Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Universidad
Zaragoza

annee
gy
_

1 2

w
H

Trabajo Fin de Grado

Automatizacion de un proceso de fabricacion
en Factory I/O controlado a través de Unity Pro

Autor/es

Jaime Calvo Baigorri

Director/es

Cristian Mahulea

Escuela de Ingenieria y Arquitectura/Tecnologias Industriales

2021

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Automatizacion de un proceso de fabricacion en Factory 10
controlado a través de Unity Pro

RESUMEN

La primera parte del trabajo se trata de realizar un modelo simulado de una estacion,
concretamente la estacion 6, de una célula de fabricacidn situada en el laboratorio 0.06 del
edificio Ada Byron de la Escuela de Ingenieria y Arquitectura.

La segunda parte del trabajo consiste en el disefio de una nueva estacién que sirva de
continuacién a esta y realice las funciones de almacén automatizado.

Se ha llevado a cabo un inventario de los distintos componentes, sensores y actuadores
qgue conforman la estacidn 6, asi como sus respectivas conexiones con el PLC que se encarga del
control. Conocida en detalle la estacion real, y disefiada la segunda estacion, se va a emplear el
software de simulacidn Factory 10 para implementar ambos modelos. En el caso de la primera
estacion, se debe buscar la mayor semejanza posible con el sistema real.

Una vez realizadas las maquetas, se desarrolla el cddigo de control. En primer lugar, al
tratarse de sistemas de eventos discretos, se ha representado el esquema de control por medio
de una Red de Petri. El software empleado para programar el cédigo de control ha sido Unity
Pro. Respecto al control implementado para la primera estacion, se desarrolla de tal forma que
sea apto para el modelo real y para el modelo simulado, es decir, que sin modificar la linea de
cddigo logre el mismo funcionamiento en la estacion del laboratorio y la maqueta desarrollada
en el software de simulacion.

Para conseguir que el cddigo de control sea valido para el modelo real y el simulado de
la estacion 6, dentro de Unity Pro, se ha realizado un mapeo de las sefiales de entrada y salida
para establecer su direccién de memoria en funcién de si estamos trabajando con la estacion
real o la simulada.

La implementacidn de la segunda estacidn se realiza de tal forma que se sincronice el
evento de dejar una base en la estacion 6, con el evento de aparicion de una base en la segunda
estacion. Para lograr esta sincronizacion es necesario que la segunda estacion lea como variable
de entrada, la variable de salida de la estacién 6 (el brazo robot deja una base en la cinta).

Finalmente, se han realizado dos videos mostrando el resultado de estas simulaciones.

ABSTRACT

The first part of the work carried out is a simulation model corresponding to a station,
specifically station 6, of a manufacturing cell located in the laboratory 0.06 of the Ada Byron
building of the School of Engineering and Architecture, Zaragoza.

The second part of the work consists of the design of a new station that serves as a
continuation of this one and performs the functions of an automated warehouse.

An inventory of the different components, sensors and actuators that make up the 0.06
station has been carried out, as well as their respective connections with the PLC that oversees
the control. Once the real station is known in detail, and the second station is designed, the

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Factory 10 simulation software will be used to implement both models. In the case of the first
station, the closest possible resemblance to the real system should be sought.

Once the models have been made, the control code is developed. First, since these are
discrete event systems, the control scheme has been represented by means of a Petri net. The
software used to program the control code was Unity Pro. Regarding the control implemented
for the first station, it is developed in such a way that it is suitable for the real model and for the
simulated model, i.e., without modifying the line of code, it achieves the same operation in the
laboratory station and the model developed in the simulation software.

To make the control code valid for the real model and the simulated model of station 6,
within Unity Pro, the input and output signals have been mapped to establish their memory
address depending on whether we are working with the real or the simulated station.

The control of this station is done in such a way that the succession of events with the
first station is sequential. To achieve this sequential succession of events it has been necessary
to synchronize both stations, since it is necessary for the second station to read certain input
variables, which correspond to output variables of the first station. The communication between
two systems present in different computers through a Modbus network has been deepened to
establish the synchronization.

Finally, two videos have been made showing the result of these simulations.

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

INDICE GENERAL
TINDICE DE FIGURAS. ...t eeeeeteeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeaseeeeeeesensesessenseeessensesessensesesseneeeessenseeessesseeessenseesseenes 1
TINDICE DE TABLAS. ... veeeeee et eeeeeeee et eeeee et eeeeeeeeeeesseneeeeeseneesessenseeessensesessensesesseneesesseneesensaseeessenesnessees 2
d. INTRODUCGCIONcueuueeeeeeerereeieeeresressesassssssssssesesssessssssssssssssssesssssassssssssssssssnnes 3
00 I ©] o 7= 1Yo N 3
1 R Y ot T 3 Vo< 5
2. ESTRUCTURA DE LA ESTACIONueeeeveeeeeereeeeesssssssesssssssssssssssssssssssssssssssssssssssnns 7
28 IR ~ -1 o =Y 3 (ot Y-S 7
b -1 1 L o NN 8
3. MODELADO EN FACTORY I/ uuueeeeeeeceerrrensssesssensssssessnssssssssssssssssssssesssssssssssnnnns 9
K 0 SO » - o = £ LY (ot YN 9
I 2 Y -1 1 Lo] =1y 10
4. CONTROL DE LA ESTACION REALeeeeeeeeeeeeeeeeeeeeseesssessessssssssssssssssssssssssssnnnnes 12
4.1. Entradas y salidas del sistemaccceeeiiieeiiiiiiniiiiiniiiiiniinressssessssssenees 12
4.2. Funcionamiento deS@ad0cciuiiuuieieiieieiiereiieiieiteiteiteresenssasesssassassessassensansenses 14
4.2.01. CIiclo NOIMAl i 14
4.2.2. Fallos €N € SISTEMA cccciiiiiiiiiiiiiii 14
4.2.3. REA A8 POII coiiiiiiiiiiiiice 14
4.3. Control del brazo robot........cicieiieiiiiiiiiic e re e s eseea e saesessaeransansanes 16
4.4. Control @N UNItY Procceeeiieeeiiiieecciirecccesrrceeesrrnneeessrnnessseenssssseenssssssnnsssssennnns 17
5. CONTROL DE LA ESTACION SIMULADAc.ccceeeeeeeeeereeesseesessssssessssssssssssssssnnes 19
L% N = 7~ ¥ 2o 31 1 0o « 1o 1 SRS 19
Lo 0 00 I ¥/ T AV T2 0 1= o o S 19
o0 0 Y= [o] 1= 20
5.2. Depositos de gravedad........cccccveeuiiiiiiiiiiiennniniiiiiiiieeineissnnersense s sssss e 20
6. MAPEADQO DE SENALESooeeveeeveecevessueesssessssesses 22
7. ESTACION DE PALETIZACION Y ALMAGCENAJE.........ccceeeeeeeeeeeeresessssesssssssssssssssses 23
7.1. [U Lo {1 [- [N 23
7.2. CoNtrol de 1a @SEACIONceuiveueieiieirieiireireirerenrrerenreeireesseesrasesnssesssnsssesssasssnnens 24
7.2.1. FUNCIONAMIENTO ESEAUOvvvrieiieeieeeciiireee ettt e e e et e e e e e e e e etbaeeeeeesesnbbaeeeeeeeesnnsreraeeees 24
R S =Te I e L3 o= RPN 24
7.2.3. LENGUAJE SFC ..t an b aannnanananaaaanaaa——_, 25
7.3. CONEXiON €NIre @STACIONES ...c.cveuriereeereeireeiinrressensrensreesressrssssnssensseesssssssssrnsssnnsens 26
7.4. Escenas independientesccccviiiiiiuiiniiiiiiiniiiiiiiie s iesssssssssesees 27
8. SECCIONES GENERADASccoeeeivereeereiririreensriresesesessssssssssossssessessssssssssssssssssnnss 29
8.1. CONEIOI ESTACION B..uveenrenreniennrenrtnieeneresersesesnseessenssensssssssssssssssssenssssssssssssssssssnssens 29

8.2. Estados del brazo robot.........ccueieieiieeiiiiririiiriree i e reeeneseneseessnesressrnsssnnsens 29

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

8.3. Mapeo de entradas......cccccceeeriruniiiriieiiiieiee e srr e r e s s e e e s e e s s s s e s enssaseranans 30
8.4. Mapeo de salidas....cccccciiiiiiiiiiuiiiiiiiiiiiiiii e s s resasssssanasssseenens 30
8.5. Control alMAacenccoviiiiimmeniiiiiiiiiiinnine e 30
8.6. Simulacion de planta........ccceeeeiiiiiiiiiiiieesiiciiierene s e s s e ssnnnssssssesans 30
9. VALIDACION DE LOS RESULTADOS OBTENIDOScccueeeeeveeserereessrssensansssaes 32
JO. CONCLUSIONEScuuuueeueirieiiirieiiriieririesiiiiiiiiiensisnnnissesiessssisessssmessissessisennens 33
i 1170 [0 Lc 7Y 1 S S 35
12, ANEXOSouueveueiiieiiirieiiiiiiiiiieniirieniisiesiisessisiessismesissessissssssnessiessssissssssssnnsns 36
12.1. ANEXO I: Guia basica FActory 1/0.......uuieiieiiiieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesseesseen 37
700 O Yol =Y o= Yo [- Yot e oV S 38
12.1.2. Creacion de UN@ @SCENA ..ottt bbb b 38
12.1.3. SIMUlacion de UN@ @SCENA.........cciiiiiiiiiiicc e s 44
12.2. ANEXO Il: Guia basica Unity Pro......ccccceiieeeceiiieeceiireeccerrnneecsrennsesseensssessennsnes 47
12.3. ANEXO 11l: GUION Practica 4......cceeeeiiiiiiiiinneniieiiiniiinnnsienecsnsssssnssssses e ssssenses 53

12.4. ANEXO IV: Seccione@s de CONTIOl.......ceuureereeiieeiienienireeiereieeeereeereesenseessenssensrnnees 60

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

INDICE DE FIGURAS

Figura 1: Esquema de la célula de fabricacion flexible 3
Figura 2: Estacion N°6 7
Figura 3: Depdsitos de gravedad y expulsores estacion real 7
Figura 4: Brazo Robot estacion real 8
Figura 5: Botonera estacion real 8
Figura 6: Empujador Factory 10 empleado como expulsor vs placas expulsoras estacion real 9
Figura 7: Pick&Place Factory 10 empleado como brazo robot vs brazo robot estacion real 9
Figura 8: Paleta de control estacion simulada vs estacion real 10
Figura 9: Sensores capacitivos(1) y sensores difusos(2) instalados 10
Figura 10: Estacidon simulada 1 definitiva 11
Figura 11: Esquema de funcionamiento de una concurrencia 12
Figura 12: Red de Petri de la estacion 6 15
Figura 13: Red de Petri del lugar “Ciclo del brazo robot” 16
Figura 14: Depdsitos de gravedad de la estacion simulada 21
Figura 15: Variable para indicar el tipo de estacion de trabajo 22
Figura 16: Sefiales mapeadas en Unity Pro 22
Figura 17: Estructura de la estacion de paletizacion y almacenaje 23
Figura 18: Red de Petri de la estacidn de paletizacion y almacenaje 25
Figura 19: Modelo de cddigo de control en lenguaje SFC 26
Figura 20: Esquema de funcionamiento deseado 27
Figura 21: Secciones generadas en el control 29
Figura 22: Video de la simulacion de la estacion N296.

Enlace: https://www.youtube.com/watch?v=q5CTgkxdBzE 32
Figura 23: Video de la simulacion conjunta de dos escenas de Factory IO.

Enlace: https://www.youtube.com/watch?v=uwkgePS85p0 32
Figura 24: Escena vacia Factory 10 38
Figura 25: Como abrir la biblioteca de componentes en Factory 10 39
Figura 26: Grupos de componentes en Factory 10 40
Figura 27: Opciones de manejo y configuracion de objetos en Factory 10 40
Figura 28: Opciones de configuracion de la pieza emisora 43
Figura 29: Modo de activacion de la representacion de sensores y actuadores en Factory 10 44
Figura 30: Menu de sensor en Factory 10 44
Figura 31: Posibles estados de sensores y actuadores en una simulacion forzada de Factory 10 45
Figura 32: Icono del PLC de Factory 10 45
Figura 33: Menu configuracion del PLC en Factory 10 46
Figura 34: Conexidn del PLC de Factory 10 a la red Modbus 46
Figura 35: Establecer las variables elementales en Unity Pro 48
Figura 36: Nueva seccidn Unity Pro 49
Figura 37: Ejemplo de cddigo en lenguaje ST 49
Figura 38: Componentes del lenguaje SFC 49
Figura 39: Menu de paso, lenguaje SFC 50
Figura 40: Menu de accion, lenguaje SFC 51
Figura 41: Ejemplo de secciones de transicion, lenguaje SFC 51
Figura 42: Generar proyecto en Unity Pro 51
Figura 43: Establecer direccion en Unity Pro 52

~
[EEN
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

INDICE DE TABLAS

Tabla 1: Entradas y su condicion de puesta a 1 de la estacion real

Tabla 2: Salidas y su condicion de puesta a 1 de la estacion real

Tabla 4: Direccion de memoria de las entradas y salidas de la estacion real

Tabla 5: Variables auxiliares empleadas en el control de la estacion real

Tabla 6: Variables asociadas al movimiento del brazo robot en Factory 10

Tabla 7: Conversion analdgica-digital de las variables asociadas al robot en Factory 10
Tabla 8: Sensores de la estacion de paletizacion y almacenaje

Tabla 9: Variables auxiliares empleadas para el control en escenas independientes

Tabla 10: Entradas y salidas del expulsor de Factory 10

Tabla 11: Entradas y salidas de la cinta de transporte de Factory 10

Tabla 12: Entradas y salidas de la estacion del brazo robot de 3 ejes de Factory 10

Tabla 13: Entradas y salidas del brazo robot de dos ejes de Factory 10

Tabla 14: Entradas y salidas de la grua cargadora de Factory 10

Tabla 15: Caracteristicas del PLC Modbus TCP/IP Client

Tabla 16: Opciones de accion de paso, Unity Pro

13
13
17
18
19
19
24
28
41
41
42
42
43
46
50

~
N
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

1. INTRODUCCION

El trabajo fin de grado que se detalla a continuacion se ha realizado en colaboracién con
el Departamento de Informatica e Ingenieria de Sistemas de la Escuela de Ingenieria y
Arquitectura. Se fundamenta en los conceptos impartidos en la asignatura de Ingenieria de
Control, acerca del control de sistemas de eventos discretos (SED), mas concretamente en las
Redes de Petri. La primera parte del trabajo se centra en la simulacion y control de una estacion
real de una célula de fabricacidn flexible disponible en el laboratorio L0.06.

Estacion 8
Robot de montaje y

i Estacion 3 I [Estacion 4] [Estacion 5 I expedicion de pedidos

B[

! Estacion 2 l I Estacian 1] [Estacion 6 I [Estacian 7]
[MODULO 1 || mépuron || MODULO III |

Figura 1: Esquema de la célula de fabricacion flexible

La segunda parte del trabajo consiste en el disefio y control de una segunda estacion
que realizara las funciones de almacén y se programa de forma que la sucesion de eventos sea
secuencial y coordinada con la primera estacién. Cada estacion se simulara en dos ordenadores
diferentes, para ello serd necesario estudiar la comunicacidn entre las distintas herramientas.

En el desarrollo de sintesis se ha empleado el software de simulacion Factory 10. La
eleccidn de este software frente a otros es debido a que previamente en el estudio del grado ya
se han realizado practicas de asignaturas con él y, ademas, visualmente es sencillo y facil de
comprender.

El codigo de control se implementa y compila en el software Unity Pro. El PLC al que estd
conectada la estacidn real es de Schneider Electric, es por ello, que a la hora de elegir el software
de control, se ha optado por el de la marca.

Las técnicas de implementacién de una estacion real a través del software Factory IO se
apoyan un trabajo fin de grado previo realizado por Fernando Grima Montesa [9] que trabajo
con otra estacidn de la célula de fabricacion.

1.1. Objetivos

El objetivo principal de la primera parte de este trabajo es aumentar el grado de
flexibilidad de la universidad en esta época de pandemia actual, y poder proyectarlo para
tiempos en los que la situacién haya mejorado. Llevar la estacion real a un software de
simulacidn accesible por los alumnos desde sus ordenadores personales, permite impartir la
docencia de manera online, evitando la presencialidad de los alumnos en un laboratorio, en una
Unica estacidon. Ademas, siendo que el objetivo de la practica es desarrollar un programa que
consiga el funcionamiento deseado sobre la estacién, puede permitir que alumnos, bien porque

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

tengan trabajo, solape de horarios, o incluso alguin imprevisto, puedan desarrollar el programa
y antes de una fecha limite demostrar que funciona.

Uno de los principales problemas durante la realizacion de las practicas sobre la estacion
real es la aglomeracién de alumnos a la hora de probar sus lineas de cédigo. Probar los codigos
directamente sobre la estacidn real hace que el nimero de intentos por alumno hasta lograr el
funcionamiento éptimo sea elevado, provocando largas esperas entre un estudiante y otro. La
implementacion de la maqueta sobre un software de simulacién permite al alumno probar su
cddigo de control el nimero de veces que haga falta sin retrasar a ninglin compafero, ya que
solo implementara el control sobre la estacidn real cuando haya funcionado en la simulada.

Conseguir que los alumnos implementen sobre la estacion real Unicamente el codigo
final, no solo supondra un beneficio para los estudiantes sino también para la universidad.
Pueden darse casos en los que el programa realizado por el alumno sea defectuoso y ponga en
peligro la integridad de la estacidn, por tanto, reduce el riesgo de averia en la estacion real.

Un segundo objetivo es, facilitar y dotar de mas herramientas a los alumnos que,
durante el estudio del grado, tengan que trabajar con esta estacidn. Se pretende facilitar la
comprensidn del funcionamiento y los aspectos basicos de la estacién. De esta manera, se
pretende motivar y fomentar el estudio del control de este tipo de estaciones, como resultado
a una comprension plena y amena de los fundamentos de los sistemas de eventos discretos.

Para lograr estos objetivos, es muy importante que los alumnos a la hora de programar
el control de la estacidn no tengan que diferenciar si estan trabajando con la estacion real o
simulada. La estacidn simulada deberd tener la misma dindmica que la real, y en aspectos en los
gue no sea posible por limitaciones del software, debera ser subsanado mediante el control. Se
creardn secciones de control, ademas de la principal, para solventar las diferencias entre
estaciones, y de esta manera hacer su funcionamiento semejante.

En la realizacidn del cddigo de control, a la hora de definir las variables se pretende
trabajar con variables unicas con el objetivo de simplificar la linea de cédigo. Esto implica que
las direcciones de memoria de las variables reales sean iguales a las de simulacién. En caso de
no ser posible, se debe realizar un mapeo de seiiales para que los alumnos, solo con indicar si
trabajan en simulacién o con la maqueta real, si puedan trabajar con variables Unicas.

Respecto a la segunda parte del trabajo, la cual consiste en el disefio de una estacion
que amplie el proceso que se inicia con la estacion real, se pretende construir y controlar una
nueva estacién que automatice un proceso de paletizacién y almacenaje. Mediante el control se
pretende lograr un funcionamiento secuencial entre ambos sistemas.

El objetivo principal de esta segunda parte es realizar la comunicacidon entre dos
sistemas que se ejecutan en dos ordenadores diferentes. Para lograr una sucesién de hechos
secuencial en la simulacién, es necesaria la lectura de variables compartidas, es decir, la segunda
estacion debe leer variables de entrada/salida de la primera y viceversa. Se va a realizar un
estudio sobre la conexidn de varios dispositivos a una misma red Modbus con la intencion de
lograr esa comunicacion y esa simulacidn coordinada entre estaciones.

La simulacion de las dos estaciones debera realizarse en dos ordenadores diferentes. De
esta forma se pretende dar una solucidn a grandes procesos productivos en los que por tamafio,
no es viable su simulacién en una Unica escena de Factory 10, bien porque no caben o bien

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

porque es complicado prestar atencién a todos los sucesos si todo se encuentra condensado en
un mismo archivo.

1.2. Alcance

En la memoria del trabajo se detallan las distintas etapas que se han realizado en este
trabajo. En primer lugar se va a comentar la parte fisica de la estacién, donde primero se habla
de los componentes de la estacidn real y seguido se nombran los objetos empleados en Factory
10 para suplirlos. En este apartado se va a comentar los primeros problemas que han surgido en
la realizacién del trabajo, ya que no todos los componentes de la estacidon real los podiamos
encontrar en el software. Se detallara la solucién propuesta a los problemas mencionados.

A continuacién, se detalla todo lo relacionado con el control. Al igual que con la
estructura, primero se detalla el control de la estacién real, hablando de las entradas y salidas
del sistemay del funcionamiento deseado. Tras determinar el funcionamiento dptimo se realiza
la representacién mediante la red de Petri de la estacidn. El brazo robot es el mecanismo mas
complejo de la estacidn, ya que tiene asociadas varias entradas y salidas.

Tras detallar todo lo referente a la estacidn real, se va a comentar los problemas que
han surgido en el control de la estacidn simulada. Esto se debe a las diferencias entre las partes
fisicas de las estaciones, las cuales se habran comentado en la primera parte del trabajo. En esta
parte de la memoria se explica la solucién adoptada para conseguir el objetivo final, un cédigo
de control Unico.

A continuacidn, se detalla el mapeo de las sefiales que se ha tenido que realizar por no
poder emplear variables Unicas. En este apartado, ademas de explicar cdmo se ha realizado, se
va a detallar el fundamento y que se debe hacer para diferenciar el trabajo sobre la estacién real
y sobre la simulacion.

Terminada la explicacién sobre el mapeo de seiales, se realizard el diseiio y control de
la estacidn que sirve de ampliacidn a la estacion real. Al igual que con la primera estacidn, se
empezara desarrollando la estructura. El lenguaje de programacion empleado para esta estacion
es distinto al usado anteriormente, por tanto, antes de entrar con el control de la estaciéon se
introducira este nuevo lenguaje.

Una vez introducido el lenguaje de programacion se explica cuales son las variables que
se deben leer entre estaciones para lograr un funcionamiento coordinado. También se detalla
cual ha sido la manera de programar las estaciones para reducir el tiempo de ciclo al maximo
posible.

La parte referente a la estacion de almacenaje y paletizacidn termina con una
explicacion sobre cémo se ha conseguido la comunicacion entre dos escenas, que se encuentran
en dos ordenadores diferentes, pero para la simulacién precisan de estar conectadas a la misma
red Modbus.

Por ultimo encontramos dos videos de las simulaciones realizadas en este trabajo. Estos
videos pretenden mostrar el funcionamiento implementado en ambas estaciones, asi como
facilitar la comprension apoyando la explicacion en una representacidn visual.

La memoria del trabajo concluye con una serie de anexos. El primer anexo, habla sobre
el software de simulacion Factory 10 y tiene como fin explicar cémo se ha llevado a cabo la
creacion de las escenas, hablando sobre las distintas funcionalidades que ofrece el software. El

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

segundo anexo, tiene el mismo objetivo que el primero, pero en este caso se detalla el segundo
software empleado en este trabajo, Unity Pro. El tercer anexo sera el guion de la practica en el
que se ha basado el funcionamiento deseado de la estacion real. El Gltimo anexo sera el cédigo
de control desarrollado en Unity Pro.

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

2. ESTRUCTURA DE LA ESTACION

La maqueta real de la estacién se sitla en el laboratorio 0.06 del edificio Ada Byron. La
estacion se encarga de proporcionar las bases de dos piezas distintas a un cinta transportadora
central. El transporte de estas piezas lo realiza un brazo robot.

Figura 2: Estacion N26

2.1. Partes fisicas

Las partes fisicas de la estacion son todos los objetos que van a estar controlados por el
PLC, ademas de aquellos que sirven como soporte de los anteriores. También consideramos
como parte fisica a las bases y al lugar donde se almacenan.

. 2 depédsitos. Almacenan las bases, uno para cada tipo. Se tratan de
alimentadores por gravedad, por lo que las placas se almacenan unas encima de otras y se van
suministrando una por una.

. 2 expulsores. Se emplean para colocar las placas en la zona donde seran
recogidas por el brazo robot para ser transportadas. Estos expulsores se tratan de cilindros de
simple efecto, es decir, una Unica variable gestiona la extension y recogida del mismo.

Figura 3: Depdsitos de gravedad y expulsores estacion real

. 1 brazo robot. Se trata de un brazo que se puede desplazar en los tres ejes XYZ
y se encarga de llevar las bases a una cinta transportadora central. El brazo robot tiene el
movimiento en Xy en Y a través de cilindros de doble efecto, y el movimiento en Z a través de
un cilindro de simple efecto.

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

Figura 4: Brazo Robot estacion real

. 1 cinta transportadora. Es el destino final de las bases, una vez llegan son
transportadas a la siguiente estacion.
° Paleta de control. En ella encontramos los botones para indicar la marcha,

paradas de emergencia, modo de funcionamiento... etc.

Figura 5: Botonera estacion real

El tipo de actuador (cilindro de simple o doble efecto) que tiene cada elemento es
importante de cara al control y es uno de los problemas que se ha tenido que solventar mediante
el control debido a la diferencia con la estacion simulada. Estas diferencias y las soluciones
adoptadas se exponen mas adelante en los apartados 3 y 5.

2.2. Sensores

Para poder controlar la parte fisica de la estacién mediante un autdmata programable se
instalan una serie de sensores que actuaran como las entradas del sistema. Encontramos dos
tipos de sensores:

e Incorporados en el componente. Este tipo de sensores van a formar parte de la
estructura de una parte fisica nombra anteriormente. Van a detectar una posicion
concreta, de tal forma que si la estructura se halla en esa posicidn el sensor se pondrd a
1. Un ejemplo seria el sensor de brazo abajo, el cual detecta cuando el brazo esta abajo
para ponerse a 1. Ademas de en el brazo robot, este tipo de sensores lo encontramos
en los expulsores.

e Situados en la estructura fija. Estos sensores son de tipo dptico, se encuentran
instalados en la parte fija de la estacién y van a detectar cuando un cuerpo se sitla
delante de ellos cortando el haz de luz. Los encontramos en la zona de recogida de las
bases detectando si se ha expulsado o no una base.

Ademas de estos sensores, tenemos uno para cada botdn de la paleta de control para
detectar si se desea poner en marcha, parar o pasar de funcionamiento manual a automatico,
entre otros.

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

3. MODELADO EN FACTORY I/O

En el software de simulacién Factory IO encontramos una gran variedad de elementos
tipicos en procesos de fabricacidon. En nuestro caso, se ha recorrido el menu de objetos buscando
las partes fisicas y los sensores descritos en el apartado 2.

3.1. Parte fisica

° Expulsores

Lo encontramos en el apartado de Light Load Parts. Lleva incorporados dos sensores,
para el brazo extendido y para el brazo recogido. En la maqueta real, los expulsores tienen un
Unico sensor que se pone a 1 cuando el brazo estd recogido y a cero cuando esta extendido. Por
tanto, en el software de simulacién emplearemos Unicamente el sensor de limite trasero.

Figura 6: Empujador Factory 10 empleado como expulsor vs placas expulsoras estacion real
. Brazo Robot

Se trata de la pieza mdas compleja de la estacidn, no solo porque la estructura es mas
aparatosa, sino porque tiene movimientos mas dificiles y variados. En este caso, vamos a
encontrar la pieza en el menu de stations.

Esta estacién consta de un brazo robot y su soporte. El brazo robot tiene permitido el
movimiento en XYZ y ademds, puede girar en torno al eje Z el elemento terminal. Lleva
incorporado un sistema de vacio que permite agarrar objetos. El modo de funcionamiento
puede ser digital, analdgico o mixto.

Figura 7: Pick&Place Factory 10 empleado como brazo robot vs brazo robot estacion real

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

° Paleta de control

La paleta de control en el caso de la maqueta real consiste en una botonera con tres
botones, marcha, rearme y seta de emergencia. También incluye dos conmutadores, ind-int que
sirve para elegir qué lado expulsara la primera base, y man-aut que indica el modo de
funcionamiento (manual o automatico). Por ultimo, la estacion real incorpora una baliza que se
enciende cuando no quedan bases.

En Factory 10 encontramos estas partes de la estacion en la seccidon de Operators, salvo
la baliza que estd en Warning Devices. Se emplea una caja metalica a modo de botonera.

Figura 8: Paleta de control estacion simulada vs estacion real

Factory 10 no dispone de depositos de gravedad como los que encontramos en el
laboratorio. Para suplirlos se emplea una funcionalidad del software que genera las bases
automaticamente. En la estacidn real se llega a un punto en el que ambos depdsitos se quedan
sin bases. En el apartado de control de la estacion simulada se explica como se lleva este
supuesto al software de simulacion.

Los distintos modos de funcionamiento de cada una de las partes, sus caracteristicas y
como establecer el modo de funcionamiento se detallan en el Anexo I.

3.2. Sensores

Ademas de los elementos fisicos de la estacidon real, en el software de simulaciéon
debemos afiadir los sensores descritos anteriormente. Los sensores del brazo, al no poder
instalarlos sobre él como en la estacidn real, se colocan a lo largo de su soporte. De esta manera,
se instalan:

e 4 sensores capacitivos paraindicar si se ha expulsado base a ambos lados y para conocer
si el brazo esta a la derecha o a la izquierda.

e 2 sensores difusos para indicar si el brazo esta delante o detras.

e Elresto de sensores los incorporan los elementos fisicos de la instalacién.

“lpraze uefamte

Figura 9: Sensores capacitivos(1) y sensores difusos(2) instalados

10

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

Tras haber recopilado todas las partes fisicas de la estacidn real en el software de
simulacidn realizamos el ensamblaje.

Figura 10: Estacion simulada 1 definitiva

11

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

4. CONTROL DE LA ESTACION REAL

Hay distintos formalismos de modelado para los sistemas de eventos discretos y en este
trabajo se ha elegido las Redes de Petri. Este tipo de representacion, en estaciones complejas
como la que nos atafie, son mas faciles de comprender por el usuario debido a su naturaleza
grafica, teniendo a su vez un nimero mas reducido de nodos que los autématas finitos
deterministas. La Red de Petri esta definida por dos conjuntos finitos y disjuntos de lugares y
transiciones que se conectan utilizando arcos. Cada lugar, representado por un circulo,
corresponde a una variable de estado del sistema, mientras que las transiciones, representadas
por rectangulos, hacen referencia a los sucesos que provocan un cambio de estado en el sistema.

Un lugar puede tener una o varias marcas. El marcado de un lugar corresponde al valor
de la variable de estado correspondiente y es el estado (local) . Una transicidn esta sensibilizada
si todos los lugares de entrada tienen un nimero de marcas mayor o igual que el peso del arco
gue conecta el lugar con la transicién. Una transicion sensibilizada se puede disparar si ocurre el
suceso (evento) asociado (puede ser un sensor que detecta un objeto o, en general, cualquier
funcién logica definida utilizando las variables de entrada).

Las Redes de Petri nos permiten modelar de una forma muy intuitiva estructuras tipicas
de un proceso de produccién como puede ser un almacén o un recurso compartido por varios
procesos, como un brazo robot. En esta estaciéon ha sido necesario para cumplir con el
funcionamiento deseado, el empleo de concurrencias. A partir de la estructura tipica de una
concurrencia vamos a explicar las caracteristicas, anteriormente mencionadas, de este modelo
de representacion.

Mm

Sks A
Ta Sh=d

T ? . ?‘l

SO NP 2 s-iqg.l
2? X b4 Z\

/” N/

N\LL —

Figura 11: Esquema de funcionamiento de una concurrencia

Con el disparo de T1, se producen dos marcas, una en el lugar pl y otra en el lugar p2.
De esta manera, T2 y T3 estan sensibilizadas, a la espera de que su respectivo evento ocurra
para dispararse. Cuando S2=1, se dispara la transicién T2, produciendo una marca en p3. Tanto
el lugar p3, como el p4 modelan operaciones de espera. Se emplean para indicar que un proceso
ha terminado y se encuentra esperando a que termine el otro proceso concurrente para
continuar con el ciclo. Cuando S3=1 se dispara T3, produciendo una marca en p4. Al tener una
marca en p3 y p4, queda sensibilizada la transicidén T4, y al ser su condicidén de disparo que la
transicion esté sensibilizada, se dispara directamente.

4.1. Entradasy salidas del sistema

Para poder controlar el sistema utilizando la Red de Petri, es necesario conocer las
variables de entrada y salida. Las entradas (por ejemplo los sensores) se utilizan para programar

12

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

las transiciones, el cambio de valor de un sensor supone el suceso que puede provocar un
cambio de estado del sistema. Por otro lado, las variables de salida corresponden a actuadores.

En el caso de las variables de entrada, todas ellas son del tipo booleano. Esto implica
que el sensor tiene dos estados, 0 y 1. A continuacion se detallan todas las entradas y que
significa la puesta a 1 de cada sensor.

Entrada Condicion de puestaa 1

Izdo_atras El expulsor izquierdo esta recogido

Dcho_atras El expulsor derecho esta recogido

Optico_izdo Base detectada en el lado izquierdo
Optico_dcho Base detectada en el lado derecho

Brazo_arriba El brazo que manipula la carga esta arriba
Brazo_abajo El brazo que manipula la carga esta abajo
Brazo_dcha El brazo que manipula la carga estd a la derecha
Brazo_izda El brazo que manipula la carga estd a la izquierda
Seta_emergencia Seta de emergencia enclavada

Marcha Pulsador de Marcha apretado

Man_aut Conmutador en posicién AUT

Rearme Pulsador de Rearme apretado

Ind_int Conmutador en posicién INT

Brazo_atras El brazo que maniupula la carga estd atras
Brazo_adelante El brazo que manipula la carga esta delante
Vacio El vacuostato detecta vacio

Tabla 1: Entradas y su condicion de puesta a 1 de la estacion real

Respecto a las variables de salida, encontramos dos tipos. Por un lado, tenemos los
cilindros de simple efecto. Este es el caso de los expulsores, e implica que, si la salida asociada
al expulsor se pone a 1, este se extiende, y si se pone a 0 se recoge. Ademas del expulsor, el
movimiento en Z del brazo también se realiza por medio de un cilindro de simple efecto. El
segundo tipo de salida se trata de cilindros de doble efecto. Estas salidas corresponden al
movimiento en X e Y del brazo robot y se deben manejar de manera impulsional. Este tipo de
salida cuando se pone a 1 comienza el movimiento en una direccidn, y cuando se pone a 0 el
movimiento se detiene.

En la siguiente tabla se recogen las salidas del sistema y la condicién de puesta a 1.

Salida Condicion de puestaa 1
Expulsar_izdo Extender expulsor izquierdo
Expulsar_dcho Extender expulsor derecho
Coger_placa Las ventosas realizan vacio
Bajar_brazo Bajar el brazo

Mover _izda Mover el brazo a la izquierda
Mover_dcha Mover el brazo a la derecha
Mover_adelante Mover el brazo adelante
Mover_atras Mover el brazo atras

Baliza Encender la luz de la baliza

Tabla 2: Salidas y su condicion de puesta a 1 de la estacion real

13

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

4.2. Funcionamiento deseado

Una vez conocidas las entradas y salidas del sistema vamos a explicar el funcionamiento
de la estacidn para posteriormente realizar la Red de Petri y asi describir de manera grafica el
control que se pretende realizar.

4.2.1. Ciclo normal

Antes de comenzar un ciclo normal, el brazo robot debera situarse sobre el expulsor
derecho con el brazo arriba. Ademas, los dos expulsores deberan estar recogidos. Se define asi
el estado de reposo del sistema.

e El ciclo comenzara cuando el usuario apriete el pulsador de Marcha. Dependiendo de la
posicién del conmutador ind_int se expulsara una base u otra (en posicidn int se expulsa
primero la base derecha). El sensor dptico nos indicara que la base se encuentra en la
posicién de recogida.

e Elbrazo robot descenderd, cogera la placay la llevara a la cinta transportadora. La placa
se deja alineada con el depdsito derecho, por tanto, ademas de avanzar hacia adelante,
debera desplazarse a la derecha siempre que lo precise.

e Una vez haya entregado la base, el expulsor contrario al del ciclo anterior expulsard la
siguiente base dando comienzo a un nuevo ciclo.

4.2.2. Fallos en el sistema

Anteriormente se ha descrito el ciclo de funcionamiento ideal. Sin embargo, durante el
proceso de produccién pueden suceder una serie de inconvenientes. A continuacidn, se explica
todos los supuestos negativos y como debe actuar el sistema ante estos inconvenientes.

e Seta de emergencia: Si el operario pulsa la seta de emergencia, se presupone que esta
ocurriendo algo grave y se debe parar el funcionamiento de inmediato. Los expulsores
se deben recoger y la cinta transportadora frenar. En cuanto al brazo robot, se sube, por
si esta ocurriendo un problema de aplastamiento, se deja de hacer vacio, por si el
problema estd en un atrapamiento de algo indeseado, y ademas, se debe frenar en el
punto exacto en el que se encuentra, por si el problema es de colision.

e Sin bases: Si ambos depdsitos se quedan sin bases se debe activar la baliza y parar el
funcionamiento hasta que sean repuestas. Una vez repuestas se pulsara el botén de
rearme, y al pulsar el botén de marcha comenzard de nuevo el ciclo.

e Pulsador de rearme: El botdn de rearme se emplea para indicar que los depdsitos que
se han quedado sin bases vuelven a estar llenos, y puede comenzar de nuevo el
funcionamiento.

4.2.3. Red de Petri

Una vez conocidas las entradas y salidas del sistema, y el funcionamiento deseado
de la estacion, se procede a realizar la Red de Petri de control. Para facilitar la comprension,
se ha representado con distintos colores.

. Negro: Se corresponde con el ciclo normal de la estacion.
. Rojo: Hace referencia al estado de emergencia por no tener bases en los
depdsitos.

14

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

. Verde: Se trata de variables auxiliares que se implementan en el control para
establecer que expulsor debe trabajar en el inicio de un nuevo ciclo o para saber si hay o
no placas en un depdsito.

Eepozo

Start=1 & Ied int=1 Start=18Ind Iet=0

Ezpulse izda

ptizn o1

il

1 3

1
I. d
o _afras=l

brazo_afras=1

T

-...__-F' -\-"-\-\,_\.
| T " b
':nzn_:‘h.‘.::llr—'.'l traze_aras=1

Figura 12: Red de Petri de la estacion 6

A continuacion, se explica como se ha implementado en la Red de Petri el
funcionamiento del sistema ante una falta de bases en los depdsitos.

Una vez se acciona el botén de marcha, ademas de expulsar la base correspondiente, se
inicia un contador. Se establece un tiempo maximo de respuesta del sensor éptico. Si
transcurrido el tiempo, el sensor no se ha puesto a 1, significa que no se ha expulsado ninguna
base y que por tanto no queda ninguna base en el depésito correspondiente. A continuacion se
explican, las posibles respuestas del sistema en funcion de la disponibilidad de bases en los
depdsitos.

15

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Suponemos que expulsamos del depdsito de la derecha y no tenemos piezas (el
contador alcanza el valor limite establecido), mientras que en el depdsito de la izquierda si
tenemos piezas. Una vez haya transcurrido el tiempo maximo establecido en el contador, se
disparara una transicion que expulsara una base de la izquierda y dejara una marca en el lugar
referente a la variable auxiliar sin bases dcha. Esto va a provocar que el arco inhibidor que sale
del lugar sin bases dcha no dispare nunca su transicién asociada al tener un nimero de marcas
mayor o igual que el peso asociado al arco. Cuando el depdsito izquierdo se quede sin bases, se
disparara la transicién que deja una marca en el lugar asociado a la variable auxiliar sin bases
izda, al estar la otra transicién asociada al contador desensibilizada por el arco inhibidor. Al tener
una marca en cada variable auxiliar, se va a disparar la transicion que nos produce una marca en
el estado de emergencia (Sin placas).

Estas dos variables auxiliares también las vamos a emplear para que una vez se haya
detectado un depdsito vacio, el sistema expulse piezas del depdsito lleno en todos los ciclos
hasta quedarnos sin existencias. Por ello, tras dejar la pieza el robot, se pueden disparar hasta
cuatro transiciones distintas.

4.3. Control del brazo robot

El control del brazo robot se va a llevar a cabo mediante un vector de estados. El
movimiento del brazo también es secuencial, y el recorrido es el mismo para cualquier ciclo.
Para cada estado vamos a definir el valor de todas las variables asociadas al brazo robot. En la
siguiente Red de Petri se representan todos los eventos asociados al lugar Ciclo Robot, que
aparece en la red anterior.

Ezando brazo
Eajar_traze=l

traze_abajo=l

P
2
Cogiendo base i]
Coge_placa=1 & Eajar braze=1 |

- |
e /
% =

Eraze moviendo deka.
Coge_placa=l &
Mover_doka=i

Eraze avanzando
Coge placa=l &
Mover adslante=1

trazo_dcha=1
braze_adelamse=]
Erare avanzando
Coge_placa=l &
Morer_adelante=1

trazo_adelamse=l

Ezando brazo
Coge_placa=l &
Exjar_braze=L

braze abaje=l

Eoltando base
Ezjar_braze=l

Wario=(

Retrocede brazo
Morer atras=1

Figura 13: Red de Petri del lugar “Ciclo del brazo robot”

16

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

En la Figura 13 podemos observar todos los estados salvo el estado de reposo, el estado
de desplazamiento del brazo a la izquierda y el estado de emergencia, que aparecen que la
Figura 12.

4.4. Control en Unity Pro

El cddigo de control se va a realizar con el software Unity Pro de la companiia Schneider
Electrics. Este software nos permite realizar la estructura de control mediante diversos métodos.
En esta primera estacidon se va a emplear el lenguaje de programacion ST, texto estructurado.
Este tipo de lenguaje trabaja con expresiones, construcciones compuestas por operandos y
operadores que devuelven un valor durante la ejecucion. Este tipo de lenguaje consiste en
sucesivas expresiones de tipo condicional, en la que cada una de ellas lleva asociada una
conclusion final.

Se ha elegido este tipo de lenguaje porque es comodo de implementar cuando se trabaja
con sensores de tipo booleano. Los pardmetros que caracterizan la condicidn serian los sensores
(o entradas del sistema) y la conclusion asociada seria la salida del sistema. Asemejandolo con
el lenguaje de las redes de Petri, la expresién condicional seria la transicién y la conclusién el
lugar/es que quedarian marcados tras el disparo de la transicion.

En Unity Pro vamos a comenzar introduciendo las variables del sistema. La forma de
introducir estas variables se explicara con detalle en el Anexo Il. A estas variables del sistema
hay que darles una direccidn. Esta direccién viene determinada por la red Modbus que conecta
los distintos PLCs del laboratorio. De esta manera, podemos asociar las variables del programa
a los sensores y accionamientos de la estacidn real. Las variables de la estacion se encuentran
guardadas en bits de memoria de variables word. En la siguiente tabla podemos ver las
direcciones de memoria de las entradas y salidas.

Entrada Direcciéon de memoria | Salida Direccién de memoria
lzdo_atras %MW35.0 Expulsar_izdo %MW134.0
Optico_izdo %MW35.1 Expulsar_dcho %MW134.1
Dcho_atras %MW35.2 Coger_placa %MW134.2
Optico_dcho %MW35.3 Bajar_brazo %MW134.3
Brazo_arriba %MW35.4 Mover_izda %MW134.4
Brazo_abajo %MW35.5 Mover_dcha %MW134.5
Brazo_dcha %MW37.0 Mover_adelante %MW135.0
Brazo_izda %MW37.1 Mover_atras %MW135.1
Seta_emergencia %MW37.2 Baliza %MW135.2
Marcha %MW37.3

Man_aut %MW37.4

Rearme %MW37.5

Ind_int %MW39.0

Brazo_atras %MW39.1

Brazo_adelante %MW39.2

Vacio %MW39.3

Tabla 3: Direccion de memoria de las entradas y salidas de la estacion real

Una vez hemos definido las variables del sistema asociadas a las entradas y salidas de la
estacion. Debemos definir las variables auxiliares. Estas variables son aquellas, que vamos a
emplear en el cédigo de control para conseguir un correcto funcionamiento, que no llevan

17

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

asociada ninguna direccion de memoria porque no se corresponden con los sensores y los
actuadores de la estacién real. Las variables definidas son:

Variable Tipo Funcion

Contadorl DINT Tiempo maximo de respuesta entre la expulsion de una base y
su deteccidn por el sensor. Determina si hay base en el depdsito

Estado ARRAY | Guardar todos los posibles estados del brazo

Placa_derecha BOOL | Se pone a 1 cuando la base que esta manejando el robot es la
derecha.

Placa_izquierda BOOL | Se pone a 1 cuando la base que esta manejando el robot es la
izquierda.

Sin_bases_azules | BOOL | Se pone a 1 cuando no quedan bases en el depdsito derecho.
Indica la disponibilidad del depésito derecho.
Sin_bases_verdes | BOOL | Se pone a 1 cuando no quedan bases en el depdsito izquierdo.
Indica la disponibilidad de este depdsito.

Sin_placas BOOL | Se pone a 1 cuando no hay placas en ningln depdsito. Avisa de

la necesidad de reponer y activacién de la baliza.
Tabla 4: Variables auxiliares empleadas en el control de la estacion real

Tras definir las variables auxiliares, ya tenemos definidas todas las variables necesarias
para implementar el cddigo que controlard nuestra estacién real. Para ello, como se ha
comentado anteriormente, vamos a emplear el lenguaje de programacién ST (texto
estructurado). En el explorador de proyectos, en la carpeta de programa = tareas = mast =
secciones, hacemos clic derecho e insertamos una nueva seccidon. En esta seccion vamos a
implementar la linea de cddigo.

18

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

5. CONTROL DE LA ESTACION SIMULADA

Uno de los objetivos principales de este trabajo es realizar un cédigo de control que, sin
la necesidad de ser modificado, valga tanto para la estacion real como para la estacion simulada.
Para ello, lo primero que se ha realizado es una construccion a nivel estructural lo mas similar
posible a la maqueta real. Debido a que los recursos de Factory 10 son limitados, alguna de las
estructuras no funciona exactamente igual que en la realidad, un ejemplo es el brazo robot, que
no posee un sensor incorporado en él que detecte si estd arriba o abajo. Estos problemas se han
solucionado creando nuevas secciones dentro de Unity Pro que reprogramasen el
funcionamiento de estos sistemas. En este apartado se va a explicar los distintos problemas que
han surgido y como se han subsanado. También se expondran todas las variables auxiliares que
se han afiadido al programa. La conexidn entre ambos softwares se explica en los Anexos Iy Il y
las lineas de cddigo en el Anexo IV.

5.1. Brazo Robot

5.1.1. Movimiento

En la estacidn real, el brazo robot tiene un funcionamiento digital, la puesta a 1 de los
accionamientos activan el movimiento en la direccién deseada. En la estacién de Factory 10, el
funcionamiento digital del brazo funciona por cambio de flancos, cada vez que el movimiento
en una direccion pasa de 0 a 1 el brazo avanza una distancia igual y constante, 0.125m. En
conclusion, el funcionamiento digital de la estacidn no es valido.

Se establece el funcionamiento hibrido, digital y analégico, en este caso en funcion del
voltaje inyectado, comprendido entre 0 y 10V, el brazo robot se va a mover con un movimiento
lineal y uniforme a una posicidn exacta. Para poder trabajar con variables enteras, se define en
Factory 10 un factor de escala de 100. De esta manera, el valor de las entradas que llega al
control estd multiplicado, y el valor que le llega al PLC esta dividido. Estos valores analdgicos se
almacenan en seis variables.

Entrada Funcion Salida Funcion

Pos_X Indica la posicién en X Mov_X Indica el movimiento en X
Pos_Y Indica la posicién en Y Mov_Y Indica el movimiento en Y
Pos Z Indica la posicién en Z Mov_Z Indica el movimiento en Z

Tabla 5: Variables asociadas al movimiento del brazo robot en Factory 10

Tras medir el valor en voltios de las posiciones clave a las que se tiene que desplazar el
brazo en un ciclo de funcionamiento normal, se va a realizar su conversién a digital. En primer
lugar se abre una nueva seccidén en Unity Pro. En esta nueva seccidn se va a asociar las variables
booleanas del sistema real con el valor analdgico correspondiente. En la siguiente tabla se
recoge la relacidn entre las distintas variables.

Variable digital Valor Variable analdgica Valor
Mover_dcha 1 Mov_X 7.3V
Mover _izda 1 Mov_X 3.1V
Mover_atras 1 Mov_Y 0,9v
Mover_adelante 1 Mov_Y 10v
Bajar_brazo 1 Mov_Z 9V
Bajar_brazo 0 Mov_Z ov

Tabla 6: Conversion analdgica-digital de las variables asociadas al robot en Factory 10

19

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Para frenar el robot, por ejemplo ante una parada de emergencia, en esta seccidn se
establece la condicion de que si simultdneamente las dos variables que dirigen el movimiento
en un eje son 0 el valor de la variable Mov es igual al de la variable Pos.

5.1.2. Sensores

Ademas del problema relativo al movimiento, el brazo de Factory 10 también presenta
problemas con ciertos sensores. En concreto, el brazo no incorpora los sensores que indican si
el brazo esta arriba o abajo, ni el sensor que detecta vacio indicando si el objeto se ha cogido
por la pinza o no.

En primer lugar vamos a resolver el problema asociado con la posicion del brazo en el
eje Z. Conociendo el valor en voltios del brazo cuando esta abajo y esta arriba, vamos a crear
una condicién en la cual, si el valor de Pos_Z es superior o igual al valor establecido cuando la
variable bajar_brazo se pone a 1, el sensor brazo_abajo se pone a 1. Si por el contrario, el valor
de Pos_Z es inferior al valor establecido cuando la variable bajar_brazo se pone a 0, el sensor
brazo_arriba se pone a 1. Para valores intermedios ambos sensores permanecen en 0. La
variable Pos_Z se renombra a Situacion_brazo.

El segundo problema esta asociado con el agarre de las bases. El robot de simulacion
posee un sensor que detecta si esta en contacto con otro objeto. No lo podemos emplear como
sensor de vacio porque para poder agarrar el objeto una vez detectado debe pasar un tiempo,
sino el agarre es defectuoso. Ademads, en el momento de dejar la base nunca se haria 0 porque
estaria todavia en contacto. Para solucionar este problema se crean dos nuevas variables de tipo
entero que van a actuar como temporizadores.

Los temporizadores se van a emplear para programar la entrada de vacio en caso de
estar trabajando en modo de simulacién. Al no tener una seial en el brazo que nos indigque si se
ha cogido o no una pieza, se van a establecer unos tiempos minimos que aseguren el
procedimiento.

Para programar la entrada de vacio se ha definido un vector de 3 estados:

e Estado 0: No se estd efectuando ninguna accidn. Se va a emplear para restablecer los
contadores a 0.

e Estado 1: Se estd atrapando una pieza. Lleva asociado un contador que cuando llega al
valor establecido activa la entrada de vacio y vuelve al estado 0.

e Estado 2: Se esta soltando una pieza. Lleva asociado un contador, distinto al del estado
1, que cuando llega al valor establecido desactiva la entrada de vacio y vuelva al estado
0.

Los sucesos que provocan un cambio de estado de 0 a 1 o0 a 2 se corresponden con el
momento exacto en el que el robot coge o deja una pieza, y para conocer este momento nos
vamos a apoyar en los sensores que nos indican la posicion del brazo.

5.2. Depositos de gravedad

En la estacion real las bases se almacenan en depdsitos de gravedad. Sin embargo, en
Factory 10 no existen este tipo de depdsitos, y ademas, la seccion de los expulsores es mayory
en caso de tener bases apiladas arrastraria mds de una. Para suplir estos depdsitos se instala
una generacién de bases automatica, consistente en un cubo que siempre que se pone a 1, si no
hay nada dentro de su volumen, genera una nueva base.

20

~
| S—

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

Este sistema de generacion de bases obliga al empleo de variables que no existen en la
estacion real, lo que implica que no pueden ir en el cddigo de la estacion. Para llevar a cabo el
control de la generacion de bases se crea una seccién nueva llamada Simulacion_de_la_planta
que se detallara en el apartado 8.6 de esta memoria.

El sistema implantado genera bases de manera ilimitada, por tanto, se trata de depdsitos
gue nunca se quedarian sin bases. Para simular este supuesto debemos actuar en el control. Se
crean dos variables auxiliares, bases_dcha/bases_izda, que van a contar el nimero de bases
generadas en cada lado. Establecemos un nimero maximo de bases a generar por cada
depdsito, de tal forma que, por medio de una nueva condicién, si el valor de una de las dos
variables es superior al valor establecido, no se genera base y se pone a uno la variable
sin_bases_dcha/izda correspondiente.

Gracias a que se consigue simular el supuesto de que un depdsito se quede sin bases, se
podra programar el control ante una falta de bases y comprobar en la simulaciéon que se ha
efectuado correctamente.

Figura 14: Depdsitos de gravedad de la estacion simulada

21

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

6. MAPEADO DE SENALES

En primera instancia, el objetivo era, ademas de conseguir un control Unico, establecer
unas direcciones de memoria para las variables de simulacién iguales a las de las variables reales.
Al no poder llevarse a cabo, se ha realizado un mapeo de las sefiales. En el cédigo de control se
va a trabajar con variables Unicas sin direccion de memoria. A través del mapeo de seiales se
les otorga un valor a estas variables en funcién de si estamos trabajando con la estacidn real o
la simulada.

En primer lugar, en la tabla de variables elementales vamos a copiar de nuevo las
entradas y salidas afiadiéndoles el apellido real, si la variable tiene como direccion de memoria
la asociada a la estacion real, o el apellido fact, si tiene como direccién de memoria la asociada
a la estacion simulada. Definimos una ultima variable booleana, simulando, que se pondra a 1
cuando estemos trabajando en Factory 10, y a 0 cuando trabajemos con la estacion real.

Variables Tipos de DDT = Bloques de funciones Tipos de DFB

Fittro
T % Nombre [=] |
MNombre - Tipp Valar Comentario Alias Alias de Direccion -
@& Simulando BOOL TRUE Comun

Figura 15: Variable para indicar el tipo de estacion de trabajo

Se crean dos secciones nuevas, una anterior al cédigo de control para mapear las
entradas, y otra posterior para mapear las salidas. En la primera seccidon vamos a recoger todas
las entradas del sistema, y en funcidn del valor de simulando, les damos el valor de las variables
reales o simuladas. En esta seccion incluimos lo referente a los sensores de brazo_arriba,
brazo_abajo y la programacion de la entrada de vacio, afiadiendo la condicién de que el valor
de simulando sea igual a 1. En la segunda seccidn vamos a igualar las salidas reales/simuladas a
las salidas del cdodigo en funcién del valor de simulando. Afiadimos lo referente al movimiento
analdgico del robot, explicado en el apartado de control de la estacion simulada.

Con este sistema, permitimos que los alumnos puedan trabajar con variables Unicas a la
hora de realizar el cddigo de control, independientemente de si estan trabajando con Factory IO
o con la maqueta real. Una vez hayan realizado su linea de cddigo deberan ir a la tabla de
variables elementales y modificar el valor de simulando en funcién de donde estén probando el
programa.

MNombre - Tipo - Valar Comentario Alias Alias de Direccion -
@ Marcha EBOOL Estacioné
@ Marcha_fact EBOOL Estacioné “m108
& Marcha_real BOOL EstacionG Lmwd7 3

Figura 16: Sefiales mapeadas en Unity Pro

22

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

7. ESTACION DE PALETIZACION Y ALMACENAIJE

En este apartado se va a explicar todos las aspectos referentes a la segunda estacion.
Esta segunda estacion se disefia con el objetivo de darle una continuidad al proceso iniciado en
la primera estacion en forma de almacenamiento. El control que se va a ejecutar sobre la nueva
estacién es independiente de la primera. Sin embargo, para lograr una sucesion de hechos
secuencial habra que aplicar una serie de restricciones entre ambas para que no se tengan que
realizar esperas.

Con el objetivo de dar una solucién a procesos productivos de gran tamafio, para los
cuales no es eficiente la representacidn de toda la célula en una Unica escena de Factory 10, esta
estacion se construird en una escena diferente y a la hora de ejecutar el cddigo, la simulacion se
realizard con dos ordenadores distintos, debido a que Factory 10 no deja abrir dos escenas
simultdaneamente en un mismo ordenador.

7.1. Estructura

La estacion que se disefia consiste en la recepcion de las bases depositadas por el brazo robot,
su paletizacion mediante otro brazo robot y el depdsito del pallet en un almacén. Para conseguir
la estructura deseada nos vamos a apoyar en los siguientes elementos.

e 1 brazo robot de dos ejes: Se va a encargar de la recoger la base y depositarla en el
pallet.

e 1 mordaza: Su funcién es la de atrapar la base en la posicidn éptima para que el brazo
robot la pueda recoger.

e 1 barrera: Se encarga de retener el pallet en la zona donde el brazo va a depositar la
base.

e 1 cargadora: Se encarga de recoger el pallet y almacenarlo.

e 1almacén

e 2 cintas transportadoras: Una de ellas transportara la base hasta la mordazay otra, sera
de rodillos, transportara el pallet a la cargadora.

Figura 17: Estructura de la estacion de paletizacion y almacenaje

23

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Ademas de los elementos fisicos, habrd que instalar unos sensores auxiliares para realizar el
control. Estos sensores se detallan en la siguiente tabla:

Sensor Tipo Funcidn

Palet_en_carga Difuso Indica que el pallet esta en la zona de recepcién
de la base

Palet_en_cargadora Difuso Indica que el pallet estd en la cargadora

Base_en_carga Difuso Indica que la base ha llegado a la mordaza

Cargadora_en_reposo | Difuso Indica que la cargadora estd en su posicidon de
reposo

Tipo_base Sensor de visién | Indica si tenemos una base verde o azul

Tabla 7: Sensores de la estacion de paletizacion y almacenaje

Una vez se han seleccionado todos los elementos que conforman la estructura de la estacién, se
procede a realizar el control de la misma.

7.2. Control de la estacion

El control de la estacidon se va a realizar como una estacion independiente, para
posteriormente realizar las conexiones entre ambas con el objetivo de que las dos estaciones se
coordinen entre ellas.

En este apartado se va a explicar el funcionamiento deseado y el control realizado sobre
la estacidn sin entrar en la conexion con la primera estacidn, que se explicard mas adelante.

7.2.1. Funcionamiento deseado

La estacidn comienza con la llegada de la base a la cinta destino de la estacidn 1. A partir de este
hito, van a suceder los siguientes eventos.

e Labase va a ser transportada a la zona de carga, donde serd atrapada por una mordaza
y recogida por el brazo robot. En paralelo, el pallet va a ser transportado a la zona donde
el brazo robot va a depositar la base.

e Una vez el pallet y la base llegan a sus respectivas zonas de carga, el brazo robot
recogera la base y la depositara sobre el pallet.

e Con la base ya sobre el pallet, va a ser transportado a la cargadora.

e Cuando el pallet este sobre la cargadora se va a depositar en el almacén. Si se trata de
una base verde se depositara en la zona inferior, y si se trata de una base azul en la zona
superior.

e En caso de pulsar la seta de emergencia se deberd encender la baliza y detener todos
los sistemas.

e Sielalmacén alcanza su maxima capacidad, se encendera la baliza de emergencia y una
vez se haya vaciado por completo, pulsando el botén de rearme se indicara que puede
iniciarse un nuevo ciclo.

7.2.2. Red de Petri

Al igual que con la primera estacidn, se ha realizado la Red de Petri correspondiente con el
control deseado del almacén.

24

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

o Eeposo

Marcha=1
Esperando base
. templ
fapl=l == llega_hase=1
uans_p{vrf':ase
.) transporte .
base e carg=]
o ———pallst en espersFl
N pacora_abajo=l
Atrapands bass . pill eperdy .
b et . b uzlta al reposg
Sushto pieza
i L cargadora_cn|
ndo brazo i
- . et remosc=1
traz_absie=] —/—— Tmr::d_:{'ns_calie:
cargado
Fcoge base pallst_en_carga=1
5
Vade=1 Cogie :
PAJJE! L 1
R ll=va base . T T S . ;) "
E_zchme palle=] i
elevo cafgadom o e e
Bajando K . .
] "\ b Piess apal=] Pieza verde=] |._ ™y Almscen
Brazo_abgjo=l—/— o d
G il S Sk
brazo esperando . pazal porerde —Rzmnss

carzadora e gong

———cargadora e zona
da_abame=] =il

Figura 18: Red de Petri de la estacidn de paletizacion y almacenaje

En la Red de Petri podemos ver como el funcionamiento inicia con la puesta en marcha
de la estacién. A partir de este momento el sistema funciona de manera constante. El
temporizador se instala para que en caso de que se produzca una espera con una duracién por
encima de lo habitual, el sistema vuelva al reposo asumiendo que la estacién principal no esta
inyectando mas bases al sistema.

7.2.3. Lenguaje SFC

El control, al igual que con la primera estacién, se va a realizar en Unity Pro. En este caso,
vamos a emplear un lenguaje de programacién distinto al empleado anteriormente para asi
poder compararlos y sacarle mas partido a todas las funcionalidades que ofrece el software.

El lenguaje SFC consiste en un esquema de control muy visual. Se trata de una combinacidn
de pasos y transiciones. Los pasos son los distintos eventos que ocurren, y llevan asociados los
valores para los actuadores del sistema. Por otro lado, las transiciones son los sucesos que
implican un cambio de estado y van asociadas a los sensores.

Las ventajas de este lenguaje de programacion frente al texto estructurado son, que por un
lado es mas visual y facil de comprobar, en caso de error, dénde esta fallando el sistema. Por
otro lado, si conocido el funcionamiento deseado se realiza una Red de Petri a modo de esquema
de control, este tipo de lenguaje se basa en trasponer esta red a ordenador. Como
inconveniente, en aplicaciones complejas, es posible que las transiciones no te las de un solo

25

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

sensor o que las acciones no vayan asociadas solo al cambio de estado de un actuador, esto
obliga a definir secciones en otro lenguaje de programacién para asociar a transiciones y
acciones.

Figura 19: Modelo de cddigo de control en lenguaje SFC

7.3. Conexion entre estaciones

Las dos estaciones disefiadas tienen una seccién independiente para su control. Sin
embargo, el objetivo de la segunda estacidn era que sirviera de ampliacion a la primera, por
tanto, que la cinta transportadora final fuera la inicial en la estacidon de almacenaje. Las dos
estaciones al ser independientes no tienen el mismo tiempo de ciclo, esto implica que si se hace
el control totalmente independiente, la estacidon con un tiempo de ciclo menor va a presionar a
la lenta provocandole una acumulacion de tareas que no es eficiente para el sistema.

En nuestro caso, la estacion de paletizacién y almacenaje tiene un tiempo de ciclo mucho
mayor al de la primera estacién, en gran parte debido a la velocidad con la que la cargadora
almacena los pallets. En este tipo de situaciones, la solucién mas sencilla es restringir el inicio de
ciclo de la primera estacién con el final de la siguiente, lo que supondria un tiempo de
almacenamiento igual al tiempo de ciclo de la estacién lenta.

Para reducir este tiempo de almacenamiento al minimo se va a analizar el tarea con mayor
tiempo de duracidn. Esta tarea es la de transporte, almacenamiento y vuelta al reposo de la
cargadora, cuyo tiempo de ejecucidn viene impuesto por Factory 10 y no se puede reducir
mediante el control. El objetivo sera programar el control de tal forma que, cada vez que la
cargadora llega a su posiciéon de reposo tenga un pallet cargado esperandola. Los ajustes
realizados en el control son:

e Se crea una variable auxiliar que se pondrd a 1 cuando la estacidn de almacenaje esté
lista para la recepcién de una nueva base, indicando asi a la primera estacion que ya
puede depositar la base. Esta variable se denominard estacién_2.

e Se establece una segunda zona de espera, ademas de la espera que realiza la estacion 1
(con el brazo robot sosteniendo la base sin depositarla en la cinta). Esta zona de espera
se determina como la zona que garantiza que, una vez se pone en marcha de nuevo las
estaciones, el pallet cargado llegue antes a la zona de carga que la cargadora a su zona
de reposo.

e Conocidas las dos zonas de espera, se elige la variable de entrada que pondra fin a las
esperas. Esta variable de entrada se denomina almacenado y nos indica que el pallet se
ha depositado en el almacén. Cuando esta variable se pone a 1, el robot deja la base en
la cinta y la barrera desciende dejando pasar al pallet cargado hacia la zona de carga.

26

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Al realizar la conexion entre las dos estaciones ha sido necesario introducir en la linea de
cadigo de la primera estacion variables de entrada que se corresponden con salidas de la
segunda estacidn para conseguir la sincronizacién entre ambas. Esto provoca que la simulacidn
por separado de la primera estacidén no funcione. Para poder diferenciar entre la simulacién de
las dos estaciones en conjunto o la primera de manera individual, se crea una variable auxiliar
llamada DosEstaciones. El usuario pondra la sefial a O si se estd simulando la primera estacion
en solitario y a 1 si esta simulando ambas de forma simultanea.

Se ha realizado un video con el funcionamiento de las dos estaciones en conjunto en el cual
se puede apreciar las dos zonas de espera, y como cada vez que la cargadora llega al reposo se
encuentra con un nuevo pallet para almacenar. Con este ajuste se logra un tiempo de ciclo igual
al de la tarea mas larga. El enlace al video realizado lo encontramos en el apartado 9 de la
memoria.

7.4. Escenas independientes

Los procesos productivos automatizados se controlan con métodos como el
desarrollado en este trabajo. Su elevado tamafio hace que no sea eficiente tener el control de
todo el proceso en una misma seccidn de cddigo. En caso de querer llevar estos procesos al
software de simulacidn Factory 10, tal y como se ha realizado en este proyecto, es posible que
por tamafio, no quepa todo el proceso en una Unica escena. También existe la posibilidad de
que se quiera centrar la atencidn en una estacién concreta y por comodidad se busque tener las
estaciones en escenas independientes y ejecutar la simulacién en ordenadores distintos, uno
por cada escena.

|? ordenador

127000 cenbral
> 4P r--ro--mm
- Almacén
A
127000
L
- R —
Estacidn &

Figura 20: Esquema de funcionamiento deseado

Mediante la conexién de Unity con el PLC de simulacion se crea una red Modbus.
Durante la realizacion de este proyecto, la estacion en Factory 10 se conectaba a la red Modbus
a través de la direccién IP local, 127.0.0.1. Para conectar una segunda escena de Factory 10 al
servidor Modbus, debemos establecer como direccidén en el software de simulacién, la IP del
ordenador que esta ejecutando Unity Pro. De esta forma, se logra conectar la simulacion del
segundo ordenador a la red Modbus que ha creado el primer ordenador, y por tanto, el PLC
podra leer las entradas que genere la simulacién, y la simulacidn las salidas que le envie el PLC.

Durante la realizacion de esta comunicacién han aparecido problemas de conexion entre
ordenadores, ya que el ordenador con Unity Pro denegaba la conexion al segundo ordenador.
Los problemas venian provocados por la proteccién antivirus del ordenador, por lo que para
realizar la conexidn ha sido necesario desactivar el Firewall.

Al crear dos escenas distintas debemos tener en cuenta una serie de consideraciones.
En primer lugar, el final de la primera estacidn no esta conectado fisicamente con el principio de

27

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

la segunda, es decir, la cinta transportadora de 1 no es la cinta transportadora de 2. Esta
situacién nos va a obligar a instalar dos emisores para generar los dos tipos de bases y una
variable auxiliar para indicarle a la segunda estacion que la primera ha dejado una base. Por
ultimo, la estacion de almacenaje debera leer de la primera estacion qué base se ha depositado
para saber cudl generar. En la siguiente tabla se recogen las variables auxiliares generadas.

Variable Descripcién
Llega_pieza El brazo de E1 deja la base en la cinta
Genera_base_azul El emisor genera una base azul en E2
Genera_base_verde | El emisor genera una base verde en E2
Base_dcha/izda Son las utilizadas en el control de E1 pero es necesaria su lectura

Tabla 8: Variables auxiliares empleadas para el control en escenas independientes

28

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

8. SECCIONES GENERADAS

En este apartado se van a recopilar las secciones de programa que se han generado para
el control de las dos estaciones que ya se han ido introduciendo a lo largo de la memoria. El
proyecto cuenta con un total de 6 secciones de las cuales dos estan asociadas con el control de
las estaciones, otras dos con el mapeo de sefiales, una con los estados del robot y la Ultima con
el control de los emisores de Factory 1/0. Las secciones generadas para transiciones y pasos en
el lenguaje SFC no se van a entrar a valorar.

Cabe destacar que el orden de estas secciones sigue el orden de lectura de un autémata
programable, el cual lee las entradas que le llegan de la simulacién, ejecuta el cédigo de control
y establece el valor de las salidas que envia a la simulacién. Por tanto, en el caso de la estacion
1 donde se ha realizado un mapeo de entradas y salidas, el orden es Mapeo de entradas > Control
de la estacion 1/Estados del brazo robot > Mapeo de salidas.

-5 Programa

£ Tareas
By £ MAST

B £y Seccones

@ Mapeo_entradas

@ Control_Estacioné

@ Estados_del_brazo_robot

@ Mapeo_salidas

@ Simulacion_planta
Cg BE ALMACEN

: Chart

[2) Macros no utilizadas

-5y Acdones

] k] cargadora_en_reposo
a Tipo_de_bases
a posicion_inicial
a Posicion_almacen
&) suma_pos
Transiciones

Base_cogida

Brazo_sobre_palet

Brazo_llega_abajo

Verdadera

Fin_movimiento_cargadora

[T
]
]
]
] Fin_movimiento_cargadora_2
il
il
il
il
Gl

base_para_atrapar
Palet_en_cargadora
Parada_en_Z_cargadora
Fin_movimiento_Z_cargadora2
Pallet_llega_a_cargar

Figura 21: Secciones generadas en el control

Los coédigos de control elaborados para cada una de las secciones se recogen en el Anexo IV.

8.1. Control Estacion 6

Esta seccidn es la que los alumnos deberan realizar durante el desarrollo de la practica.
En ella se emplean variables Unicas, es decir, son independientes del trabajo con la estacién real
o el trabajo con la simulacién. El alumno Unicamente deberd establecer el valor de la variable
simulando en funcion de donde esté trabajando.

La redaccidn del control en esta seccidn se cifie a lograr el funcionamiento deseado que
se pide en el guion de la practica. Las correcciones necesarias para solventar las diferencias entre
la estacidon simulada y la estacidn real se realizan en otras secciones.

8.2. Estados del brazo robot

La funcidn de esta seccidn es facilitar la comprension del cddigo de control de la estacion
1. Como se ha comentado anteriormente, el brazo robot se ha controlado mediante un vector
de estados. En funcion del estado, el valor de las variables caracteristicas del robot cambia.

En la redaccidon del cédigo de control se establecen los estados del robot y los sucesos
gue desencadenan los cambios de estado. Para que el control sea completo es preciso definir el

29

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

valor de las variables en cada estado. Esta definicién se puede realizar en la misma seccién en la
que se realiza el control de la estacion, pero se ha optado por llevar la descripcién de los estados
a una nueva seccién para de esta manera reducir la extensién del programa principal y facilitar
la comprensidn tanto del programa como de los estados.

8.3. Mapeo de entradas

En el apartado 6 se ha explicado la necesidad de realizar un mapeo de sefiales para poder
trabajar con variables Unicas en el cddigo de control principal. En primer lugar se deben mapear
las entradas, que hacen referencia a los sensores de la estacion.

En esta seccidén se lleva a cabo el procedimiento explicado en el apartado 6 de esta
memoria. Ademads, se van a solventar los problemas referentes a las entradas, provocados por
la diferencia de sensores entre estaciones. Estos sensores son los que nos indican si el brazo esta
arriba o abajo y el sensor de vacio. La forma de resolver este problema se explica en el apartado
5.1.2.

8.4. Mapeo de salidas

De la misma manera que se han mapeado las entradas, debemos mapear las salidas, las
cuales hacen referencia a los actuadores de la estacién.

En esta seccidén también se van a resolver los problemas referentes a la diferencia de
actuadores entre estaciones. El problema en este caso es que los actuadores del brazo robot en
la estacion real son digitales y en la estacidén simulada son analdgicos. La forma en la que se ha
resuelto esta problematica esta explicada en el apartado 5.1.1.

8.5. Control almacén

Esta seccidn se corresponde con el control del almacén. La seccién se compone a su vez
de otras subsecciones que se emplean para definir acciones de paso y variables asociadas a
transiciones mas complejas.

En esta seccidon podemos encontrar las variables que comparten entre estaciones como
condicionante de alguna transicidn, pero no encontramos la parte correspondiente a la
generacion de piezas por parte de los emisores. Esto se realiza de esta manera, para que en caso
de que la estacion fuera real y le precediera la primera estacion disefiada, el control fuera
perfectamente valido.

En esta seccion de control se establece la programacion de la variable DosEstaciones, en
la que si el valor de esta es 0, no se inicia el ciclo del almacén, y por tanto, no condiciona el
funcionamiento de la primera estacion.

8.6. Simulacidn de planta

Las dos secciones correspondientes al control de estaciones emplean Unicamente
expresiones validas para estaciones reales. Sin embargo, ambas estaciones de simulacion
emplean emisores, para los cuales hay que introducir una orden de generar pieza para la
aparicidn una nueva base o pallet en el sistema. Para poder realizar cddigos de control
principales que empleen instrucciones reales y a la vez poder llevar a cabo la simulacidn en el
software Factory 1/0O, se crea esta seccion.

30

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

En esta seccidn se van a dar las érdenes de generacién de piezas en las distintas
estaciones en el momento en el que corresponda, simulando que se encuentran en un
depdsito (en la estacion 1) o que llegan de la cinta de la estacién 1 (almacén). Ademas, se va a
aprovechar para solventar el problema debido a la no presencia de depésitos de gravedad en
Factory I/0. La resolucién a este problema se detalla en el apartado 5.2.

31

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

9. VALIDACION DE LOS RESULTADOS OBTENIDOS

En este apartado se van a adjuntar una serie de videos que muestren como el
funcionamiento de las estaciones simuladas, tras aplicar el cddigo de control, cumplen con el
funcionamiento deseado, expuesto a lo largo de esta memoria.

En primer lugar, se adjunta un video con el funcionamiento de la estacion 1. Esta
estacién es la que los alumnos deberan programar durante la realizacidn de las practicas de la
asignatura.

TFG: Simulacién estacion real N°6

X

Q ~»

I » o) o010/2:39

Figura 22: Video de la simulacion de la estacion N26.
Enlace: https://www.youtube.com/watch?v=q5CTgkxdBzE

El segundo video adjunto, se corresponde con el funcionamiento de las dos estaciones
(estacion 1-almacén) simultdaneamente. Con este video se quiere demostrar como el control
realizado sobre ambas hace que ambas estaciones trabajen de forma coordinada sin que la
estacién mas veloz apriete a la mds lenta. El video se encuentra dividido en dos ya que cada
mitad corresponde con un ordenador diferente.

TFG: Simulacién conjunta de dos escenas.de Factory IO,

Il ») 015/223

Figura 23: Video de la simulacion conjunta de dos escenas de Factory 10.
Enlace: https://www.youtube.com/watch?v=uwkqgePS85p0

En caso de problemas con la visualizacién, ambos videos se encuentran en el
repositorio® junto con los archivos de los distintos programas desarrollados en este trabajo fin
de grado.

1 Enlace al repositorio: https://drive.google.com/drive/folders/18GPOgsyuDLjF7-UdwhRug5hBuYYeRm-
0?usp=sharing

32

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

10. CONCLUSIONES

El trabajo fin de grado se ha desarrollado con el fin de cumplir una serie de objetivos
principales: reducir el tiempo de realizacion de las practicas y aumentar la seguridad del
laboratorio reduciendo el nimero de pruebas que realiza el alumno sobre la estacion real,
facilitar la comprensién de los sistemas de eventos discretos y desarrollar una simulacién
coordinada de dos sistemas que se encuentran en ordenadores diferentes aportando una
solucidén a aquellas células que, por necesidad o comodidad, requieren mas de una escena de
simulacidn. Una vez finalizado el proyecto se va a valorar los resultados obtenidos y el grado de
cumplimiento de estos objetivos.

En el software de simulacion Factory 1/O se ha llevado a cabo la construccion de una
estacion ficticia cuyas partes fisicas tienen un alto grado de coincidencia con los elementos de
la estacidn real presente en el laboratorio L0.06 del edificio Ada Byron.

Las limitaciones del software de simulacién en cuanto a variedad de componentes se
han subsanado empleando elementos que fueran similares a los de la estacion real.
Apoyéandonos en el control hemos conseguido que estos elementos, en un principio distintos,
se comporten de la misma manera que en la estacidn real. Un ejemplo de este tipo de ajuste lo
encontramos en los actuadores del brazo robot o en los depdsitos de gravedad.

En el software de programacion Unity se ha elaborado un cédigo de control Unico para
ambas estaciones. Previo a la implementacion del cédigo, se han elaborado las Redes de Petri
necesarias para explicar el funcionamiento deseado de la estacién en base al fundamento
tedrico de las mismas. Una vez elaboradas, se implementa el cddigo. Para lograr que este fuera
Unico se han creado secciones de apoyo que controlasen los elementos cuya actuacién fuera
distinta a los de la estacidn real. El control que se programa ha conseguido simular con éxito el
supuesto de que un depdsito se quede sin bases, a pesar de no disponer en el software de
simulacidn de depdsitos de gravedad.

El control Unico implica el empleo de variables Unicas, es decir, no diferenciar entre
variables de la simulacién y variables reales. Durante la realizacion del proyecto se ha visto como
el software de simulacidon no permitia almacenar las variables de la forma en que se habian
almacenado en la estacidn real, con bits de una variable WORD. Se ha elaborado un mapeo de
sefiales que ha permitido el empleo de variables Unicas ya que es el propio programa el que, en
funcién de una variable auxiliar que indica con que estacidn se esta trabajando, establece a las
variables la direccidn de memoria correspondiente.

La segunda estacion elaborada se comporta como un almacén automatizado y permite
dar continuidad y un final de proceso al depdsito de las bases en una cinta transportadora, que
realiza la primera estacion. El control que se ha disefiado para la misma cumple con el
funcionamiento deseado y su comunicacion con la estacidon precedente permite reducir los
tiempos de espera.

Una vez valorados los resultados obtenidos, podemos concluir que el trabajo realizado
y explicado en la presente memoria logra la implementacidn en un software de simulacién de
una estacion real, que permitira al alumno probar sus cédigos primero en el ordenador, evitando
asi posibles dafos en la estacion por cédigos defectuosos y la aglomeracién de alumnos en la
estacion real para probar sus controles. Una vez obtenido el cddigo de control que implementa
el funcionamiento dptimo de la simulacidn, el alumno podra cargarlo en el PLC de la estacidn
real sin necesidad de variar el cddigo. Ademas, no deberd preocuparse por las diferencias entre

33

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

elementos ya que las secciones de apoyo permiten que la realizacién de un cédigo para el
funcionamiento deseado expuesto en el guion controle ambas estaciones de manera 6ptima.

El disefio de la segunda estacion cumple con los requerimientos de almacén, y el caodigo
implementado, gracias a una comunicacion eficaz entre ambas estaciones, consigue reducir los
tiempos de espera, haciendo el tiempo entre pallet almacenado minimo.

Mediante la implementacion de las estaciones en ordenadores independientes se
consigue dar una solucion éptima a aquellos procesos, que no se pueden realizar en una Unica
escena, a partir de un procedimiento sencillo y eficaz.

El estudio realizado para la conexién de dos escenas independientes de Factory 10, se
podria realizar para la conexidon de dos proyectos Unity, de forma que, el control de cada
estacidon se encontrara en proyectos independientes, logrando un control distribuido entre
estaciones. De esta manera se conseguiria, no solo disponer de las estaciones en escenas
independientes, sino también de los cddigos de control en archivos distintos.

El sector del control y la automatizacién de procesos productivos se esta desarrollando
estos ultimos afios de forma exponencial. Esto implica que el uso de tecnologias que hoy en dia
son eficientes, el dia de mafiana puedan quedar obsoletas. Se podria llevar a cabo un trabajo fin
de grado que estudiara las tecnologias empleadas en la célula de fabricacién del laboratorio y
planteara mejoras que aumentaran el rendimiento de la misma, aprovechando la descripcion
realizada sobre la estacién 6 en esta memoria.

Por ultimo, este trabajo fin de grado podria servir como punto de partida para alguien
que se proponga llevar una célula de fabricacidn real, compuesta por varias estaciones, al
software de simulacién, y a partir de ahi, al disponer de recursos compartidos entre estaciones,
realizar un estudio sobre la optimizacién del tiempo de ciclo de la célula.

34

~
| S—

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

11. BIBLIOGRAFIA

[1] Manual Unity Pro. Universidad de Ledn. [Internet]. Disponible en:
http://Ira.unileon.es/sites/Ira.unileon.es/files/Documents/plc/Unity Pro/Manuales Unity/Ma

nual_Unity.pdf

[2] Manual de referencia de Unity Pro. Universidad de Ledn. [Internet]. Disponible en:
http://Ira.unileon.es/sites/Ira.unileon.es/files/Documents/plc/Unity Pro/Manuales Unity/Uni
ty Manual%20de%20Referencia.pdf

[3] Manual de Factory I0. Factory 10, Real Games. [Internet]. Disponible en:
https://docs.factoryio.com/

[4] Guia rapida Unizar. Centro Politécnico Superior de Zaragoza. [Internet]. Disponible en:
http://automata.cps.unizar.es/post/documentos/grafcetunity.pdf

[5] Trabajo Fin de Grado “Disefio de un sistema de control distribuido usando Factory 10 y
Codesys V3”. José Marin Sanchez. [Internet]. Disponible en:
https://idus.us.es/bitstream/handle/11441/83982/TFG-1778-
MARIN.pdf?sequence=1&isAllowed=y

[6] Tutorial Practico Unity Pro 3.0-Modicon M340. Universidad de Ledn. [Internet]. Disponible
en:

http://Ira.unileon.es/sites/Ira.unileon.es/files/Documents/plc/Unity Pro/Manuales Unity/Tur
orial_Unity.pdf

[7] Factory 10 Simulacidn 3D de fabrica. Universidad de Anahuac. [Internet]. Disponible en:
https://www.anahuac.mx/mexico/noticias/Factory-I0-Simulacion-3D-de-fabrica

[8] Guion Practica 4 “Control de una célula de fabricacion flexible”. ingenieria de Control,
Grado en Tecnologias Industriales. Disponible en el ADD para alumnos matriculados en la
asignatura del grado.

[9] Trabajo Fin de Grado “Desarrollo de una planta virtual en Factory 10 y control mediante
PLC”. Fernando Grima Montesa [Internet] Disponible en:
https://zaguan.unizar.es/record/85222/files/TAZ-TFG-2019-2900.pdf?version=1

35

~
| S—

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

12. ANEXOS

36

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

12.1. ANEXO I: Guia basica Factory I/O

37

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

12.1.1. Acerca de Factory IO

Factory 10 es un software de simulacién 3D, creado por Real Games, el cual nos permite
construir y controlar procesos industriales en tiempo real. Las caracteristicas que convierten a
Factory IO en un software atractivo son sus 20 escenarios inspirados en aplicaciones industriales
frecuentes y una libreria con mas de 80 componentes industriales que permiten crear escenas
personalizadas al gusto del usuario. Los requerimientos minimos para su uso son: Windows Vista
o superior, Intel Core 2 Duo a 2GHz, 1GB de RAM y 500MB de disco duro.

12.1.2. Creacion de una escena

En este apartado se va a describir el procedimiento que se ha seguido para la
construccion de la parte fisica de las distintas estaciones desarrolladas en este trabajo.

En primer lugar, debemos crear una nueva escena. Tras ejecutar el programa, en la
primera interfaz clicaremos en New y nos aparecerd una escena vacia de Factory |O. Esta escena
se ird amueblando conforme vayamos introduciendo componentes.

FILE EDIT VIEW =

“|----'

FACTORY 1/0 v2.4.6 - Modbus and OPC Edition - New Scene E odbus TCP/IP Client

Figura 24: Escena vacia Factory 10

Para comenzar a introducir los distintos elementos que componen nuestra estacion,
debemos seleccionar el botdn de la esquina superior derecha. Este botdn abrird la biblioteca de
elementos que el software ofrece.

38

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

FILE EDIT VIEW =

P

Search

FACTORY I/ v2.4.6 - Modbus and OPC Edition - N us TCP/IP Client

Figura 25: Como abrir la biblioteca de componentes en Factory 10

La biblioteca de Factory I/0 divide los componentes en 8 grupos. Ademas, con el botdn
de search, podemos buscar el componente que buscamos si conocemos su nombre. Los grupos
en los que se encuentran divididos los componentes son:

e Articulos: En este grupo encontramos las materias primas dentro de un proceso de
produccién, aquellos elementos que pueden ser manipulados por personal o
maquinaria y son transportados a las distintas estaciones de un proceso productivo.

e Piezas de carga pesada: Elementos que sirven para el transporte de las materias primas
mas pesadas, como son las cajas o los pallets.

e Piezas de carga ligera: Elementos empleados para transportar piezas de poco peso. A
diferencia de las piezas de carga pesada, este tipo de piezas nos permiten ejecutar
tareas de forma rdpida ya que trabajan a mayor velocidad.

e Sensores: En este grupo se encuentran los distintos sensores que ofrece Factory I/0 que
se pueden emplear para detectar la presencia de piezas, medir distancias o detectar el
tipo de pieza.

e Operadores: Indicadores luminosos y botones propios de una botonera para controlar
la puesta en marcha, la parada de emergencia, el reseteo... etc.

e Estaciones: Este grupo estd formado por elementos tipicos dentro de un proceso de
produccién cuya complejidad es mayor que la del resto de componentes debido a la
gran cantidad de sensores que posee incorporados y de tareas distintas que puede
realizar.

e Dispositivos de advertencia: Alarmas sonoras y balizas que indican algun tipo de fallo.

e Pasarelas: Piezas utilizadas para construir pasillos para trabajadores o aislar perimetros.

Ademas de todas estas piezas, seleccionando el grupo all, encontramos el emisor y el
agente de mudanzas que sirven para generar o eliminar articulos.

39

~
| S—

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

Heavy Load Parts ~| Light Load Parts

Search

’"ﬁ‘_‘;\‘%‘n

Operators Stations

Warning Devices Walkways
Search Search Search Search

“:-:T‘]

Figura 26: Grupos de componentes en Factory 10

Para comenzar a construir la estacidn arrastraremos la pieza a la escena vacia. Una vez
se haya colocado la pieza, haciendo click derecho podemos ver las distintas opciones de
disposicidn en el espacio que nos ofrece Factory I/0.

Horizontal Trans.
Vertical Trans.
Duplicate

Delete

Configuration

Figura 27: Opciones de manejo y configuracion de objetos en Factory 10

En primer lugar, podemos rotar la pieza en torno a los tres ejes cartesianos en pasos de
902. Ademas de la rotacidn, se permite la traslacién tanto horizontal como vertical. La pieza se

40

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

puede duplicar y eliminar. Por ultimo, la opcién de configuracidon nos permite seleccionar el
modo de funcionamiento de la pieza.

Los modos de funcionamiento dependen de la pieza en cuestion, a continuacion se va a
detallar los modos de funcionamiento que se han seleccionado en los distintos componentes
empleados en este trabajo.

1. Expulsores

Los expulsores permiten una configuracion monoestable o biestable. La diferencia entre
estas dos es que el funcionamiento como monoestable tiene un Unico actuador que controla el
movimiento hacia atras y hacia delante, mientras que en biestable posee un actuador para cada
movimiento. Ademas, permite el funcionamiento en digital, donde los actuadores son variables
booleanas que en caso de establecerse a 1 realizan el recorrido maximo permitido, o en
analdgico, donde la salida del actuador varia entre 0 y 10V en funcién de la distancia recorrida y
también permite establecer la velocidad del movimiento.

El funcionamiento seleccionado es monoestable, debido a que el actuador de la estacion
real es un cilindro de simple efecto, y digital, por ser las entradas y salidas de las estacion real
de tipo booleano. Este funcionamiento se caracteriza por:

Variable E/S del controlador Tipo ‘ Descripcion (puesta a 1)
Empujador # Entrada Booleana Avanza
Empujador # (limite frontal) | Salida Booleana Empujador extendido
Empujador # (limite trasero) | Salida Booleana Empujador recogido

Tabla 9: Entradas y salidas del expulsor de Factory 10
2. Cintas de transporte

Tanto las cintas transportadoras como las cintas de rodillos pueden funcionar en modo
digital, o bien con una salida booleana para poner en marcha la cinta, o bien con dos salidas
booleanas para hacer girar la cinta en cualquiera de los dos sentidos. En el funcionamiento
analdgico, la cinta solo gira en un sentido y a través de una salida flotante se establece la
velocidad.

El funcionamiento seleccionado es digital con una Unica salida booleana ya que el
transporte de las distintas piezas tiene un unico sentido.

Variable E/S del controlador Tipo Descripcion (puesta a 1)

Transportador de rodillos # Entrada Booleana | Transportador en marcha
Tabla 10: Entradas y salidas de la cinta de transporte de Factory 10

3. Estacion escoger y colocar de 3 ejes

El brazo robot tiene 3 modos de funcionamiento. El primero de ellos es el
funcionamiento digital, donde todas sus salidas son booleanas. El segundo es el modo analdgico,
donde las variables referentes al movimiento del robot y la posicidn que ocupa en el espacio son
variables flotantes entre 0 y 10V. El Gltimo modo de funcionamiento es una mezcla entre digital
y analdgico donde, a las variables del modo analégico se afiaden dos nuevas variables booleanas
que nos indican si el robot se esta moviendo en el plano XY y en la direccion Z.

Como se ha comentado en la memoria del trabajo, no se puede emplear el
funcionamiento digital por el tipo de movimiento que implica en el brazo, por ello se selecciona
el movimiento digital y analdgico. Estas son sus caracteristicas:

41

~
| S—

Jaime Calvo Baigorri

Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Variable E/S del controlador Tipo Descripcion
Ajuste de Pick&Place # X Entrada Flotante | Posicion en X (0-10V)
Ajuste de Pick&Place # Y Entrada Flotante | Posicion enY (0-10V)
Ajuste de Pick&Place # Z Entrada Flotante | Posicion en Z (0-10V)
Elegir y colocar # C Entrada Booleana | Gira la pinza
Pick&Place # (Agarrar) Entrada Booleana | Activa ventosas
Pick&Place # Posicion X Salida Flotante | Posicidn actual en X
Pick&Place # Posiciéon Y Salida Flotante | Posicidn actualenY
Pick&Place # Posicién Z Salida Flotante | Posicidn actualenZ
Pick&Place # (Moving-Z) Salida Booleana | Moviéndose en Z
Pick&Place # (Moving XY) Salida Booleana | Moviéndose en plano XY
Pick&Place # (Caja detectada) | Salida Booleana | Detecta un articulo
Pick&Place # (Limite C) Salida Booleana | Pinza en limite angular

Tabla 11: Entradas y salidas de la estacion del brazo robot de 3 ejes de Factory 10

4. Estacion escoger y colocar de 2 ejes

Los modos de funcionamiento de la estacidn son andlogos a los de la estacidn de 3 ejes.
La diferencia a la hora de seleccionar el modo es que no tenemos la restriccién de que esta
estacion pertenezca a una estacion real, lo que implica que, por comodidad, se ha seleccionado
el funcionamiento digital. Este funcionamiento digital se caracteriza por:

Variable E/S del controlador Tipo Descripcion (puesta a 1)
Pick&Place # Z Entrada Booleana | Muévete en Z
Pick&Place # X Entrada Booleana | Muévete en X
Pick&Place # Girar CW Entrada Booleana | Rota sentido horario
Pick&Place # Girar izquierda Entrada Booleana | Rota sentido antihorario
Pick&Place # Pinza CW Entrada Booleana | Gira pinza horariamente
Pick&Place # Pinza CCW Entrada Booleana | Gira pinza antihoraria
Pick&Place # Agarre Entrada Booleana | Activa ventosa
Pick&Place # Moving X Salida Booleana | Moviéndose en X
Pick&Place # Moving-Z Salida Booleana | Moviéndose en Z
Pick&Place # giratorio Salida Booleana | Girando el brazo
Pick&Place # Pinza giratoria Salida Booleana | Girando pinza
Pick&Place # Detectado Salida Booleana | Detectando un articulo

Tabla 12: Entradas y salidas del brazo robot de dos ejes de Factory 10

5. Grua cargadora

La cargadora tiene 4 modos de funcionamiento. La cargadora se desplaza a lo larga de X
y Zy tiene guardadas en su memoria 54 posiciones distintas en el espacio. En el funcionamiento
digital introducimos la posicion destino mediante el nimero en formato digital. Por otro lado,
en el funcionamiento analdgico, se introduce la posiciéon destino a través de dos salidas
flotantes, una para el eje X y otra para el eje Z. Al igual que con el brazo robot, tenemos un tercer
modo de funcionamiento mixto (digital-analdgico) que posee las mismas variables que el
funcionamiento analdgico afiadiendo dos variables booleanas para indicar si la cargadora se esta
moviendo en alguno de los dos ejes. Por ultimo, tenemos el funcionamiento numérico, que es
igual al digital salvo que la variable que indica la posicion destino es un numero entero.

Por facilidad de cara a la programacion final, se escoge el funcionamiento numérico.

42

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Variable E/S del controlador Tipo Descripcidn
Posicién destino Entrada Entero Muévase a la celda deseada
Num. De grua (izquierda) | Entrada Booleana | Mueva las ufias a la izquierda
Num. De grua (derecha) Entrada Booleana | Mueva las uias a la derecha
Grua # Elevacion Entrada Booleana | Eleva cargadora
Grua # Moving X Salida Booleana | Moviéndose en X
Grua # Moving Z Salida Booleana | Moviéndose en Z
Grua # Limite izquierdo Salida Booleana | Uiias en limite izquierdo
Grua # Limite medio Salida Booleana | Ufias en el centro
Grua # Limite derecho Salida Booleana | Ufias en limite derecho

Tabla 13: Entradas y salidas de la grua cargadora de Factory 10
6. Emisor

El emisor nos permite generar los articulos que ofrece en su biblioteca Factory I/O a través
de d6rdenes de control. En caso de seleccionarse mds de un articulo, se generaran de forma
aleatoria. Ademas, se puede elegir el tiempo que transcurre entre cada emisién estableciendo
unos valores minimos y maximos. En caso de que estos valores estén a cero, se emitira siempre
gue no haya ninguna pieza dentro del volumen del emisor. Por ultimo, también se puede
introducir el nUmero maximo de bases a emitir, siendo el maximo 500.

Respecto al funcionamiento, tenemos el modo definido por el usuario, en el que
seleccionamos el articulo a emitir y a través del control indicamos cuando emitir, y el modo
definido por el control, donde ademds de cudndo emitir se indica que emitir a través del nimero
identificativo.

Se ha seleccionado el modo definido por el usuario, ya que solo necesitamos que genere
un tipo de articulo por emisor y de esta forma el control se simplifica.

Configuration > User-Defined

Base to Emit S| [Controller-Defined
Part to Emit
Max Time
Min Time
Upto
[[] Random Part Position

|:| Random Part Orientation

Figura 28: Opciones de configuracion de la pieza emisora

Una vez se han dispuesto los elementos que componen las distintas estaciones y se ha
seleccionado el modo de funcionamiento, para facilitar la comprension y el control posterior
vamos a cambiarle el nombre a los distintos sensores y actuadores.

En primer lugar, debemos mostrar en pantalla las etiquetas tanto de los sensores como
de los actuadores. Para ello tenemos dos opciones:

e Desde la pestafia View > Sensor tags y Actuator tags
e Pinchando en los iconos que aparecen en la esquina superior derecha

43

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

s FILE EDIT VIEW I I C:) O] I@

el AL N L T Y U

FACTORY /0 v2.4.6 - \ and OPC Edition on2 £l Modbus TCP/IP Client

Figura 29: Modo de activacion de la representacion de sensores y actuadores en Factory 10

Nos aparecera encima de cada sensor/actuador el nombre predeterminado que Factory
I/O da a cada componente. Haciendo doble click sobre él se abriran las opciones de cara al
control que nos ofrece el sensor/actuador, las cuales se detallaran mas adelante, y al lado el
nombre, el cual podremos editar a nuestro gusto.

en_cinta

Figura 30: Menu de sensor en Factory 10

Tras la seleccion de los componentes que conforman la estacidn, la seleccion del modo
de funcionamiento de cada uno y la identificacion de todas las variables de entrada y salida por
un nombre mas intuitivo, estamos en disposicion de comenzar con la simulacién de la escena.

12.1.3. Simulacion de una escena

La simulacion de una escena se puede realizar a través de dos formas. La primera es la
realizacion de una simulacién forzado en el que es el usuario el que fuerza los valores de los
distintos actuadores. La segunda simulacion es a través de un cédigo de control. Este codigo de
control se realiza en un programa externo y se carga en el PLC de Factory I/O. Ademas dentro
de las simulaciones, Factory 1/O permite inyectar fallos en los componentes para asi poder
simular fallos que se pueden producir en una estacién real.

En primer lugar, se va a explicar como realizar un control forzado de la estacion. Para
ello deberemos pinchar en View > Dock all tags.

Apareceran a nuestra izquierda una lista con todos los sensores y actuadores presentes
en la escena. Los sensores irdn acompafiados de una circunferencia con un circulo en su interior
oscuro (indicando que el sensor esta a cero) y los actuadores de un circulo verde con una | de
color blanco (indicando que el actuador no esta forzado por el usuario).

44

~
| S—

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

Para comenzar con la simulacién forzada pincharemos en el botén play. Forzaremos el
valor de los actuadores pinchando en el circulo verde. Veremos como este cambia a color azul y
en funcion de si es claro u oscuro estardaloaO0.

Base detectada

n_carga o) Sensoral
Brazo_bajando Sensora 0
Brazo_moviendo
Cinta_almacen I Actuador forzado a 0
Cinta_ba et Actuador forzado a 1

Cinta_carga : a1 8> Actuador sin forzar

Figura 31: Posibles estados de sensores y actuadores en una simulacion forzada de Factory 10

Este tipo de simulacién nos permite ir modificando los valores de los actuadores para
forzar el funcionamiento deseado y de esta manera poder comprobar que los sensores
instalados toman los valores correctos para el funcionamiento dptimo de la estacién.

En segundo lugar, se va a explicar como se realiza una simulacién con un cédigo de
control. Este codigo se redacta en un programa aparte, en nuestro caso Unity Pro. Para poder
establecer la conexidén entre las variables del programa y las de Factory I/O debemos darle la
misma direccidon de memoria, por tanto, comenzaremos introduciendo como establecer la
direccidon de memoria de las variables en el software Factory I/0.

En la parte inferior derecha se encuentra el PLC de la estacidn, en el cual se
introduciran las variables de entrada y salida. Si clicamos en él y entramos en configuracion
podemos establecer el nUmero de entradas y salidas del sistema.

Modbus TCP/IP Client

Figura 32: Icono del PLC de Factory 10

La configuracidn del PLC incluye los siguientes apartados:

Autoconectar Intenta conectarse periddicamente al PLC

Anfitridn Direccion IP del servidor

Puerto Numero de puerto TCP

ID esclavo ID esclavo

Leer digital Desde ddnde leer las entradas digitales (Entradas o bobinas)

Leer registro Desde donde leer los registros (de entrada o de retencién)

Escala Los valores del sensor flotante se multiplican por este valor y los del

actuador se dividen para de esta forma poder trabajar con enteros
Entradas digitales | Desplazamiento de direccidn y nimero de bobinas (max. 256)
Salidas digitales Desplazamiento de direccidn y nimero de entradas digitales a usar

(max. 256)
Registrar Desplazamiento de direccidn y nimero de registros de retencion a usar
entradas (max. 64)

45

~
| S—

Jaime Calvo Baigorri Automatizacion de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

Registrar salidas | Desplazamiento de direccidn y nimero de registros de entrada que se
utilizaran (max. 64)
Tabla 14: Caracteristicas del PLC Modbus TCP/IP Client

CONFIGURATION

Figura 33: Menu configuracion del PLC en Factory 10

Una vez se ha configurado el PLC, salimos del menu de configuracién y vamos a conectar las
entradas y salidas a los distintos pines habilitados, que se corresponderan con la direccion de
memoria de cada una de las variables. Por ultimo, estableceremos la conexidn con el software
de programacién pinchando en connect y dandole al play iniciaremos la simulacién.

% Factory 10 _ S
< DRIVER

SENSORS Serve ! 502 ACTUATORS

Almacenadc acena
R Coil 400 Input 450 Alisasde

juae akapach Coil 401 Input 451
Coil 402 Input 452
Cail 403 Input 453
Cail 404 Input 454
Coil 405 Input 455
Coil 406 Input 456
Coil 407 Input 457
Coil 408 Input 458
Cail 409 Input 459
Coil 410 Input 460
Coil 411 Input 461
Coil 412 Input 462

Barrera_palet
Cinta_almacen

Cinta_bases

Coil 413 Input 463
Coil 414 Input 464
Coil 415 Input 465
Coil 416 Input 466
Coil 417 Input 467
Coil 418 Input 468
Coil 419 Input 469

Input Reg 600

Input Reg 601

FACTORY I/0 (R

Genera_bas:

Stacker Crane 1 Right Limit
Tipo_base [

m Bool Float ® Int m Any

Figura 34: Conexion del PLC de Factory 10 a la red Modbus

46

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

12.2. ANEXO II: Guia basica Unity Pro

47

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Unity Pro es un software de programacion, puesta a punto y explotacion para los
autématas Modicon, M340, Premium, Quantum y coprocesadores Atrium desarrollado por la
empresa Schneider Electric.

El objetivo de este anexo es familiarizarnos con el software, explicando el procedimiento
para crear un proyecto como el que se ha realizado en este trabajo fin de grado.

Comenzaremos con la creacién de un nuevo proyecto, para ello en Fichero > Nuevo,
seleccionaremos el tipo de autémata a emplear. Debido a que el uso va a ser el control de una
estacion simulada y comunicacion a través de una red Modbus, seleccionamos el BMX P34 2000
y pinchamos en aceptar.

Aparecera a nuestra izquierda un menu con las distintas opciones del proyecto.
Comenzaremos con la introduccién de las variables del sistema. Para ello pinchamos en
Variables e Instancias FB > Variables elementales. Se abrira una nueva pestafia donde podremos
introducir el nombre de la variable, el tipo de variable y su direccion de memoria (esta direccion
de memoria debera coincidir con la otorgada a la variable en el PLC del software de simulacién).
Ademas se le podra afiadir un comentario a la variable a modo de explicacidén y también se podra
forzar el valor de la misma.

[E] Unity Pro XLS : <Sin nombre>*
Eichero Edicion Yer Servicios Herramientas Generar BLC Debug Ventsna Ayuda

a=d i 8 @k aEOR R Al i} M 28D ®

e [

B8 Editor de datos L= LS

— Variables Tipos de DDT Bloques defunciones Tipos de DFB
—-E3, Proyecto

P _ Fitro
& E3), Configuracién T % Nombre [= [| EEeoT OooT oDoT [Device DDT
R, 0:BusPLC

T vista estructural

b Tipos de datos derivados ‘ Nombre Tpo + Valor Comentario v Alas Alizs de Direccién v Vaiable de HMI - D
(1, Tipos de FB derivados v] EBER I
[30, Variables e instancias FB B
- W, Variables elementales

B, VanaDies oervacas

(@), Variables DDT de dispositiv.
[B., Variables de E/S derivadas
ik, Instancias FB elementales

R iy Datos a introducir
- [], Comunicacién
= (), Programa

e (N, Tareas

fue [, Eventos de temparizador
e (131, Eventos de E/S

(2, Tablas de animacién

(L1, Pantallas de operador

[, Documentacién

Figura 35: Establecer las variables elementales en Unity Pro

Una vez introducidas las variables necesarias para el correcto control de la estacion, se
procede a redactar el coédigo de control. El software de programacién ofrece 6 tipos diferentes
de lenguaje de programacion. En este caso se va a explicar el procedimiento para redactar los 2
tipos de lenguaje empleados.

Para poder escribir el cédigo debemos crear una nueva seccion. Para ello pincharemos
en Programa > MAST, click derecho en la carpeta de secciones y seleccionamos Nueva seccion.
Se abrira una nueva pestafia en la que introduciremos el nombre y el lenguaje de programacion.

48

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Nueve *

General Localizacion Condicién Comentario

MNombre:

Lenguaje: Proteccion:
5T b

Cancelar Aplicar HAyuda

Figura 36: Nueva seccion Unity Pro

En primer lugar, se va a explicar el lenguaje ST. Este tipo de lenguaje consiste en la
sucesién de expresiones condicionales. En estas expresiones las condiciones hacen referencia a
las entradas del sistema y las conclusiones a la salida. Un ejemplo de este tipo de estructura es
el siguiente:

end if; A

if (brazo_adelante=1 and brazo_arriba=l and estado[0]=4) or (brazo_adelante=l and brazo_arriba=l and est
estado[0] :=5;

end if;

(* Vamos a ponsr una condicion para que el programa solo genere 3 basss azules, para de ssta forma

simular que
if brazo_abajo=1 and sstado[0]=5 and Placa_desrecha=1 and bases dcha>2 then
estado[0] :=6;
end_if;
if brazo_abajo=l1 and estadeo[0]=5 and Placa_derecha=l and bases_dcha<=2 then
estado[0] :=€;
Bases_dcha:=bases dcha+l;
end_if;
(*Vamos a hacer lo mismo con las placas ds la izquisrda, pero sn
s ambos lados y podamos programar qus el robot dej
hace falta reponer*)

hemos quedado sin placas a la derecha *)

& caso gensrara una mas para que hay

difersncia er odas las placas antes de avisar que

if brazo_abajo=1 and estado[0]=5 and Placa_izquierda=1 and bases izda>4 then
estado[0] :=€;

end if;

if brazo_abajo=l1 and estado[0]=5 and Placa_izguierda=l and bases izda<=4 then
estado[0] :=6;
Bases_izda:=bases_izda+l;

end_if;

if (vacio=0 and Placa_derscha=1 and 3in bases verdes=0 and estado[0]=6} or (contador2>50 and Placa derec
estado[0] :=7;
expulsar izdo
Placa derecha:=0;
Placa_izquierda:=1;

1:

Figura 37: Ejemplo de codigo en lenguaje ST

En el caso del lenguaje SFC, se trata de un tipo de lenguaje que consiste en una secuencia
de etapas y transiciones. Cada etapa implica una accién y el paso de una etapa a otra se rige por
las transiciones.

La accion que lleva asociada una etapa se puede corresponder con una salida del sistema
directamente o con una funcién de varias salidas del sistema. A su vez, una transicion puede
llevar asociado el valor de un sensor de la estacién o una funcién mdas compleja de los valores
de varios sensores.

Para la realizacion del cddigo, empezaremos disponiendo los distintos pasos,
transiciones y la conexion entre ellos. Otro elemento que se puede emplear es el salto, que nos
permite pasar a un paso sin necesidad de conectarlos para asi evitar el exceso de cruces entre
las conexiones.

Paso Transicion Salto
CLEIOChE TN O, |-

Figura 38: Componentes del lenguaje SFC

49

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Una vez hemos colocado todos los pasos y transiciones sobre la seccion vamos a
asociarles las acciones y variables pertinentes. Comenzamos haciendo doble clic sobre los pasos
donde se va a abrir la siguiente ventana:

Propiedades de paso: Depositando_palet X

General Acciones Comentario

Nombre del paso | e ey [Paso inicial

Tiempos de vigilancia y de retardo

(O Variable ‘SFCSTEP_TIMES @ Literales
L —
CMinme []
Retado []

Aceptar Cancelar Aplicar HAyuda
Figura 39: Menu de paso, lenguaje SFC
En el apartado general se deberd indicar el nombre del paso y se podra establecer:

e Tiempo maximo: Tiempo maximo que puede estar activo un paso, en caso de excederse
se emitird un mensaje de error. Si no se indica ningln tiempo, este no se vigilara.

e Tiempo minimo: Tiempo minimo que debe estar activo un paso, en caso de no
alcanzarse se emitird un mensaje de error. Si no se indica ningun tiempo, no se vigilara.

e Retardo: Tiempo minimo que el paso debe estar activo.

En la pestafia de acciones serd donde seleccionemos las acciones asociadas al paso. En
primer lugar, debemos seleccionar si la accidn se trata directamente de una variable o si por el
contrario se trata de una seccién. En caso de ser una seccién, se debera editar y programar en
otro de los lenguajes de programaciéon que ofrece Factory I/O. Ademas, a cada accion se le
debera establecer un descriptor que defina su control. Los tipos de descriptores son:

N/Ninguno | Si se activa el paso la accion se pone a 1, si se desactiva la accién se pone a0

S La accién queda activa aln cuando el paso termina. Se pone a 0 cuando se usa
el descriptor R.
La accién activada por el descriptor S se pone a 0.

L La accién se mantendrd activa durante el tiempo establecido, aunque el paso
no haya terminado. Si el paso se desactiva, la accion se pone a0

D Se establece un tiempo de retardo para la activacion de la accidn. Una vez
transcurrido el paso, la accién se pone a 0.

P Si el paso se activa, la accién se pone a 1 y permanece durante un ciclo del
programa.

DS La accion queda activa hasta que se reestablece con el descriptor R. La
diferencia con S es que la activacién de la accion lleva un tiempo de retardo

P1 Si el paso se activa (flanco 0->1) la accidn se activa y permanece durante un
ciclo del programa.

PO Si el paso se desactiva (flanco 1->0) la accidn se activa y permanece durante
un ciclo del programa.

Tabla 15: Opciones de accion de paso, Unity Pro

50

~
| S—

Jaime Calvo Baigorri Automatizacidn de un proceso de fabricaciéon
en Factory 10 controlado a través de Unity Pro

Propiedades de paso: Centrando_cargadoral *

General Acciones Comentario

Tiempo Accion
escriptor Literal Vanable (@ Varable (O Seccign

None | ~ |ml

Modificar accidn
MNueva accian
Eliminar
Mover hacia amba

Mover hacia abajo

Aceptar Cancelar Aplicar HAyuda
Figura 40: Menu de accion, lenguaje SFC

Una vez definidas las acciones asociadas a los pasos de nuestro programa, se van a
definir las variables asociadas a las transiciones. Estas variables van a suponer la condicidn de
cambio de un paso a otro. Al igual que con las acciones, pueden estar asociadas directamente a
una variable o a una seccidn. Estos son varios ejemplos de secciones:

3 LEETHS ' = \
T #as inl and not inl true

Figura 41: Ejemplo de secciones de transicion, lenguaje SFC

La condicion de cambio de paso se puede fijar a un valor de entrada de 0 pinchando en
el recuadro de condicion de transicidon invertida. De esta forma, cuando el valor de la variable
asociada sea igual a 0 se disparara la transicion.

Una vez hemos terminado con la redaccién de los dos programas que van a controlar las
estaciones, y de las secciones de apoyo realizadas para lograr el funcionamiento deseado, se
detalla como compilar el programa y la conexién con el PLC.

En la pestaiia Generar, clicamos en Analizar Proyecto para comprobar que no hay fallos en la
redaccion.

Si el resultado del analisis es de 0 errores, estamos en disposicion de generar el proyecto. Vamos
a Generar Proyecto en la pestaia de Generar.

MACEN]]
tas Generar PLC Debug Ventana Ayuda

& : <5 EES
g2 Analizar proyecto

enerar cambios Ctrl+B

| 6
__ | EdiRegenerartodo el proyecto

4

Figura 42: Generar proyecto en Unity Pro

Con el proyecto generado, lo conectamos al PLC. En la pestaiia PLC > Establecer direccion, se va
a indicar la direcciéon del software de simulacién, en nuestro caso 127.0.0.1, y en medios TCPIP.

51

~
| S—

Automatizacidn de un proceso de fabricaciéon

Jaime Calvo Baigorri
en Factory 10 controlado a través de Unity Pro

Establecer direccion ? X
(HHE v Simulador
Ancho de banda...
Direccién IDiregTI
’E = | & |12?.D.D.1 T | & Comprobar conexion
Medioz I Medios I
|use v | [TCRIP - | | Aceptar
Parametroz de comunicacion Parametros de comunicacion Cancelar
Apuda

Adaptacion automatica de la velocidad al final de la descarga
Figura 43: Establecer direccion en Unity Pro

En la pestafia PLC > Conectar, establecemos la conexién con Factory I/O. Una vez conectados en
PLC > Transferir proyecto a PLC, cargamos las secciones de programa en el PLC de la simulacidn.

Por ultimo en PLC > Ejecutar iniciamos la ejecucion del programa en la simulacién.

52

~
| S—

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

12.3. ANEXO Ill: Guion Practica 4

53

~
| S—

Ingenieria de Control — Grado en Ingenieria de Tecnologias Industriales Practica 4

Practica 4: Control de una célula de fabricacion flexible.

IMPORTANTE: Antes de la sesion en el laboratorio, es imprescindible haber realizado el estudio previo.

Objetivo: realizar la automatizacion completa de la estacion 6 de la célula de fabricacion,
utilizando el lenguaje estructurado (ST) y el lenguaje sequential function chart (SFC, comunmente
denominado Grafcet).

Funcionamiento de la estacion 6

La estacion 6 suministra las placas base sobre las que se montan los pedidos que luego se
almacenarian en la estacion 7. Existen dos tipos diferentes de placas, cuya Unica diferencia es el
color: negro y blanco. Por medio de una serie de cilindros neumaticos y unas ventosas de vacio
tendremos la posibilidad de trasladar las piezas de un punto a otro hasta colocarlas sobre el palet.

La estacion posee dos alimentadores por gravedad sobre los cuales introduciremos cada uno de los
dos tipos de base posibles, uno en cada uno de ellos. La situacion de cada uno de los tipos de base
debe ser la mostrada en la figura adjunta. También hay que colocar las placas correctamente
orientadas: si se meten de forma erronea las ventosas del brazo que debe manipularlas coincidiran
con los huecos de la placa y no se podran levantar (al perderse el efecto de succion sobre la placa).
Asi que es necesario mirar la disposicion de las ventosas en el brazo manipulador antes de
introducir placas en los almacenes.

1/a

Ingenieria de Control — Grado en Ingenieria de Tecnologias Industriales Practica 4

Funcionamiento basico

El inicio del proceso ha de lanzarse cuando el operario pulse el boton Marcha de la botonera de la
estacion. Eso permite sacar las piezas de una en una, teniendo el tiempo suficiente para retirar
manualmente la que se acaba de dejar, y —lo que es mas importante para la seguridad del operario—
hacerlo con la méaquina parada. El funcionamiento automatico basico es el siguiente:

1y

2)

3)

4)

5)

sacar una placa del alimentador por gravedad, para lo cual debe extenderse un cilindro de
simple efecto existente en su base. El color de las placas negras/blancas que se sacan
depende del conmutador IND-INT de la botonera (salidas Expulsar izdo/
Expulsar drcho).

con el cilindro completamente extendido (no existe sensor para detectar dicha extension): si
existe placa serd detectada por un sensor Optico (y ya puede recogerse el cilindro que lo
sacd); si no existe placa habrd que avisar al operador de que debe recargar el alimentador
que se ha quedado vacio (lo que puede hacerse mediante una baliza existente en la propia
estacion)

posicionar el brazo sobre la placa recién extraida, bajarlo, hacer vacio para sujetar la placa:
cuando el sensor detecte que se ha producido el vacio, significard que la placa esta sujeta, y
podremos subir el brazo

llevar la placa hacia el carro, bajarla, y desactivar la succion; cuando el sensor de vacio nos
indique que se ha dejado de succionar, subir el brazo y llevarlo donde corresponda

si un alimentador se queda sin piezas, hay que avisar al operador utilizando la baliza
existente en la estacion.

Algunas consideraciones:

1y

2)

3)

Antes de cualquier ciclo de funcionamiento, la estacion se tiene que posicionar de manera
automatica en el estado de reposo que corresponde a:

a. Alimentadores atras

b. Brazo encima del alimentador de la derecha (placas blancas): arriba, atras y a la
derecha (visto desde la botonera)

Algunos movimientos se pueden ejecutar en paralelo (por ejemplo mover el cabezal a la
derecha y después adelante) optimizando los tiempos de produccion. En la medida de lo
posible, paraleliza los movimientos para optimizar los tiempos.

Durante el funcionamiento normal, hay que considerar las siguientes situaciones
imprevistas:

a. Si existe placa al fondo (ya sacada por algiin motivo, pieza detectada por el Optico),
hay que desplazar el cabezal y coger la pieza sacada y continuar con el proceso
normal.

b. Si no quedan placas en el deposito (no se activa el optico en un tiempo razonable)
hay que encender la baliza (de manera intermitente, usando una temporizacion
diferente al estado de emergencia), y tras recargar y pulsar RESET se continua con el
proceso normal.

Para activar la luz de forma intermitente se puede utilizar el bit de sistema %S6 (un temporizador

interno regula el cambio en el estado de este bit; buscad en la ayuda de Unity el funcionamiento de
dicho bit).

2l

Ingenieria de Control — Grado en Ingenieria de Tecnologias Industriales

Descripcion de las entradas y salidas

Practica 4

A continuacion se tabulan las entradas y salidas de este automatismo. Puesto que se utiliza una
periferia descentralizada (basada en bus CAN), las entradas y las salidas estan mapeadas sobre bits
de determinadas palabras de memoria (por lo que tendrds que tener especial cuidado cuando
accedas a ellas en modo escritura). Los simbolos dados son a modo de ejemplo (puedes usar otros
con los que te sientas mas comodo, si quieres). Notese que el simbolo Reset no puede usarse, al
coincidir con una palabra reservada del lenguaje de programacion, y en su lugar se ha usado
Rearme. Tampoco existen acentos en los simbolos, evidentemente.

ENTRADAS

Objeto Simbolo Condicién de puesta a 1

%MW35.0 Izdo_atras El expulsor izquierdo esta atras.

%MW35.1 Optico_izdo Hay placa sobre el sensor 6ptico izquierdo.
%MW35.2 Dcho_atras El expulsor derecho esta atras.

%MW35.3 Optico_dcho Hay placa sobre el sensor 6ptico derecho.
%MW35.4 Brazo_arriba El brazo que manipula la placa esta arriba.
%MW35.5 Brazo_abajo El brazo que manipula la placa esta abajo.
%MW37.0 Brazo_dcha El brazo que manipula la placa esta a la derecha.
Y%MW37.1 Brazo_izda El brazo que manipula la placa esta a la izquierda.
%MW37.2 Seta_emergencia | Seta de emergencia enclavada.

%MW37.3 Marcha Pulsador MARCHA apretado.

%MW37.4 Man_aut En posicion AUT.

%MW37.5 Rearme Pulsador RESET apretado.

%MW39.0 Ind_int En posicion INT.

Y%MW39.1 Brazo_atras El brazo que manipula la placa estéa a la atras.
%MW39.2 Brazo_adelante | El brazo que manipula la placa esta a la adelante.
%MW39.3 Vacio El vacuostato detecta vacio.

Respecto a las salidas, las %MW134.0, .1 y .3 corresponden a cilindros neumaticos de simple
efecto. Cuando la salida %MW 134.2 vale 0, se deja de generar vacio. Las salidas %MW134.4 a
%MW 135.1 pueden (deben) manejarse de forma impulsional, ya que corresponden a cilindros de

doble efecto.

2/

Ingenieria de Control — Grado en Ingenieria de Tecnologias Industriales Practica 4

SALIDAS

Objeto Simbolo Accidn ejecutada si su valor es 1
%MW134.0 |Expulsar_izdo Extender expulsor izquierdo.
%MW134.1 Expulsar_dcho Extender expulsor derecho.
%MW134.2 | Coger_placa Generar vacio en las ventosas.
%MW134.3 | Bajar_brazo Bajar el brazo.

%MW134.4 | Mover_izda Mover el brazo hacia la izquierda.
%MW134.5 | Mover_dcha Mover el brazo hacia la derecha.
%MW135.0 | Mover_adelante Mover el brazo hacia la adelante.
%MW135.1 Mover_atras Mover el brazo hacia la atras.
%MW135.2 | Baliza Encender la luz de la baliza luminosa.

Estudio previo

Es necesario que el grupo de practicas acuda a la sesion con el problema estudiado y una solucion
consistente en el modelo del funcionamiento automatico de la estacion 6 y su control usando una
red de Petri interpretada.

Sesion de laboratorio

Implementa el funcionamiento del automatismo descrito antes.

Se realizara la implementacion de la red de Petri elaborada en el estudio previo y se verificara el
correcto funcionamiento del programa. Para realizar la implementacion se utilizara el fichero
correspondiente disponible en el repositorio en moodle de la asignatura: estacion6.stu.

Los ficheros con extension stu son ficheros de programacion en Unity. Una vez abierto el fichero
aparecera una ventana donde se visualiza el explorador de proyectos a la izquierda. El explorador de
proyectos estd también disponible en el menti Herramientas. Los ficheros proporcionados para
realizar la sesion vienen ya con la configuracion hardware correcta, asi como con las variables de
memoria, ya introducidas, asociadas a la comunicacidon con la maquina. Estas variables estan
declaradas en Variables e instancias FB/Variables elementales del Explorador de proyectos.

Ale

Ingenieria de Control — Grado en Ingenieria de Tecnologias Industriales Practica 4

Unity Pro XL : ESTACION3

Fichera Edicidn Ver Servicios Herramient tas Generar PLC Debug Ventana Ayuda

AFE&E B a H aEAB i Mk BEDM| 2%

|

- I

Bus: BMX P34 2030 01.00) Bus Conesiones configuradas: 1

oop,

DyoznE@e 2

2 Editor, de datos

Topo

Variables | Tipos de DDT | Blogues de funciones | Tios de DFE
Filto
V| Nombe [¥ EDT [~ DDT I~ 10DDT

N

ireccion ol BRI

ZMW37.0 ADVE3 R1_S5 STBDDI3420
ZMW35.1 ADVE3 R1_S3 STBDDI3610_C
ZMW35.0 ADVE3_R1_53 STBDDIZ610_(
ZMW134.0 ADVE3 R1_56_STBDDO3600
ZMW134.1 ADVE3_R1_S6_STBDDO3600
IMW134.4 ADVE3_R1_S6_STBDDO300
ZMW3T.1 ADVE3 R1_55 STBDDI3420 ¢
MW1345 ADVE3_R1_S6_STBDDO3600_Canal
XMW352 ADVE3_R1_53 STBDDIZ610_Canal
ZMW35.3 ADVE3 R1_S3 STBDDI3610_Canal
AMW3T3 ADVE3_R1_55_5TBODI3420_Canal
ZMW3T5 ADVE3_R1_S5 STBDDI3420 Canal 2 Est
IMW3T.2 ADVE3 R1_85 STBDDI3420_Canal
ZMW5 ADVE3_R1_53_ STBODIZ610_Canl
ZMW35.4 ADVE3 R1_53 STRDDIZ610
ZMW135.0
AMw134.3
IMw134.2

ida
ADVE3_R1_S6_STBDDO3600_Canal 3 [Datos de saida] i

Teee oo COOOCOC OO Oe

Para realizar la programacion se abriran nuevas secciones con el boton derecho del raton en
Programa/Tareas/MAST/Secciones del Explorador de proyectos dandoles el nombre que se desee.
Para programar la seccion principal en SFC se utilizara la siguiente paleta:

DB+ . F o w8588

Mediante ella se podrda seleccionar, insertar etapas, macro-etapas, transiciones, saltos,
ramificaciones y conjunciones alternativas, ramificaciones y conjunciones paralelas, conexiones,
comentarios, secuencias etapa-transicion o transicion-etapa, secuencias paralelas o secuencias
alternativas.

La seccion debera tener una etapa inicial que se puede definir marcando la casilla Paso inicial de la
pestaina General del paso. Para introducir un tiempo de retraso de una etapa, se puede utilizar la
variable Nombre del paso.t en las transiciones. La variable Nombre del paso.x se puede utilizar
para comprobar si la etapa estd activa o no.

Para insertar una variable predefinida pulsar el boton derecho del raton y después Seleccion de

datos seguido del simbolo J para que se despliegue el listado donde elegir. Se puede crear una
variable no existente pulsando con el boton derecho del raton sobre el nombre escrito de la variable
en el codigo, seguido de Crear variable.

Existen dos tipos de variables 16gicas:
BOOL: Podra valer False (=0), o True (=1).

EBOOL: Podra valer False (=0), o True (=1) pero también incluye informacion relativa a la
gestion de los flancos ascendentes o descendentes y el forzado.

Las transiciones pueden definirse como variable o como seccion. Para crear una seccion de
transicion se le dard un nombre y se elegird a continuacion el lenguaje en que desarrollarla. Las
secciones de transicion son facilmente localizables en la carpeta Transiciones. Para utilizar una
variable negada como transicion se marcara la casilla “Condicion de transicion invertida”.

Las acciones en los pasos pueden introducirse como variables o como seccion. Una vez elegida la
variable, o escrito el nombre de la seccion se deberd pulsar “Nueva accion” para guardarla. En el
caso de las secciones se hard doble clic sobre el nombre para elegir el lenguaje en que desarrollarla.
Las secciones de accion son facilmente localizables en la carpeta Acciones. Cada paso puede
contener varias variables y secciones. El descriptor a utilizar para la accion es:

[~NIA

Ingenieria de Control — Grado en Ingenieria de Tecnologias Industriales Practica 4

* N (None): Si el paso esta activo la accion se establece en 1. Si el paso no estd activo la
accion se establece en 0.

Mediante el menu Ver/Visualizacion expandida se pueden visualizar tanto los pasos como las
acciones asociadas a éstos.

Analisis, transferencia y ejecucion del codigo

Si se desea comprobar el correcto comportamiento del cédigo mediante simulacion se elegira el
ment PLC/Modalidad de simulacion. Si por el contrario se desea ejecutar el codigo en un automata
real se elegira PLC/Modalidad estandar. En este Gltimo caso se debera establecer la direccion fisica
del automata mediante PLC/Establecer direccion. Se introducird la direccion del automata de la
célula y se seleccionard como medio TCPIP (estos pardmetros estan ya configurados en los ficheros
suministrados para la realizacion de la practica).

Una vez elegida la modalidad se analizara el proyecto mediante el menti Generar/Analizar proyecto
y se depurardn los posibles errores. Una vez depurados los errores aparecera el mensaje
“Analizado” en color amarillo en la parte inferior de la ventana. A continuacidon se ejecutara el
menu Generar/Regenerar todo el proyecto con objeto de tener el proyecto generado. Si el proyecto
se ha generado correctamente ha de aparecer el mensaje “Generado” en color verde en la parte
inferior de la ventana. Si el proyecto ya se habia generado con anterioridad pero se han realizado
cambios no es necesario regenerar todo el proyecto. Es suficiente con ejecutar Generar/Generar
cambios.

El proyecto generado se ha de transferir al PLC (real o simulado). Para ello primero habra que
conectarse con el autdmata mediante PLC/Conectar. Si el proyecto no coincide con el que hay en el
automata aparecera indicado mediante el mensaje “Diferente” en color rojo en la parte inferior de la
ventana. Para que coincidan se seleccionara PLC/Transferir proyecto a PLC, se elegira si se desea
ejecutar el PLC después de la transferencia, y se pulsara transferir en el cuadro de didlogo. Una vez
transferido el proyecto el mensaje “Diferente” habra sido reemplazado por el mensaje “Igual” en
color verde. Si el programa no estad en ejecucion aparecera el mensaje “Stop” en amarillo en la parte
inferior. Para ejecutarlo se seleccionara PLC/Ejecutar y el mensaje de “Stop” daré paso al de “Run”
en color verde. Mediante PLC/Ejecutar el programa se ejecutard desde el comienzo si se acaba de
transferir o, si ya se habia ejecutado previamente, desde donde se habia pasado a “Stop” mediante
PLC/Detener. Si se desea ejecutar el programa desde el inicio se debera llevar el programa a “Stop”
mediante PLC/Detener, luego pulsar PLC/Inicializar, y finalmente PLC/Ejecutar.

[AY]A

Jaime Calvo Baigorri Automatizacién de un proceso de fabricacion
en Factory 10 controlado a través de Unity Pro

12.4. ANEXO IV: Secciones de control

60

~
| S—

MAST

Propiedades especificas

Configuracién Ciclica
Configuracién del periodo de tareas 0
Configuracién del tiempo de watchdog 250

Mapeo_entradas : [MAST]

1] 10 20| 301 40 50

if simulando=0 then
izdo_atras:=izdo_atras_real;
optico_izdo:=optico_izdo_real;
dcho_atras:=dcho_atras_real;
optico_dcho:=optico_dcho_real;
brazo abajo:=brazo_abajo real;
brazo_adelante:=brazo_adelante_real;
brazo arriba:=brazo arriba real;
brazo_atras:=brazo_atras_real;
brazo_dcha:=brazo_dcha real;
brazo izda:=brazo izda real;
ind int:=ind _int real;
man_aut:=man_aut_real;
marcha:=marcha real;
rearme:=rearme_real;
seta emergencia:=seta_emergencia real;
vacio:=vacio_real;

else
izdo_atras:=izdo_atras fact;
optico_izdo:=optico_izdo_ fact;
dcho_atras:=dcho_atras_fact;
optico_dcho:=optico_dcho_fact;
brazo_adelante:=brazo_adelante_fact;
brazo_atras:=brazo_atras_fact;
brazo_dcha:=brazo_dcha_fact;
brazo_izda:=brazo_izda_ fact;
ind_int:=ind_int_fact;
man_aut:=man_aut_fact;
marcha:=marcha_fact;
rearme:=rearme_fact;
seta_emergencia:=seta_emergencia_fact;

end_if;

60|

(*Vamos a disefiar los sensores de brazo arriba y brazo abajo,

if Simulando=1 and Situacion brazo>870 then
brazo_abajo:=1;

else
brazo_abajo:=0;

end_if;

if Simulando=1 and Situacion brazo=0 then
brazo _arriba:=1;

else
brazo _arriba:=0;

end_ if;

(*Vamos a programar el sensor de vacio para Factory IO¥*)

70| 80|

que no existen en Factory

if Simulando=1 and brazo_atras=1 and RE(brazo_abajo)=1 and estado[1]=0 then

estado[1l]:=1;

end_if;

if Simulando=1 and estado[l]=1 and contl>50 then
estado[1]:=0;
vacio:=1;

end_if;

if Simulando=1 and estado[1]=0 and RE (brazo_abajo)=1 and brazo_adelante=1 then

estado[1l]:=2;

end_if;

if Simulando=1 and estado[l]=2 and contador2>50 then
estado[1]:=0;
vacio:=0;

end if;

(*A continuacidén se detalla el valor de los contadores para cada estado*)

if estado[1]=0 then
contl:=0;
contador2:=0;

end if;

if estado[1l]=1 then
contl:=contl+l;

end if;

if estado[1]=2 then
contador2:=contador2+1;

end_if;

90 |

I0%*)

100

110]

Control_Estacion6 : [MAST]

1] 10| 20| 30 40 50 60|
1 if %s13 then
2 expulsar_dcho:=0;
3 expulsar_izdo:=0;
4 estado (0] :=0;
5 Placa_izquierda:=0;
6 Placa derecha:=0;
7 Sin placas:=0;
8 end if;
9 if estado[0]=0 and brazo_dcha=1 and Sin Placas=1 then
10 estado[0]:=10;
11 end if;
12 if estado[0]=10 and Sin_placas=1 and Rearme=1 then
13 Sin placas:=0;
14 primer ciclo:=1;
15 Sin bases verdes:=0;
16 Sin bases _azules:=0;
17 Placa izquierda:=0;
18 Placa_derecha: ;
19 Baliza:=0;
20 estado[0]:=1;
21 bases_dcha:=1;
22 bases_izda:=1;
23 end_if;
24 if brazo_dcha=1 and estado[0]=0 and Sin_placas=0 then
25 estado[0]:=1;
26 bases_dcha:=1;
27 bases_izda:=1;
28 end 1if;
29 if brazo_atras=1 and brazo_dcha=1 and brazo_arriba=1 and marcha=1
30 Expulsar_dcho:=1;
31 Placa_derecha:=1;
32 end_if;
33 if brazo_atras=1 and brazo_dcha=1 and brazo_arriba=1 and marcha=1
34 Expulsar izdo:=1;
35 Placa_izquierda:=1;
36 end if;
37 if optico_dcho=1 and estado[0]=1 then
38 estado[0]:=2;
39 Expulsar dcho:=0;
40 end if;
41 if optico_izdo=1 and estado[0]=1 then
42 estado[0]:=8;
43 Expulsar izdo:=0;
44 end if;
45 if brazo_izda=1 and estado[0]=8 then
46 estado[0]:=2;
47 end_if;
48 if brazo_abajo=1 and estado[0]=2 then
49 estado (0] :=3;
50 end if;

51 if vacio=1 and estado[0]=3 and Placa_izquierda=1 then
52 estado[0]:=9;

53 end_if;

54 if vacio=1 and estado[0]=3 and Placa_derecha=1 then

55 estado[0]:=4;

56 end if;

57 if (brazo_adelante=1 and brazo_arriba=1 and estado[0]=4 and estacion2=0) or
57>>=1 and estado[0]=9 and estacion2=0) then

58 estado[0]:=5;

59 no_hay:=1;

60 end if;

61

62 1if brazo abajo=1 and estado[0]=5 and Placa derecha=1 then
63 estado[0] :=6;
64 end if;

66 1f brazo abajo=1 and estado[0]=5 and Placa izquierda=1 then
67 estado[0] :=6;

68 end if;
69
70 (*En este caso, al no tener en Factory IO un sensor que inique si

71 creamos una condicidén doble,
72 y otra para la simulada por medio de un contador*)

701 80| 90 | 100

and estado[0]=1 and ind_int=1 then

and estado[0]=1 and ind_int=0 then

se han acitvado las ventosas

una para la estacidén real por medio de la sefial de las ventosas

74 if (vacio=0 and Placa_derecha=1 and Sin_bases_verdes=0 and estado[0]=6) then
75 estado[0]:=7;

76 expulsar_izdo:=1;

77 Placa_derecha:=0;

78 Placa_izquierda:=1;

79 end_if;

80 if (vacio=0 and Placa_derecha=1 and Sin_bases_verdes=1 and estado[0]=6) then
81 estado[0]:=7;

82 expulsar_dcho:=1;

83 end if;

84 if (vacio=0 and Placa_izquierda=1 and Sin_bases_azules=0 and estado[0]=6) then
85 estado[0]:=7;

86 expulsar_dcho:=1;

110]

(brazo_adelante=1 and brazo_arriba

87
88
89
90
91
92
93

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

147
148
149
150
151
152
153
154
155
156

Control Estacion6
1] 10 20 301 40| 50 60| 70| 80 | 90 | 100

Placa izquierda:=0;
Placa_derecha:=1;
end_if;
if (vacio=0 and Placa izquierda=1 and Sin bases azules=1 and estado[0]=6) then
estado[0]:=7;
expulsar izdo:=1;
end_if;
if estado[0]=7 and brazo atras=1 and optico_dcho=1 then
estado[0]:=2;
expulsar dcho:=0;
end_if;
if estado[0]=7 and brazo atras=1 and optico_izdo=1 then
estado (0] :=8;
expulsar_izdo:=0;
end_if;
(*Programamos que la estacidén siga funcionando hasta que ambos lados se queden sin placas,
en caso de fallar en un lado, se sacaran todas las placas del otro.*)

if contador1>100 and Placa_derecha=1 and Sin_bases_verdes=0 and estado[0]=7 then
Sin_bases_azules:=1;
expulsar_dcho:=0;
expulsar_izdo:=1;
Placa_derecha:=0;
Placa_izquierda:=1;
contadorl:=0;

end if;

if contador1>100 and Placa derecha=1 and Sin bases verdes=1 and estado[0]=7 then
Sin bases azules:=1;
Sin placas:=1;
estado[0]:=0;
baliza:=1;
expulsar izdo:=0;
expulsar dcho:=0;

end_if;

if contadorl1>100 and Placa_izquierda=1 and Sin_bases_azules=0 and estado[0]=7 then
Sin bases verdes:=1;
expulsar dcho:=1;
Placa _derecha:=1;
Placa izquierda:=0;
contadorl:=0;

end_if;

if contador1>100 and Placa_izquierda=1 and Sin_bases_azules=1 and estado[0]=7 then
Sin_bases_verdes:=1;
Sin_placas:=1;
estado[0]:=0;
baliza:=1;
expulsar_izdo:=0;
expulsar_dcho:=0;

end_if;

(*Se va a programar el funcionamiento de la seta de emergencia, se debe tener en cuenta que por defecto

el valor de la seta en Factory IO es igual a 1%*)

if Seta emergencia=0 then
estado[0]:=10;
expulsar dcho:=0;
expulsar izdo:=0;
emergencia:=1;
baliza:=1;

end if;

if Seta emergencia=1 and emergencia=1 then
estado[0]:=0;
emergencia:=0;
baliza:=0;
Sin bases verdes:=0;
Sin bases azules:=0;
Placa_derecha:=0
Placa_izquierda:=0;

end_if;

110]

Estados_del _brazo_robot : [MAST]

1] 10 20| 301 40 50 60|

if estado[0]=0 then
Bajar_brazo:=0;
Mover_derecha:=
Mover_izda:=0;
Mover_atras:=1;
Mover adelante:=0;
Coger placa:=0;

end_if;

if estado[0]=1 then
Bajar brazo:=0;
Mover derecha:=0;
Mover izda:=0;
Mover atras:=0;
Mover adelante:=0;
Coger placa:=0;

end_ if;

if estado[0]=2 then
Bajar brazo:=1;
Mover derecha:=0;
Mover_izda:=0;
Mover_atras:=0;
Mover_adelante:
Coger_placa:=0;
contadorl:=0;

end_if;

if estado[0]=3 then
Bajar_brazo:=1;
Mover_derecha:=0;
Mover_izda:=0;
Mover_atras:=0;
Mover_adelante:=0;
Coger_placa:=1;

end_if;

if estado[0]=4 then
Bajar brazo:=0;
Mover derecha:=0;
Mover izda:=0;
Mover atras:=0;
Mover adelante:
Coger placa:=1;

end_if;

if estado[0]=5 then
Bajar brazo:=1;
Mover derecha:=0;
Mover izda:=0;
Mover atras:=0;
Mover_adelante:=0;
Coger_placa:=1;

end_if;

if estado[0]=6 then
Bajar_brazo:=1;
Mover_derecha:=
Mover_izda:=0;
Mover_atras:=0;
Mover_adelante:=0;
Coger_placa:=0;

end_if;

if estado[0]=7 then
Bajar_brazo:=0;
Mover_derecha:=0;
Mover izda:=0;
Mover atras:=1;
Mover adelante:=0;
Coger placa:=0;
contadorl:=contadorl+1l;

end if;

if estado[0]=8 then
Bajar brazo:=0;
Mover derecha:=
Mover izda:=1;
Mover atras:=0;
Mover adelante:=0;
Coger placa:=0;
contadorl:=0;

end_if;

if estado[0]=9 then
Bajar_brazo:=0;
Mover_derecha:
Mover_ izda:=0;
Mover_atras:=0;
Mover_adelante:=1;
Coger_placa:=1;

end_if;

if estado[0]=10 then
Bajar_brazo:=0;
Mover_derecha:=0;
Mover_izda:=0;

701

80|

90 |

100

110]

1]

end_if;

Estados del brazo robot

101 20| 30 40

Mover atras:=0;
Mover adelante:=0;
Coger placa:=0;

50

60|

70|

80|

90 |

100

110]

Mapeo_salidas : [MAST]

1] 10| 20| 30 40 50 60| 70 80| 90 | 100 110]
1 (*Vamos a darle un valor a las salidas del programa en funcidén de si estamos trabajando
2 con la magqueta real o con la estacidédn de simulacidn*)
3
4 if Simulando=0 then
5 Expulsar_izdo:=Expulsar_izdo_real;
6 Expulsar_dcho:=Expulsar_dcho_real;
7 Coger_placa:=Coger_placa_real;
8 Bajar brazo:=bajar brazo real;
9 Mover izda:=Mover izda real;
10 Mover derecha:=Mover derecha_real;
11 Mover adelante:=Mover_ adelante_real;
12 Mover_ atras:=Mover_ atras_real;
13 Baliza:=Baliza real;
14 else
15 Expulsar izdo fact:=Expulsar izdo;
16 Expulsar_dcho_fact:=Expulsar_dcho;
17 Coger_placa_fact:=Coger_placa;
18 Baliza fact:=Baliza;
19 end if;
20
21 (*Vamos a convertir las salidas digitales del programa en salidas analdgicas necesarias para el robot*)
22
23 if mover_derecha=1 and simulando=1 then
24 Mov_X:=730;
25 end_1if;
26 if mover_izda=1 and simulando=1 then
27 Mov_X:=310;
28 end 1if;
29 if mover_derecha=0 and mover_izda=0 and simulando=1 then
30 Mov_X:=Pos_X;
31 end if;
32 if mover_atras=0 and mover_adelante=0 and simulando=1 then
33 Mov_Y:=Pos_Y;
34 end if;
35 if mover atras=1 and simulando=1 then
36 Mov_Y:=90;
37 end if;
38 if mover adelante=1 and simulando=1 then
39 Mov_Y:=1000;
40 end if;
41 if bajar brazo=0 and simulando=1 then
42 Mov_7:=0;
43 end if;
44 if bajar brazo=1 and simulando=1 then
45 Mov_Z7:=900;

46 end if;

Simulacion_planta : [MAST]

1] 10 20| 301 40 50 60|

if Simulando=1 and estado[0]=1 and Sin_placas=1 and Rearme=1 then
Genera_base_verde:=1;
Genera_base_azul:=1;

end_if;

701 80| 90 | 100

if brazo_dcha=1 and estado[0]=1 and Sin_placas=0 and Simulando=1 then

Genera_ base_verde:=1;
Genera_base_azul:=

end_if;

if brazo_abajo=1 and estado[0]=3 and Simulando=1 then
Genera_base_verde:=0;
Genera base azul:=0;

end_ if;

if estado[0]=5 then
suma_base:=1;

end_ if;

110]

if brazo_abajo=1 and suma base=1 and estado[0]=6 and Placa derecha=1 and bases_dcha<=2 and Simulando=1 then

Genera base azul:=1;
bases_dcha:=bases_dcha+1l;
suma_base:=0;

end_if;

if brazo_abajo=1 and suma_base=1 and estado[0]=6 and Placa_izquierda=1 and bases_izda<=4 and Simulando=1 then

Genera_base_verde:=1;
bases_izda:=bases_izda+l;
suma_base:=0;

end_if;

(*A continuacidén vamos a controlar la generacidén de bases en la segunda estacion*)

if RE(llega_pieza)=1 and Placa_derecha=1 and no_hay=1 then
Genera_base_azul_al:=1;
Genera_palet:=1;
no_hay:=0;
end_if;
if Pieza a=1 then
genera base_azul al:=0;
end if;
if RE(llega pieza)=1 and Placa izquierda=1 and no_hay=1 then
Genera base_verde_al:=1;
Genera palet:=1;
no_hay:=0;
end_if;
if pieza v=1 then
Genera_ base_verde_al:=0;
end_if;
if palet en cinta=1 then
genera palet:=0;
end_if;

(*Se programa la variable que nos indica si se estd ejecutando una Unica estacidén o las dos*)

if DosEstaciones=0 then
estacion2:=0;
end_if;

ALMACEN : [MAST]

Comentario

Propiedades comunes

Moédulo funcional

Nombre de la condicién

Propiedades especificas

Control de operador

Numero de area

Chart : [MAST - ALMACEN]

1 2 3 4 5 6 7 8
| > | > 1
1 Reposo Emergencig_almacen Almacenanfo_piezas
Puesta_en_marcha EmergehciaAlmacenVac|ic
2 —— ——
Rearmd a NOT enjergencia_a
>
3 Esperando|base Almacen_.. >:§perand>base
Llega_pieza1l
4 ——
NOT AIFcenLlenc
5 Transportapdo_base
6 L bas&ara_a... Transportahdo_palet
NOT enjerge...
7 }rr\ergenc>. Atrapando [base
NOT enjergencia_al
8 Pallet_llega_a... _almacen
NOT enjerge... base_afrapada
9 }rr\ergenc>. R_coge_bise
10
NOT enjerge... base_dgtectada_a
1 }rr\ergenc>. Recogiend.|. Palet_espefando_base
Base_dogida
12 ———
NOT enjerge...
13 }rr\ergenc>. Llevando_Hase
Brazo_sobre_palel
14 ——
NOT enjerge...
15 }rrergenc>. Esperando pallet

2 3 4

16

17

18

VerdadEra

Bajando_b3se

19

20

21

22

23

24

25

26

27

28

29

30

31

32

—_

NOT enjerge...

Brazo_|lega_abajo
———

>Emergenc>.

Suelto_basp

———
NOT base_detectada_al

Transportal.. %perand}base

| I

_—

NOT enmerge... Palet_cargado

}rr\ergenc>. Esperando] cargadora

———
Cargadpra_en_Q

Recogiendq_pallet

_—

NOT enjerge... cargad¢

}rr\ergenc>. BElevando_dargadora
Fin_moyimiento_Z_cargadora2
——

NOT enjerge...

}rr\ergenc>. Centrando_|cargadora1

———
NOT enjerge... unas_cgntradas

}rr\ergenc>. Almacenanfo

Fin_moyimien...

NOT enjerge... AlmacepLlenc

1 2 3 4 5 6
| | |
33 }vmrgenc>. Depositan.. >Errergenc>_alrmcen
NOT enjerge... Almacepado
35 }vmrgenc>. Bajando_c3argadora
36 $ Parada)|en_Z_cargadora
|
NOT enjerge...
37 }vmrgenc>. Centrando_|cargadora2
38 |
unas_cpntradas
39 Vuelta_al_reposo
40 Fin_moyimiento_cargadora_2
|
NOT enjerge...
41 }rrergenc>. >Almacena>do_piezas
Descripcion de objeto
Pasos:
Almacen vaciado 4,3)
Tiempo de supervisidn min./max.: Tiempo de retardo:
Comentario:
Acciones:
Descriptor: R |Tiempo: |Variable: AlmacenLleno
Almacenando (3,31
Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:
Acciones:
Descriptor: | Tiempo: Variable: Elevar cargadora
None
Descriptor: N | Tiempo: Seccion: ST :: Posicion almacen
Almacenando_piezas (7, 1)
Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:
Atrapando base 2,7
Tiempo de supervision min./max.: Tiempo de retardo:

Comentario:

Acciones:

Descriptor: N [Tiempo:

|Variable: atrapa_base

Bajando base 2,17

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: baja_brazo_al

None

Descriptor: | Tiempo: Variable: Mover _brazo al

None

Descriptor: | Tiempo: Variable: Coge placa al

None

Bajando cargadora (3,35

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: almacenar

None

Centrando _cargadoral (3,29

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Centrando cargadora2 (3,37

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Depositando_palet (3,33)

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: almacenar

None

Descriptor: | Tiempo: Variable: Elevar cargadora

None

Elevando cargadora (3,27

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: Elevar cargadora

None

Emergencia_almacen 5, D

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: Baliza_al

None

Descriptor: S |Tiempo: Variable: emergenciaAL

Esperando base 2,3)

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: R |Tiempo: Variable: estacion2

Descriptor: R |Tiempo: Variable: emergenciaAL

Esperando cargadora (3,23)

Tiempo de supervisidon min./max.: Tiempo de retardo:

Comentario:

Esperando_pallet (2,15)

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: Mover brazo al

None

Descriptor: | Tiempo: Variable: Coge placa al

None

Llevando base (2,13)

Tiempo de supervisidon min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: Mover brazo al

None

Descriptor: | Tiempo: Variable: Coge placa al

None

Palet esperando base 3,11

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: D \Tiempo: t#3s \Variable: barrera

R coge base 2,9

Tiempo de supervision min./méax.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: N | Tiempo: Variable: atrapa_base

Descriptor: N | Tiempo: Variable: baja_brazo al

Recogiendo base 2,11

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: N | Tiempo:

Variable: baja_brazo al

Descriptor: N | Tiempo:

Variable: Coge placa al

Recogiendo pallet (3,25)

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Variable: cargando

None

Reposo (paso inicial) 2,1

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo: Seccion: ST :: posicion inicial

None

Descriptor: S |Tiempo: Variable: primer ciclo

Suelto base 2,19

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Transportando almacen 2,21

Tiempo de supervision min./max.: Tiempo de retardo:
Comentario:

Acciones:

Descriptor: | Tiempo:
None

Variable: cinta_carga

Descriptor: | Tiempo: Variable: cinta_suministro
None

Descriptor: | Tiempo: Seccion: ST :: suma_pos
None

Descriptor: R | Tiempo: Variable: primer ciclo

Transportando base

(2.5)

Tiempo de supervision min./max.:

Tiempo de retardo:

Comentario:

Acciones:

Descriptor: N | Tiempo:

Variable: cinta bases

Descriptor: N | Tiempo:

Seccion: ST :: Tipo de bases

Descriptor: S |Tiempo:

Variable: estacion2

Transportando palet

3, 6)

Tiempo de supervision min./max.:

Tiempo de retardo:

Comentario:

Acciones:

Descriptor: D [Tiempo: t#3s

Variable: barrera

Descriptor: N | Tiempo:

Variable: cinta suministro

Vuelta al reposo

(3.39)

Tiempo de supervision min./max.:

Tiempo de retardo:

Comentario:

Acciones:
Descriptor: | Tiempo: Seccion: ST :: Cargadora_en reposo
None
Transiciones:
Nombre Tipo de Posicion Comentario
condicion
AlmacenLleno Variable 4, 32)
Almacenado Variable (3,34)
ST :: Base cogida Seccion (2,12)
ST = Brazo llega abajo Seccion (2,18)
ST = Brazo sobre palet Seccion (2,14)
Cargadora en 0 Variable (3,24)
ST :: EmergenciaAlmacenVacio |Seccion (5,2)
ST Seccion (3, 28)
Fin movimiento Z cargadora2
ST : Fin_movimiento cargadora |Seccion (3,32)
ST Seccion (3, 40)
Fin movimiento cargadora 2
ST :: Llega piezal Seccion 2,4
NOT AlmacenLleno Variable 4,4
NOT base detectada al Variable (2,20)
NOT emergencia_al Variable (1, 6)
NOT emergencia_al Variable (1, 8)
NOT emergencia_al Variable (1, 10)
NOT emergencia_al Variable (1,12)
NOT emergencia_al Variable (1,14)
NOT emergencia_al Variable (1,18)
NOT emergencia_al Variable (2,22)
NOT emergencia_al Variable (2,26)
NOT emergencia_al Variable (2,28)
NOT emergencia_al Variable (2,30)
NOT emergencia_al Variable (2,32)
NOT emergencia_al Variable (2,34)
NOT emergencia_al Variable (2, 36)

NOT emergencia_al Variable (2, 40)
NOT emergencia_al Variable 4,7
NOT emergencia_al Variable (7,2)
Palet cargado Variable (3,22)
ST :: Pallet llega a cargar Seccion (3,8
ST :: Parada_en Z cargadora |Seccion (3, 36)
ST :: Puesta_en marcha Seccion 2,2)
Rearme al Variable 4,2)
ST = Verdadera Seccion (2,16)
base atrapada Variable (2,8)
base detectada al Variable (2,10)
ST :: base para atrapar Seccion (2,6)
cargado Variable (3, 26)
unas_centradas Variable (3,30)
unas_centradas Variable (3,38)

Saltos:

Nombre Posicion Comentario
Almacenando_piezas (3,41
Emergencia_almacen 1,7
Emergencia_almacen 1,9
Emergencia_almacen 1,110
Emergencia_almacen (1,13)
Emergencia_almacen (1,15
Emergencia_almacen 1,19
Emergencia_almacen (2,23)
Emergencia_almacen (2,27
Emergencia_almacen (2,29
Emergencia_almacen (2,31
Emergencia_almacen (2,33)
Emergencia_almacen (2,35
Emergencia_almacen (2,37
Emergencia_almacen (2,41
Emergencia_almacen 4,98
Emergencia_almacen (4,33)
Esperando base (3,21
Esperando base (5,3)

Cargadora_en_reposo <Accion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 lugar_almacen:=55;

Tipo_de_bases <Accion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

if tipo_base=3 then
base_azul:=1;
base_verde:=0;

end_if;

if tipo_base=6 then
base_verde:=1;
base_azul:=0;

W JoU B WN

end_if;

posicion_inicial <Accion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

if emergenciaAL=0 then
pos_verde:=0;
pos_azul:=55;

end_if;

if emergenciaAL=1 then
pos_verde:=pos_verde;
pos_azul:=pos_azul;

end_if;

W I U s WN

Posicion_almacen <Accion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 if pos_verde <> pos_azul then

2 if base_verde=1 and suma_posicion=1 then
3 lugar_almacen:=pos_verde+l;

4 pos_verde:=lugar_almacen;

5 suma_posicion:=0;

6 end_if;

7 if base_azul=1 and suma_posicion=1 then
8 lugar_almacen:=pos_azul-1;

9 pos_azul:=lugar_almacen;
10 suma_posicion:=0;
11 end_if;
12 else
13 AlmacenLleno:=1;

14 end if;

suma_pos <Accion> : [MAST - ALMACEN]

1] 101 20| 301 40| 50| 60| 70| 80| 90| 100 110]

Base_cogida <Transicion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 Recogiendo_base.t>t#0.5s

Brazo_sobre_palet <Transicion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 FE(brazo_moviendo)=1

Brazo_llega_abajo <Transicion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 FE(brazo_bajando_al)=1

Verdadera <Transicion> : [MAST - ALMACEN]

1] 101 20| 301 40| 50| 60| 70| 80| 90| 100 110]

Fin_movimiento_cargadora <Transicion> :
[MAST - ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 (FE (Mov_X_ cargadora)=1 and Mov_Z_cargadora=0 and AlmacenLleno=0)or (Mov_X cargadora=0 and FE (Mov_Z_ cargadora)=
1>>1 and AlmacenLleno=0)

Fin_movimiento_cargadora_2 <Transicion> :
[MAST - ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 (FE (Mov_X cargadora)=1 and Mov_Z_cargadora=0)or (Mov_X cargadora=0 and FE(Mov_Z_cargadora)=1)

base_para_atrapar <Transicion> : [MAST -

ALMACEN]

1] 10 20| 30 40

50

60 |

70

80|

90 |

100

110]

Palet_en_cargadora <Transicion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 FE(palet_cargado)=1

Parada_en_Z_cargadora <Transicion> : [MAS
T - ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 FE(Mov_Z_cargadora)=1

Fin_movimiento_Z_cargadora2 <Transicion>
: [MAST - ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 FE(Mov_Z_cargadora)=1

Pallet_llega_a_cargar <Transicion> : [MAST
- ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 RE(palet_en_espera)=1

Llega_piezal <Transicion> : [MAST - ALMACE
N]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 RE(llega_pieza)=1 and DosEstaciones=1

Cargadora_reposando <Transicion> : [MAST
- ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 FE(cargadora_en_0)=1

EmergenciaAlmacenVacio <Transicion> :
[MAST - ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 emergencia AL=1 and Almacen Lleno=0

Puesta_en_marcha <Transicion> : [MAST -
ALMACEN]

1] 10 20| 30 40 50 60 | 70 80| 90 | 100 110]

1 marcha=1 or marcha_al=1

