000107392 001__ 107392
000107392 005__ 20231221135830.0
000107392 0247_ $$2doi$$a10.1007/s10854-020-04428-x
000107392 0248_ $$2sideral$$a120337
000107392 037__ $$aART-2020-120337
000107392 041__ $$aeng
000107392 100__ $$aFerreira, N.M.
000107392 245__ $$aTuning thermoelectric properties of Ca0.9Gd0.1MnO3 by laser processing
000107392 260__ $$c2020
000107392 5060_ $$aAccess copy available to the general public$$fUnrestricted
000107392 5203_ $$aDonor-doped CaMnO3 is an n-type semiconductor with perovskite structure, being considered as a potential n-type leg in thermoelectric modules. This oxide presents stability at high temperatures and allows tuning the relevant electrical and thermal transport properties through doping. In this work, Ca0.9Gd0.1MnO3 precursors have been prepared to produce fibres through the laser floating zone technique using different pulling rates. However, as-grown fibres did not present thermoelectric properties due to the presence of high amounts of secondary phases, leading to very high electrical resistivity values. The results have highlighted the importance of annealing procedures to reduce electrical resistivity, due to the decrease of secondary phases amount, and producing promising thermoelectric performances. The annealed samples present higher ZT values when the growth rate is decreased, reaching around 0.22 for the lowest growth rate, which is very close to the best values reported in the literature for these materials. Moreover, this procedure possesses an additional advantage considering that these samples can be directly used as n-type legs in thermoelectric modules for high-temperature applications. However, further studies should be made to determine the optimal amount of dopant.
000107392 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
000107392 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000107392 590__ $$a2.478$$b2020
000107392 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b138 / 273 = 0.505$$c2020$$dQ3$$eT2
000107392 591__ $$aPHYSICS, CONDENSED MATTER$$b38 / 69 = 0.551$$c2020$$dQ3$$eT2
000107392 591__ $$aPHYSICS, APPLIED$$b83 / 160 = 0.519$$c2020$$dQ3$$eT2
000107392 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b215 / 333 = 0.646$$c2020$$dQ3$$eT2
000107392 592__ $$a0.488$$b2020
000107392 593__ $$aAtomic and Molecular Physics, and Optics$$c2020$$dQ2
000107392 593__ $$aBioengineering$$c2020$$dQ2
000107392 593__ $$aBiomaterials$$c2020$$dQ2
000107392 593__ $$aCondensed Matter Physics$$c2020$$dQ2
000107392 593__ $$aBiophysics$$c2020$$dQ2
000107392 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000107392 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ2
000107392 593__ $$aBiomedical Engineering$$c2020$$dQ2
000107392 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000107392 700__ $$aSarabando, A.R.
000107392 700__ $$aFerro, M.C.
000107392 700__ $$0(orcid)0000-0002-0794-3998$$aMadre, M.A.$$uUniversidad de Zaragoza
000107392 700__ $$aDura, O.J.
000107392 700__ $$0(orcid)0000-0001-7056-0546$$aSotelo, A.$$uUniversidad de Zaragoza
000107392 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000107392 773__ $$g31 (2020), 18913–18922$$pJ. mater. sci., Mater. electron.$$tJournal of Materials Science: Materials in Electronics$$x0957-4522
000107392 8564_ $$s851996$$uhttps://zaguan.unizar.es/record/107392/files/texto_completo.pdf$$yPostprint
000107392 8564_ $$s1605444$$uhttps://zaguan.unizar.es/record/107392/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000107392 909CO $$ooai:zaguan.unizar.es:107392$$particulos$$pdriver
000107392 951__ $$a2023-12-21-13:42:31
000107392 980__ $$aARTICLE