, where ρS(t0)

is, furthermore, pure: ρS(t0) = |ψ0〉〈ψ0|. The whole system will evolve according to Ĥ, leading

to an entangled state. Tracing over the environment B, we could get the initial (pure) and final

(mixed) states of S: {ρS(t0), ρS(t)}. Since we are not able to know ρB, we must find a map E
such that

ρS(t) = E(t, t0) [ρS(t0)] (2.1)

This map will only describe a physically plausible evolution if it is a “universal dynamical map”

(UDM), that is, if it meets the following mathematical requirements [6]:

• It is linear: E(t, t0)[αρ1 + βρ2] = αE(t, t0)ρ1 + βE(t, t0)ρ2, ∀ α, β, ρ1, ρ2.

• It is Markovian: E(t2, t0) = E(t2, t1)E(t1, t0), ∀ t0 < t1 < t2.

• It leaves the state unchanged if there is no time evolution: E(t0, t0) = I, ∀ t0.

One key detail is the fact that the inverse of a UDM E is not, in general, a UDM, unless E is

unitary. The non-unitarity of E implies the irreversibility of the dissipative evolution suffered

by S, and is due to the interaction Ĥint. In the language of thermodynamics, if the purity

of S, PS(t) = Tr
(
ρ2

S(t)
)
, decreases with time, its entropy will increase and, therefore, if E is

understood as a thermodynamical process, it will not be reversible, since ∆S > 0. As one should

expect in such a situation, this process is in fact a relaxation towards equilibrium. The final

state for t −→∞ is the thermal state ρth (more about this in appendix 6.1).

Instead of directly trying to build the map E , the usual route consists of using its differential

form, i.e.:

d

dt
ρ(t) = lim

h→0

ρ(t+ h)− ρ(t)

h
= lim

h→0

E(t+ h, t)− I
h

ρ(t) ≡ L(t)ρ(t) (2.2)

L(t) = lim
h→0

E(t+ h, t)− I
h

(2.3)

Notice that, hereafter, we will remove the subscript S from the objects describing the subsystem

to ease the notation, i.e. the density ρ(t) in the previous equation in fact refers to subsystem

density ρS(t).

It can be shown [6] that any differential equation that yields a Markovian evolution can be

written as:

d

dt
ρ(t) = −i

[
Ĥ(t), ρ(t)

]
+
∑
k

γk(t)

[
L̂k(t)ρ(t)L̂†k(t)−

1

2

{
L̂†k(t)L̂k(t), ρ(t)

}]
= L(t)ρ(t) (2.4)

This is called the “Lindblad equation” [6, 7]. It is a master equation, since it describes the time

evolution of a probability distribution, and L is a linear operator. The particular form of {γk}
and {L̂k} will vary from one case to another, this is just the general form of the equation. Taking

γ =
∑

k γk and leaving γ̃ = γk/γ inside the dissipative term, we can simplify the notation:

ρ̇ = L(t)ρ = −i
[
Ĥ(t), ρ

]
Unitary term, as in (6.1)

+ γD(t)ρ

Non-unitary/dissipative term

(2.5)
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The last thing we need is to be able to calculate E from L, that is, solving the master equation.

The solution is [6, 7]:

ρ(t) = E(t, t0)ρ(t0) , E(t, t0) = T exp

[∫ t

t0

L(t′)dt′
]

(2.6)

where T is the time-ordering operator [7]. Given the linearity of both Schrödinger’s equation

for closed systems, and Lindblad’s equation for open ones, the form of the solution equations

are in fact analagous: see, in appendix 6.1, Eqs. (6.2) and (6.4).

If we knew the exact form of Ĥ, we could deduce the values of the parameters {γk(t)} and

the transition operators {L̂k(t)} explicitly, as in [6, 7]. However, this is not always possible.

Fourtunately, we will later see that they can be deduced from experimental observations.

One must bear in mind that, as the perturbation g(t)V̂ modifies Ĥ(t), it will also modify the

dissipators. Nonetheless, there is an important simplification that can be used in most cases.

The microwave pulse is a weak perturbation of the bare Hamiltonian, so Ŵ (t) ≡ g(t)V̂ � Ĥ0

and this term modifies the eigenstates of the molecule to |φk〉 = |φ0
k〉 + o(Ŵ ). Therefore, the

dissipative parameters will also become L̂k = L̂0
k + o(Ŵ ) and γk = γ0

k + o(Ŵ ). Moreover,

the dissipative term is a weak-coupling approximation, meaning that the transition frequencies

{Ωk} among the levels of the molecule are much bigger than the damping parameters {γk}.
Combining these two features, we have γkL̂

2
k = γ0

k(L̂0
k)+o(γŴ ). Using equation (2.4), this yields

γD ∼ γ0D0 +o(γŴ ), where the last term is completely neigligible compared to the unitary part

of the equation. Consequently, we can consider that the dissipative term is independent of the

perturbation g(t)V̂ . This means that, in our case (actually in most cases), {γk} and {L̂k} are

independent of time.

2.3 Relaxation and Dephasing Errors

The different dissipators in (2.4) can be associated to different kinds of errors. Let us work in this

operational way, i.e. discussing the typical errors and deriving their corresponding dissipators.

One source of errors is the spin-lattice interaction, i.e. the coupling to the vibrational modes

both of the molecule itself and of the lattice. The spin can exchange energy with phonons in

a charactersitic time, typically called relaxation time, T1. This process makes the populations

decay exponentially towards lower energy levels.

The other source of noise is the spin-spin interaction, and is due to the coupling of the molecular

spin to other surrounding spins. System and environment do not exchange energy but information.

The populations of the states do not change, but their phases do, in a characteristic time T2, in

which the non-diagonal terms of the density operator also decay exponentially. This is known

as “dephasing”.

However, the practical meaning of T1 and T2 goes a bit further. Spin-lattice and spin-spin

interactions are not the only sources of noise. Many more phenomena can effectively reduce T1

and T2: Nuclear spins, impurities, fluctuations of the microwave pulses, external contributions to

6



magnetic fields, fluxons in the superconducting circuits or effective impedances in the electronic

devices, among many other, may affect our system too. Therefore, the experimental conditions

of our quantum computer and its operation point must be carefully chosen in order to minimize

these environmental effects and maximize the coherence times T1 and T2, which must be obtained

from measurements. Pararell to the efforts in improving them, in this thesis we will optimize

the external driving (1.2) trying to perform useful operations faster than those limiting times.

2.4 Experimental Input: Parameters of the Dissipator

The measurements of T1 and T2 will help us build our Linblad equation. Their associated L̂k

operators are Ŝx and Ŝz, respectively. In that way, the T1 term in the dissipator is a diagonal

matrix, whereas the T2 one only has terms outside the diagonal.

Experiments show that, in general, T1 > T2, sometimes by a little difference, and sometimes by

orders of magnitude. For our GdW30 molecule, Ref. [2] shows that T1 ≈ 2 µs and T2 ≈ 0.5 µs

at temperatures of about 5 K. Note that these coherence times are a spin-1/2 concept and are

not characteristic of the whole molecule but of each two-level transition. However, in this case

all the transitions have approximately the same decoherence time. As we see, T1 > T2, and

so dephasing is quite faster than relaxation. Even if the difference is not too big, our model

will only consider dephasing, for the sake of simplicity. Furthermore, T2 is less dependent on

temperature than T1, and relaxation can always be supressed by cooling the spins to very low

temperatures to get rid of vibrations.

Hence, we will only have one term in the dissipator, with L̂ = Ŝz. The only task remaining is to

find γ and see how it is related to T2. Let us start by writing ρ̇ explicitly, using Lindblad equation.

We have an S=7/2 spin, so the eigenstates of the molecule are |s,m〉, where m = −7/2, ..., 7/2.

The dissipator is:

γDρ = γ

[
ŜzρŜz −

1

2

{
Ŝ2
z , ρ
}]

(2.7)

Since ρ =
∑

m,m′ ρmm′ |m〉〈m′|, we can easily calculate its terms:

Ŝz|s,m〉 = m|s,m〉
Ŝz|s,m〉〈s,m′|Ŝz = mm′|m〉〈m′|

ŜzρŜz =
∑
m,m′

ρmm′ ·mm′|m〉〈m′|

Ŝ2
zρ =

∑
m,m′

ρmm′ ·m2|m〉〈m′|

ρŜ2
z =

∑
m,m′

ρmm′ ·m′2|m〉〈m′|

ŜzρŜz −
1

2

{
Ŝ2
z , ρ
}

= −1

2

∑
m,m′

ρmm′(m−m′)2|m〉〈m′|

7



Writing Lindblad equation term-wise, we find:

ρ̇mm′ = −i
[
Ĥ, ρ

]
− γ

2
∆m2ρmm′

ρmm′(t) = ρunitary
mm′ (t) · e−

γ
2

∆m2t (2.8)

On the other hand, it can be shown that T2 is the decay time of 〈Ŝx〉, that is 〈Ŝx〉 ∼ e−t/T2 . In

this case:

〈Ŝx(t)〉 = Tr
[
Ŝx · ρ(t)

]
=

1

2
Tr

∑
m,m′

ρmm′
(
Ŝ+ + Ŝ−

)
|m〉〈m′|

 =

=
1

2

∑
k

ρk−1,k(t)
√
s(s+ 1)− k(k − 1)

k=m′=m+1

+ ρk+1,k(t)
√
s(s+ 1)− k(k + 1)

k=m′=m−1

 (2.8)
=

(2.8)
= 〈Ŝx(t)〉unitary · e−

γ
2
t −→ e−

γ
2
t = e−t/T2

finding the relation γ = 2/T2, with T2 ≈ 500 ns. The master equation is fully characterized.

2.5 How to deal with Errors: Mitigation and Correction

Now that we know the behaviour of our molecule as an open system, we need to find the way

to avoid its inherent noise and execute fault-tolerant calculations. There are two ways by which

we can do this, and we will address both.

The first way consists in designing the microwave pulses that induce the execution of operations

in such a way that the effect of the environment is reduced. This task can be carried out

numerically, and it has occupied most of our efforts. These techniques (and similar approaches),

consisting in designing hardware-specific operations that are as resilient to noise as possible, are

known as “error mitigation” techniques. Error mitigation is a key part of what is called the

“firmware” [8] of most NISQ1 devices [9].

There is a second way to deal with noise, which is executing certain sets of gates that are

specifically designed to correct errors. These are known as “error correction algorithms” or

“error correction codes”. They do not avoid decoherence, but are able to detect errors and

execute operations to fix them. The strategy consists in codifying a single logical qubit within

several physical ones, using the rest of available states to execute these codes. This way, a set

of multiple physical qubits can act as one fault-tolerant logical qubit.

Our molecule has S=7/2, which is equivalent to three S=1/2 qubits. We can codify our state of

interest in one of them, and use the other two to detect and correct errors. A good candidate to

prevent phase errors is the three-qubit code (TQC) proposed in [3], which is shown in figure 3.

This algorithm is not designed to execute any operation on the state |ψ〉, but just to store its

information, so that it remains safe until we need to use it. One must keep in mind that this

TQC is only capable of correcting single phase errors. To prevent more than one error, one would

need more than three physical qubits. However, even with these limitations, the integration of

1Noisy Intermediate-Scale Quantum
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Figure 3: This algorithm has several stages. The first one, called “encoding”, leaves the state
prepared for the errors to be detected: the CNOT gates entangle the central qubit, which carries
the quantum information |ψ〉 = α|0〉+β|1〉, with the auxiliary (ancilla) ones, that are initialized
to |0〉. This produces an entangled state that is protected from relaxation (T1). The Ry gates
rotate the states for them to be robust against pure dephasing (T2) instead. After this stage,
there is a “memory time” during which the states remain stored and the errors arise. Finally,
the “decoding” and “correction” blocks detect phase errors and correct them.

error correction in each molecular building block constitutes a major advantage of this scheme.

Our objective in this thesis will be to design fault-tolerant unitaries using optimal control theory

(OCT), which can be considered a form of error mitigation. Of course, this is not incompatible

with the use of error correction codes: one may later build error correction algorithms with the

generated unitaries. This will give us an efficient way to both store quantum information and

perform operations, minimizing errors.

3 Optimal Control Theory for Open Quantum Systems: Error

Mitigation

A given quantum gate or circuit can be built with many possible external perturbations or

“protocols”. Our goal is to design the gates with the help of OCT, in such a way that the

external perturbation is fast, and the error induced by the environmental noise is minimized. In

order to achieve this objective, we must work with Lindblad’s equation.

Let us now sketch the OCT method. We depart from the driven Hamiltonian:

Ĥ = Ĥ0 + g(t)V̂ , (3.1)

where Ĥ0 is the bare Hamiltonian of our molecule, V̂ contains the physical means of the

perturbation, and g(t) is the temporal shape of the pulse.

Given a unitary Utarget, our goal is to find a pulse g(t) which, for any initial pure state ρ0 =

|ψ0〉〈ψ0|, takes the system to another state as close as possible to ρtarget = Utargetρ0U†target,

which is also pure. To do that, we have designed and programmed an algorithm based on OCT,

capable of calculating g(t) efficiently. In this section, we will explain the equations the algorithm

is based on.
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3.1 Parametrization

In order to numerically represent the pulse g(t), we will give it a functional dependence on a

certain set of parameters u ≡ {uk}. The chosen parametrization is a Fourier decomposition,

depending on the multiples of ωk = 2π
T , where T is the total duration of the pulse:

g(u, t) = u0 +

M∑
k=1

u2k cos(ωkt) +

M∑
k=1

u2k−1 sin(ωkt) (3.2)

Thus, we have 2M + 1 uk parameters. The series has a maximum of M frecuencies, i.e. there

is a frequency cutoff whose choice will be discussed later. The Hamiltonian, and therefore

the operators involved in the Lindbladian evolution, can now be considered functions of the

parameters u:

Ĥ = Ĥ(u, t) = Ĥ0 + g(u, t)V̂ (3.3)

Lρ = L(u, t)ρ = −i
[
Ĥ0 + g(u, t)V̂ , ρ

]
+ γDρ (3.4)

E = E(u, t, t0) = T exp

[∫ t

t0

L(u, t′)dt′
]

(3.5)

One must notice that, as we showed before, the dissipator D does not depend on the pulse g(t)

(or at least the dependence is very weak), and therefore it does not depend on the parameters

either.

3.2 Fidelity and Target Function

Speaking in usual OCT jargon, we need to define a “target function”, i.e. a function that depends

on the propagated state ρ(T ) that measures how well the pulse has achieved its goal. In our

case, the goal is to minimize the distance between ρ(T ) and the target state ρtarget. Therefore,

we first need some function to measure the fidelity between two states, that is how similar they

are. We first consider the Hilbert-Schmidt product:

(ρA, ρB) = Tr(ρ†A · ρB) , (3.6)

from which we may define a norm and a distance in the usual way: ||ρ||2 = (ρ, ρ) and D(ρA, ρB) =

||ρA − ρB||. We could define the target functional as F (ρ(T )) = D(ρ(T ), ρtarget) and this object

should then be minimized by the algorithm. However, as it is explained in [10], the Hilbert-

Schmidt product is in fact a good-enough measure of the fidelity between two states: noticing

that D2(ρA, ρB) = ||ρA||2 + ||ρB||2− 2(ρA, ρB), they proposed to simplify the target function as:

F (ρ(T )) = (ρ(T ), ρtarget) , (3.7)

If ρtarget is pure, the maximization of this function is almost equivalent to the minimization of

the distance, and the difference is related to the purity of the propagated state ||ρ(T )||2.

Since a particular choice of the parameter u determines the evolution of the system, we will

denote ρ[u](T ) to the state propagated with the evolution operator given by a chosen set of
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parameters u. Our actual target function will be:

G(u) = F (ρ[u](T )) = Tr (ρtarget · ρ[u](T )) , (3.8)

where we recall that T is the execution time of the operation, that is, the total time the pulse will

be active. Notice that, due to the properties of the density matrices and their scalar product,

G(u) ≤ 1, and the limit case where G(u) = 1 is given only if ρ[u](T ) = ρtarget. Therefore, we

can understand G(u) as a measure of the fidelity achieved by the pulse g(u, t).

Our objective is to explore the space of the parameters and try to maximize G(u), in order to

find the optimal pulse g(u, t) to be executed during the pre-defined time T . The procedure will

be the following:

1. We start with an initial guess for the set of parameters u, and propagate the initial state,

obtaining:

ρ[u](T ) = E(u, T, t0) · ρ(t0) (3.9)

2. Then, we must measure “how close” to ρtarget this state is, obtaining G(u).

3. Now, we must decide whether G(u) is big enough for our purposes. In case it is, we have

finally obtained the pulse g(u, t) we wanted. In case it is not, we must select a new set of

parameters u according to some optimization algorithm and go back to step (1).

One can easily notice, however, that a big amount of parameters may give us a better result, but

will also steeply increase the cost of this computation as it will increase the size of the search

space. The landscape G(u) may be very complex, and not smooth at all. In order to simplify

this optimization problem, the algorithms that make use of the gradient of the function typically

perform better. We will use the algorithm LD SLSQP [11, 12] from the python NLopt library

[13]. To do it, we must analitically find a way to compute the gradient. This is not a trivial

task, due to how complex the translation of the dependence on u from g(u, t) to G(u) is:

g(u, t) −→ Ĥ(u, t) −→ L(u, t) −→ E(u, t, t0) −→ ρ[u](T ) −→ G(u) (3.10)

3.3 Calculation of the Gradient

A more detailed description of the general OCT problem may be found in the appendix 6.2,

along with the derivation of the gradient. For our purposes, it is sufficient to consider the case of

a linear evolution equation, as Schrödinger and Lindblad equations are. Here, we merely state

the results. For an arbitrary linear evolution equation{
ẏ(t) = Â(u, t)y(t)

y(0) = y0
(3.11)

and for a target function defined as G(u) = F (y[u](t), u), the gradient takes the form

∂G

∂u
= 2Re

∫ T

0
dt λ†(t)

∂Â

∂u
y(t)

∣∣∣∣
λ=λ[u],y=y[u]

+
∂F

∂u
(y(T ), u)

∣∣∣∣
y=y[u]

(3.12)
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where the Lagrange multiplier λ (also called the “costate”) is defined by:{
λ̇(t) = −Â†(u, t) · λ(t)

λ(T ) = ∂F
∂y†

(y[u](t), u)
(3.13)

This will be our starting point for the following sections, where we will just modify equations

(3.12) and (3.13) for certain specific cases.

3.3.1 Schrödinger Evolution

A closed quantum system is governed by the following equations:{
|ψ̇(t)〉 = −iĤ(u, t)|ψ(t)〉
|ψ(0)〉 = |ψ0〉

(3.14)

Identifying terms with (3.11), we have y(t) = |ψ(t)〉 and Â(u, t) = −iĤ(u, t) = −i
[
Ĥ0+g(u, t)V̂

]
.

Suppose that the function we want to maximize is the expectation value of a certain observable

Ô, that is

F (|ψ(t)〉, u) = 〈ψ(T )|Ô|ψ(T )〉 =

∫ T

0
〈ψ(t)|Ô|ψ(t)〉 δ(t− T )dt , G(u) = F (|ψ[u](t)〉, u)

If we wanted to maximize the projection of the final state on another target (pure) state, the

observable would be Ô = ρtarget = |ψtarget〉〈ψtarget| and the target function could be simplified

to F (|ψ(t)〉, u) = |〈ψtarget|ψ(T )〉|2. In any case, introducing all this into the previous equations

(3.13), we find the following expression for the costate (which is a proper ket now):{
|λ̇(t)〉 = −iĤ†(u, t)|λ(t)〉
|λ(T )〉 = Ô|ψ(T )〉

(3.15)

It is typical of OCT that the “initial” conditions for the equations of motion that define the

costate are given in terms of its value at the final time T (and therefore, numerically, they must

be propagated backwards). Now, substituting for the gradient, we find:

∂G

∂u
=2Re

[
−i
∫ T

0
〈λ(t)|∂Ĥ

∂u
|ψ(t)〉 dt

∣∣∣∣
λ=λ[u],ψ=ψ[u]

]
+
((((

(((
((((

((∂

∂u

[
〈ψ(T )|Ô|ψ(T )〉

]
ψ=ψ[u]

=

=2Im
∫ T

0

∂g

∂u
(u, t)〈λ(t)|V̂ |ψ(t)〉 dt

∣∣∣∣
λ=λ[u],ψ=ψ[u]

(3.16)

We finally have a useful expression. For each guess u, we can compute the costate for all t

using (3.15), and then use it to calculate the gradient with (3.16). As g(u, t) is linear on the

parameters, its derivative with respect to any uk is exactly its corresponding sine or cosine.

One may wonder why going through all this trouble to get an analytical expression for the

gradient, if one could just use a finite-difference formula to compute it numerically. However, if

we calculated the gradient by finite differences, we would have to propagate the state at least

2(2M +1) times for every step of the optimization. Instead, using the previous formula, we only
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need to propagate the state and the costate once per step. The advantage is quite noticeable

since, as we will see later, M can be quite large when using long pulse durations T .

3.3.2 Lindblad Evolution

The case of an open system is, in fact, quite similar, since it also obeys a linear equation:{
ρ̇(t) = L(u, t)ρ(t)

ρ(0) = ρ0
(3.17)

This time, y(t) = ρ(t) and Â(u, t)ρ = L(u, t)ρ = −i
[
Ĥ(u, t), ρ

]
+ γDρ. Our target function is:

F (ρ(t), u) =
1

2
Tr
[(
ρ(T ) + ρ†(T )

)
Ô
]

=

∫ T

0
Tr
[(
ρ(t) + ρ†(t)

)
Ô
]
δ(t− T )dt ,

G(u) = F (ρ[u](t), u) .

Here, the target function uses the Hermitian conjugate of ρ, since the hermiticity of the density

operator is only guaranteed if it satisfies Lindblad equation, but mathematically, the optimization

problem is formulated on a space where not all the possible ρ′s are hermitian. In any case, when

the matrix is hermitian, the target function is exactly equal to Tr[ρ(T )Ô].

Once again, to maximize the projection on any state ρtarget, even if it is mixed, we just have to

substitute Ô = ρtarget. In this case, the differential system for the costate takes the following

form, as shown in appendix 6.2: {
λ̇(t) = −L†(u, t)λ(t)

λ(T ) = 1
2Ô

(3.18)

The gradient can also be rewritten in a more specific way:

∂G

∂u
= 2Re

∫ T

0
λ∗(t)

∂L
∂u

ρ(t) dt

∣∣∣∣
λ=λ[u],ρ=ρ[u]

= 2

∫ T

0

∂g

∂u
(u, t)λ∗(t)

[
V̂ , ρ(t)

]
dt

∣∣∣∣
λ=λ[u],ρ=ρ[u]

(3.19)

As we can see, this gradient expression gives us the same numerical advantage with respect to a

hypothetical gradient computation through finite differences than in the Schrödinger case. Once

again, we first have to compute the costate in order to introduce it into the expression for the

gradient. However, there is a subtle detail here one should notice. The “initial” conditions for the

costate are once again given for t = T . Therefore we have to propagate the costate backwards.

In other words, it is defined in terms of E† (instead of E), which, as it was mentioned above,

does not necessarily have to be a UDM. This means that the evolution of λ will not represent

a physically plausible process. Even so, that is not problematic, since the costate is just a

mathematical tool to calculate the gradient.

3.4 Multitarget Strategy

So far, we have built the target function such that its optimization leads to a pulse that drives

a particular initial state ρ0 to a final state ρtarget. However, this is not equivalent to the design

of the aforementioned target unitary (or logic gate) Utarget, since a unitary must not only drive
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ρ0 to ρtarget, but every state ρk to their respective ρtarget
k = UtargetρkU

†
target. Therefore, as we

will se later on the results of our simulations, in order to obtain a unitary, we need a more

sophisticated target function.

There is a formulation of OCT based on the equation of motion for the propagator instead of

the one for the state. That means that the target function and the gradient could be written in

terms of propagators (U for the noiseless aproximation, E for the noisy one). In the case of the

Schrödinger evolution, this can be affordable. For our system, for example, we have an 8 × 8

matrix, and so we have to propagate 64 variables. However, if we use Lindblad’s equation, the

propagator is E , which acts on 8×8 density operators, and therefore it is a 64×64 super-operator:

d4, where d is the dimension of the Hilbert space. This adds up to 4096 variables to propagate.

Propagating so many variables and storing their value for all t ∈ [0, T ] for each optimization

step is too expensive. We must therefore find an alternative way to face the problem, such that

it reduces the computational cost of the optimization, while still providing a reliable execution

of the operations.

We need to guarantee that our pulse drives correctly a whole set of N states {ρk}. Our choice is

to add terms to the fidelity function that we had for the single-state fidelity, as described in [10].

That is what we will call a “multitarget strategy”. Every state ρk will have a corresponding

ρtarget
k = Utarget · ρk · U †target, so we can define the target function as

G(u) =
1∑N

k Tr
[
ρ2
k

] N∑
k

Tr
[
ρk(T )ρtarget

k

]
(3.20)

Since this function is in fact a linear combination of the fidelities that we were using so far, both

the target function and its gradient are still very simple to compute. Our next task is to decide

which set {ρk} to use. If we propagate a whole basis of the space of 8 × 8 matrices, we would

be back at the d4 situation, and so we must find a smarter choice. Considering that the initial

states of our executions will presumably be pure, a first proposal could be the set {|k〉〈k|}8k=1,

since any unitary can be given in terms of its effect on a basis. However, as projections do

not take into account global phases, we could find a fidelity of 1 for a pulse that drove, say,

α|0〉+ β|1〉 to αUtarget|0〉+ βeiφUtarget|1〉. It would have the maximum fidelity while not acting

properly. We need a bigger set of states to be properly propagated for the pulse to guarantee

the correct execution of the unitary.

The problem of finding a good set of initial states to define the target functional was addressed

by Goerz et al. [10]; among all the sets of initial states proposed there, we will choose to add a

ninth state (ρ9)ij = 1
8 to the set {|k〉〈k|}8k=1, which can also be easily shown to be pure. This

way, we will only propagate (d+ 1)d2(= 576) variables, in constrast to the d4 variables needed

if one uses a full basis of the density matrix space.

3.5 Experimental Restrictions

Once the algorithm is completely designed and the route is charted, we must consider several

further details regarding the optimization process, for the results to be useful for later experimental

use. In the end, we want our pulses to be executed on a real molecule with real instrumentation,
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and it will surely have amplitude, frequency and time restrictions. Therefore, we cannot run a

fully unconstrained search for any external pulse. We must add constraints to the optimization

algorithm that enforce experimentally realizable pulses.

First of all, our arbitrary signal generator will have a maximum output frequency ωmax. In our

case, ωmax = 5 GHz. It is important that our generator can handle at least the characteristic

frequencies of the system (the seven transition frequencies for adjacent states). In a Fourier

expansion parametrization such as the given in Eq. (3.2), the cutoff is naturally implemented

by setting the maximum frequency component M . We will choose the largest M such that

ωM = 2π
T M < ωmax. The number of parameters will be 2M + 1, and note that it will increase

with T .

Second, our parameters are the fourier components of the pulse, that is, the amplitudes of

the magnetic field. Our instrumentation will not be able to generate arbitrarily large fields,

and therefore we must impose a constraint on the module of our parameters. The algorithm

we have chosen allows us to introduce inequality constraints (that is, setting boundaries to

the parameters) and other linear or nonlinear equality constraints that we will mention later.

Therefore, we set uk ≤ Hmax boundary constraints. The choice of Hmax for the total amplitude

to be affordable for the instrumentation is key for our calculations to be useful. If the maximum

field for our generator is Hgen, the safest call would be Hmax =
Hgen

2M+1 , although it might be too

restrictive. In any case, we will pick arbitrary values for Hmax and not address this discussion

here.

The other two restrictions that we will impose on the optimization are equality constraints.

First, we need the pulse to be continuous in time, that is, g(0) = g(T ) = 0. Since sin(ωk · 0) =

sin(ωkT ) = 0 and cos(ωk · 0) = cos(ωkT ) = 1, the condition translates to u0 +
∑

k u2k = 0.

Second, we will require the total integral of the pulse to be zero, which is satisfied if u0 = 0.

Putting these together, the conditions are:

u0 = 0
∑
k

u2k = 0 (3.21)

3.6 Implementation and Performance of the Optimization Process

The algorithm we have just sketched has been implemented in a numerical code. We have used

python. The software development has been done using the qocttools package [14], a plugin for

qutip developed by Dr. Alberto Castro. We have carried out two tasks: First, we extended

the qocttools package to allow for multitarget optimizations and then we used it to simulate the

GdW30 molecule, obtain the pulses, and try and find the optimal parameters for them to achieve

the best fidelities, as will be shown later.

Before moving on to describing our results in section 4, a word about the protocol followed to

perform the optimizations. Our first approach consisted in running optimizations using Lindblad

equation, initializing the parameters at random, and trying different seeds if the results were

not good enough. However, the starting point was always too far from the optimal pulse, so we

always obtained low fidelities. For that reason, we decided to split the optimization into two

15



steps. We are going to explain the protocol in depth for the notation to be clear from now on.

First, starting from a random guess u, we execute the optimization considering no dissipation

(i.e. using Schrödinger’s equation). We will refer to this as “Schrödinger optimization”, and its

resulting pulses and fidelities will be colored in blue in the following graphs. The fidelity of the

optimal pulse thus obtained is not realistic (since it implies assuming T1, T2 → ∞) as we will

check by calculating its real fidelity using Lindblad equation. This check will be called “Lindblad

propagation” and its results will be drawn in orange. As we will see, this real fidelity is lower than

the one we had first obtained. Nevertheless, in spite of being quite unrealistic, the Schrödinger

optimization provides us with a good inital guess for the next step: a second optimization, this

time with Lindblad’s equation. We will refer to this as “Lindblad optimization”, and will draw

its resulting pulses and fidelities in green.

We display an example of the convergence of the optimization in figure 4. This is a case in

which the objective is a state-to-state transition (|6〉 → |7〉). One can see the convergence

history of the first optimization. It achieves a high fidelity, but it is not realistic, as it ignores

the decoherence. The convergence history of the second optimization departs from the pulse

obtained in the previous case. It converges more slowly towards the optimal pulse, whose fidelity

is not as high.

Figure 4: Convergence of the optimization for the transition |ψ0〉 = |6〉 and |ψtarget〉 = |7〉. The
duration has been set to T=44 ns. The first optimization (−) is performed using Schrödinger
equation. The second one (−) starts from the result of the first one, but takes into account
decoherence.

There is another important issue about the optimization problem. As the simulations have

confirmed, the landscape of fidelities as a function of the parameters is not smooth at all,

but complex and spiky. For that reason, it is very likely to fall into local maxima, that is,

pulses whose fidelities are bigger than the ones surrounding them in the space of parameters,

but not the biggest. That is why our actual strategy has included the use of several (∼ 50)

Schrödinger optimizations, each one started with a different random seed for the initialization

of the parameters. The best of them has been used as initial guess for the second step.
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4 Results

It is time to apply the OCT theory to a real task. In this work, we focus on a three-qubit gate

that is both a simple and a useful example: the Toffoli gate. Furthermore, it is key for the

“correction” stage of the algorithm in figure 3. This three-qubit gate (8× 8) consists in a NOT

gate controlled by two ancillas. In case the state of both ancillas is |1〉, the NOT operation will

be executed on the target qubit. Let us recall its corresponding unitary matrix:

UTFF ≡


1

. . .

1

0 1

1 0


|0〉
...

|5〉
|6〉
|7〉

(4.1)

As we can see, this unitary causes a transition between the states |6〉 ↔ |7〉 and leaves every

other state of the basis (|0〉, ..., |5〉) unchanged.

4.1 State-to-State Transitions

Before moving to the our actual objective, the optimization of the Toffoli gate, let us discuss

a simpler problem, which is the optimization of the (|6〉 ↔ |7〉) transition, instead of the whole

unitary Utarget = UTFF. Obviously, optimizing this transition is not the full story for the gate,

since in the latter the rest of the states must remain unchanged, whereas, if we optimize only this

transition, we do not care about them. However, this simpler task will allow us to understand

some important aspects of our algorithm and its underlying physics. In this case, the target

function is:

G(u) = F (ρ[u](T )) = Tr
[
ρtarget · ρ[u](T )

]
= 〈7|ρ(T )|7〉 , (4.2)

Notice that we use no multitarget strategy here. This target function only guarantees that the

optimal pulse achieves both |6〉 → |7〉 and |7〉 → |6〉 transitions.

Our first calculations were carried out considering a realistic coherence time, that is T2 = 500 ns,

with the durations T of the pulse ranging from 2 to 60 ns. An example of the obtained results is

shown in figure 5. As one should expect, the fidelity of the Lindblad propagation (orange curve

in the right panel) decreases with time with respect to the Schrödinger optimization (blue),

due to the external noise that the latter does not account for. This is a clear picture of the

effects of the dephasing encoded within T2. Furthermore, since T � T2, these two curves have

very similar shapes. The second (Lindblad) optimization is able to find a pulse that performs

better than the previous (Schrödinger) one in presence of decoherence (the green curve in the

right panel performs better than the orange one). Notice that, in contrast to the slowly-growing

fidelity of the Schrödinger pulse, the one associated to the Lindblad optimization is almost a

step function, and there is a certain part of the pulse responsible for that (squared in red).

Combining the results we have obtained for several durations T , we observe a very particular

behaviour of the fidelities, as shown in figure 6. For short durations, the three curves behave in

similar ways, because the effects of noise are not important yet. As T increases, the noiseless
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Schrödinger Optimization
Lindblad Propagation
Lindblad Optimization

Figure 5: Left : Optimal pulses obtained for the |6〉 → |7〉 transition, for T = 16 ns and
Hmax = 1 mT. In blue and green, the optimal pulses obtained with Schrödinger and Lindblad
equations, respectively. Right : Their effect on the fidelity, as a function of time.

fidelity of the Schrödinger optimization (•) saturates to 1, while its real fidelity (•) starts

decreasing and falls down to much lower values. This is the difference between unitary and

dissipative evolutions. However, we can see how the second optimization (•) clearly outplays

the first one when we take into account dissipation (•). One could think that the optimal pulses

found with the Schrödinger propagation could not have the expected fidelity (as the orange curve

clearly shows) but would still be the best in any case. If that were true, the implementation

of Lindblad equation in our program would only have been useful for giving more realistic

expectations on the performance of the pulses. However, we can see how the second optimization

finds a pulse with a substantially better fidelity than the one we had before. This result justifies

all the work, since we have found the way to perform high fidelity operations in the presence of

noise.

The valleys that appear in some regions of the in the blue and green curves are due to local

maxima in the optimization landscape. We have tried to dodge them, but it is quite difficult2.

The fluctuations in the orange curve are not due to local maxima, since these points are

not obtained optimizing, but propagating a previously optimized pulse. One should not have

expected a smooth curve. For some durations, it is possible that some levels are more populated,

just because T could be a multiple 2π/ωj , where ωj is the frequency of some of the transitions

of the system.

We also want to study the performance of the algorithm and the results obtained for durations

T that represent a big fraction of T2. As our program cannot simulate very long durations, we

repeat the previous executions for a shorter T2 (40 ns), that is, a much stronger dephasing.

2For the blue curve, we have run 80 seeds and found no progress. For the green one, we haven’t had enough
time to run a better search, since every Lindblad optimization for those durations may take up to 22 hours,
starting from pulses that must be previously calculated too.
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Figure 6: Transition fidelities up to T = 60 ns. The only calculated values are the dotted ones,
the solid lines are spline interpolations for the reader to better understand the graph. (•) The
fidelity of the Schrödinger optimization saturates at its maximum value at about T = 10 ns,
whereas the noisy propagation of those pulses (•) starts decreasing around that same duration.
(•) The result of the second optimization gives much better results than the first one, reaching
fidelities almost as high as the ones achieved by the first pulse in the absence of noise.

Schrödinger Optimization
Lindblad Propagation
Lindblad Optimization

Figure 7: Optimal pulses T = 30 ns, Hmax = 1 mT and T2 = 40 ns, together with their effect
on the real-time fidelity.
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The results for T = 30 ns are shown in figure 7. In this case, the fidelity of the noisy propagation

of the pulse optimized with Schrödinger equation does not preserve the shape of the noiseless

curve at all, because the decoherence is too strong. Moreover, the result of Lindblad optimization

is now even steeper than it was for T2 = 500 ns. We can see how the optimal pulse only takes

relevant values in a small time interval around t ≈ 3 ns, which once again causes a step-function

behaviour. An important question arises here, concerning why the second optimization tends to

return pulses that are concentrated in time and whose effect is a step function. The explanation

is tightly related to the nature of T2. As dephasing only affects the non-diagonal terms of ρ, the

only states that are affected by T2 are the superpositions of eigenstates of the Hamiltonian. If

the state of the system is not superposed, it does not suffer dephasing. That is why the optimal

pulses are those that yield a step-function behaviour. The quickest the transition, the least

noisy the evolution. After the strong part of the pulse, ρ ≈ |7〉〈7|, so the effect of dephasing is

neigligible, and that is why the fidelity plateau for t > 5 ns does not decay over time. This also

explains why the orange curve on the right shows that much dephasing compared to the green

one. As the Schrödinger optimization does not consider T2, its optimal pulse is extended over

time, and the evolution of its fidelity is not a step function at all. Therefore, when we simulate

its effect with Lindblad’s equation, it suffers very much from dephasing.

Combining results for T ∈ [0, 60] ns, we obtain figure 8. One can clearly see how the real fidelity

of the pulses obtained from the Schrödinger optimization (•) is a competition between the effect

of the pulse (•) and the dissipation due to T2 (−). For short times, when dephasing is not

important yet, the orange curve is close to the blue one. However, as time runs, decoherence

increases and the separation becomes bigger and bigger.

0 1 0 2 0 3 0 4 0 5 0 6 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

D u r a t i o n  T  o f  t h e  P u l s e  ( n s )

Fid
elit

y  S c h r ö d i n g e r  O p t i m i z a t i o n
 L i n d b l a d  P r o p a g a t i o n
 L i n d b l a d  O p t i m i z a t i o n
 e x p ( - t / T 2 )

T r a n s i t i o n  F i d e l i t i e s

H m a x  =  1  m T
T 2  =  4 0  n s

Figure 8: Transition fidelities for durations up to T = 60 ns, this time for T2 = 40 ns. In this
case, we are able to simulate values of T that are not small compared with T2. This will give us
a better understanding of what is happening.

After obtaining the result of this competition in the orange curve, the second step of the

optimization returns the green one which is, once again, significantly better than the orange

one. The Schrödinger pulses are extended over time, while the Lindblad ones are concentrated
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around small time intervals, and that is why the red curve acts as an order-of-magnitude barrier

only for the first one. In any case, the reader must keep in mind that these points are the result

of the propagation of different pulses each. They are not the steps of the time evolution of the

same system, because the hamiltonian varies from one to another. That is why some phenomena

such as the fact that the orange curve surpasses the red one for T > 50 ns are not especially

problematic.

4.2 Unitaries: Toffoli Gate

As we have seen in figure 6, a simple |6〉 ↔ |7〉 transition is not equivalent to a Toffoli gate.

The second is a unitary, and therefore our optimization must be more restrictive. We have to

use the whole multitarget fidelity from equation (3.20), with the d+ 1 = 9 states from [10] and

Utarget = UTFF. Two examples of the results of this optimization with the realistic T2 = 500 ns

are shown in figures 9 and 10, and most of the comments we made in the previous section remain

valid.

Figure 9: Multitarget optimization of a Toffoli gate for T = 10 ns and Hmax = 1 mT.

Considering the shapes of these pulses and real-time fidelities, and many others that are not

shown here, we have observed that for shorter values of T the pulses tend to force a smooth

evolution in the fidelity, as in figure 9, whereas for longer ones, as the dissipation becomes

stronger, a step-by-step behaviour arises, as in figure 10. In the former case, the pulse is

extended over time. Meanwhile, although the latter pulse is not as clean as the one shown in

figure 7, it also has a shape where there seems to be a wave packet responsible for each step.

For durations T that are not extremely short compared to T2, the optimization tends to find

pulses that drive the initial states to their respective targets one by one and in sudden jumps,

in order to minimize dephasing.

Putting together the fidelities we have calculated for T ∈ [0, 20] ns, T2 = 500 ns and two different

values of Hmax, we obtain figure 11. The need to propagate nine states instead of one made the
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Figure 10: Multitarget optimization of a Toffoli gate for T = 18 ns and Hmax = 2 mT. The red
arrows on the left point at five wave packets on the Lindblad pulse that seem to be responsible
for the five steps pointed in the green curve on the right.

executions nine times longer, so we only could simulate durations up to T = 20 ns in affordable

times.

Figure 11: Fidelities for the Toffoli gate as a function of the duration of the pulse, for two
different values of Hmax. There is the same local-maxima problem than before, and the results
could be even better if we could deal with it, but we will not it because it seems to be quite
complex.

Once again, we can see how the second optimization finds better pulses than the first one,

for every duration T of the pulse, and for both values of Hmax. This demonstrates that the

implementation of high-fidelity unitaries on molecular spin qudits is achievable, although we

will make several necessary clarifications later.

Another observation we can make is about the time T where the blue curve saturates for
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each Hmax. While for the smaller one it approaches 1 erratically, the bigger one clearly finds

its optimal performance around T ≈ 10 ns. From that point on, the noiseless fidelity does

not increase, while the orange curve starts decreasing. If we could not execute the second

optimization, the optimal duration of the pulse would be that. Nevertheless, the green curves

show a better performance, and they do not have such a clear decreasing tendency. It would be

interesting to simulate longer durations to check for the global behaviour, but the efficiency of

our algorithm is not good enough to do that in affordable times yet.

5 Conclusions and Further Work

The algorithm that we have developed in this thesis work has found the way to implement

high-fidelity transitions and unitaries. The results of the optimizations executed on top of the

Lindblad equation clearly outperform the calculations carried out considering only Schrödinger’s

equation. Furthermore, our programs have not only generated pulses capable of dodging dephasing.

In some cases, the generated pulses taught us something we had not predicted: sequences of

sudden pulses and step-by-step evolutions of the fidelity are especially effective to avoid the

effects of T2.

Moreover, the algorithm that we have developed is versatile and flexible, for two reasons:

First, the implementation of high-fidelity operations is not restricted to simple logic gates.

The input Utarget of our program can be any unitary, that is, a logic gate or the product of

several. The decomposition of algorithms into sequences of logic gates has been clasically done

to simplify the understanding of logic operations, and because some kinds of quantum hardware

are specifically designed for the implementation of certain logic gates that constitute a universal

set3 to be especially simple. However, when it comes to our molecules, it may be faster to

work directly with unitaries instead of gates. Further research might shed light on this. As

our calculations admit the product of an arbitrary number of gates as a target unitary, each

stage of an algorithm can be run with a single pulse. For instance, the error correction code in

figure 3 could be executed with just two pulses: one for the encoding, and another for decoding

and correction. In principle, this could improve the velocity of any quantum circuit, reducing

decoherence. It would be interesting to test this methodology by trying to replicate figure 4

from [3], to see if one can obtain better results.

The second reason that makes our program flexible is that it is not tied to specific models: Ĥ0

and V̂ can be easily modified, and therefore its applications range beyond magnetic molecules.

Any system that can be described as a static Hamiltonian plus a perturbation can be optimized

as the physical support for a quantum computer with this algorithm.

After these results, there are several doors that remain open for further research.

3A logic gate or set of logic gates is called “universal” if any logic operation can be decomposed into a sequence
of the operations of this set. An example of classical universal gates are the NAND and the NOR gates, which are
universal each. As for quantum gates, a set containing the CNOT and unitary one-qubit operations is universal.
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First, to be even more realistic, we need to introduce relaxation, that is, T1. Although it is bigger

than T2 and its effects become noticeable after longer times, the consequences of relaxation are

different than the ones of dephasing. The plateaus in the step functions that we have obtained

are flat because dephasing does not affect the eigenstates of the bare Hamiltonian, but relaxation

does. If we take it into account, the fidelities would decay after the step, so the optimal pulses

that we have found so far might not be that effective when considering both sources of noise.

We may find other shapes of pulses in that case.

Second, we must search for a deeper physical understanding of the curves of the time evolution

of the fidelity. It could help us simplify the pulses, design better target functions or reduce the

execution times. If the best way to implement gates is as a discrete set of sudden transitions,

maybe it would be possible to “cut and slice” the pulses, and put the ones that are responsible for

each step (red arrows) together, supressing the parts of the pulse that are apparently negligible.

An example of this idea can be found in figure 7: If the pulse had stopped at t ≈ 5 ns, the

fidelity would have been the same than the obtained at the final time, but the execution would

have been six times shorter.

As for the experimental implementation of our results, there is an important problem yet to be

addressed. We have obtained high fidelities, but the amplitude of our pulses is usually about

several tens of mT, and the instrumentation is limited. As we explained in section 3.5, the

reduction of the amplitude constraints for the magnetic field is a delicate issue, since it must

combine feasability with efficience. This reduction would demand longer execution times for the

pulses to achieve high fidelities, so we would have to deal with much more noise. The good news

is that the green curves in figures 6, 8 and 11 do not show a clear decreasing tendency. Maybe

one can design optimal pulses that achieve high fidelities efficiently for those long execution

times. In any case, one obstacle that we have so far is the fact that our algorithm is not able to

simulate very long times yet.

To sum up, this work is a first analysis of the feasability of the implementation of fault tolerant

calculations on molecular spin qudits, and the results so far are optimistic. Optimal control

seems to be able to deal with noise, although there are several important issues that still need

to be studied.
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Pablo J. Alonso, Olivier Roubeau, Fernando Luis, Guillem Aromı́, and Stefano Carretta. “A heterometallic

[LnLn’Ln] lanthanide complex as a qubit with embedded quantum error correction”. Chemical Science,

11(38):10337–10343, aug 2020.
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6 Appendix

6.1 Density Operator

There is an alternative formulation of quantum mechanics we have not mentioned before. It is

based on the density operator ρ. If the state |ψ〉 of a system is perfectly known, the density

operator associated to it is ρ = |ψ〉〈ψ|. Using it, one can find equivalent expressions for the

evolution and physical properties of the states of the system.

i
d

dt
|ψ〉 = Ĥ|ψ〉 → ρ̇ = −i

[
Ĥ, ρ

]
(6.1)

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 → ρ(t) = U(t, t0) · ρ(t0) · U†(t, t0) (6.2)

〈Ô〉 = 〈ψ|Ô|ψ〉 → 〈Ô〉 = Tr
[
Ô · ρ

]
(6.3)

where the evolution operator U takes the form [6, 7]:

U(t, t0) = T exp

[
−i
∫ t

t0

Ĥ(t′)dt′
]

∂Ĥ
∂t

=0̂
−→ U(t, t0) = e−iĤ(t−t0) (6.4)

However, if, instead of having a well-known state, we have a set of states {|ψk〉} obeying a

probability distribution {pk}, the bra/ket representation is not valid anymore, and we will need

to use the density operator to describe the state of the system. In that case,

ρ =
∑
k

pk|ψk〉〈ψk| (6.5)

and equation (6.3) still holds. A state whose density operator can be written as ρ = |ψ〉〈ψ|
is called a “pure” state. Otherwise, it is said to be “mixed”. Density operators meet certain

mathematical properties:

1. ρ† = ρ

2. All density operators are positive semi-definite.

3. Tr(ρ) =
∑

k pk = 1, since {pk} must be a normalized probability distribution.

4. ρ2 = ρ ⇐⇒ ρ is pure. Therefore, we can define the purity of a state as P (ρ) = Tr(ρ2) ≤ 1.

It will be smaller than 1 unless ρ is pure, in which case it is exactly 1.

5. If the evolution of a state is given by (6.1), its purity is preserved over time:

d

dt
P (ρ) =

d

dt
Tr(ρ2) = 2 Tr(ρ · ρ̇) = −2iTr

(
ρ
[
Ĥ, ρ

])
= −2i

[
Tr
(
ρĤρ

)
− Tr

(
ρρĤ

)]
= 0

6. The Von-Neumann Entropy of a state is S(ρ) = −Tr [ρ log(ρ)]. It also gives information

about the purity of ρ, since S(ρpure) = 0, while S(ρmixed) > 0.

But, even with this formulation, we cannot describe the state of the whole system S +B, since

the complexity of B is still there. We must find a way to extract some information about our

system of interest S, in spite of entanglement and statistical mixtures. The way to do this is
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using a Partial Trace:

ρS = TrB(ρ)

This is a sum over the degrees of freedom that correspond to the environment, in order to extract

statistical information about the system S, making some sort of average over the influence of

the environment B on S. However, this carries a loss of information, since

TrB(ρ)⊗ TrS(ρ) 6= ρ

unless ρ is a separable state (ρ = ρS ⊗ ρB). In that situation, there would be no loss of

information after the partial trace because there was no previous entanglement. In any case, we

will be interested in ρS and, although the purity of ρ will remain constant in time, the purity

of ρS will not, since the evolution of ρS will not be given by (6.1). A discussion about how it

actually is may be found in section (2.2).

But even without saying anything about evolution, we can already notice one thing. Due to

equation (6.5), the state of our system, ρS , is a sum of pure states weighted by their probabilities,

that is a mean value. Thus, it will evolve towards a thermal equilibrium state, given by statistical

mechanics:

lim
t→∞

ρ(t) = ρth(T ≡ β) =
1

Z
e−βĤ , Z = Tr

[
e−βĤ

]
(6.6)

This has two main consequences:

• Since the final state will be a function of T for any initial ρ(t0), the whole evolution will

also depend on the temperature of the system.

• As in any every other relaxation towards equilibrium, the entropy of the system will

increase, so the evolution will be dissipative.

6.2 Optimal Control Theory: A Standard Formulation of the Problem, and

Derivation of the Gradient Expression

In this appendix, we present the “typical” formulation of the problem addressed by OCT, and

sketch a derivation of the equation for the gradient that we have used. Given a differential

system, {
ẏ(t) = f (y(t), u, t)

y(0) = y0
(6.7)

for the evolution of a function y(t), depending on a set of “control” parameters u ≡ (u1, . . . , uP ),

and a functional

F (y(T ), u) =

∫ T

0
dt δ(t− T )F (y(t), u) ,

we want to optimize G(u) = F (y[u](T ), u), where y[u](T ) is the solution to (6.7).The problem

reduces, therefore, to finding the maximum of a multivariable function G(u), a problem for which

hundreds of methods have been proposed. Many of them require of a means to compute the

gradient; in the following, we sketch a proof for the gradient expression that we have used above.

Notice that, for our purposes, (6.7) may represent the evolution of any quantum system, being

y either |ψ〉 or ρ, and f the dynamical function given by Schrödinger’s or Lindblad’s equation,
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respectively.

The problem can be formulated as the maximization of F subject to the conditions given by

equations (6.7). We will have to use the method of Lagrange multipliers. Let

J(λ, y, u) = F (λ, y, u) + L(λ, y, u)

where y(t) ∈ Cn is our system, λ(t) ∈ Cn is its associated Lagrange multiplier, and

L(λ, y, u) = −2Re

∫ T

0
dt ·��

�λ∗(t)λ(t) · [ẏ(t)− f (λ(t), u, t)]

Notice that a · b =
∑

i a
∗
i bi is a dot product in Cn. Now we want to take derivatives, and we

must bear in mind that F , L and J are real functions whose variables are complex functions.

Therefore, we should use the so-called Wirtinger derivatives (i.e. “write the functions in terms

of both the variable and its complex conjugate, and take the derivative with respect with one of

those, treating the other one as if it were independent”) [15]. Thus, for example:

δL

δλ∗(t)
=

δ

δλ∗(t)

∑
i

[
−
∫ T

0
dt λ∗i (t) (ẏi − fi(u, u, t))−

∫ T

0
dt (ẏ∗i − f∗i (y, u, t))λi(t)

]
(6.8)

= − [ẏ − f (y(t), u, t)] (6.9)

Now we want to take the derivative of L with respect to y∗(t). We rewrite it first as:

L
...
=
∑
i

∫ T

0
dt
[
λ̇∗i (t) + δ(t)λ∗i (t)− δ(t− T )λ∗i (t)

]
yi(t) +

∑
i

∫ T

0
dt λ∗i (t)fi (y(t), u, t) +

+
∑
i

∫ T

0
dty∗i (t)

[
λ̇i(t) + δ(t)λ(t)− δ(t− T )λi(t)

]
+
∑
i

∫ T

0
dt f∗i (yi(t), u, t)λi(t)0

and we obtain:

δL

δy∗(t)
=
∂f

∂y∗
(y(t), u, t)λ(t) + λ̇(t)− δ(t− T )λ(t) +

∂f∗

∂y∗
(y(t), u, t)λ(t) .0

Notice that the δ(t)λ(t) term disappears: the reason is that, when taking the functional derivative,

the variations of y at t = 0 are not allowed, due the to the y(0) = y0 constraint. The definition

of the Lagrange multiplier term J is given in such a way that setting its functional derivative

with respect to λ equal to zero implies the equations of motion for the system:

0 =
δJ

δλ∗
=

δL

δλ∗
= − [ẏ − f (y(t), u, t)] −→ ẏ = f (y(t), u, t)

The differential equation that defines λ is analogously given by taking the functional derivative
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with respect to y and equating it to zero:

δJ

δy∗
=
∂F

∂y∗
(y(T ), u) δ(t− T ) +

δL

δy∗
⇒

⇒ δJ

δy∗i
= λ̇i(t)δ(t− T )λi(t) +

∑
j

λ∗j (t) ·
∂fj
∂y∗i

(y(t), u, t)

+
∑
j

∂f∗j
∂y∗i

(y(t), u, t) · λj(t) +
∂F

∂y∗i
(y(t), u) δ(t− T )

Therefore, if the functional derivative of J is equal to 0: λ̇i(t) = −
∑

j λ
∗(t) · ∂fjy∗i (y[u](t), u, t)−

∑
j

∂f∗j
y∗i

(y[u](t), u, t) · λ(t)

λi(T ) = ∂F
∂y∗i

(y[u](t), u)
(6.10)

where we have explicitly written y[u](t) to emphasize that it is the system trajectory that meets

the constraint given by (6.7) for parameters u. Likewise, we can use the notation λ[u](t) to refer

to the costate trajectory () for parameters u.

Considering that G(u) = J(λ[u], y[u], u), now we can finally compute the gradient of G by taking

the chain rule:

∂G

∂u
=
∑
j

∫ T

0
dt

�
�
�
��δJ

δλ∗j [u](t)

∂λ∗j [u](t)

∂u
+
∑
j

∫ T

0
dt
�
��

��δJ

δλj [u](t)

∂λj [u](t)

∂u
+

+
∑
j

∫ T

0
dt

�
�
�
��δJ

δy∗j [u](t)

∂y∗j [u](t)

∂u
+
∑
j

∫ T

0
dt

�
�
�
��δJ

δyj [u](t)

∂yj [u](t)

∂u
+

+
∂

∂u
J(λ, y, u)

∣∣∣∣
λ=λ[u],y=y[u]

=

= 2Re

∫ T

0
dt λ∗(t)

∂f

∂u
(y(t), u)

∣∣∣∣
λ=λ[u],y=y[u]

+
∂

∂u
F (y(T ), u)

∣∣∣∣
y=y[u]

(6.11)

The previous equation is rather general. Now we will simplify it considering that the differential

equation encoding the evolution of a physical system, with or without dissipation, is linear. Our

system will take the form: {
ẏ(t) = Â(u, t) · y(t)

y(0) = y0
(6.12)

We can identify terms with the previous section as follows:

f(y, u, t) =Â(u, t) · y(t) −→ f †(y, u, t) = y†(t)Â†(u, t) ≡ f †(y†, u, t)

(6.2)⇒

{
λ̇(t) = −Â†(u, t) · λ(t)

λ(T ) = ∂F
∂y†

(y[u](t), u)
(6.13)

(6.12)⇒ ∂G

∂u
=2Re

∫ T

0
dt λ†(t)

∂Â

∂u
y(t)

∣∣∣∣
λ=λ[u],y=y[u]

+
∂F

∂u
(y(T ), u)

∣∣∣∣
y=y[u]

(6.14)

To further particularize OCT problems for quantum systems, we will just have to specify the

meaning of y(t) and Â, and introduce specific expressions of F into the equations.
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In case our system follows a Lindbladian evolution, the deduction of the expression for the costate

boundary condition is not straightforward. We will use (6.2), with F (y(t), u) = Tr [ρtarget · ρ[u](T )].

First, we must write the content of the trace term-wise:[
(ρ+ ρ†)Ô

]
ij

=
∑
m

(ρim + ρ∗mi)Omj .

Now we write the explicit form of the target function in terms of the previous expression:

F =
1

2
Tr
[
(ρ+ ρ†)Ô

]
=

1

2

∑
k

[
(ρ+ ρ†)Ô

]
kk

=
1

2

∑
k,m

(ρkm + ρ∗mk) Ômk.

Finally, we differentiate it and find a compact expression

δF

δρ∗ij
=

1

2

∑
k,m

(
∂ρkm
∂ρ∗ij

+
∂ρ∗mk
∂ρ∗ij

)
Omk =

1

2

∑
k,m

(0 + δimδjk)Omk =
1

2
Oij

that is,

λ(T ) =
δF

δρ†
(y[u](T ), u) =

1

2
Ô. (6.15)
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