000107389 001__ 107389
000107389 005__ 20210930091334.0
000107389 0247_ $$2doi$$a10.1007/978-3-030-43761-9_6
000107389 0248_ $$2sideral$$a120330
000107389 037__ $$aART-2020-120330
000107389 041__ $$aeng
000107389 100__ $$aArguedas Cuendis, S.
000107389 245__ $$aThe 3 Cavity Prototypes of RADES: An Axion Detector Using Microwave Filters at CAST
000107389 260__ $$c2020
000107389 5060_ $$aAccess copy available to the general public$$fUnrestricted
000107389 5203_ $$aThe Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the three different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of ~8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes were designed and built in 2018. The aim of the new designs is to find and test the best cavity geometry in order to scale up in volume and to introduce an effective tuning mechanism. Our results demonstrate the promising potential of this type of filter to reach QCD axion sensitivity at X-Band frequencies.
000107389 536__ $$9info:eu-repo/grantAgreement/ES/FEDER-AEI/FPA-2016-76978$$9info:eu-repo/grantAgreement/EC/H2020/802836/EU/Axions and relatives across different mass scales/AxScale$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 802836-AxScale
000107389 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000107389 592__ $$a0.136$$b2020
000107389 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020
000107389 593__ $$aNuclear and High Energy Physics$$c2020
000107389 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000107389 700__ $$aMelcón, A.Á.
000107389 700__ $$aCogollos, C.
000107389 700__ $$aDíaz-Morcillo, A.
000107389 700__ $$aDöbrich, B.
000107389 700__ $$aGallego, J.D.
000107389 700__ $$aGimeno, B.
000107389 700__ $$0(orcid)0000-0003-1163-1687$$aIrastorza, I.G.$$uUniversidad de Zaragoza
000107389 700__ $$aLozano-Guerrero, A.J.
000107389 700__ $$aMalbrunot, C.
000107389 700__ $$aNavarro, P.
000107389 700__ $$aPeñaGaray, C.
000107389 700__ $$0(orcid)0000-0002-1044-8197$$aRedondo, J.$$uUniversidad de Zaragoza
000107389 700__ $$aVafeiadis, T.
000107389 700__ $$aWünsch, W.
000107389 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000107389 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl.
000107389 773__ $$g245 (2020), 45-51$$pSpringer proc. phys.$$tSpringer proceedings in physics$$x0930-8989
000107389 8564_ $$s298352$$uhttps://zaguan.unizar.es/record/107389/files/texto_completo.pdf$$yPostprint
000107389 8564_ $$s1304240$$uhttps://zaguan.unizar.es/record/107389/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000107389 909CO $$ooai:zaguan.unizar.es:107389$$particulos$$pdriver
000107389 951__ $$a2021-09-30-08:22:22
000107389 980__ $$aARTICLE