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Abstract
Computational light transport simulation comprises all techniques for calculating
light flux in a virtual scene. It is ubiquitous in many applications, ranging from
entertainment and advertising, to product design, engineering and architecture, to
generating accurate simulation data for computational imaging techniques. How-
ever, accurately simulating light transport is an expensive process. This results into
a trade-off between the physical fidelity of the simulation and computational re-
sources. For example, it is common to assume geometric optics or infinite speed of
light, or to simplify reflectance models ignoring specific phenomena. In this the-
sis, we introduce several contributions to light transport simulation, both in terms
of improving the efficiency of the involved calculations, and expanding its range of
practical applications. We pay special attention to uplift the infinite speed of light
assumption, generalizing light transport to its transient state. With regard to effi-
ciency, we present an improved method to calculate the light flux in surfaces arriv-
ing directly from luminaries in a Monte Carlo renderer, reducing significantly the
variance of the resulting images with the same time budget. We also introduce a
density estimation-based framework in the transient domain to better reuse tempo-
ral samples in participating media. In the application domain, we also introduce two
uses of light transport: A model to simulate a special kind of goniochromatic pig-
ments that exhibit pearlescent appearance, with the goal of provide intuitive editing
for manufacture, and a framework for non-line-of-sight imaging using light time of
flight information built over a wave-based light transport formulation.
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Resumen
El transporte de luz computacional comprende todas las técnicas usadas para calcu-
lar el flujo de luz en una escena virtual. Su uso es ubicuo en distintas aplicaciones,
desde entretenimiento y publicidad, hasta diseño de producto, ingeniería y arqui-
tectura, incluyendo el generar datos validados para técnicas basadas en imagen por
ordenador. Sin embargo, simular el transporte de luz de manera precisa es un pro-
ceso costoso. Como consecuencia, hay que establecer un balance entre la fidelidad
de la simulación física y su coste computacional. Por ejemplo, es común asumir óp-
tica geométrica o una velocidad de propagación de la luz infinita, o simplificar los
modelos de reflectancia ignorando ciertos fenómenos. En esta tesis introducimos va-
rias contribuciones a la simulación del transporte de luz, dirigidas tanto a mejorar
la eficiencia del cálculo de la misma, como a expandir el rango de sus aplicaciones
prácticas. Prestamos especial atención a remover la asunción de una velocidad de
propagación infinita, generalizando el transporte de luz a su estado transitorio. Res-
pecto a la mejora de eficiencia, presentamos un método para calcular el flujo de luz
que incide directamente desde luminarias en un sistema de generación de imágenes
por Monte Carlo, reduciendo significativamente la variancia de las imágenes resul-
tantes usando el mismo tiempo de ejecución. Asimismo, introducimos una técnica
basada en estimación de densidad en el estado transitorio, que permite reusar mejor
las muestras temporales en un medio parcipativo. En el dominio de las aplicacio-
nes, también introducimos dos nuevos usos del transporte de luz: Un modelo para
simular un tipo especial de pigmentos gonicromáticos que exhiben apariencia per-
lescente, con el objetivo de proveer una forma de edición intuitiva para manufactura,
y una técnica de imagen sin línea de visión directa usando información del tiempo
de vuelo de la luz, construida sobre un modelo de propagación de la luz basado en
ondas.
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Chapter 1

Introduction

Light transport simulation encompass all techniques whose purpose is to calculate
the light flux arriving to a virtual sensor on a given scene, taking into account the
relevant interactions of light with the objects contained in the scene, up to the level of
detail required for a particular application. Examples of the usage of light transport
techniques include real-time video game graphics, special effect elements for movie
production, or product previsualization in architecture and manufacturing. Each of
these applications impose different constraints in terms of fidelity on the underlying
physical simulation and computational complexity.

The goal of generating photorealistic graphics is to produce images as close as possi-
ble to real ones, generating computer images is a resource intensive task. For exam-
ple, the computational budget available on real-time applications is limited to 16 ms
of GPU time, while generating a single frame in a movie can take several hours on
dedicated computer clusters. For this reason, the simulation systems need to balance
between image fidelity, modelling as accurately as possible the underlying physical
processes, and affordability, doing so in a reasonable time budget with the available
computational resources.

Traditionally, the field has been focused on the generation of realistic images ap-
proximating the physical reality. However, as the field has matured, it has reached
the point where the opposite has become possible, and starting from captured im-
ages from the real world, it is possible to estimate properties of the objects present
on it such as it shape and material, or the illumination setting of the scene. This is
generally called inverse rendering [166].

This dissertation has two complementary goals: First, to improve the efficiency of
existing techniques for calculating light transport simulation; and second, to employ
light transport to solve specific problems using light transport simulation. In partic-
ular, we predict the appearance of goniochromatic pigments by closely simulating
light scattering inside them, and develop a new computational imaging method for
capturing scenes outside the line-of-sight of the observer by posing it as a light trans-
port problem.

1.1 Physically-based rendering

As computational power has become more readily available and less expensive, the
focus of computer graphics has become not only generating synthetic images effi-
ciently, but also to make them more credible. This pursuit of realism have resulted
in incorporating accurate physical models in the rendering pipeline, slowly turning
the generation of computer images into a full-fledged light transport simulation.
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Chapter 1. Introduction

Figure 1.1: Evolution of computer graphics. Despite its relatively short history, the field has
seen a constant evolution, driven both by the increase in available computing power and
the demand for higher fidelity. Since the early ray traced images from the 80s (left), passing
from the adoption of computer generated imagery in movie production in the 90s (center),
to modern photorealistic characters (right). Left image from: [233]. Middle image from: [36]
(© 1993 Industrial Light and Magic). Right image from: [58] (© 2017 Twentieth Century Fox
Film).

Describing the exact nature of light is complex. It is known since old times that light
does not propagate instantly but rather has a finite speed [184]. However in the
spatial scale at which we humans live this propagation time is so small that can be
easily dismissed. The same reasoning can be applied to the wave nature of light,
which has also been known [247] and formalized [61] since the early XIX century.
Yet in most situations a good estimate of radiance can be made without solving the
complex equations of classical electromagnetic theory [152]. Even more evasive from
day-to-day experiences is the quantum nature of light, describing light emission,
absorption and scattering in discrete bundles of energy, or photons [51; 177]. These
photons have individual properties, and interact in precise ways with every other
particles, including other photons [1], although for most applications we are only
interested in their bulk behavior.

The use of physically-based light transport approaches in rendering can be traced
back to the 80s, with Whitted’s ray tracing [233], which demonstrated how brute-
force geometric optics, tracing the trajectory of thousands of light paths, could be
used to achieve complex lighting effects (Figure 1.1, left). Ray tracing was later ex-
tender to account for multiple interreflections and non-local effects [38]. Kajiya [117]
provided the link between image generation and classical particle transport, leading
to the adoption of stochatic methods and more rigorous treatment of the rendering
process [10].

In parallel with the adoption of physically-based light transport simulation, an-
other effort towards realism was on the development of physically-based appear-
ance models. Borrowing from the existing efforts in optics, the rendering com-
munity adopted the now-standard microfacet theory [13; 220] to model rough sur-
faces [22; 39], later generalized to anisotropic surfaces [93], multiple layered materi-
als [14; 78; 229], or even discrete surfaces with glinty appearances [102; 244].

In computer graphics, in order to keep the balance between computability and ac-
curacy, light is most often considered to be a continuous quantity that propagates
instantly following straight paths, only changing directions when interacting with
either solid objects or suspended particles. This is the so called steady-state geomet-
ric optics. This formulation has led to quite efficient calculations using Monte Carlo
methods, and is the foundation of modern renderers [172]. However, this formula-
tion has severe downsides, and some relevant effects cannot be simulated without
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incorporating more complex light transport models on top of it. In the following, we
briefly describe some of these generally ignored effects, which are addressed in this
thesis.

1.1.1 Wave optics

The wave nature of light has been known since the XIX century [247],and its theo-
retical basis are well developed [61; 152]. The use of wave optics to calculate light
transport in graphics was already proposed by Moravec [156], and He et al. [88] used
it to model light scattering from rough surfaces, but it has not been widely adopted
due to its high cost.

However, without taking into account wave optics some appearance effects simply
cannot be reproduced. This has led to the development of simplified appearance
models reproducing some of the most relevant wave-based effects, keeping mathe-
matical consistency and being computationally affordable. Examples of these works
include diffraction [44; 243], fluorescence [105; 114], interference [15; 204], diffrac-
tion [243], or small particle electromagnetic scattering [62].

Our own work on simulating pearlescent materials, presented in Chapter 3, fits into
this line of work by incorporating wave optics based dispersion into a volumetric
transport model to model goniochromatic effects on pigments.

1.1.2 Light transport in transient state

The fact the light does not propagate at an infinite speed have been observed since
ancient time, and it is apparent at astronomical scales [184]. At terrestrial scale, and
for most practical situations, the effects of non-instataneous light propagation are
imperceptible, and consequently computer graphics have traditionally overlooked
the fact. However, simulating light in transient state is useful in areas outside of
multimedia production, and an increasingly large number of computational imag-
ing techniques use temporal information to capture extra information about the real
world [55; 107]. An example of this kind of transient capture can be seen in Fig-
ure 1.2.

Removing the assumption of instant propagation requires keeping record of the
propagation time between light scattering events. Unfortunately, there is little con-
trol on the propagation time: Therefore, naively simulating transient light transport
can lead to unsuitable slow convergence [175; 200], and thus specialized sampling
and reconstruction schemes are required. Jarabo et al. [106] introduced temporal-
aware routines that uniformly distribute the sample son the temporal domain, lead-
ing to efficient reconstructions using density estimation.

In Chapter 4 we extend Jarabo et al’s formulation of time resolved light transport,
introducing a novel density estimation in both the spatial and temporal dimensions,
allowing more efficient rendering of delta or almost delta volumetric light paths.

1.2 Beyond computer graphics

As rendering has developed more and more sophisticated models for image syn-
thesis and appearance reproduction, it has reached a point were its utility goes far
beyond its traditional multimedia applications. The achieved level of fidelity now al-
lows its use for predicting the appearance of manufactured goods before fabricating
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Steady-state

Figure 1.2: Transient imaging. Steady-stated image of a scene (in color) containing an alien
toy and a mirror, and transient frames (in grayscale) of a light pulse traversing it, each one
with exposure time of just 1.85 ps. Image from: [225].

them, allowing faster and cheaper workflows, or even designing computationally
materials with user-defined appearances.

In addition, the accuracy and performance of current rendering techniques allow
to inverse light transport processes. Starting from captured images from the real
world, it is possible to invert the light transport and estimate the optical properties
of the imaged objects. In the following, we briefly describe these two applications,
that align to the contributions of this thesis.

1.2.1 Predictive rendering

Since the fidelity of the generated images with respect to the simulated reality is
quite high, and the parameters used to generate them are linked to the physical
properties of the objects, it is now possible to estimate accurately the appearance
of an object before it gets manufactured. This new field is usually called predictive
rendering [235], and has been successful applications in a wide variety of industries
such as architecture [132], furniture catalogs [86], 3D printing [52; 174; 210], or even
objects designed to project certain light patterns when illuminated [165; 189; 248].
Figure 1.3 shows examples of the last two mentioned applications.

Following this line of work, we approach the problem of modelling and predict-
ing the appearance of diffraction-based gnochromatic pigments, widely used in car
paint, cosmetics, and packaging in Chapter 3.

1.2.2 Inverse rendering

The traditional process of computer graphics is to create a synthetic image starting
from a mathematical definition of a scene, using light transport algorithms to cal-
culate the effect of all light interactions. Given how remarkably accurate modern
rendering techniques and how close synthetic and real images are, the inverse pro-
cess have become possible: starting with real photograph it is possible, and given
that certain scene parameters such as illumination are known, to calculate the in-
verse light transport to recover the geometry and/or material properties of a real
scene. In particular, in this thesis we focus on invert light transport in its transient
state, assuming finite propagation speed. As with steady state images, transient-
state simulations are considerably close to real captures, as can be appreciated in
Figure 1.4.

Transient imaging While most imaging techniques focus on capturing a steady-
state image, resulting of light propagating across the scene, recent advances in ultra-
fast imaging have made it possible to capture the propagation of light itself, in what
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Simulated Manufactured Simulated Manufactured

Figure 1.3: Examples of predictive rendering. Left: A glass object designed to project a
certain refraction pattern when illuminated from behind. The surface of the object was com-
putationally optimized by simulating the light transport inside the object until its refraction
converged to the desired pattern. Right: A 3D printed object designed to display a well-
defined and high contrast texture pattern on its surface. The distribution of pigments in the
inner layers of the object was optimized to reduce color bleeding and color washing, caused
by light scattering by the highly transparent thermoplastic resins. Left images from: [189].
Right images from: [210].

is termed transient imaging [55; 107]. Each pixel has a temporal domain in which
each bin represents the amount of light reaching the sensor at a given instant in
time, which for the purpose of being able to capture the propagation of light needs
to be in the picosecond scale.

Early attempts at capturing light in motion date back to the 70s, with Abramson’s
holographic images of light pulses [2]. However, recent advances in sensing tech-
nology have enabled the widespread of imaging techniques built around the time-
of-flight (ToF) of light. Different approaches have been proposed, based on varied
technologies including streak cameras [224; 225], photonic mixed devices [90; 115],
interferometry [67], modulated continous waves [79] or gated sensors [135].

Applications of ToF imaging include applications in a wide range of industries, such
as collision detection in autonomous cars [216], depth estimation for object detection
in multimedia devices as the Kinect 2 [190], or material detection based on temporal
responses [158; 208; 214].

From these applications, imaging of scenes outside the direct line of sight of the
observer, called non-line-of-sight (NLOS) imaging, has received notable attention.
The first practical demonstration of NLOS imaging was introduced by Velten et al.
[224]. In the basic configuration, a light pulse is emitted by a controlled light source,
bounces off a secondary visible wall, travels across the hidden scene, propagates
back to the relay wall, and finally reaches the sensor. Knowing the geometry of the
visible surfaces, it is possible to employ the time-of-fight of the light pulse to calcu-
late the light transport across the hidden scene, recovering in the process informa-
tion about the geometry and materials of the objects within it. This has open a new
imaging modality, allowing to see the invisible by exploiting hidden information in
the temporal domain. In Chapter 5 we introduce a novel mathematical theory that
allows to, for the first time, image hidden scenes at the meter scale, with arbitrary
complexity, materials and significant multiple scattering.

1.3 Goals and Overview

This dissertation has two complementary goals: First, to improve the efficiency of
existing techniques for calculating light transport simulation; and second, to solve
specific problems using light transport simulation. In particular, we focus in two
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Capture

Simulation

Figure 1.4: Transient imaging and simulation. Each row shows a steady state image of a
scene at the left, and three frames of a light pulse traversing the scene, with exposure times
on the picosecond scale. The series at the top is a real capture, while the bottom one is a
simulation of the same scene. While there are some visible differences between both series,
mainly due to approximate materials and camera properties, this example illustrates how a
simulation can accurately reproduce light transport on transient state, helping to understand
the underlying phenomena and serving as a testbed for imaging applications. Top series
from [225]. Bottom series from [106].

main problems: High-fidelity material modelling for predictive appearance model-
ing targeting industry, and non-line-of-sight imaging using time-resolved imaging.
For clarity, we have divided our contribution along one main axis: The temporal
domain. In particular, our contributions have been splitted in two parts: Part II
(Chapters 2 and 3), containing the techniques assuming steady-state light transport,
and Part III (Chapters 4 and 5) the ones exploring the transient state of light.

While I am not the lead author of many of the works included in this thesis, I have
contributed on the development of all the projects. In order to give due credit, at the
start of each chapter I contextualize the line of work that lead to the developments
described within that particular section, and outline my personal contribution as
well as that of my colleagues.

1.4 Contributions and measurable results

1.4.1 Publications

All the work presented in this dissertation have already been published on technical
venues. Concretely, four articles published in JCR-indexed journals and a presenta-
tion on an international conference, which I describe in detail below:

• Area-preserving parameterizations for spherical ellipses [75]
Computer Graphics Forum, 36(4), 2017
This journal has an impact factor of 2.046, and its position in the JCR index 2017
is 22 out of 104 (Q1) in the category Computer Science, Software Engineering.

• Progressive transient photon beams [149]
Computer Graphics Forum, 38(6), 2019
This journal has an impact factor of 2.116, and its position in the JCR index 2019
is 38 out of 108 (Q2) in the category Computer Science, Software Engineering.

• Non-line-of-sight imaging using phasor-field virtual wave optics [142]
Nature, 572, 2019
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This journal has an impact factor of 42.779, and its position in the JCR index
2017 is 1 out of 71 (Q1) in the category Multidisciplinary Sciences.

• On the effect of reflectance on phasor field non-line-of-sight imaging [73]
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
This conference has a CORE 2018 class B rating.

• A general framework for pearlescent materials [74]
ACM Transactions on Graphics, 39(6), 2020
This journal has an impact factor of 5.084, and its position in the JCR index 2019
is 8 out of 108 (Q1) in the category Computer Science, Software Engineering.

1.4.2 Research stays and visits

This thesis has also involved the realization of the following research internships:

• A three-month research visit at École Polytechnique Fédérale de Lausanne in Lau-
sanne, Switzerland, hosted by Prof. Wenzel Jakob. Our work on simulating
pearlescent appearance, described in Chapter 3, resulted from this collabora-
tion.

• A one-week research visit at University of Wisconsin-Madison in Madison, USA,
hosted by Prof. Andreas Velten. This was part of an ongoing collaboration
with Wisconsin’s Computational Optics Group, within the research project RE-
VEAL, that resulted in our work on NLOS imaging detailed in Chapter 5.

1.4.3 Projects

As part of my PhD thesis, I have collaborated in several research projects

• LIGHTSPEED: Computational transient imaging. Ministerio de Economía, In-
dustria y Competividad (MINECO), project Nº TIN2016-78753-P. PI: Diego Gutiér-
rez.

• REVEAL: Scene recovery using an extended plenoptic function. Defense Ad-
vanced Research Projects Agency (DARPA), research Subcontract Nº 678K904. PI:
Diego Gutiérrez, Adrián Jarabo.

• CHAMELEON: Intuitive editing of visual appearance from real-world datasets.
European Research Council (ERC), grant agreement Nº 682080. PI: Diego Gutiér-
rez.

1.4.4 Other contributions

Our improved light sampling method, described in Chapter 2, was developed in col-
laboration with Solid Angle and has been since then integrated into their Academy
Award-winner rendering system Arnold, starting in the 5.0 version [5].
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Chapter 2

Area-preserving parameterizations
for spherical ellipses

In this chapter, our goal is to improve the efficiency of physically based rendering, by
developing new methods for calculating the illumination subtended by circular light
sources. Specifically, we introduce new sampling schemes designed for their usage
on Monte Carlo integration, using area-preserving mappings uniform in the solid
angle subtended by the light source. Our method can be easily incorporated into
a renderer, and we demonstrate how our method overcomes existing approaches,
providing significantly lower variance with a small increase in runtime cost.

The project was done during my stay at Universidad Rey Juan Carlos in Madrid, and
involved collaborators from Universidad de Granada and Solid Angle. My role as
the first author involved developing the mapping described in Section 2.3.3, as well
as generating results to compare the different techniques, while the alternative solid
angle mapping described in Section 2.3.2 was proposed by Prof. Carlos Ureña. While
most of the renders in this section were generated using my own implementation of
the method, Figure 2.8 was created using the version currently integrated in the
Arnold Renderer [5].

This work was originally published in Computer Graphics Forum and presented at
the 28th Eurographics Symposium on Rendering (EGSR 2017).

Area-preserving parameterizations for spherical ellipses
Ibón Guillén, Carlos Ureña, Alan King, Marcos Fajardo, Iliyan Georgiev, Jorge
López-Moreno & Adrian Jarabo
Computer Graphics Forum, Vol. 36(4), 2017

2.1 Introduction

Illumination from area light sources is among the most important lighting effects in
realistic rendering, due to the ubiquity of such sources in real-world scenes. Monte
Carlo integration is the standard method for computing the illumination from such
luminaires [198]. This method is general and robust, supports arbitrary reflectance
models and geometry, and predictively converges to the actual solution as the num-
ber of samples increases. Accurately sampling the illumination from area light sources
is crucial for minimizing the amount of noise in rendered images.

Estimating the direct illumination at a point requires sampling the radiance con-
tribution from directions inside the solid angle subtended by the given luminaire.
A sensible strategy is to distribute those directions uniformly. This, however, is
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hard to achieve for an arbitrary-shaped luminaire, as it involves first computing
and then uniformly sampling its subtended solid angle. Specialized methods have
been proposed for spherical [226], triangular [8; 222], rectangular [223], and polyg-
onal lights [9]. These elaborate solid angle sampling techniques are more computa-
tionally expensive than naïve methods that uniformly sample the surface area of the
luminaire. However, in most non-trivial scenes, where the sample contribution eval-
uation is orders of magnitude more costly than the sample generation, their lower
variance improves overall efficiency.

Few works have focused on sampling oriented disk-shaped light sources. Disk lights
are important in practice, both for their artistic expressiveness and their use in a
number of real-world scenarios, generally including man-made light sources such
as in architectural lighting, film and photography. Moreover, disk lights form the
base for some approximate global illumination algorithms [87; 199]. So far, the only
practical method for uniformly sampling the solid angle of disk lights is the work by
[65], who proposed a rejection sampling approach that generates candidates using
spherical quad sampling [223]. Unfortunately, achieving good sample stratification
with this method requires special care.

In this work we present a set of methods for uniformly sampling the solid angle
subtended by an oriented disk. We exploit the fact that a disk, as seen from a point,
is bounded by an elliptical cone [50] and thus its solid angle defines a spherical el-
lipse whose properties have been analyzed in depth [24]. This allows us to define
two different exact area-preserving mappings that can be used to transform strati-
fied unit-square sample patterns to stratified directions on the subtended spherical
ellipse. We describe how to efficiently implement these mappings in practice and
demonstrate the lower variance they achieve compared to previous work.

2.2 Problem statement and previous work

Our goal is to compute the radiance Ls scattered at a point x in direction ωo due to
irradiance from a disk-shaped luminaire D. This can be written as an integral over
the solid angle ΩD subtended by the luminaire:

Ls(x, ωo) =
∫

ΩD

f (x, xxω̂, ωo, ω̂)dµ(ω̂), (2.1)

where xxω̂ is the first visible point from x in direction ω̂, µ is the solid angle measure,
and the contribution function f is

f (x, x, ωo, ω̂)=

{
Le(x,−ω̂) fs(x, ωo, ω̂)|ω̂ · n̂x|, if x is on a surface,
Le(x,−ω̂)ρ (x, ωo, ω̂) T(x, x), if x is in a medium,

with fs, n̂x, and ρ being respectively the BSDF, surface normal, and medium phase
function (times the scattering coefficient) at x. Le(x, −ω̂) is the luminaire emission
radiance at x in direction −ω̂ and T(x, x) is the medium transmitance between x
and x.
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2.2. Problem statement and previous work

(a) Area sampling [197] (b) Rejection sampling [65] (c) Our parallel mapping

(d) Our radial mapping (e) Our ld-radial mapping

Figure 2.1: A stratified unit-square sample pattern mapped onto the surface of a disk, us-
ing existing techniques and our proposed maps (with solid angle projections on the bottom
row). The points are colored according to their canonical [0, 1]2 coordinates to illustrate the
continuity of the maps. Gamito’s rejection sampling [65] does not allow for direct stratifica-
tion, so we show the candidate low-discrepancy pattern for that case.
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Solid angle sampling. Monte Carlo estimation of Equation (2.1) using N randomly
sampled directions ω̂i has the following form:

Ls(x, ωo) ≈
1
N

N

∑
i=1

f (x, xxω̂i , ωo, ω̂i)

p(ω̂i)
, (2.2)

where p(ω̂) is the pdf for sampling ω̂. The choice of sampling density p is impor-
tant, since a lower variation of f /p makes the estimator more efficient [198]. For
disk lights the traditional choice is uniform density over the luminaire surface D.
This area sampling technique is easy to implement and its resulting solid angle pdf
is p(ω̂) = ‖x− xxω̂‖/ (A(D) |ω̂ · n̂xxω̂

|), where A(D) is the area of D. This pdf can
lead to very high variance in the radiance estimator (2.2), especially when the point
x is close to the luminaire. Our goal is to devise uniform solid angle sampling tech-
niques that generate directions ω̂ with constant density p(ω̂) = 1/|ΩD|, yielding
estimators with significantly lower variance than uniform area sampling.

Area-preserving mapping. Sample stratification can greatly improve the efficiency
of Monte Carlo estimators [173; 196; 209]. Most existing stratification techniques
generate samples in the canonical unit square [0, 1]2, however our goal is to sample
directions inside the solid angle ΩD. Therefore, in order to take advantage of these
techniques, we need to find a mapping M from [0, 1]2 to ΩD such that for any two
regions R1, R2 ⊆ [0, 1]2:

A(R1)

A(R2)
=

µ(M(R1))

µ(M(R2))
,

where A is the area measure, and µ is the solid angle measure as in Equation (2.1).
We call such maps area-preserving maps. This key property makes it possible to gen-
erate stratified samples in ΩD, because stratification is far more easily achieved in
[0, 1]2.

Area-preserving solid angle maps have been developed for triangles [8] and rect-
angles [223]. For sampling the solid angles of disks, Gamito [65] proposed to use a
rectangle map [223] followed by rejection sampling. This technique cannot be used
with fixed-size canonical point sets, and needs a low-discrepancy sequence capa-
ble of progressively generating stratified sample candidates. The rejection sampling
also makes it very difficult to achieve good high-dimensional stratification in the
presence of other distributed effects, e.g. volumetric scattering, where the coordi-
nation of the sample patterns of different effects is desired. In this work we focus
on area-preserving maps for disks that do not require rejection sampling and work
with any canonical sample pattern. Figure 2.1 compares our proposed maps against
existing techniques.

For surface scattering points x, an even better strategy is to importance sample the
term |ω̂ · n̂x| in the contribution f . Such uniform sampling of the projected solid angle
has been described by Arvo [9] for polygonal lights. Extending our approach to
projected solid angle sampling is an interesting avenue for future work.

2.3 Solid angle sampling of an oriented disk

We base our sampling techniques on the key observation that the projected area of
any ellipse, including a disk, forms a spherical ellipse on the unit sphere around the
shading point (Figure 2.2). Thus, in order to sample the solid angle subtended at

16



2.3. Solid angle sampling of an oriented disk

o

c

y1

y0

x0

x1

x̂d
ẑd
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Figure 2.2: Left: The disk’s local reference system Rd = (x̂d, ŷd, ẑd) and the local coordi-
nates required to characterize its solid angle projection. Center: Projections of the relevant
coordinates onto the unit sphere, defining the spherical ellipse and its local reference system
Re = (x̂e, ŷe, ẑe), where x̂e ≡ x̂d. Right: The spherical ellipse is defined by its semi-arcs α
and β or, equivalently, by its semi-axes a and b in Re. The tangent ellipse (in red), which
lies on a plane tangent to the sphere at ẑe (i.e. the spherical ellipse center), is defined by its
semi-axes at and bt.

point o by an oriented disk with center c, normal n̂, and radius r, we will uniformly
sample a point q on the spherical ellipse and then backproject it to the disk.

Spherical ellipse. To compute the subtended spherical ellipse, we first define a
local reference frame for the diskRd = (x̂d, ŷd, ẑd):

ẑd = −n̂, ŷd = ẑd ×
c− o
‖c− o‖ , x̂d = ŷd × ẑd. (2.3)

We then take the boundary disk coordinates y0 and y1 w.r.t. the ŷd axis and project
them onto the sphere (Figure 2.2, left). From the coordinates y′0, y′1, z′0, z′1 of these
projections (Figure 2.2, center) we can compute the spherical ellipse center: it is the
result ẑe of normalizing the vector (0, y′h, z′h), where y′h = (y′0 + y′1)/2 and z′h =
(z′0 + z′1)/2. (Note that ẑe in general does not coincide with the spherical projection
of the disk center c.) Reprojecting ẑe onto the disk (Figure 2.2, left), the obtained yh
coordinate defines a chord x0x1 parallel to x̂d. The chord endpoint projections onto
the sphere, with x̂d-coordinates x′0 and x′1, allow us to compute the lengths of the
ellipse’s semi-axes, a and b, and semi-arcs, α and β (Figure 2.2, right):

a = x′1, b =
1
2

√
(y′1 − y′0)2 + (z′1 − z′0)2, (2.4)

α = sin−1 a, β = sin−1 b. (2.5)

Finally, from α and β we can compute the semi-axes at = tan α and bt = tan β of the
ellipse tangent to the sphere at ẑe (Figure 2.2, right).

In the following, we use both the spherical and the tangent ellipses to derive two
different mappings for uniformly sampling points q on the spherical ellipse which
we then map to the surface of the disk. These mappings operate in a coordinate
system Re = (x̂e, ŷe, ẑe), where x̂e ≡ x̂d and ŷe = ẑe × x̂e, shown in Figures 2.2 and
2.3.

2.3.1 Area-preserving mappings

Our new mappings are based on a generalization of the so-called Archimedes Hat-Box
theorem [6]. It states that the area of a region on the sphere between two parallels is
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Figure 2.3: Left: Any region (blue) on the unit sphere can be radially projected to another
region (red) on a cylinder aligned with any axis (here x̂). Any point q on the sphere can
be expressed in cylindrical coordinates as (φ, h, r) (azimuth angle, altitude, distance from
center). This point can be mapped to a point p on the unit cylinder with coordinates (φ, h).
The mapping preserves the areas of both finite and differential regions. Thus, to obtain a
point on the spherical region, we can sample inside the cylindrical region and project back
onto the sphere. Center: A spherical ellipse (blue), with center on the ẑe axis, projected onto
a cylinder aligned with the ŷe axis. Right: The same spherical ellipse projected onto a ẑe-axis
aligned cylinder. In this case, the projected region (red) has a ring-like shape.

equal to the area of that region’s projection onto a perpendicularly aligned bounding
cylinder. This area-preserving property also holds for arbitrarily shaped regions on
the sphere (Figure 2.3, left). The latter property was used by [218] to define com-
pact metallic BRDFs (they provide a demonstration). It was also used (although not
explicitly stated) by [8] and [223] to define area-preserving parameterizations for
spherical triangles and rectangles, respectively.

We use this cylindrical projection property to derive our area-preserving mappings
for a spherical ellipse centered on the ẑe axis. The ellipse can be radially projected
onto a cylinder, obtaining a cylindrical ellipse. Two different unit-radius cylinders
can be used. One is aligned with the ŷe axis (Figure 2.3, center), which we call a
parallel map. The second one is aligned with the ẑe axis (Figure 2.3, right), which
we call a radial map. We also propose a variant of the radial map that uses Shirley’s
low-distortion map [197], which we call a low-distortion radial map, or ld-radial map.

Maps overview. The basic idea behind our maps is to first select a point p on the
cylindrical ellipse as a function of a canonical unit-square point (ε1, ε2) ∈ [0, 1]2. We
then project p back onto the sphere perpendicularly to the cylinder axis (see Fig-
ure 2.3, left) to get the point q. Let (φ, h) be the cylindrical coordinates of p. We
first obtain the azimuth angle φ by finding the lateral slice on the cylindrical ellipse
whose solid angle is ε1ΩD (Figure 2.4). With φ fixed, the altitude h is computed as
a simple linear interpolation using ε2 along the lateral line segment that is the in-
tersection between the lateral plane at angle φ and the cylindrical ellipse (green line
segment in Figure 2.4). The sampling of φ involves numerical inversion of incom-
plete elliptic integrals, as we show next.

2.3.2 Parallel Mapping

Our parallel mapping, whose cylinder axis is aligned with x̂e, operates by consider-
ing a portion (sector) of the cylindrical ellipse – the red-shaded region in Figure 2.4,
left. This region is determined by the green line segment, whose endpoints have
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Figure 2.4: Illustration of our parallel (left) and radial (right) maps. Given a canonical sam-
ple (ε1, ε2) ∈ [0; 1]2, we first find the azimuth angle φp, respectively φr, that cuts a region
on the cylindrical ellipse with area ε1ΩD (in red, determined by the green line segment). A
sample point on the cylinder is then obtained by linearly interpolating the green segment
endpoints using ε2. For the parallel map, the endpoint cylindrical coordinates are (φp,−hp)
and (φp, hp), with φp ∈ [−β, β]. For the radial map, these coordinates are (φr, hr) and (φr, 1),
with φr ∈ [0, 2π] (we use φr ∈ [0, π/2] in each quadrant).

cylindrical coordinates (φp, hp) and (φp,−hp). The angle φp goes from−β to β, since
the spherical ellipse is centered on the ẑe axis.

Due to the Hat-Box theorem, the differential solid angle covered by the green seg-
ment is equal to its length, 2hp, which is in fact a function of φp. Thus, the solid angle
subtended by the red region onto the spherical ellipse (the blue region in Figure 2.4,
left) can be written as the integral of the segment length:

Ωp(φp) =
∫ φp

−β
2 hp(φ

′
p)dφ′p, (2.6)

where the full solid angle of the spherical ellipse is ΩD = Ωp(β). Due to symmetry,
for any angle φp∈ [0, β] it holds hp(−φp) = hp(φp). We use this to express Ωp(φp) as
a sum of integrals Ω+

p (φp) over positive angles:

Ωp(φp) =

{
Ω+

p (β) + Ω+
p (φp) : φp ≥ 0

Ω+
p (β)−Ω+

p (−φp) : φp < 0
, (2.7)

where

Ω+
p (φp) =

∫ φp

0
2hp(φ

′
p)dφ′p. (2.8)

In Appendix 2.A we derive an expression for hp(φp):

hp(φp) = ct

√
1− (p + 1) sin2 φp

1− (m p + 1) sin2 φp
, (2.9)
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where

p =
1
b2

t
, m =

a2
t − b2

t

a2
t + 1

, ct =
at√

1 + a2
t

. (2.10)

Substituting Equation (2.9) into Equation (2.8) and simplifying, we get:

Ω+
p (φp) =

2ct

bt

[
(1− n)Π

(
n; ϕp|m

)
− F

(
ϕp|m

) ]
, (2.11)

where F (ϕ|m) and Π (n; ϕ|m) are Legendre incomplete elliptic integrals of respec-
tively the first and third kind, m ∈ [0, 1), and

ϕp = sin−1
(

tan φp

bt

)
, n = −b2

t . (2.12)

Unfortunately, no closed-form expressions are known for F (ϕ|m) and Π (n; ϕ|m), so
Equation (2.11) must be evaluated numerically.

Sampling. With the fractional spherical ellipse area Ωp characterized, we can map
a point on the unit square (ε1, ε2) ∈ [0, 1]2 to a point on the spherical ellipse q. We
first need to find the angle φp that satisfies Ωp(φp) = ε1ΩD, for which we need to
evaluate the inverse function Ω−1

p . This function has no analytical form, so we resort
to numerically finding the roots of the equation

Ωp(φp)− ε1ΩD = 0. (2.13)

Having sampled φp, we get the point p on the cylindrical ellipse by first computing
hp(φp) using Equation (2.9) and then linearly interpolating the altitude coordinate
between −hp(φp) and hp(φp) using ε2:

p = (φp, (2ε2 − 1) hp(φp)) = (φp, h). (2.14)

Finally, the corresponding point q on the ellipse is obtained by radially projecting p
onto the sphere (see Figure 2.1a, left):

q =
(

h,
√

1− h2 sin φp,
√

1− h2 cos φp

)
. (2.15)

Figure 2.1c shows the resulting map.

2.3.3 Radial mapping

The parallel mapping presented in Section 2.3.2 involves two elliptic integrals and
introduces noticeable distortions (see the converging lines in Figure 2.1c), which can
increase discrepancy and ruin any blue noise properties present in the input unit-
square sample distribution. In this section we present an alternative radial mapping
that uses a single elliptical integral and also exhibits less distortion. It is based on
the analysis of the spherical ellipse topology by Booth [24].

We will exploit the fact that the four quadrants of the spherical ellipse are radially
symmetric (see Figure 2.2, right), so its total area can be expressed as ΩD = 4 Ωr,
with Ωr being the area of each quadrant. Within a quandant, the azimuth angle is
φr ∈ [0, π/2].
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Ωr(φr)

α

hr(φr)

ab
φr

ŷe

ẑe

x̂e

β

r(φr)

Figure 2.5: Illustration of our polar mapping. Projected perpendicularly to its axis ẑe onto
the x̂eŷe plane, the spherical ellipse forms a planar ellipse with semi-axes a = sin α and
b = sin β. We use the Pythagorean theorem to express the altitude hr(φr) of the cylindrical
projection of the spherical ellipse’s curve in terms of a, b, and φr.

We now consider a bounding cylinder aligned with the ẑe axis (Figure 2.4, right).
Specifically, we are interested in the lateral region (in red in Figure 2.5) that is the
radial projection of a fraction of the spherical quadrant. This region is determined by
the position of the green line segment whose endpoints have cylindrical coordinates
(φr, hr) and (φr, 1). The segment length is 1− hr, which is a function of φr. Similarly
to Equation (2.6), we use the Hat-Box theorem to express the fractional quadrant
area as the integral of this length:

Ωr(φr) =
∫ φr

0

[
1− hr(φ

′
r)
]

dφ′r = φr −
∫ φr

0
hr(φ

′
r)dφ′r. (2.16)

Using the Pythagorean theorem, we express hr(φr) as (see Figure 2.5)

hr(φr) =
√

1− r2(φr), (2.17)

where r(φr) is the (planar) elliptical radius of the spherical ellipse with the following
expression, which we derive in Appendix 2.B:

r(φr) =
ab√

a2 sin2 φr + b2 cos2 φr

. (2.18)

Plugging Equations (2.17) and (2.18) back into Equation (2.16), and using Booth’s
derivations [24], we can now express the fractional quadrant area Ωr(φr) using Leg-
endre’s incomplete elliptic integral of the third kind Π (n; ϕ|m), so it becomes

Ωr(φr) = φr −
b(1− a2)

a
√

1− b2
Π (n; ϕr|m) , (2.19)

where

ϕr= tan−1
(

at

bt
tan φr

)
, n=

a2− b2

a2(1− b2)
, m=

a2− b2

1− b2 . (2.20)

Above, ϕr is the parametric angle of the tangent ellipse, and n and m are the elliptic
characteristic and module that characterize the elliptic integral [25].

21



Chapter 2. Area-preserving parameterizations for spherical ellipses

Unfortunately, as with Equation (2.11), no closed-form expression is known for the
general-case incomplete elliptic integral of the third kind, so we need to evaluate
Equation (2.19) numerically.

Direct radial mapping. Having an expression for the fractional spherical ellipse
Ωr, we can map a unit-square point (ε1, ε2) ∈ [0, 1]2 to a point q on the spherical
ellipse. Below we only consider sampling the first ellipse quadrant (shown in Fig-
ure 2.5); the entire ellipse can be covered by flipping the x̂e- and ŷe-coordinates of
q.

First, we need to find the azimuth angle φr ∈ [0, π/2 ] satisfying

Ωr(φr)− ε1 Ωr(π/2 ) = 0. (2.21)

Since we do not have a method to analytically invert Ωr(φr), we compute φr by
numerically finding the roots of the above equation.

Having sampled φr, we obtain point p on the cylindrical ellipse by first computing
hr(φr) using Equation (2.17) and then linearly interpolating the altitude coordinate
between hr(φr) and 1 using ε2:

p =
(
φr, (1− ε2) hr(φr) + ε2

)
= (φr, h). (2.22)

We find the corresponding point q on the ellipse by projecting p = (φr, h) using
Equation (2.15) with swapped x̂e- and ẑe-coordinates. Figure 2.1d shows the result-
ing map.

Low-distortion radial mapping. As seen in Figure 2.1d, the direct mapping from
above resembles the classical planar Cartesian-to-polar mapping. As such, it also
exhibits the same distortion – the lines converging at the ellipse center, which does
not preserve relative distances between samples and damages their stratification.
In the planar case, the mapping of Shirley and Chiu [197] rectifies this distortion by
warping concentric squares into concentric disks. To achieve the analogous mapping
on the spherical ellipse, we first warp our input unit-square samples (ε1, ε2) to the
unit disk using Shirley and Chiu’s concentric mapping. We then move back to the
unit square using the following inverse polar mapping:

u =



2
θ

π
: θ ∈ [0, π

2 )

1− 2
θ − π/2

π
: θ ∈ [π

2 , π)

2
θ − π

π
: θ ∈ [π, 3π

2 )

1− 2
θ − 3/2π

π
: θ ∈ [ 3π

2 , 2π)

, v = r2. (2.23)

The result of this detour is a unit-square point set that, when warped using the clas-
sical (forward) planar polar mapping, gives Shirley and Chiu’s low-distortion con-
centric disk distribution. We, instead, feed this unit-square set to our direct radial
mapping to get a concentric-like distribution on the spherical ellipse, which is shown
in Figure 2.1e.
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2.4 Implementation

We have implemented our maps as custom sampling procedures for disk lights in
two different systems: the Mitsuba renderer [99] and the Arnold production ren-
derer [56].

In order to sample from each mapping, we need to find the roots of Equations (2.13)
and (2.21) respectively. Since the elliptic integrals they contain prevent analytical
inversion, we resort to numerical root finding using an iterative Newton-Raphson
method. However, this method can become very expensive, since for each iteration
we need to numerically evaluate two and one incomplete elliptic integrals (for the
parallel and radial mappings, respectively).

2.4.1 Tabulation

In order to reduce the significant cost of Newton-Raphson over area sampling (up to
10× in simple scenes; see Figure 2.9) and avoid the expensive numerical inversion,
we approximate our radial mapping by tabulating Equation (2.19). We choose to tab-
ulate this mapping as it introduces less distortion in the output sample distribution
than the parallel one, as shown in Figure 2.1.

We can write the fractional solid angle Ω′r = Ωr(φr)/Ωr(π/2) as a function of
α ∈ [0, π/2], β ∈ [0, α] and φr ∈ [0, π/2]. We can tabulate this function by dis-
cretizing each of the three parameters, producing a 3D array of values. A quick
binary search based on φr (combined with interpolation) then allows us to get ap-
proximate values of Ω′r with good accuracy. However, storing such a table would
require a large amount of memory. To address this, we reparametrize Ω′r in terms
of α, the ratio β′ = β/α (which is in [0, 1]), and φr. This version of Ω′r has very low
variation w.r.t. to α, so we can remove this parameter altogether, reducing the tabu-
lation to a 2D array of Ω′r values for a set of β′ and φr values. Each entry in this array
corresponds to a spherical triangle defined by the fraction of φr covered by the given
entry and the value of θ(φr) at the start of the entry’s interval, which can be eas-
ily sampled [8]. This approximation causes some generated samples to lie outside
the spherical ellipse, which we reject. Note that this rejection ensures unbiasedness;
however, for practical reasons our production renderer implementation simply as-
signs zero weight to such invalid samples, resulting in a slight understimation of the
illumination. We have found the rejection ratio to be negligible, the storage require-
ment low, and the accuracy satisfactory for realistic rendering. In our implementa-
tion we use a 2D table with resolution 10242, which we found to be accurate enough
to provide an insignificant difference in variance compared to the analytic solution.
Finally, note that in order to compute the samples’ pdf p(ω̂) = 1/|ΩD|, we still need
to compute ΩD numerically. This computation is amortized among all samples for
a given shading point.

2.4.2 Efficiency

Similarly to existing solid angle sampling techniques (e.g. for spherical triangles [8]
and rectangles [223]), the cost of drawing a sample with our technique is higher
than that of uniform area sampling (though some of it is amortized over multiple
samples). This overhead pays off when the luminaire is close to the shading point
(i.e. the subtended solid angle is relatively large).
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As an optimization, our Arnold implementation (Figure 2.8) employs a simple heuris-
tic to switch to uniform area sampling when the luminaire is far away. In order to
provide a fair comparison against existing techniques (in Figures 2.6 and 2.7), our
Mitsuba implementation does not take advantage of this optimization.

Even with the above tabulation scheme, we still need to compute the solid angle of
the spherical ellipse ΩD for the sampling pdf, using either Equation (2.11) or (2.19).
The elliptical integrals involved can be computed using Carlson’s fast numerical
algorithms [33].

2.5 Results

Figures 2.6 and 2.7 show a comparison between traditional area sampling [197],
Gamito’s rejection-based solid angle sampling [65] and our techniques (Mitsuba im-
plementation), without and with the presence of participating media. In both figures
only direct illumination (single scattering) is computed, using 16 samples/pixel. In-
side a medium, we first sample a point along the ray via equiangular sampling [129]
w.r.t. the disk light center, and then use the corresponding disk sampling technique
to generate a point on the light. In the case of uniform area sampling, a better strat-
egy is to first sample the light surface and then perform equiangular sampling w.r.t.
that chosen point. We therefore include this strategy in Figure 2.7 (called “Area sam-
pling (first)”), which is incompatible with the solid angle mappings. The results
show that our sampling methods outperform Gamito’s method on surfaces, and
perform at least on par in participating media, where variance due to medium sam-
pling dominates when using solid angle sampling. In all cases, area sampling yields
much higher variance. In the supplemental document we provide global illumina-
tion comparisons between our tabulated radial sampling and Mitsuba’s built-in disk
area sampling.

Figure 2.8 shows a scene rendered in Arnold, comparing our tabulated radial map
implementation to the renderer’s built-in uniform area sampling. The scene features
many production features, including high-resolution texture maps, fur, displace-
ment, subsurface scattering, indirect surface and volume-to-surface light transport.
In such cases the higher cost of our technique has a negligible impact on the total
rendering performance. With 256 samples/pixel our tabulated radial map yields a
noise-free image, while area sampling suffers from a substantial amount of noise.

Finally, Figure 2.9 shows a comparison between the convergence and the cost of
the different techniques from Figures 2.6 and 2.7. For the same number of samples,
our mappings produce lower error than Gamito on surfaces and perform virtually
identically in media. In terms of cost, our tabulated version is almost as fast as area
sampling, and the fully numerical implementation can be up to 10× slower. Note
that the performance of the iterative numerical inversion depends on the geometrical
configuration: the starting point for the inversion affects the number of iterations
required for convergence. The parallel and radial mappings take respectively 1-3
and 1-4 Newton-Raphson iterations in our tests. Also note that in scenes with higher
geometric and shading complexity, the relative cost of the different methods has less
impact on the overall rendering performance.
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(a) Area
sampling [197]

(b) Rejection
sampling [65]

(c) Our parallel
mapping

(d) Our radial
mapping

(e) Our ld-radial
mapping

0.0043451 3.7234×10−5 1.2195×10−5 3.1013×10−6 1.2655×10−5

Figure 2.6: Top: A scene illuminated by a double-sided disk light, rendered with 16 sam-
ples/pixel. The light is perpendicular to the ground and invisible to camera rays. Bottom:
False-color differences and MSE w.r.t. to a reference computed with 32K samples/pixel.

(a) Area
sampling [197]

(b) Surface area
(first)

(c) Rejection
sampling [65]

(d) Our parallel
mapping

(e) Our radial
mapping

(f) Our ld-radial
mapping

0.70019 0.14059 2.4044×10−4 2.3957×10−4 2.3610×10−4 2.3739×10−4

Figure 2.7: Top: A scene with participating media illuminated by a single-sided disk light
(invisible), rendered with 16 samples/pixel. Please refer to Section 2.5 for details. Bottom:
False-color differences and MSE w.r.t. to a reference computed with 64K samples/pixel.

Figure 2.8: Colored disk lights (invisible) rendered in Arnold, using area sampling (left) and
our tabulated radial map (right) with 256 samples/pixel. Due to the use of complex surface
and hair shaders, the higher cost of our technique has a negligible impact on performance.
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Figure 2.9: Error (top) and cost (bottom) for the results shown in Figure 2.6 (left) and Fig-
ure 2.7 (right), w.r.t. sample count.

2.6 Conclusions

We have presented two new area-preserving mappings that enable the uniform solid
angle sampling of oriented disk light sources. Following the key observation that
this solid angle is a spherical ellipse, we make use of the Hat-Box theorem to trans-
form canonical unit-square sample points onto the spherical ellipse in a way that
preserves their stratification. To avoid costly numerical inversion, we develop a
practical mapping tabulation that introduces little overhead over traditional uniform
area sampling [197] while significantly reducing the variance of the illumination es-
timate. Our mappings are also competitive to existing disk solid angle sampling
techniques [65], without imposing restrictions on the sample generator.

As a by-product of our work, we have proposed two new expressions for the sub-
tended solid angle of a disk, which in addition to graphics is important in other
fields such as particle transport. In this context, most previous analytic formula-
tions [37; 167; 217] have included at least two incomplete elliptic integrals that need
to be computed numerically. In contrast, our radial formulation, based on Booth’s
spherical topology analysis [24], involves only one elliptic integral, making it more
simple and practical than previous work.

While this work only considers circular disks, our approach could be extrapolated
to other shapes whose subtended solid angle is also an ellipse, such as elliptical
disks and ellipsoids [94]. Including these geometries would only require finding
the spherical ellipses subtended by them. Moreover, our mappings could reduce
variance of other shapes such as cylinders, following Gamito [65].
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2.6. Conclusions

The main limitation of our method is the lack of analytical inversion of the proposed
mappings, which requires using either costly numerical inversion or tabulation. Un-
fortunately, it seems impossible to find a spherical ellipse mapping that does not
involve incomplete elliptic integrals, whose inversion is unknown. The presented
mappings also only consider the solid angle, but not the other contribution terms in
Equation (2.1), e.g. the BRDF or the foreshortening term. Developing methods for in-
cluding at least some of these other terms is an interesting direction for future work.
Furthermore, while our mappings are nearly optimal for uniformly emitting disk
luminaires, it would be interesting to take into account spatially-varying emission
profiles, in the spirit of the work of Bitterli et al. [20].
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2.A Derivation of Equation (2.9)

Here we derive the expression for hp(φp) in Equation (2.9), whose integral we then
express as a combination of incomplete elliptic integral functions in Equation (2.11).
We use the tangent ellipse, shown in Figure 2.10 and introduced in Section 2.3 and
Figure 2.2, right. The ellipse semi-axes at ≥ bt are aligned with x̂e and ŷe, respec-
tively.

For any angle φp ∈ [−β, β], we first obtain a coordinate y = tan φp along the ŷe
axis. (We only consider φp > 0, thus y > 0, and convert negative φp to positive
using symmetry, as described in Section 2.3.2.) Using the ellipse equation (x/at)2 +
(y/bt)2 = 1, we can get the corresponding x ≥ 0 coordinate along x̂e as a function of
y:

x = at

√
1− (y/bt)2. (2.24)

We then consider the point t = (x, y, 1) on the tangent ellipse and its spherical pro-
jection s = t/‖t‖. The x̂e-coordinate of s, and also of its cylindrical projection (see
Figure 2.4, left), is

hp =
x√

x2 + y2 + 1
. (2.25)

Substituting Equation (2.24) into (2.25):

hp = at

√
1− py2√

y2 + 1 + a2
t (1− py2)

= ct

√
1− p y2

1−m p y2 (2.26)

where p, m and ct are as in Equation (2.10).

Using y = tan φp and 0 ≤ φp ≤ β ≤ π/2, in Equation (2.26) we can substitute y2 by
(sin2 φp)/(1− sin2 φp). With this we can finally write hp explicitly as a function of
φp:

hp(φp) = ct

√
1− (p + 1) sin2 φp

1− (mp + 1) sin2 φp
(2.27)

which is exactly Equation (2.9).

2.B Derivation of Equation (2.18)

Here we derive the expression for r(φr) in Equation (2.18), which is used in the radial
mapping (Section 2.3.3). We consider the planar ellipse resulting from the parallel
projection of the spherical ellipse onto the x̂eŷe plane. This ellipse’s semi-major and
semi-minor axes are a and b, respectively (see Figure 2.5).

Consider a point r whose polar coordinates (φr, r(φr)) and Cartesian coordinates
(x, y) are related as

x = r(φr) cos φr, y = r(φr) sin φr. (2.28)

We want to define r(φr) in such a way that r is on the planar ellipse curve. Thus, x
and y must obey the ellipse equation, i.e.( x

a

)2
+
(y

b

)2
= 1. (2.29)
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hp
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t = (x, y, 1)

s
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φp

x̂e

ŷe

ẑe

at

bt

Figure 2.10: View of the tangent ellipse (red). For a given angle φp, we first obtain the coor-
dinate y = tan φp along axis ŷe. Using the ellipse equation, we then find the corresponding
coordinate x along x̂e. This gives point t on the tangent ellipse, whose spherical projection s
has x̂e-coordinate hp – the quantity we are interested in.

We can substitute x and y from Equation (2.28) into the ellipse equation, resulting in

r(φr)
2
(

b2 cos2 φr

b2a2 +
a2 sin2 φr

a2b2

)
= 1. (2.30)

We can thus write
r(φr) =

ab√
b2 cos2 φr + a2 sin2 φr

, (2.31)

which is Equation (2.18).

2.C Numerical computation of incomplete elliptic integrals
using Carlson forms

In this section we describe how to compute partial solid angles by directly using
the functions introduced by Carlson [32]. With this method, expressions defining
Ω+

p and Ωr in terms of Incomplete Elliptic Integrals F and Π can be expressed as a
combination of two Carlson functions RF and RJ, which are defined as follows:

RF(x, y, z) =
1
2

∫ ∞

0

1√
(t + x)(t + y)(t + z)

dt

RJ(x, y, z, q) =
3
2

∫ ∞

0

1
(t + q)

√
(t + x)(t + y)(t + z)

dt

values x,y and z must be non-negative, no more than one of them can be cero, and
q must be non-cero. Obviously, parameters x,y and z can be exchanged, this is why
these functions are called symmetric forms.
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The first and third incomplete elliptic integrals (F and Π, respectively) can be written
as combinations of RF and RJ , as follows:

F (ϕ|m) = s RF(x, y, 1) (2.32)

Π (n; ϕ|m) = s RF(x, y, 1)− 1
3

s3n RJ(x, y, 1, q) (2.33)

where
s = sin ϕ, x = 1− s2, y = 1−ms2, q = 1− ns2. (2.34)

These two equivalences are frequently used for computing F and Π, as there are
quicklyconvergent series for approximating RF and RJ [32]. In fact, this is the option
used in the implementation of Boost library [23].

2.C.1 Evaluating Ω+
p (φp) using Carlson functions

The equation for Ω+
p (φp) in Section 2.3.2 (Equation (2.11)) can obviously be written

as a combination of RF and RJ, by using to (2.32). It holds

(1− n)Π
(
n; ϕp|m

)
− F

(
ϕp|m

)
= (2.35)

wFRF(x, y, 1) + wJRJ(x, y, 1, q)

with the weights wF and wJ defined as:

wF = −n s, wJ = n s
1
3
(1− n)s2. (2.36)

Note that, in this case

s = sin ϕp =
tan φp

bt
≤ 1, n = −b2

t . (2.37)

These relations, together with m < 1, imply RF and RJ parameters x, y, z and q obey
these inequalities:

x = 1− s2 ≥ 0 (2.38)

y = 1−ms2 > 0 (2.39)
z = 1 > 0 (2.40)

q = 1− ns2 = 1 + tan2 φp ≥ 1, (2.41)

thus 0 ≤ x < y < z ≤ q, and both RF and RJ can be safely evaluated.

The gain in efficiency by directly calling Carlson functions in Boost is due to the
usage of two instead of three calls to Carlson functions implementations. Moreover,
in this case n < 0, and Π implementation is fitted to the general case and thus needs
to transform parameter n in a costly way, but this is not the case when directly using
Carlson forms in our particular case.

We have used this to compute 10 millions values of expresion (2.35), for a set of com-
binations of values of α,β and φp (with 0 ≤ φp ≤ β ≤ α < π/2). In each case we
compare the computing time and resulting value obtained by using calls to Boost im-
plementation of Π and F with the corresponding times and values by issuing direct
calls to RF and RJ. The values agree on 15 decimal digits on average (and a minimun
of 13), with double precision, while computing time is halved by using direct calls
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to Carlson functions (we have measured just time spent of Boost functions, not time
devoted to precompute constant and parameters, which is negigible as compared to
series approximation of Carlson functions).

2.C.2 Evaluating Ωr(φr) using Carlson functions.

Evaluating function Ωr also involves computation of the incomplete elliptic integral
of the first kind Π, as shown in Equation (2.19) . In this case we also have two
options: either to use a single call to an implementation of Π, or to use two calls to
RF and RJ implementation, by using (2.33).

We have compared the computing time and resulting values of both options, by us-
ing millions of evaluations uniformly distributed in the parameter space, with Boost
library (in double precision), in a similar way as we have done for the parallel map.
Resulting values agree in 12 decimal digits in the worst case. Regarding computing
time, direct use of Carlson functions implementations takes around 89% of the time
it takes to call Π implementation. In this case the time improvement is smaller than
in the parallel map, but it is still noticeable.

We have also compared the average computing time for Ω+
p and Ωr (the resulting

values cannot be compared), in both cases by using Carlson functions implementa-
tions (the faster option). As a result, the average time it takes one evaluation of Ωr is
around 93% of the time it takes one evaluation of Ω+

p .
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Chapter 3

A general framework for
pearlescent materials

In this chapter we introduce a new technique for rendering materials manufactured
with special effect goniochromatic pigments. Particularly, we simulate pearlescent
pigments based on iridescent microscopic platelet-like flakes made up of several lay-
ers of dielectric materials, whose optical properties can be explained by phase shifts
caused by the interreflection of light waves inside its structure. First, we present a
thorough review of the properties of currently used pigments and manufacturing-
related effects that influence pearlescence, then we propose a new model which ex-
pands the range of appearance that can be represented, and closely reproduces the
behavior of measured materials, as we show in our comparisons.

This project started during an internship in the École Polytechnique Fédérale de
Lausanne (EPFL) in Switzerland, hosted by Prof. Wenzel Jakob, and it was sparkled
by the inability of exiting material models to fit real measurements of pearlescent
and iridescent materials.

This work was originally published in ACM Transactions on Graphics and presented
at SIGGRAPH Asia 2020.

A general framework for pearlescent materials
Ibón Guillén, Julio Marco, Diego Gutierrez, Wenzel Jakob & Adrian Jarabo
ACM Transactions on Graphics, Vol. 39(6), 2020

3.1 Introduction

Pearlescent materials have gained significant attention over the last decades. Despite
being composed of relatively cheap materials, they are designed to exhibit a wide
variety of attractive appearance, with a lustrous shade, metallic-like soft gloss, and
vivid goniochromatic effects. These rich visual features have made these materials
popular in the cosmetic industry since the 17th century [170], with a wide adoption
in the 50’s. More recently, the car and packaging industries have adopted them to
create special-effect, luxurious looks [145]. In addition, they are currently starting to
impact other fields such as clothing [144], or ink printing [176].

The intricate appearance of pearlescent materials is obtained by leveraging the op-
tical properties of special pigments embedded into a hosting medium, called the
container. These special pigments consist of oriented microscopic platelets with a
layered structure of nanoscopic thickness. Given their scale and planar geometry, as
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Figure 3.1: Syntetic objects rendered using our pearlescent material model, showing how
changing a single parameter in each pair of bottles (as indicated by the brackets) leads to
large, difficult-to-predict changes in appearance. From left to right, the changed parameters
are: a) platelet density variation; b) substrate composition; c) deviation of the platelet normal
distribution; d) deviation of the substrate thickness. The rightmost jar shows the values of
our model parameters for its particular material. Please refer to Table A3 for a complete
description of all the materials.

light scatters within the platelets it experiences interference effects. This results in
highly directional and vivid colors.

Simulating the appearance of pearlescent materials is a complex task. A complete
model needs to take into account the volumetric nature of such materials, including
light transport inside the container, as well as volumetric scattering and complex
anisotropic, interference-based light scattering involving the platelets. On top of
that, the final appearance is highly dependent on the particular composition and
structure of the platelets in the material, as well as their macroscopic orientation
and distribution. This results in a highly non-linear appearance, which is difficult
to predict and model. Figure 3.1 shows several examples of these strong, non-linear
effects that arise by changing a single parameter in a pearlescent material.

Some existing works have proposed models of pearlescent materials, targeting the
particular case of car paints [53; 54]. However, these models are rather limited in the
range of appearance that can be simulated, since they are based on many simplifying
assumptions that reduce their parameter space.

In this work, we present a general model for pearlescent materials. We review the
existing literature from manufacturers (e.g., [144–146; 171]), which allows us to ex-
tract meaningful parameters that define the structure and optical properties of such
materials. From this analysis, we develop a general radiative model for represent-
ing these materials, including a rigorous mathematical model for light scattering in
platelets. Based on this model, we further analyze the gamut and behavior of the
goniochromatic appearance of pearlescent materials, as their defining parameters
change. We found that the angular effect of chromaticity lies on a narrow mani-
fold, whose shape is directly related to the platelet reflectivity (gloss component)
and transmittance (diffuse component). Furthermore, our analysis helps establish
connections between low-level manufacturing parameters, and their effect on the
material appearance.
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We compare against real-world data, and show that our model reproduces ground-
truth reflectance measurements more faithfully than prior work. Our model is fully
spectral to avoid spectral aliasing, stochastic, and easy to integrate in any Monte
Carlo renderer with multispectral support. Beyond the field of computer graphics,
our work has potential applications in manufacturing: for instance, it might allow
inverse methods to optimize appearance from actual fabrication parameters. This
in turn has strong potential to enable predictive design of pearlescent materials in
industries such as cosmetics, fine printing, effect paints, or packaging.

3.2 Related work

Volumetric materials. Light transport simulations involving volumetric materials
typically build on the radiative transfer equation (RTE) [35], and its generalizations
to anisotropic [100] and correlated [21; 104] media. Anisotropy in volumetric ma-
terials is generally modeled using microflakes [95; 250]. Wave effects such as polar-
ization [105], or speckle [12] have also been incorporated into the radiative transfer
framework. Our work models pearlescent polymers as a stack of dielectric layers
that are each filled with an anisotropic medium that reproduces the behavior of the
container and platelets.

Stratified materials. The complexity of real-world appearance is in part due to
its stratified (layered) structure. Hanrahan and Krueger [85] proposed a general
model for layered materials, based on expensive subsurface scattering computa-
tions, ignoring rough dielectric boundaries. Donner and Jensen [45] developed a
significantly faster solution leveraging the diffusion approximation of light trans-
port. Stam [205] generalized Hanrahan and Krueger’s work taking into account
rough boundaries, in the context of skin rendering. A later model [101] proposed
to handle arbitrary layer stacks using the adding-doubling method, handling all-
frequency isotropic scattering. Zeltner and Jakob [249] then generalized this work to
include anisotropic scattering. All of these methods require expensive precomputa-
tion. Other works [14; 77; 229; 242] proposed faster analytical solutions by stacking a
set of BSDFs encoding the different effects of light transport. However, they rely on
some approximations, and impose hard limitations on the type of materials that can
be handled. Guo et al. [78] introduced an efficient Monte Carlo strategy for sampling
the effective BRDF of a layered material that we also use in our work. Our work is
based on precise modeling of light transport in stratified, pearlescent materials.

Wave-based scattering. Several works take into account relevant wave effects in-
cluding diffraction-aware BSDFs [44; 57; 97; 204; 219; 232; 243], phase functions
(based on Mie scattering) [62; 188], or goniochromatic patterns caused by birefrin-
gence [207]. Goniochromatic effects due to electromagnetic interference have been
simulated for single-layer thin coatings [15; 69; 71; 128; 201; 213], and multiple-layer
thin coatings [96; 212]. In our work we model the scattering in individual iridescent
platelets by using multiple thin coatings; however, as opposed to the works by Sun
et al. [212] and Hirayama et al. [96], we compute the exact reflectance and transmit-
tance at run-time, without any precomputation.
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Pearlescent Materials. The work of Gondek et al. [69] is the first to consider the
problem of rendering pearlescent materials. This technique used a tabulated pre-
computation of the appearance of such materials by brute-force simulation over ex-
plicit geometry. Rump et al. [186] and Kim et al. [122] used a data-driven represen-
tation of pearlescent paints based on bidirectional texture functions (BTF), limited to
the reproduction of previously measured samples. Guo et al. [76] assumed plastic
strata as a composite of coated discrete microfacets, omitting important effects like
the global color shift caused by multiply scattered light. Volumetric models [53; 54]
include single and multiply scattered light in a radiative framework, but require
expensive precomputations, and impose assumptions on the distribution of the iri-
descent platelets and their composition, focusing on the particular pigments used in
car paint. In contrast, we develop a general model that requires no precomputation,
allows spectral rendering with minimal overhead, lifts most assumptions regarding
the thickness of the platelets, and supports arbitrary platelets orientation including
anisotropy and rotated platelets. Moreover, we show that our model provides a
better match to real-world captured materials.

Several works in the optics community have characterized the directionally-varying
reflectance gamut of pearlescent materials in terms of the incident and view an-
gles, but they did not consider links to the underlying physical properties of the
pigments. For instance, Medina [153] analyzed the spectral goniochromaticity of
pearlescent materials by using principal component analysis. Ferrero et al. [60] mea-
sured a set of real-world pearlescent car paints; later, Ferrero et al. [59] extended this
to diffraction-based pigments. We rely on their measured materials as a source of
ground-truth reflectance data to conduct a comparative evaluation of several mod-
els in Section 3.7.1.

3.3 Pearlescent materials

In contrast to other diffractive effects [42; 204], or thin-film iridescence [15], pearles-
cence is the result of both volumetric absorption and electromagnetic interference
effects in small layered, platelet-shaped structures with an average thickness of just
a few nanometers. These platelets are uniformly distributed inside a base medium
called the container, which creates the illusion of increased depth [145].

Figure 3.2 (a) shows a scanning electron microscope (SEM) capture of the cross-
section of a manufactured pearlescent plastic, along with a magnified view of a sin-
gle platelet (c).

Platelets. Platelets are made of transparent or semitransparent materials. They
consist of a single optically homogeneous thin layer (substrate-free platelets), or form
layered structures (substrate-based platelets). Substrate-free platelets have an optical
thickness in the order of one fourth of the wavelenght of visible light. They can be
made up of single crystals, such as bismuth oxychloride (BiOCl), or polycrystalline
platelets, made e.g. of titanium dioxide (TiO2). However, these pigments are not
commonly used in practice given the difficulty of crystallizing as thin platelets.

Substrate-based platelets, on the other hand, are much easier to fabricate. The sub-
strate is a thin layer, typically between 100 and 1000 nm, made of a material with
a low index of refraction. Approximately 98% of all fabricated substrates are trans-
parent mica [146]. Other refractive materials with a higher index of refraction can
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Figure 3.2: (a) Electronic microscopic capture of a manufactured plastic, where the embed-
ded iridescent platelets can be observed. (b) Illustrative scheme of our model for pearlescent
materials, where the layers and platelets are shown, along with their key parameters. Note
that our model supports optional additional strata, which might also be pearlescent. (c)
Electronic microscopic capture of a silica platelet. (d) Schematic view of our basic platelet
model. Our model generalizes to include an arbitrary number of parallel coating layers,
bounded at the top and bottom by the container media (see Figure 3.3 for more complex
platelet structures). Image (a) from: [185]; used with permission. Image (c) from: [145]; used
with permission.

be precipitated onto it, forming a coating layer around the substrate. The large dif-
ference in index of refraction between the substrate and the coating layer maximizes
the desired interference effects. The most commonly used material for precipitation
is titanium dioxide (TiO2), which is almost transparent; this maximizes the color re-
sulting from iridescence, while having minimum light loss. Some particular effects
require the application of several levels of coating over the substrate [206]. Please
refer to Maile’s work [145] for more details about their chemical composition and
fabrication processes.

Container. The container is usually manufactured with a cheap thermoplastic resin
like polyethylene terephthalate (PET) in the case of plastics, or acrylic polyurethane
for car paints. Among other mechanical reasons, these materials are chosen to max-
imize transparency with negligible absorption and scattering. The container may
also be colored by adding wavelength-dependent absorbing dyes. This container is
mixed with the platelets (which in general represent a small fraction of the total com-
posite [227]). To achieve controllable and reproducible appearance, the thickness
distribution of the platelets in the container must be narrow. During fabrication, the
platelets get oriented roughly in parallel to the surface of the container as a result of
stretching. However, this orientation can be altered during molding [41], yielding a
broader normal distribution that alters the brightness of the surface [193].

In the following, we first describe our model of light scattering by individual irides-
cent platelets (Section 3.4). The scattering function derived from such model will
then be incorporated into our global model for pearlescent materials (Section 3.5).

3.4 Scattering by iridescent platelets

Our platelet model consists of a stack of locally planar, parallel thin layers with nor-
mal ωm (as seen in Figure 3.2d). Given that platelets are extremely thin, with thick-
ness varying between 100 and 1000 nm [146], we assume that they are infinite in the
horizontal domain. In addition, we build on the far-field approximation, assuming
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an incoming planar field on the platelet. Each layer j in a platelet is characterized by
its thickness τj and a wavelength-dependent complex index of refraction η j(λ).

Scattering function. The scattering function Fp(ωi, ωo, λ) of a platelet for wave-
length λ is defined as the sum of two Dirac delta functions for reflection and trans-
mittance

Fp(ωi, ωo, λ) = R(ωi, λ)
δ (ωm −ωh)

4|ωh ·ωi|
+ T (ωi, λ) δ (ωi −ωo) , (3.1)

where ωh = (ωi + ωo)
/
|ωi + ωo| is the half vector, | · | represents the absolute

dot product, and R(ωi, λ) and T (ωi, λ) quantify the proportions of the reflected
and transmitted light in the platelet, respectively. The delta function δ (ωi −ωo) in
the transmittance is consequence of the symmetric parallel structure of the platelet,
which reverts the effect of the Snell’s law until it cancels out at light leaving the
platelet. Given the thinness of the platelet layers, we need to take into account
wave optics for computing Equation (3.1). For substrate-free platelets,R(ωi, λ) and
T (ωi, λ) can be computed using Airy summation, as done for thin-layer interfer-
ence models [15; 201]. However, substrate-based platelets require a significantly
more complex model, which we describe in the following subsection.

3.4.1 Scattering in substrate-based platelets

In the general case of substrate-based platelets, one or more coating layers surround
the substrate, resulting in an N-layered structure (see Figure 3.2d). For a given di-
rection ωi and wavelength λ, the reflectivity R(ωi, λ) and transmissivity T (ωi, λ)
of the N-layered platelet in Equation (3.1) are given by a plane-parallel solution of
Maxwell’s equations, tracking the influence of each layer on both amplitude and
phase in order to express the effects of interreflection in terms of constructive and
destructive interference. This solution can be efficiently evaluated using the transfer
matrix method [26; 246]. The response of the layered structure for each polarization
component of the electromagnetic field is given by the 2× 2 response matrix M as

M =
N

∏
j=1

Mj =

(
m11 m12
m21 m22

)
,

where Mj represents the individual response of each layer j. It is defined as (see [26,
Ch.1.6.2] for details)

Mj =

(
cos ∆φj − i

qj
sin ∆φj

−i qj sin ∆φj cos ∆φj

)
, (3.2)

where ∆φj = 2πλ−1η j(λ) τj cos θj is the phase shift of the incident light inside the
layer, and θj is the transmission angle. The matrix Mj is different for each polar-
ization component, with the tilted admittance qj taking values q⊥,j = η j(λ) cos θj
and q‖,j = cos θj/η j(λ) for the perpendicular and parallel polarization components,
respectively. The value of cos θj for each layer depends on the corresponding co-
sine of the previous layer, following Snell’s law, with cos θ0 = ωm · ωi. To take into
account the boundaries with the container, we consider two additional layers (top
and bottom, see Figure 3.2) with η 0 = η N+1 = η c. Given the symmetry of index of
refraction changes in the layered structure, we have cos θN+1 = − cos θ0.
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From the elements of the response matrix M, we obtain the complex reflection and
transmission coefficients as

r =
(m11 + m12 qc) qc + (m21 + m22 qc)

(m11 + m12 qc) qc − (m21 + m22 qc)
,

t =
2 qc

(m11 + m12 qc) qc − (m21 + m22 qc)
,

where qc refers to the tilted admittance of the container. Both M and qc have to be
obtained for the perpendicular (r⊥, t⊥) and parallel (r‖, t‖) components of the field.
Finally, assuming unpolarized incident light, we compute the total reflectivity and
transmissivity of the layered structure as

R(ωi, λ) =
1
2
(
|r⊥|2 + |r‖|2

)
, (3.3)

T (ωi, λ) =
1
2
(
|t⊥|2 + |t‖|2

)
. (3.4)

3.4.2 Analysis

Having presented the platelet, we showcase the complex nonlinear dependence of
their reflectance properties on the layer structure before moving on to the full vol-
umetric model in Section 3.5. Figure 3.3 shows the scattering behavior of different
platelets using our model described in Section 3.4.1. We take titanium dioxide (TiO2)
as the main coating material since it is one of the most commonly used. All the struc-
tures shown (columns) are used in real applications such as cosmetics, plastic man-
ufacturing, or car paint [171; 193; 195]. The only exception is the first column, which
presents a simple substrate-free, TiO2 platelet included for illustration purposes. In
particular, each column shows the following:

1. Substrate-free, TiO2 platelet

2. Mica substrate coated with TiO2

3. Mica substrate coated with TiO2, in a PET container

4. Mica substrate coated with ferric oxide (Fe2O3) and TiO2, in a PET

5. Silica (SiO2) substrate coated with TiO2

6. Silica (SiO2) substrate coated with TiO2, in a PET container

7. Aluminum substrate coated with TiO2, in a PET container

8. Aluminum substrate coated with TiO2, in a polyurethane container

The thickness of the TiO2 layer increases from top to bottom in each column. Each
row shows the directional reflectance with respect to the incident angle for ten uni-
formly distributed wavelengths (360-830 nm, top plots), as well as the resulting di-
rectional reflectance and transmittance in sRGB under a D65 illuminant. We do not
plot the directional transmittance to avoid cluttering the plots; since mica and silica
have a negligible absorption, transmittance curves are symmetric to the reflectance
curves. Introducing aluminium and ferric oxide in the last two platelets adds some
absorption, which breaks this symmetry.

This analysis reveals that multiple parameters have a large impact on the final ap-
pearance of the material. First, the effect of the coating thickness is very relevant.
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Figure 3.3: Scattering functions for different platelets. (1) Substrate-free platelet made of a
single TiO2 layer. (2) Mica substrate coated with TiO2. (3) Mica substrate coated with TiO2,
in a PET container. (4) Mica substrate coated with ferric oxide (Fe2O3), and TiO2, in a PET
container. (5) Silica (SiO2) substrate coated with TiO2. (6) Silica (SiO2) substrate coated with
TiO2, in a PET container. (7) Metallic (aluminum) substrate coated with TiO2, in a PET con-
tainer. (8) Metallic (aluminum) substrate coated with TiO2, in a polyurethane container. The
mica substrates are 500 nm thick; silica and aluminum substrates are 80 nm; ferric oxide is
20 nm. The thickness of the TiO2 coating layers varies in each column, from 60 nm (top), 100
(middle), and 140 nm (bottom). For each resulting platelet, the plots show the directional re-
flectance with respect to the incident angle for ten uniformly distributed wavelengths within
the visible spectrum (360-830 nm, top plots), while the color gradients represent the resulting
directional reflectance and transmittance in sRGB under a D65 illuminant.
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Figure 3.4: Varying the substrate thickness leads to changes in platelet appearance. From
left to right, mica substrate with thickness τs = 400 nm, 500 nm and 600 nm, respectively
(fixed TiO2 coating of τ1 = 60 nm). Top: directional, wavelength-dependent reflectance
curves. Bottom: reflectance and transmittance in sRGB under a D65 illuminant (similar to
Figure 3.3).

Second, the substrate material also affects the platelet’s scattering, even for the same
coating thickness (e.g., fifth and sixth columns): Transparent substrates such as mica
or SiO2 yield a strong transmittance while highly absorbing substrates such as alu-
minum are opaque. Third, the reflectance and transmittance gradients illustrate the
rich variations in appearance of these materials, resulting from the combination of
both. And fourth, the container also plays an important role in the final appear-
ance (e.g., second and third columns; plastics generally use PET as container, while
powder-based cosmetics use no container).

For artificial substrates such as SiO2, thickness can be carefully controlled within an
error of ±5 nm, and it is usually set to 80 nm. In contrast, for natural mica sub-
strates τs is very difficult to control, resulting in a considerable thickness variation
within the same material. Figure 3.4 illustrates the effect of these variations on the
reflectance and transmittance.

3.5 Light transport in pearlescent materials

In this section we show how to incorporate the scattering function for a single platelet
(Section 3.4) into our global model for pearlescent materials, and we conclude it
with a discussion of important implementation-level details. As described in Sec-
tion 3.3, pearlescent materials can be composed of a single or multiple strata (Fig-
ure 3.2b illustrates the simple case of a single-stratum material). The appearance of
these materials is the result of the volumetric radiative transport in the container and
the platelets of each stratum. The platelets can be assumed to be uncorrelated and
randomly distributed throughout their medium [185], so non-exponential radiative
transport [21; 104] does not need to be considered. Furthermore, we assume that
wave-optical coherence effects play no role given the comparably large distance and
random distribution of lengths between medium interactions.

In contrast to regular radiative transfer, which assumes isotropic spherical particles,
pearlescent materials are composed of platelets that break the spherical symmetry
assumption of traditional radiative transfer theory. As a consequence, we rely on
the anisotropic formulation of the radiative transfer equation (RTE) introduced by
Jakob et al. [100]. This formulation adds directional and positional dependency to all
the relevant properties of the media, and couples them directly with the geometry
of the scattering particles. In the absence of source terms, which can be removed in

41



Chapter 3. A general framework for pearlescent materials

pearlescent materials, this framework models the radiance L in direction

ωo · ∇L(ωo) + Σt(ωo)L(ωo) = Σs(ωo)
∫

Ω
fp(ωi → ωo)Li(ωi)dωi, (3.5)

where Σt(ωo) and Σs(ωo) are the directionally-dependent extinction and scattering
parameters respectively, Ω is the sphere of directions, fp(ωi → ωo) is the phase
function, and ωi is the incoming direction. Note that we have omitted the spatial
and spectral dimensions for simplicity.

3.5.1 Modeling optical properties of pearlescent media

The appearance of a pearlescent medium is characterized by Σt(ωo), Σs(ωo), and
fp(ωi → ωo) in Equation (3.5). These three parameters depend on the optical pa-
rameters describing the container, including the presence of absorbing dyes, as well
as the mixture of suspended platelets in it. In particular,

Σt = Σc
t +

M

∑
j=1

Σ
pj
t , (3.6)

Σs = Σc
s +

M

∑
j=1

Σ
pj
s , (3.7)

fp(ωi → ωo) =
Σc

s
Σs

f c
p(ωi → ωo) +

M

∑
j=1

Σ
pj
s

Σs
f

pj
p (ωi → ωo), (3.8)

where we use the superscripts c and pj to refer to the container and platelet j respec-
tively.

Container. To emphasize the iridescent properties of the material, the container
is typically chosen to have minimum scattering, exhibiting a mostly transparent
appearance. Therefore, we can assume negligible scattering, so that their optical
properties are defined only by their complex index of refraction (IOR) η c. The base
container material is almost perfectly transparent, leading to a very small imaginary
part in η c. However, it is common to add some colouring dye. Its extinction, scatter-
ing, and phase function (Σd

t , Σd
s , and f d

p (ωi → ωo), respectively) can be computed
using Lorentz-Mie theory [62], parameterized by the concentration of pigment par-
ticles ρd, the particle size distribution D(rd), and the complex index of refraction
η d(λ). In summary, the optical parameters of the container for a given wavelength
λ are

Σc
t = 4π Im (η d(λ)) λ−1 + Σd

t , (3.9)

Σc
s = Σd

s , (3.10)

f c
p(ωi → ωo) = f d

p (ωi → ωo), (3.11)

where the first term in Equation (3.9) is direct consequence of the Beer-Lambert law.
Note that these optical parameters do not have angular dependence.

Platelet stratum. The global optical properties of the platelet stratum are deter-
mined by the density of platelets ρp, their projected area σp(ωi) in direction ωi, and
the directional distribution of their normals D(ωm). These parameters define the
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3.5. Light transport in pearlescent materials

extinction and scattering coefficients as

Σp
t (ωi) = ρpσp(ωi), (3.12)

Σp
s (ωi) = αp(ωi)ρpσp(ωi), (3.13)

where σp(ωi) =
∫

Ω〈ωm, ωi〉D(ωm)dωm [100], with 〈 , 〉 the clamped dot product,
and αp(ωi) the scattering albedo of the platelets. For a large number of real-world
pearlescent platelets the absorption can be considered negligible, therefore αp(ωi) =
1. We parameterize the density of platelets as the fraction of platelets with respect
to the total volume Cp = ρpVp, with Vp the average volume of the platelets. We
set Vp = 400µm3, based on SEM measurements [145]. In addition, the thickness
of the platelets substrate τp,s might vary significantly (where s indicates the sub-
strate), especially in natural substrates: We model this variability by using a sub-
strate thickness distribution function D(τp,s). On the other hand, the thickness of
the coating layers can be carefully controlled given the chemical processes involved
in coating [145]. This results into minimal variations on the platelet’s coating thick-
nesses.

Since D(τp,s) and D(ωm) are uncorrelated, and using Equation (3.1) as the scattering
function for an individual platelet, we can generalize the derivations by Heitz et
al. [95, Eq. (5)] and compute the phase function of the platelets’ substrate as

f p
p =

∫ ∞

0

∫
Ω
Fp(ωi, ωo|ωm, τp,s)D(τp,s)Dωi(ωm)dωm dτp,s (3.14)

=
D(ωm)

4 σp(ωi)

R̂(ωi)︷ ︸︸ ︷∫ ∞

0
R(ωi|τp,s)D(τp,s)dτp,s (3.15)

+ δ (ωi −ωo)
∫ ∞

0

∫
Ω
T (ωi|ωm, τp,s)D(τp,s)Dωi(ωm)dωm dτp,s︸ ︷︷ ︸

T̂ (ωi)

where Dωi(ωm) = D(ωm)〈ωm,ωi〉
σp(ωi)

is the distribution of visible normals; we parame-
terize Fp given by (3.1) by the platelet’s normal and the substrate thickness. The
first term in Equation (3.15) is equivalent to a phase function based on specular mi-
croflakes [95; 100], though the R̂(ωi) directionally varying albedo constitutes a key
difference to prior work.

The second term T̂ (ωi) models an ideal forward-scattering peak based on a Dirac
delta function. In this way, it behaves very similarly to null-scattering [155] and
effectively reduces the optical density of the medium. However, in contrast to null-
scattering, where this delta term is intentionally added to facilitate unbiased sam-
pling of heterogeneous media, it is not fundamentally needed here. Furthermore, the
additional sampling decision to choose between reflection and transmission compo-
nents would add additional variance in a Monte Carlo framework. For this reason,
we directly merge the effects of platelet transmission into Equations (3.12) and (3.13),
which yields an equivalent description that is easier to sample:
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Σp
t (ωi) = ρp σp(ωi)

(
1− T̂ (ωi)

)
, (3.16)

Σp
s (ωi) = αp(ωi) ρp σp(ωi)

(
1− T̂ (ωi)

)
, (3.17)

f p
p (ωi → ωo) =

D(ωm)

4 σp(ωi)
R̂(ωi). (3.18)

3.6 Implementation

We implement our model as a BSDF in Mitsuba 2 [160], leveraging its native support
for spectral rendering. In this section we provide details about the implementation
of the different building blocks.

3.6.1 Position-free Monte Carlo

To implement our pearlescent material model, we leverage the generality of the re-
cent position-free approach by Guo et al. [78] for rendering stratified materials. This
method builds on the assumption that scattering takes place within a small surface
region so that lateral effects can be neglected. This enables a simplified parameteri-
zation of the path integral formulation in terms of depth and orientation, where the
invariance with respect to lateral displacement enables variance reduction through
connection strategies such as next event estimation and multiple importance sam-
pling (MIS). Light transport inside the material is computed stochastically in an un-
biased manner, explicitly accounting for all interactions involving particles that per-
meate the interior of layers, as well as smooth or rough interfaces between layers.
Finally, it supports arbitrary complexity and does not require the costly precompu-
tation of prior work based on adding-doubling [53; 54].

3.6.2 Spectral rendering

Given the strong dependence on wavelength of the iridescent phase functions, using
traditional RGB rendering for volumetric scattering might result in strong spectral
aliasing. To avoid potential errors on the appearance reproduction, we implement
our model in a fully spectral renderer, which fits very well into our stochastic model.
We base our implementation on hero wavelength [234] for efficiently tracking four
wavelengths at the same time. The sampling techniques for each wavelength are
then combined via multiple importance sampling (MIS). This is crucial for obtaining
low spectral variance (see [234] for details). In order to calculate the wavelength-
dependent index of refraction for platelets and container η (λ), we use a Cauchy
polynomial fit from measured η and Abbe numbers Vd (lower values indicate higher
chromatic dispersion) for transparent materials such as mica, SiO2 , or TiO2 . For
absorbing materials such as Fe2O3 or aluminum, we resort to tabulated captured
data (see Table A1).

3.6.3 Directional distribution.

The directional distribution D(ωm) of the platelets in pearlescent materials has been
previously analyzed by light microscope images or CT scans (e.g., [123]). It fol-
lows a Gaussian angular distribution [121; 124], with standard deviation between
7◦ and 30◦. While by default the mean direction would be equal to the normal of
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Figure 3.5: Response of a mica-substrate platelet with a thickness of τ1 = 500 nm, and a 60
nm TiO2 coating, and varying substrate thickness distributions. The leftmost column shows
how neglecting the effect of thickness variability [53] may lead to unrealistic appearance.
The middle and right columns show results taking into account substrate thickness distri-
butions D(τp,s) with standard deviation γp,s of 50 and 100 nm, respectively. In this example,
interference effects are largely attenuated with increasing γp,s, due to loss of coherence of
the light reflected within the mica substrate. Note that introducing a stochastic distribu-
tion of the thickness does not incur into significant additional variance during rendering (all
renders have been done using 4K samples/pixel, 20 mins).

the pearlescent stratum ωn, the orientation of the platelets can also be changed, as
done in metallic paints to achieve complex appearance effects [193]. Gaussian-based
microflake distributions exist [250]; in our work, we employ the roughly equivalent
SGGX distribution [95], which models the distribution of normals as an ellipsoid,
and allows simpler and more efficient evaluation and sampling of the distribution
of visible normals Dωi(ωm). This model is parameterized by the effective cross sec-
tion of the particles in each of the orthogonal directions (σx

p, σy
p, σz

p). We set σz
p to

be the surface area of the platelet, orthogonal to the platelet mean normal ω̂m and
allow σx

p and σy
p to be defined independently, thus supporting anisotropic deviation

of the platelets. Unless stated otherwise (see Figure 3.13), the platelet mean normal
ω̂m in results coincides with the stratum normal ωn, and we assume an isotropic
directional distribution of the platelets (i.e. σx

p =σy
p =σxy

p ).

3.6.4 Substrate thickness distribution

Prior work assumes a constant substrate thickness [53; 54]. However, neglecting the
effect of thickness variation leads to severe errors in the resulting appearance, as il-
lustrated in Figure 3.5. Based on measurements of mica-based substrates using an
Atomic Force Microscope [195], we approximate the distribution of substrate thick-
ness D(τp,s) as a Gaussian distribution with standard deviation γp,s. While synthetic
substrates such as silica are characterized by narrow distributions [169], the thick-
ness of mica substrates can range between 100 and 1000 nm, with a mean thickness
of 560 nm and a standard deviation of 179 nm [195].
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3.6.5 Platelet stratum extinction coefficient

As defined in Equation (3.16), the effective extinction coefficient Σp
t (ωi) of an irides-

cent strata depends on the platelets transmission T̂ (ωi), which in turn is defined not
only by the structure of the layers, but also by their distribution of normals Dωi(ωm)
and thicknesses D(τp,s) (see Equation (3.15)). Given the complexity of the resulting
expression, which involves the evaluation of the transmissivity of the layered struc-
ture over both distribution domains, we employ a stochastic evaluation procedure.
In particular, when sampling the mean free path or calculating the attenuation, we
sample a platelet direction from the distribution of visible normals Dωi(ωm) (see [95]
for details), and a thickness from the Gaussian distribution of D(τp,s). As mentioned
earlier, the main source of variance is due to the strong wavelength dependence of
extinction, whereas the variance introduced by the above procedure is insignificant
in comparison.

3.7 Analysis and evaluation

We now turn to evaluation of our method beginning with a comparison to captured
reflectance data of real-world iridescent materials. In the second part of this section,
we study the behavior of the parameter space in greater detail.

3.7.1 Comparison with captured data

We compare the results of our model with data from Ferrero and colleagues [60],
who measured a series of pearlescent material samples composed of TiO2-coated
platelets within a Silica substrate, providing discretized measurements of their re-
flectance field with an angular resolution of 10 degrees. We re-create three materi-
als: MCS1, referring to Colorstream® T20-04 WNT Lapis Sunlight manufactured by
Merck KGaA; MCS2, referring to Colorstream® T20-02 WNT Arctic Fire also manu-
factured by Merck KGaA; and BASF1, a burgundy and green material manufactured
by BASF Coatings GmbH.

To populate the parameters of our model, we rely on all the information avail-
able from the manufacturers for each material. In particular, the container is made
of Polysilazane (η = 1.555) with a thickness tc = 150 µm and roughness σc =
0.01, and the indices of refraction for TiO2 and Silica are 2.6142 and 1.4585 respec-
tively (see also Table A1). The remaining parameters are obtained by brute-force
optimization within the limits defined by manufacturing parameters reported in
the literature [145]: coating thickness τ1 ∈ [60, 170] nm, substrate mean thickness
τs ∈ [80, 500] nm, platelets density Cp ∈ [3, 13]%, platelets normal deviation σxy

p ∈
[0.01, 0.1], and substrate thickness standard deviation γs ∈ [0, 70] nm. The fitted
parameters for each measured material can be found in Table A2.

We also compare the results achieved with simpler models (Ergun et al.’s [53], which
in turn is based of Ershov’s model [54]), using their available parameters. As ob-
served in Figure 3.6 and Table 3.1, our model provides better fits to the measured
data, thus allowing us to represent real materials more accurately. Additionally, Fig-
ure 3.7 provides a visual comparison of the resulting distribution of chromaticities.
Again, our model (green dots) produces reflectance values that are in closer agree-
ment to ground-truth data than previous models, which tend to deviate significantly
in both chromaticity and saturation.
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Figure 3.7: Chromaticity space of measured materials (black dots) [60], our model (green),
and previous work (blue) [53]. Our model provides a closer match with measured data, with
more accurate chromaticities and without excessive saturation.

Table 3.1: Error comparison of our model and Ergun et al.’s model [53] for the fits on Ferrero
et al.’s [60] measurements. For each material we report error in CIExy chromaticity space,
measured using mean squared error (MSE) and peak signal-to-noise ratio (PSNR).

Material Model MSE PSNR (dB)

MCS1 Ergun et al. [53] 0.41400 11.53
Ours 0.15100 14.74

MCS2 Ergun et al. [53] 0.27012 16.61
Ours 0.08759 21.69

BFS1 Ergun et al. [53] 0.25252 17.05
Ours 0.10579 20.74

3.7.2 Exploration of the parameter space

The set of optical phenomena that give rise to pearlescent appearance are complex
and highly nonlinear: they involve the complex interplay of multiple anisotropic
volume scattering, directionally varying interference within platelets, high-frequency
spectral variation, interactions with the container, and refraction and internal reflec-
tion from layer boundaries. These aspects imply that predictive modeling of pearles-
cence remains a challenging and computationally intense task.
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We performed a large set of simulations using our framework to study the space of
pearlescent appearance, as parameterized by our model. We explore the resulting
data and discuss our observations in the remainder of this section. We envision that
such systematic exploration of material configurations could be a powerful ingredi-
ent in the computational design of pearlescence in the future. As explained in the
previous sections, our framework supports an arbitrary number of strata. We restrict
this analysis to a single-pearlescent-stratum material (such as manufactured plastic
containers used by the cosmetic industry) only as a reasonable compromise to illus-
trate the capabilities of our model, while keeping the number of physical parameters
to explore tractable.

We model a material consisting of a pearlescent stratum containing the iridescent
platelets, on top of a base stratum (see Figure 3.9). This material (C1) contains
platelets with an 80 nm SiO2 substrate. The substrate is coated with a TiO2 layer
with a varying thickness τ1. We include a common PET thermoplastic container with
thickness tc = 150 µm, and interface roughness σc = 0.01. These pearlescent strata
are applied over a base stratum, such as skin in cosmetic products, or the primer in
automotive paints, which reflects light back to the pearlescent material. It thus plays
an important role in its final appearance when transmittance is high, resulting in
more vivid colors. We model this base stratum and set its diffuse reflectance albedo
αb = 0.7.

For our analysis, we use a parameterization based on the half and difference an-
gles (θh and θd, respectively) [187], which avoids redundant information and allows
exploring isotropic BSDFs in a simpler 2D domain. Following Burley’s intuitive
way to visualize materials by means of image slices [27], we observe two main go-
niochromatic effects along the same BRDF (see Figure 3.10): The first aligns with
the difference angle θd along the material’s gloss component; the second appears on
the diffuse reflection β, and is roughly radial with respect to (θh, θd) = (0, 0). Based
on these observations, we focus our analysis on the chromaticity and luminance, by
exploring the effect of our model parameters on those two axes.

Chromaticity. Figure 3.8a illustrates the changes in diffuse chromaticity β, on a
CIE xyY diagram as the thickness τ1 of the platelets’ TiO2 coating increases. We fix
the platelet density Cp = 3% of the total volume, and the deviation to the normal
distribution to σxy

p = 0.1. It can be seen how the diffuse chromaticity falls in a very
narrow manifold, which is mostly outside the sRGB gamut (shown as a superim-
posed white triangle). Pairs of points on the different curves indicate equal diffuse
coordinates, showing how the diffuse component travels along the manifold as τ1 in-
creases. Figure 3.8b shows a similar behavior for gloss chromaticity, except that the
diffuse and gloss chromaticities change in opposite directions, presenting roughly
complementary hues (see pairs of points in Figure 3.8c).

In addition, as the deviation of the normal distribution σxy
p increases, multiple scat-

tering becomes dominant. As a consequence, colors become less saturated, both for
the diffuse and gloss components (Figure 3.8d). On the other hand, the platelet den-
sity Cp only affects the diffuse component significantly (Figure 3.8e), especially for
small σxy

p , where the saturation increases with density.

Luminance. Figure 3.8f shows how diffuse luminance decreases with the platelet
density Cp, while the normal distribution deviation σxy

p has very little effect. Diffuse
luminance is also higher on platelets with a thickness between 100 and 130 nm, since
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Figure 3.8: Effect of the different parameters of material C1 on its appearance (in all the
diagrams, the triangle indicates the RGB gamut). Top row (Chromaticity analysis): (a) In-
fluence of the TiO2 coating thickness on the diffuse chromaticity, given a fixed σ
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pairs of points on the curves illustrate the changes in diffuse chromaticity as thickness in-
creases. (b) Similar diagram for gloss chromaticity, for three curves of different thicknesses.
These first two diagrams show how both chromaticities change, but remain within a narrow
manifold. (c) Diffuse (black) and gloss (white) chromaticities as the thickness of the coating
layer increases, for directions close to normal incidence. It can be seen how both components
rotate in opposite directions, always showing roughly complementary colors. (d) Effect of
the deviation of the normal distribution σ

xy
p for a fixed platelet density Cp = 3%, showing

both the diffuse (black) and gloss (white) components. As the deviation increases (as indi-
cated by the arrows), both components become less saturated. (e) Effect of platelet density
Cp for a fixed platelet normal deviation σ
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p = 0.01%; as density increases (see arrows), so

does saturation. Bottom row (Luminance analysis): Diffuse luminance, as a function of
density (f), and coating thickness (g) for different platelet normal distribution deviations
σ
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p . Diffuse (h) and gloss (i) luminance as a function of coating thickness τ1 for different
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Figure 3.9: Schematic view of the material
structure used for modeling materials C1
and C2. Both materials consist of an irides-
cent plastic stratum on top of a base diffuse
layer. Note that we use single-stratum ma-
terial for our analysis to keep the parameter
space tractable; our model supports an ar-
bitrary number of layers. We analyze the
optical behavior of this pearlescent mate-
rial, in particular the influence of our model
parameters on the goniochromatic diffuse
and gloss components, which are in turn af-
fected by the platelet characteristics and the
strata below the container.
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Figure 3.10: 2D image slices representa-
tions [27] of the reflectance of material C1,
for three different coating thickness τ1. Su-
perimposed on the left, we can see the two
main axes of goniochromaticity: One axis
runs along the difference angle on the spec-
ular reflection (black); the second axis β
(white) describes variations in diffuse reflec-
tion, and is radial from the normal reflec-
tion. The dots on top of each of both axes
represent the angular location of the sam-
ples used in our analysis.
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Figure 3.11: Variations of pearlescent materials due to changes on the thickness of the coat-
ing layer and the density of platelets. C1 (top): Silica substrate (τs = 80 with zero deviation),
TiO2 coating. C2 (bottom): Mica substrate (τs = 560.44, γs = 179.32). All samples have the
same container roughness σc = 0.01, platelet normal deviation σ

xy
p = 0.1, and base stratum

albedo αb = 0.7. Changes in the thickness of the coating layer produce large variations in
chromaticity. On the other hand, as the density of the platelets increases the diffuse lumi-
nance decreases, and the gloss component of the chromaticity progressively dominates the
final appearance. While the global behavior is similar with both types of substrate, the re-
sulting appearance is vastly different (see the closeups of samples A and B in Figure 3.12,
right). The material sample highlighted with the letter C (top) illustrates how the gloss hue
first manifests around the highlights (please refer to the main text).

coatings in that range yield a higher transmittance (Figures 3.8g and 3.8h). The lu-
minance of the gloss component behaves in a complementary manner (Figure 3.8i).

3.7.3 Additional results

Figure 3.11 (top) shows the significant variation in pearlescent appearance which
emerges from the interactions of different parameters in our model. In particular,
we show appearance changes in our material C1, due to changes in platelet density
ρp and thickness τ1 of the TiO2 coating layer, for a base albedo αb = 0.7. Changes
in thickness lead to strong changes in chromaticity, as shown in Figure 3.8a. On
the other hand, as the platelet density Cp increases, the diffuse luminance decreases
(as shown in Figure 3.8h). As a result, the diffuse hue becomes progressively less
dominant, and the gloss hue emerges. This gloss hue first manifests subtly around
the main highlights produced by the dielectric interface of the container: see for
instance the reddish halo around the highlights in the object marked with a C in
Figure 3.11, top; as density increases, this reddish hue progressively dominates the
final appearance.

For comparison purposes, we model a second material C2, identical to material C1,
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Figure 3.13: Variations of material C1 with
increasing platelet rotation (shown for the
x-axis). Even slight rotations result in a
visible angular offset in the highlights pro-
duced by the platelets (reddish for this
material). Top: isotropic normal distribu-
tions of the platelets. Bottom: anisotropic
normal distributions of the platelets. The
last image shows anisotropy in the y-axis.

Figure 3.14: Cars rendered with complex pearlescent paints, exhibiting platelet rotation and
anisotropy. Table A4 describes the parameters of each material.

except for the substrate; instead of silica, C2 has a mica substrate, with a mean thick-
ness of 560 nm, and standard deviation 179 nm. It can be seen how changing the
substrate has a profound impact on the underlying diffraction phenomena, result-
ing in a marked shift in overall chrominance (see Figure 3.11, bottom). This can
be better observed in Figure 3.12, showing closeups of the objects marked with A
and B in the previous figure. However, the global behavior of the diffuse and gloss
components is essentially equivalent to our previous analysis (Figure 3.12, left).

In contrast to prior work, our method also admits configurations that lead to an
anisotropic BSDF. Figure 3.13 illustrates changes in appearance due to rotations in
the mean direction of the platelets’ normals, combined with both isotropic (top) and
anisotropic distributions (bottom). We observe that slight rotations in the x axis
result in an angular offset between the chromatic gloss produced by platelets and
the highlights produced by the roughness of the container.

Table A3 describes the parameters of each material used in Figure 3.1. Altering a
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Figure 3.15: Equal-time renderings demonstrating the importance of both multiple impor-
tance sampling (MIS) and spectral rendering using hero wavelength (HW), for the scene in
Figure 3.1 rendered at 4K samples per pixel.

single value per pair of objects, as shown in Figure 3.1 and highlighted in bold in the
table, leads to noticeable appearance changes. Different from previous models, our
support for thickness distributions allows us to represent appearance changes (see
difference between 7th and 8th bottles in Figure 3.1) due to variations in substrate
thickness, which naturally occur in common substrate compounds such as mica. Fi-
nally, Figure 3.14 demonstrates the generality of our model, showing three different
cars rendered with complex pearlescent car paints. We use multi-layer platelets with
metallic substrates (front and middle) and alumina substrate (back) [145], displaying
different degrees of rotation and anisotropy. The exact parameters of each material
are described in Table A4.

All renders have been computed on a dual Intel Xeon Gold 6140 using 64 threads.
Execution times for all the results in this chapter can be found in Table 3.2. Equal-
time comparisons demonstrating the importance of MIS and hero wavelength for
efficiently rendering our model can be found in Figure 3.15.

Table 3.2: Total render time, samples per pixel, and resolution for the different scenes used
throughout the chapter.

RENDER TIMES

Scene Time Samples/pixel Resolution Figures

Cosmetics 64 minutes 4k 1600×720 3.1
Knob 17 minutes 4k 512×512 3.11, 3.12, 3.13
Cars 31 minutes 4k 1280×550 3.14

3.8 Conclusions

We have presented a general model that simulates the complex internal processes re-
sponsible for pearlescent appearance, including scattering from multi-layered platelets
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subject to wave-optical interference, and internal reflection from smooth or rough
layer boundaries. Our model is based on a thorough review of the structure and
properties of real-world pearlescent pigments, and it accounts for stochastic varia-
tion in the local material properties that critically impacts accuracy. We demonstrate
the practicality of our method and showcase a series of comparisons that showcase
its superior performance compared to prior work. Our results also include an anal-
ysis of the influence of physical parameters on the resulting goniochromatic behav-
ior. As this analysis shows, small perturbations of a single parameter often lead to
disproportionately large changes in material appearance. We believe that detailed
computational mapping of this highly nonlinear space will be a crucial component
of future manufacturing application that seek to create pearlescent materials with
desired optical properties. To foster future work on this topic, and to ensure the
reproducibility of this article, we will release an open implementation of our full
simulation pipeline.

Limitations & future work. Our model is implemented on top of a spectral ren-
derer. To reduce variance arising from the stochastic nature of transmittance T̂ (ωi)
evaluation, the design of efficient sampling methods is an important avenue for fu-
ture work. While our implementation builds on specialized sampling and MIS tech-
niques for multilayered materials and spectral rendering, it would directly benefit
from recent and future advances in both lines of research (e.g. [64; 240] and [130]).
For applications where rendering efficiency is preferred over exact appearance, faster
although less accurate solutions can be employed [53; 54], solving the volumetric
transport inside the container strata using either precalculated [101] or approxi-
mated solutions [14; 230]. As for the parameter space, our model takes into account
the main effects that can be controlled during manufacturing, such as the particular
materials used, thickness distributions, or the deviation from the platelet normal dis-
tribution. Other manufacturing issues such as irregularities in the substrates, flaws
in the layer precipitation process, small thermal and mechanical cracks of the pig-
ments, or discontinuities and pores in the pigments may lead to additional scatter-
ing. This potentially replaces iridescence with an undesired hazy appearance, which
could be characterized using Mie theory [146]. To make our model tractable we as-
sume that lateral boundaries of platelets can be ignored. Removal of this approxima-
tion could be desirable to further improve accuracy, but this would entail replacing
the layering computation by a significantly more costly wave-level simulation that
would likely be impractical in the context of rendering. We also assume that all
platelets suspended into the material are very small (on the order of a few microns),
which is common in many pearlescent materials. Adding larger platelets would
allow us to model glints (such as those in many car paints), and would require to re-
place the continuous distribution of platelets with a discrete counterpart [102]. Last,
while intuitive models for editing BRDFs’ appearance exist [120; 192], designing
tools to enable intuitive editing of pearlescent materials remains a challenging open
problem. This will involve translate the physical parameter space into perceptually-
based appearance spaces [133; 168; 237]. Our model provides a useful foundation,
but further work is required to address the high-dimensional and nonlinear nature
of the underlying parameter space.
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3.A Tables

In the following we describe the characteristics of container, substrate, and coating
compounds used throughout the chapter.

Table A1: Characterization of the materials used throughout the chapter [178]. For trans-
parent materials, we report the measured index of refraction η and Abbe number Vd. For
absorbing materials (Fe2O3 , aluminum and copper) we report the average η from measured
data. In the case of PET an polysilazane there are no accurate measurements and we resort
to a constant η .

Material η Vd Source

Air 1.0
PET 1.5750 [202]
Polyurethane 1.5650 24.37 [98]
Polysilazane 1.5550 [157]
Mica 1.6137 54.56 [11]
SiO2 1.4585 67.82 [147]
TiO2 2.6142 9.87 [43]
Fe2O3 3.3206 + 0.2192i [179]
Al2O3 1.7742 72.31 [148]
Al 1.1978 + 7.0488i [180]
Cu 0.7400 + 2.7071i [179]

Table A2: Optimized parameters for our model and Ergun’s [53] (see Figure 3.6 and Fig-
ure 3.7 in the main text).

Material Model ρp τs (nm) γs τ1 (nm) σxy
p

MCS1 Ergun et al. [53] 6.6% 160 0 120 0.1
Ours 3.3% 280 40 60 0.1

MCS2 Ergun et al. [53] 13.2% 400 0 60 0.1
Ours 13.2% 410 40 60 0.1

BFS1 Ergun et al. [53] 13.2% 160 0 60 0.1
Ours 13.2% 160 20 60 0.1
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Table A3: Description of the parameters used to render the objects in Figure 3.1 (bottles
numbered in reading order), where Cp is the platelet density (fraction of platelets per total
volume), τ1 is the TiO2 thickness, σ

xy
p is the deviation of the mean normal, σc is the dielectric

roughness, γs is the deviation of the substrate thickness. We highlight in bold the vary-
ing parameter for each pair. All materials have base stratum albedo αb = 0.6, and a PET
container.

BOTTLES: MATERIALS DESCRIPTION

Bottle Cp τ1 (nm) σxy
p σc γs Substrate

1 13.2% 140 0.05 0.2 179.32 Mica
2 1.3% 140 0.05 0.2 179.32 Mica
3 9.9% 85 0.02 0.1 0.0 SiO2
4 9.9% 85 0.02 0.1 179.32 Mica
5 6.6% 90 0.01 0.1 179.32 Mica
6 6.6% 90 0.2 0.1 179.32 Mica
7 6.6% 70 0.07 0.07 22.41 Mica
8 6.6% 70 0.07 0.07 179.32 Mica
9 2.0% 90 0.05 0.02 179.32 Mica

Table A4: Description of the parameters used to render the cars in Figure 3.14. Front and
middle cars have double-coating metallic platelets, and back car single-coating Alumina
platelets [145].

CARS: MATERIALS DESCRIPTION

Car Front Middle Back

Coating 1 TiO2 (147 nm) TiO2 (70 nm) TiO2 (80 nm)
Coating 2 Fe2O3 (80 nm) Fe2O3 (115 nm) —
Substrate Cu (80 nm) Al (80 nm) Al2O3 (40 nm)
σxy

p (0.05, 0.1) (0.1, 0.01) (0.02, 0.1)
Rotation (x,y,z) (10°, 0°, 0°) (10°, 0°, 0°) (5°,−3°, 0°)
Cp 6.6% 6.6% 6.6%
σc 0.1 0.01 0.05
αb 0.5 0.7 0.3
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Chapter 4

Progressive transient photon
beams

In this chapter we present a method for efficient transient rendering in the presence
of participating media. Light transport in this kind of scenes is challenging to cal-
culate due to the large amount of possible light paths, which results high variance
even at high sample counts. Our method is based on density estimation, and let us
reuse calculations using information from other light paths. We extend the concept
of progressive photon beams [110] for density estimation in participating media to
the transient state, allowing us to reuse light path close both in the temporal and
spatial domains. Additionally, by introducing smoothing kernels we mollify delta
or almost delta interactions across the light paths, allowing us to sample paths that
are provably unsampleable using conventional Monte carlo techniques. Our exten-
sion results in consistent, robust method which provably converges to the correct
solution using finite memory. We derive optimal convergence rates accounting for
spatial and temporal kernels, and provide empirical results of our method improve-
ment over existing approaches.

My role as the second author of this project involved improving the implementation
of the proposed progressive algorithm, specially the 1D spatial variant. My imple-
mentation was used to generate many of the results found in Section 4.6, as well as
the empirical convergence analysis.

This work was originally published in Computer Graphics Forum and presented at
the 30th Eurographics Symposium on Rendering (EGSR 2019).

Progressive transient photon beams
Julio Marco, Ibón Guillén, Wojciech Jarosz, Diego Gutierrez & Adrian Jarabo
Computer Graphics Forum, Vol. 38(6), 2019

4.1 Introduction

The emergence of transient imaging has led to a vast number of applications in
graphics and vision [107], where the ability of sensing the world at extreme high
temporal resolution allows new applications such as imaging light in motion [225],
appearance capture [158], geometry reconstruction [29; 150], or vision through me-
dia [28; 239] and around the corner [7; 224]. Sensing through media is one of the
key applications: The ability of demultiplexing light interactions in the temporal
domain is a very promising approach for important practical domains such as non-
invasive medical imaging, underwater vision, or autonomous driving through fog.
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2.5M beams

20M beams

40M beams

Steady statet = 1.0ns t = 1.1ns t = 1.2ns t = 1.3ns

Figure 4.1: The SOCCER scene (steady-state render on the right) features complex volumetric
caustics due to multiple reflections and refractions off smooth dielectrics inside the medium.
We are able to efficiently render the transient light transport (left sequence) by formulating
a progressive, transient form of photon beam density estimation which provably eliminates
error while working within a finite memory budget.

Accurately simulating light transport could help enormously in these applications,
potentially serving as a benchmark, a forward model in optimization, or as a training
set for machine learning.

Transient rendering in media is, however, still challenging: The increased dimen-
sionality (time) increases variance dramatically in Monte Carlo algorithms, poten-
tially leading to impractical rendering times. This variance is especially harmful in
media, where the signal tends to be smooth due to the low-pass filtering behavior of
scattering, in both the spatial and temporal domains. One of the major drawbacks
of transient rendering is that it requires much higher sampling rates to fill up the ex-
tended temporal domain, specially when using 0D (photon) point samples, which
are sparsely distributed across both time and space. We make the observation that
1D photon trajectories populate both space and time much more densely; hence,
a technique based on photon beams [109] should significantly reduce the render-
ing time when computing a noise-free time-resolved render, and, given its density
estimation nature, it could naturally combine with the temporal domain density es-
timation proposed by Jarabo et al. [106].

We present a new method for transient-state rendering of participating media, that
leverages the good properties of density estimation for reconstructing smooth sig-
nals. Our work improves Jarabo et al. [106] by extending progressive photon beams
(PPB) [110] to the transient domain, and combining it with temporal density esti-
mation for improved reconstruction in both the spatial and temporal domains. Our
technique is biased but consistent, converging to the ground truth using finite mem-
ory by taking advantage on the progressive [83; 127] nature of density estimation.
We analyze the asymptotic convergence of our proposed space-time density estima-
tion, computing the optimal kernel reduction ratios for both domains. Finally, we
demonstrate our method on a variety of scenes with complex volumetric light trans-
port, featuring high-frequency occlusions, caustics, or glossy reflections, and show
its improved performance over naively extending PPB to the transient domain.

This technique is an extension of our previous work on rendering transient volu-
metric light transport [151], where we proposed a naive extension of photon beams
to transient state. Here we increase the applicability of the method, by proposing a
progressive version of the space-time density estimation, and rigorously analyze its
convergence.
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4.2 Related work

Rendering participating media is a long-standing problem in computer graphics,
with a vast literature on the topic. Here we focus on works related directly with the
scope of the project. For a wider overview on the field, we refer to the recent survey
by Novák et al. [161].

Photon-based light transport. Photon mapping [112] is one of the most versatile
and robust methods for rendering complex global illumination, with several exten-
sions for making it compatible with motion blur [31], adapting the distribution of
photons [72; 203], carefully selecting the radiance estimation kernel [103; 118; 203],
combining it with unbiased techniques [66; 84], or making it progressive for ensur-
ing consistency within a limited memory budget [83; 127]. Hachisuka et al.’s [82]
recent SIGGRAPH course provides an in-depth overview.

Jensen and Christensen [113] were the first to extend photon mapping to media,
and Jarosz and colleagues [111] significantly improved eits efficiency with the beam
radiance estimate, which replaces repeated point queries with one “beam” query
finding all photons along the entire camera ray. Jarosz et al. [109] later applied this
idea to the photon tracing process by storing full photon trajectories (photon beams),
leading to a dramatic increase in photon density for the same photon tracing step.
Their progressive and hybrid counterparts [110; 131] leveraged the benefits of pho-
ton beams while providing consistent solutions using finite memory. Recently, Bit-
terli and Jarosz [19] generalized 0D photon points and 1D photon beams to even
higher dimensions, proposing the use of photon planes (2D), volumes (3D) and, in
theory, higher-dimensional geometries, leading to unbiased density estimation. All
these works are, however, restricted to steady-state renders; we instead focus on
simulating light transport in transient state.

Transient rendering. Though the transport equations [35; 68] are time-resolved,
most rendering algorithms focus on steady-state light transport. Still, several works
have been proposed to deal with light transport in a time-resolved manner. In partic-
ular, most previous work on transient rendering has focused on simulating surfaces
transport: Klein et al. [126] extended Smiths’ transient radiosity [200] for second
bounce diffuse illumination, while other work has used more general methods based
on transient extensions of Monte Carlo (bidirectional) path tracing [105; 106; 175]
and photon mapping [154; 163]. Several works have also dealt with time-resolved
transport on the field of neutron transport [16; 34; 49; 236]. Closer to our work,
Ament and colleages [4] rendered transient light transport in refractive media us-
ing volumetric photon mapping, but they do not provide an efficient approach that
guarantees consistency. Jarabo et al. [106] proposed a transient extension of the path
integral, and introduced an efficient technique for reconstructing the temporal signal
based on density estimation. They also proposed a set of techniques for sampling
media interactions uniformly in time. Their method is however limited to bidirec-
tional path tracing and photon mapping, often failing to densely populate media in
the temporal domain. Finally, Bitterli [18] and Marco et al. [151] proposed a transient
extension of the photon beams algorithm, but these approaches are not progressive,
therefore not converging to the correct solution in the limit. Our work extends the
latter, proposing a progressive, consistent, and robust method for rendering tran-
sient light transport. We leverage beams continuity and spatio-temporal density
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estimation to mitigate variance in the temporal domain, and derive the parameters
for optimal convergence of the method.

4.3 Transient radiative transfer

The radiative transfer equation (RTE) [35] models the behavior of light traveling through
a medium. While the original formulation is time-resolved, its integral form used in
traditional rendering ignores this temporal dependence, and computes the radiance
L reaching any point x from direction ω as

L(x, ω) = Tr(x, xs) Ls(xs, ω) +
∫ s

0
µs(xq) Tr(x, xq) Lo(xq, ω)dq, (4.1)

where xd = x − d · ω is a point at distance d, µs is the scattering coefficient, and
Tr(x, xd) = exp(−

∫ d
0 µt(xd′)dd′) is the transmittance describing the fraction of pho-

tons that make it between x and xd without undergoing extinction at any point xd′ ,
determined by the extinction coefficient µt(xd′). The outgoing radiance Lo in direction
ω from a medium point xq at distance q is defined by the scattering integral:

Lo(xq, ω) = Le(xq, ω) +
∫
S

fs(xq, ωi, ω) L(xq, ωi)dωi, (4.2)

where S is the spherical domain, and fs is the phase function. Ls is defined anal-
ogously via the rendering equation [117], but integrated over the hemispherical do-
main, and using the cosine-weighted BSDF in place of the phase function.

Transient RTE Equations 4.1 and 4.2 assume that the speed of light is infinite.
However, if we want to solve the RTE at time scales comparable to the speed of
light we need to incorporate the different delays affecting light. In the following we
review the main practical considerations for accounting time into the integral form
of the RTE for its application in transient rendering. Light takes a certain amount
of time to propagate through space, and therefore light transport from a point x0
towards a point x1 does not occur immediately. In the absence of scattering effects,
transport between two points x0 and x1 occurs as

L(x1, ω, t) = L(x0,−ω, t− ∆t), (4.3)

where ∆t is the time it takes the light to go from x0 to x1. In turn, ∆t is defined by

∆t(x0 ↔ x1) =
∫ x1

x0

η(x)
c

dx, (4.4)

where η(x) is the index of refraction at a medium point x and c is the speed of
light in vacuum. Note that in this case light does not travel in a straight line, but
by following the Eikonal equation [4; 81]. In a medium with a constant index of
refraction η(x) = ηm, then ∆t(x0 ↔ x1) can be expressed as

∆t(x0 ↔ x1) =
ηm

c
||x1 − x0||. (4.5)

The second form of delay occurs in the scattering events, and might occur from
different sources, including electromagnetic phase shift, fluorescence and phospho-
rescence, or multiple scattering within the surface (or particle) microgeometry. To
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s1

s2

s3

xb

(a) (b)

Figure 4.2: Photon emission and radiance estimation. (a) A photon emitted from the light
source will take a time tb0 = ηm

c (s1 + s2 + s3) to get to xb. (b) Radiance estimation in the
medium is done by intersecting every ray against the photon beam map, and performing
density estimations at the ray-beam intersections (red).

account for these sources of scattering delays, we introduce a temporal variable in
the phase function as fs(x, ωi, ω, t), where t is the instant of light interacting with
the particle before it is scattered. With those delays in place, we reformulate the RTE
(Equations 4.1 and 4.2) introducing the temporal dependence as [68]

L(x, ω, t) = Tr(x, xp) Ls(xp, ω, t− ∆tp)

+
∫ p

0
µs(xq) Tr(x, xq) Lo(xq, ω, t− ∆tq)dq, (4.6)

Lo(xq, ω, t)=
∫ t

−∞
Le(xq, ω, t)dt′

+
∫
S

∫ t

−∞
fs(xq, ωi, ω, t−t′) L(xq, ωi, t)dt′ dωi, (4.7)

with ∆tp = ∆t(x ↔ xp) and ∆tq = ∆t(x ↔ xq) (Equation (4.4)). Ls changes analo-
gously. Note that we assume that the matter does not change at time-scales compa-
rable to the speed of light, and therefore avoid any temporal dependence on µs and
µt. Introducing temporal variation at such speeds would produce visible relativistic
effects [108; 231].

4.4 Transient photon beams

Photon beams [109] provide a two-pass numerical solution for rendering participat-
ing media in steady state: In the first pass (Figure 4.2a), a series of random walk
paths are traced from the light sources. These paths represent packages of light
(photons) traveling through the medium. Every interaction of a photon within the
medium is stored on a map as a beam with a direction ωb, position xb and power
Φb. In the second pass (Figure 4.2b), rays are traced from the camera against the
scene, and Equation (4.1) is approximated by summing up the contribution of all
near photon beams Rb of the eye ray defined by r = (xr,−ωr)

L(xr, ωr) ≈ ∑
b∈Rb

Lb(xr, ωr), (4.8)

where Lb(xr, ωr) is the contribution of photon beam b. Every photon beam b is con-
sidered to have certain radius Rb, and radiance seen by a camera ray is computed
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Figure 4.3: Spatio-temporal kernel estimators. (a) Ray-beam intersection for density es-
timation using a 2D kernel (top) and 1D kernel (bottom). Time delays tb, tr within these
spatial density estimations will depend on the ray-beam orientation the blur region intersec-
tions sb, sr, the speed of light, and the index of refraction of the media. (b) Radiance estimate
of a single beam at pixel ij using a 2D blur generates a temporal footprint over a time in-
terval [t−, t+] (top) while radiance estimate using a 1D blur occurs at a single time instant t
(bottom).

by performing a density estimation on every ray-beam intersection. For 1D and 2D
kernels, this radiance is computed as

L1D
b (xr, ωc) = K1D(Rb)Φb fs(θb)µs

e−µtsb e−µtsr

sin θb
, (4.9)

L2D
b (xr, ωr) =K2D(Rb)Φb fs(θb)µs

e−µt(s−c −s+c )(|cos θb|−1) − 1

e µt(s−r +s−b )µt(| cos θb| − 1)
, (4.10)

where the beam is defined by xb + sbωb and the ray is defined by xr + srωr (see setups
in Figure 4.3a).

4.4.1 Our algorithm

To generalize photon beams to the transient domain, we need to account for the
duration of light paths. This requires considering propagation and scattering de-
lays along the camera and light subpaths, but also the effect of time in the density
estimation connecting these two subpaths.

Creating the photon map. We compute the photon propagation as a standard ran-
dom walk through the scene, which can be modeled using the subpath formulation
defined by Jarabo et al. [106]. Let us define a light subpath x̄l = x0...xk−1, with k
vertices, where x0 is the light source. This light path defines k − 1 photon beams,
in which a beam bj is defined by its origin at xbj = xj and direction ωbj =

xj+1−xj
‖xj+1−xj‖ .

Using Jarabo’s definition of the path integral (and therefore of the contribution of

64



4.4. Transient photon beams

the subpaths), we compute the flux of each photon as:

Φbj =
f (x̄j, τ̄j)

Mp(x̄j, τ̄j)
=

Le(x0 → x1, τ0)T(x̄j, τ̄j)

M ∏
j
i=0 p(xi, τi)

, (4.11)

with x̄j the subpath of x̄l up the vertex j, f the subpath contribution function, τ̄j =
τ0...τj the sequence of time delays up to vertex j, M the number of photon random
walks sampled, Le(x0 → x1, τ0) the emission function, p(xi, τi) the probability den-
sity of sampling vertex xi with time delay τi. The throughput, T(x̄j, τ̄j), of subpath
(xi, τj) is defined as:

T(x̄j, τ̄j) =

[
j−1

∏
i=1

fs(xi, τj)

] [
j−1

∏
i=0

G(xi, xi+1)V(xi, xi+1)

]
, (4.12)

with fs(xi, τj) the scattering event at vertex xi with delay τj, and G(xi, xi+1) and
V(xi, xi+1) the geometry and visibility terms between vertices xi and xi+1, respec-
tively. Finally, for transient state we need to know the instant tbj at which the photon
beam is created (through emission or scattering), defined as:

tbj =
j−1

∑
i=0

τj +
j−1

∑
i=0

∆t(xi, xi+1). (4.13)

Rendering. For rendering, we adapt Equation (4.8) to account for the temporal
domain, as

L(xr, ωr, t) ≈ ∑
b∈Rb

Lb(xr, ωr, t), (4.14)

with Lb(xr, ωr, t) the radiance estimation for beam b to ray t at instant t. In essence,
Lb(xr, ωr, t) will return zero radiance if t is out of the temporal footprint of the den-
sity estimation kernel. Depending on the dimensionality of the density estimation,
Jarosz and colleagues [110] proposed three different estimators based on 3D, 2D and
1D kernels. Since the 3D kernel results impractical due to costly 3D convolutions, we
focus on 1D and 2D kernels (Equations (4.9) and (4.10)), and extend them to transient
state, assuming homogeneous media.

Kernel 2D. We generalize Jarosz’s et al.’s 2D estimate L2D
b (Equation (4.10)) by in-

troducing a temporal function W(t) as

L2D
b (xr, ωr, t) =K2D(Rb)Φb fs(θb, t)µs

e−µt(s−r −s+r )(|cos θb|−1) − 1

e µt(s−r +s−b )µt(| cos θb| − 1)
W2D(t), (4.15)

where [s−r , s+r ] are the limits of the ray-beam intersection (Figure 4.3a), θb is the an-
gle between ωb and ωr, and K2D(Rb) is a canonical 2D kernel with radius Rb. The
temporal function W2D(t) models the temporal footprint of the 2D kernel as

W2D(t) =

{
1

t+−t− if t ∈ (t−, t+)
0 otherwise

, (4.16)
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where t− = tb + tr +
ηm
c (s−r + s−b ) and t+ = tb + tr +

ηm
c (s+r + s+b ), and tr and tb

are the initial times of the camera ray and beam, respectively. Note that due to
transmittance, the photon energy varies as it travels across the blur region. Evenly
distributing the integrated radiance Lb across this interval introduces temporal bias,
in addition to the inherent spatial bias introduced by density estimation. However
we observed this even distribution provides a good tradeoff between bias, variance,
and computational overhead.

Kernel 1D. In the 1D kernel defined for density estimation by Jarosz et al. the spa-
tial blur is performed over a line. Therefore, the energy of the beam is just spread
on the ray on a single point at r(sr), from a single point of the beam b(sb) (see Fig-
ure 4.3a). In consequence, s±r → sr and s±b → sb, which implies that t± → tbr, and the
temporal function reduces to W1D(t− tb) = δ(t), with δ(t) the Dirac delta function.
With that in place, we transform Jarosz et al. 1D estimate to

L1D
b (xr, ωr, t) = K1D(Rb)Φb fs(θb, t)µs

e−µtsb e−µtsr

sin θb
δ(t− tb), (4.17)

with K1D(Rb) a 1D kernel with radius Rb.

Implementation. Since photon beams correspond to full photon trajectories, they
allow us to estimate radiance at any position xb + sωb of the beam, and therefore at
any arbitrary time t(xb + sωb). As mentioned, one-dimensional radiance estimate
corresponds to a single time across the beam. In a traditional rendering process
where camera rays are traced through view-plane pixels against the beams map,
the temporal definition within a pixel will be proportional to the amount of samples
per pixel taken. Additionally, 2D blur requires distributing every radiance estimate
along a time interval, which reduces variance in the time dimension of a pixel at the
expense of introducing additional temporal bias.

Finally, note that the temporal footprint of the density estimation might be arbitrarily
small, so the probability of finding a beam b at a specific time might be very low. We
alleviate this issue using path reuse via density estimation [106]. In particular, for
the non-progressive results we use histogram temporal density estimation. With
this technique, the samples in the temporal domain are reused across all frames by
evaluating their contribution functions, which correspond to the temporal window
covered by each frame. In Section 4.5 we introduce temporal kernel-based density
estimation, and combine it with the spatial density estimation of the beam.

4.5 Progressive transient photon beams

By means of Equations (4.30) and (4.32) we have introduced temporal dependence
on the spatial density estimations that use 2D and 1D kernels, respectively. These
density estimations reduce variance at the expense of introducing bias in the results,
which means both Equations (4.8) and (4.29) will not converge to the correct solu-
tion, even with an infinite number of photons M. To avoid this, progressive density
estimation aims to provide a biased, yet consistent technique, that in the limit con-
verges to the expected value (in other words, the bias vanishes in the limit). The
key idea is to average several render passes with a finite number of photon random
walks M, progressively reducing the bias in each iteration while allowing variance
to slightly increase.
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4.5. Progressive transient photon beams

Algorithm 1 Pseudo-code of our progressive spatio-temporal density estimation.

Ln ← 0
Rb ← R0
T ← T0
for i ∈ [0..N) do

r ← traceRay()
B← beamsMap() (Eqs. (4.6), (4.7), (4.26)-(4.28))

Rb ← Rb

√
i+2/3

i+1 (Eq. (4.20), left)

T ← T
√

i+2/3
i+1 (Eq. (4.20), right)

Lb ← 0
for b ∈ B do

Lb ← Lb+ radiance(r, b, Rb, T ) (Eq. (4.18))
end for
Ln ← Ln + Lb

end for

In order to fully leverage a progressive approach, we propose to combine our time-
resolved spatial density estimations (Section 4.4) with additional temporal density es-
timations. While our time-resolved 2D spatial kernel implicitly performs a temporal
blur over the interval [t−, t+], it is coupled with the spatial blur. This does not allow
to choose its own initial kernel size for the temporal density estimation, which is a
desirable degree of freedom since the temporal resolution may not be proportional
to the spatial one. In contrast, our time-resolved 1D spatial kernel does not perform
a temporal blur, since the footprint is a single instant in time. As we show in the
remainder of this section, this allows us to perform additional progressive temporal
density estimations with an independent initial kernel size, while keeping the same
two-dimensionality (1D spatial and 1D temporal). In the following, we introduce
our spatio-temporal beam density estimation based on our time-resolved 1D kernel,
and then present our progressive approach.

Spatio-temporal beam estimation. Jarabo et al. [106] showed that progressive den-
sity estimations in the temporal domain can in fact improve the convergence rate for
transient rendering, in particular when compared with the histogram method used
in Section 4.4 for rendering the temporal domain. To combine such approach with
the (progressive) spatial density estimation in photon beams [110], we reformulate
the 1D kernel in Equation (4.32), by convolving it with a 1D temporal kernel KT (t)
so that

L1D
b (xr, ωr, t) = K1D(Rb)Φb fs(θb, t)µs

e−µtsb e−µtsr

sin θb
KT (t− tb). (4.18)

Progressive transient photon beams. We generalize the computation of L(xr, ωr, t)
(Equation (4.29)) using an iterative estimator, defined as

L(xr, ωr, t) ≈ L̂n(xr, ωr, t) =
1
n

n

∑
i=0

∑
b∈Bi

Lb(xr, ωr, t) (4.19)

with L̂n the estimate of L after n iterations, and Bi the set of photon beams in iteration
i. Note that the previous equation assumes that the camera ray r is the same for all
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Chapter 4. Progressive transient photon beams

iterations. That is not necessarily true (and in fact it is not) but for simplicity we
express this way.

The error of the estimate L̂n is defined by its bias and variance, which as shown in
Appendix 4.B is dependent on the bandwidth of the spatial and temporal kernels.
In particular, the variance of the error increases linearly with the bandwidth of the
kernels, while bias is reduced at the same rate. Then, on each iteration we reduce
the bias by allowing the variance to increase at a controlled rate of (i + 1)/(i + α),
with α ∈ [0, 1] being a parameter that controls how much the variance is allowed
to increase at each iteration. To achieve that reduction, on each iteration i + 1 we
reduce the footprint of kernels K1D and KT (Rb |j and Ti) by

Rb |i+1

Rb |i
=

(
i + α

i + 1

)βR

,
Ti+1

Ti
=

(
i + α

i + 1

)βT

, (4.20)

where βR and βT control the individual reduction ratio of each kernel, with βT =
1− βR. A pseudo code of the main steps of our progressive approach can be found
in Algorithm 1. In the following, we analyze the convergence rate of the method,
and compute the optimal values for the parameters α, βT and βR.

Convergence analysis. We analyze the convergence of the algorithm as a function
of the asymptotic mean squared error (AMSE) defined as

AMSE(L̂n) = Var[L̂n] + E[εn]
2, (4.21)

where Var[L̂n] is the variance of the estimate and E[εn] is the bias at iteration n. As
shown in Appendix 4.C, the variance converges with rate

Var[L̂n] ≈ O(n−1) + O(n−α) = O(n−α), (4.22)

while the bias converges with rate

E[εn] = O(n1−α)−2βT + O(n1−α)2βT −2. (4.23)

Plugging Equation (4.22) and (4.23) into Equation (4.21), we can model the AMSE as

AMSE(L̂n) = O(n−α) +
(

O(n1−α)−2βT + O(n1−α)2βT −2
)2

. (4.24)

Finally, by minimizing Equation (4.24) (see Appendix 4.D) we obtain the values for
optimal asymptotic convergence βT = 1/2 and α = 2/3, which by substitution
gives us the final asymptotic convergence rate of our progressive transient photon
beams

AMSE(L̂n) = O(n−
2
3 ). (4.25)

To generalize photon beams to the transient domain, we need to account for the
duration of light paths. This requires considering propagation and scattering de-
lays along the camera and light subpaths, but also the effect of time in the density
estimation connecting these two subpaths.

Creating the photon map. We compute the photon propagation as a standard ran-
dom walk through the scene, which can be modeled using the subpath formulation
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4.5. Progressive transient photon beams

defined by Jarabo et al. [106]. Let us define a light subpath x̄l = x0...xk−1, with k
vertices, where x0 is the light source. This light path defines k − 1 photon beams,
in which a beam bj is defined by its origin at xbj = xj and direction ωbj =

xj+1−xj
‖xj+1−xj‖ .

Using Jarabo’s definition of the path integral (and therefore of the contribution of
the subpaths), we compute the flux of each photon as:

Φbj =
f (x̄j, τ̄j)

Mp(x̄j, τ̄j)
=

Le(x0 → x1, τ0)T(x̄j, τ̄j)

M ∏
j
i=0 p(xi, τi)

, (4.26)

with x̄j the subpath of x̄l up the vertex j, f the subpath contribution function, τ̄j =
τ0...τj the sequence of time delays up to vertex j, M the number of photon random
walks sampled, Le(x0 → x1, τ0) the emission function, p(xi, τi) the probability den-
sity of sampling vertex xi with time delay τi. The throughput, T(x̄j, τ̄j), of subpath
(xi, τj) is defined as:

T(x̄j, τ̄j) =

[
j−1

∏
i=1

fs(xi, τj)

] [
j−1

∏
i=0

G(xi, xi+1)V(xi, xi+1)

]
, (4.27)

with fs(xi, τj) the scattering event at vertex xi with delay τj, and G(xi, xi+1) and
V(xi, xi+1) the geometry and visibility terms between vertices xi and xi+1, respec-
tively. Finally, for transient state we need to know the instant tbj at which the photon
beam is created (through emission or scattering), defined as:

tbj =
j−1

∑
i=0

τj +
j−1

∑
i=0

∆t(xi, xi+1). (4.28)

Rendering. For rendering, we adapt Equation (4.8) to account for the temporal
domain, as

L(xr, ωr, t) ≈ ∑
b∈Rb

Lb(xr, ωr, t), (4.29)

with Lb(xr, ωr, t) the radiance estimation for beam b to ray t at instant t. In essence,
Lb(xr, ωr, t) will return zero radiance if t is out of the temporal footprint of the den-
sity estimation kernel. Depending on the dimensionality of the density estimation,
Jarosz and colleagues [109] proposed three different estimators based on 3D, 2D and
1D kernels. Since the 3D kernel results impractical due to costly 3D convolutions, we
focus on 1D and 2D kernels (Equations (4.9) and (4.10)), and extend them to transient
state, assuming homogeneous media.

Kernel 2D We generalize Jarosz’s et al.’s 2D estimate L2D
b (Equation (4.10)) by in-

troducing a temporal function W(t) as

L2D
b (xr, ωr, t) =K2D(Rb)Φb fs(θb, t)µs

e−µt(s−r −s+r )(|cos θb|−1) − 1

e µt(s−r +s−b )µt(| cos θb| − 1)
W2D(t), (4.30)

where [s−r , s+r ] are the limits of the ray-beam intersection (Figure 4.3a), θb is the an-
gle between ωb and ωr, and K2D(Rb) is a canonical 2D kernel with radius Rb. The
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temporal function W2D(t) models the temporal footprint of the 2D kernel as

W2D(t) =

{
1

t+−t− if t ∈ (t−, t+)
0 otherwise

, (4.31)

where t− = tb + tr +
ηm
c (s−r + s−b ) and t+ = tb + tr +

ηm
c (s+r + s+b ), and tr and tb

are the initial times of the camera ray and beam, respectively. Note that due to
transmittance, the photon energy varies as it travels across the blur region. Evenly
distributing the integrated radiance Lb across this interval introduces temporal bias,
in addition to the inherent spatial bias introduced by density estimation. However
we observed this even distribution provides a good tradeoff between bias, variance,
and computational overhead.

Kernel 1D In the 1D kernel defined for density estimation by Jarosz et al. the spa-
tial blur is performed over a line. Therefore, the energy of the beam is just spread
on the ray on a single point at r(sr), from a single point of the beam b(sb) (see Fig-
ure 4.3a). In consequence, s±r → sr and s±b → sb, which implies that t± → tbr, and the
temporal function reduces to W1D(t− tb) = δ(t), with δ(t) the Dirac delta function.
With that in place, we transform Jarosz et al. 1D estimate to

L1D
b (xr, ωr, t) = K1D(Rb)Φb fs(θb, t)µs

e−µtsb e−µtsr

sin θb
δ(t− tb), (4.32)

with K1D(Rb) a 1D kernel with radius Rb.

Implementation Since photon beams correspond to full photon trajectories, they
allow us to estimate radiance at any position xb + sωb of the beam, and therefore at
any arbitrary time t(xb + sωb). As mentioned, one-dimensional radiance estimate
corresponds to a single time across the beam. In a traditional rendering process
where camera rays are traced through view-plane pixels against the beams map,
the temporal definition within a pixel will be proportional to the amount of samples
per pixel taken. Additionally, 2D blur requires distributing every radiance estimate
along a time interval, which reduces variance in the time dimension of a pixel at the
expense of introducing additional temporal bias.

Finally, note that the temporal footprint of the density estimation might be arbitrarily
small, so the probability of finding a beam b at an specific time might be very low.
We alleviate this issue using path reuse via density estimation [106]. In particular,
for the non-progressive results we use histogram temporal density estimation. In
this technique, the samples in the temporal domain are reused across all frames by
evaluating their contribution functions, which correspond to the temporal window
covered by each frame. In Section 4.5 we introduce temporal kernel-based density
estimation, and combine it with the spatial density estimation of the beam.

4.6 Results

In the following we illustrate the results of our proposed method in five scenes:
CORNELL SPHERES, MIRRORS, PUMPKIN, SOCCER [211], PUMPKIN, and JUICE. See
Figures 4.4, 4.1 (right), and 4.8 (left) for steady-state renders of the scenes. Results
of Figures 4.5 and 4.6 were taken on a desktop PC with Intel i7 and 4GB RAM using
a transient 2D kernel (Equation 4.30). Figures 4.1, 4.7, and 4.8 were rendered on an
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Cornell spheres Mirrors

Pumpkin

Figure 4.4: Steady-state
renders for the scenes
CORNELL SPHERES (Fig-
ure 4.5), MIRRORS (Fig-
ure 4.6), and PUMPKIN
(Figure 4.7).
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Figure 4.5: Comparison of CORNELL SPHERES scene using
camera-unwarping (top), where we do not take into account the
camera time, and real propagation of light (bottom). In the
bottom row the shape of the wavefront is altered by the cam-
era time, as if we were scanning the scene from the viewpoint
towards the furthest parts of the scene. Camera unwarping
on the other hand illustrates more intuitively how light propa-
gates locally.

Intel Xeon E5 with 256GB RAM, using our progressive spatio-temporal kernel den-
sity estimations (Section 4.5) derived from the transient spatial 1D kernel (Equation
4.32). In each iteration, we use a fixed radius for our spatio-temporal density estima-
tors (instead of using a nearest neighbor approach). Please refer to the supplemental
video for the full sequences of all the scenes.

Figure 4.5 shows a Cornell box filled with a scattering medium, and demonstrates
the effect of camera unwarping [225] when rendering. Camera unwarping is an intu-
itive way of visualizing how light propagates locally on the scene without accounting
for the time light takes to reach the camera. The scene consists of a diffuse Cornell
box with a point light on the top, a glass refractive sphere (top, IOR = 1.5) and a
mirror sphere (bottom). While Figure 4.5b shows the real propagation of light—
including camera time—, Figure 4.5a depicts more intuitively how light comes out
from the point light, travels through the refractive sphere, and the generated caustic
bounces on the mirror sphere. Note how in the top sequence we can clearly see how
light is slowed down through the glass sphere due to the higher index of refraction.
We can also observe multiple scattered light (particularly noticeable in frames t=4ns
and t=6ns) as a secondary wavefront.

Figure 4.6 compares visualizations of light propagation within the MIRRORS scene
using Heaviside and Dirac delta light emission. The scene is composed by two col-
ored mirrors and a glass sphere with IOR = 1.5, and was rendered using the previ-
ously mentioned camera unwarping. We can observe how delta emission generates
wavefronts that go through the ball and bounce in the mirrors, creating wavefront
holes where constant emission creates medium shadows. In the last frame of the top
row Delta emission clearly depicts the slowed down caustic through the glass ball
respect to the main wavefront.

Our progressive method combines time-resolved 1D spatial kernels of photon beams
and temporal density estimations, reducing bias while providing consistent solu-
tions in the limit with an optimal convergence rate of O(n−

2
3 ). In Figure 4.7 we ana-

lyze its convergence with respect to progressive transient path tracing with tempo-
ral KDE [106] (PTPT). In the middle graph we show the temporal profile on a single

71



Chapter 4. Progressive transient photon beams

D
ira

c 
de

lta
em

is
ss

io
n

C
on

tin
uo

us
em

is
ss

io
n

Time

Figure 4.6: Comparison between Dirac delta (top) and continuous (Heaviside) emission (bot-
tom). Dirac delta emission lets us see how a pulse of light travels and scatters across the
scene, depicting the light wavefronts bouncing on the mirrors and going through the glass
ball. Continuous emission shows how light is emitted until it reaches every point in the
scene, as if we were taking a picture with a camera at very slow-motion.
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Figure 4.7: The PUMPKIN scene shows a jack o’lantern embedding a point light that creates
hard shadows through the holes. The left frames show a sequence of the time-resolved ren-
ders after 4096 iterations of our algorithm (10k beams / iteration), and temporal KDE on a
progressive transient path tracer (PTPT, 16spp / iteration) [106]. The middle plot compares
the whole temporal footprint at the pink marker. Reference solution (dark grey) was ob-
tained with a transient path tracer (no KDE) using 64M samples per pixel. Right plot shows
MSE convergence with respect to the number of progressive iterations (in log-log scale), at 1
minute/iteration on each algorithm. As expected, the convergence of our method (O(n−

2
3 ))

is slower than PTPT (O(n−
4
5 )) ; however, as shown in the equal-time comparison, our algo-

rithm presents better temporal behavior with much less variance on later timings.

pixel for both our algorithm and PTPT after 4096 equal-time iterations, where both
algorithms converge to the reference solution taken with transient path tracing (no
temporal KDE) with 64 million samples. While PTPT presents faster convergence
(see Figure 4.7, right graph), our algorithm presents a better behavior over time
where variance increases due to the lack of samples (center graph). Additionally,
it requires much fewer iterations than PTPT to achieve a similar MSE (see log-log
right graph).

In Figure 4.1 we show a more complex scenario, with different caustics rendered,
with our progressive algorithm. It contains a smooth dielectric figurine with dif-
ferent transmission albedos placed within a participating medium with an isotropic
phase function. Our method is capable of handling complex caustics transmitted
from light sources through the player, and then through the ball. Our algorithm
progressively reduces bias and variance to provide a consistent solution.

Finally in Figure 4.8 we illustrate a setup combining different media properties, and
specular refractive and reflective materials. The liquid has a very forward phase
function, making the light first travel through the direction of the stream (t = 4.6
ns), and then going through the liquid inside the glass (t = 5.1ns to t = 6.3ns).
The mirror surface makes the light to bounce back to the surrounding medium as a
caustic through the water spills and ice cubes at t = 5.1ns and t = 6.6ns. Note that
these are not fully observable in the steady-state render (left) due to the accumulated
radiance from the surrounding medium and the adjusted exposure of the image.
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t=4.6ns t=5.1ns t=5.3ns t=5.5ns

t=6.1ns t=6.3ns t=6.6nst=5.9ns +2 EV +2 EV +2 EV +2 EVSteady state

t=4.6ns t=5.1ns t=5.3ns t=5.5ns

t=6.1ns t=6.3ns t=6.6nst=5.9ns +2 EV +2 EV +2 EV +2 EVSteady state

Figure 4.8: We illustrate the potential of our method in the JUICE scene [17], which presents
a scene very difficult to render for path tracing methods, but well-handled by photon-based
methods. The scene is filled by a thin participating medium, while the glass contains ruby
grapefruit juice as measured by Narasimhan et al. [159]. The highly forward phase function
of the juice, as well as the delta interactions on the glass, ice cubes, and the mirror floor
surface, generate complex caustic patterns which our method is able to simulate in transient
state. Bottom row has increased exposure respect to top row to show the radiance at later
timings.

4.7 Conclusions

In this chapter we have presented a robust progressive method for efficiently render-
ing transient light transport with consistent results. We derived our method based
on progressive photon beams [110], extending its density estimators to account for
light time-of-flight, and deriving a new progressive scheme. We then compute the
convergence of the method, and derive the parameters for optimal asymptotic con-
vergence. Our results demonstrate that combining continuous photon trajectories in
transient state and our optimal spatio-temporal convergence rates allow to robustly
compute a noise-free solutions to the time-resolved RTE for complex light paths.
We believe that out work might be very useful for developing new techniques for
transient imaging and reconstruction in media, as well as to obtain new insights on
time-resolved light transport.

As future work it would be interesting to analyze more thoroughly the optimal per-
formance and kernels for variance reduction and bias impact in transient state, un-
der varying media characteristics. In addition, extending our method to leverage
recent advances in media transport, such as transient-state adaptations of higher-
dimensional photon estimators [19] as well as hybrid techniques [131], could im-
prove performance of time-resolved rendering for a general set of geometries and
media characteristics.
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4.A Error in transient progressive photon beams

Here we analyze the consistency of the transient progressive photon beams algo-
rithm described in Section 4.5. For our analysis on the error of the estimate, we use
the asymptotic mean squared error (AMSE) defined as

AMSE(L̂n) = Var[L̂n] + E[εn]
2, (4.33)

where Var[L̂n] is the variance of the estimate and E[εn] is the bias at iteration n. We
model Var[L̂n] as [127]

Var[L̂n] =
1
n

Var[Ψ L] +
1
n2

n

∑
j=1

Var[Ψ εj], (4.34)

where Ψ is the contribution of the eye ray, and εj is the bias for iteration j. The first
term is the standard variance of the Monte Carlo estimate, which is unaffected by
the kernel. The second term, on the other hand, is the variance of the error, and
is dependent on density estimation. On the other hand, the estimated value of the
error (bias) E[L̂n] is defined as

E[L̂n] = L + E[Ψ]E[εn], (4.35)

where E[εn] is the bias of the estimator after n steps:

E[εn] =
1
n

n

∑
j=1

E[εj], (4.36)

with E[εj] the expected error at iteration j. In the following, we first derive the vari-
ance and expected value of the error for a single iteration. Then, we analyze the
asymptotic behavior of the these terms, and compute the values for optimal conver-
gence for βT , βR and α.

4.B Variance and expected value of the error of the time-resolved
beam radiance estimate

We first analyze the variance and expected value of the error (bias) introduced by
the radiance estimate at each iteration. Let us first define the error in each iteration
as:

ε = L̂n(xr, ωr, t)− L(xr, ωr, t)

=
M

∑
i=1

K1D(Rb)KT (t− ti)Φi − L(xr, ωr, t). (4.37)

Variance. We first define the variance of the error Var[ε] as (in the following, we
omit dependences for clarity):

Var[ε] = Var[
M

∑
i=1

K1DKT Φ− L] (4.38)

= (Var[K1D] + E[K1D]
2)(Var[KT ] + E[KT ]2)

(Var[Φ] + E[Φ]2)− E[K1D]
2E[KT ]2E[Φ]2,
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4.B. Variance and expected value of the error of the time-resolved beam radiance
estimate

In order to compute the variance of the error Var[ε] we need to make a set of assump-
tions: First, we assume that the beams’ probability density is constant within the
kernel K1D in the spatial domain [110], and within KT in the temporal domain [106].
We denote these probabilities as pRb and pT respectively. We also assume that the
distance between view ray and photon beam, time tb and beams’ energy Φi are in-
dependent samples of the random variables D, T and Φ, respectively, which are
mutually independent. Finally, we assume that D and T have probability densities
pRb and pT .

With these assumptions, and taking into account that E[K1D] = pRb and E[KT ] = pT ,
we can model the the variance introduced by the temporal kernel Var[KT ] as [106]

Var[KT ] =
pT
T

∫
R

kT (ψ)2 dψ− p2
T , (4.39)

where we express KT as a canonical kernel kT with unit integral such that KT (ξ) =
kT (ξ/T )T −1. Analogously, Var[K1D] is, by [110],

Var[K1D] =
pRb

Rb

∫
R

k1D(ψ)
2 dψ− p2

Rb
. (4.40)

This allow us to express the variance of the error Var[ε] as:

Var[ε] ≈
(
Var[Φ] + E[Φ]2

) ( pRb

Rb
C1D

)( pT
T CT

)
, (4.41)

where C1D and CT are kernel-dependent constants. The last term can be neglected
by assuming that the kernels cover small areas in their respective domains, which
effectively means that C1D � pRb and CT � pT . Equation (4.41) shows that for
transient density estimation, the variance Var[ε] is inversely proportional to RbT .

Bias. Bias at each iteration j is defined as the expected value of the error E[εj] as

E[εj] = E[
M

∑
i=1

K1D KT Φ− L]

= E[K1D] E[KT ] E[Φ]− L.

Using a second-order expansion of pT and pRb , instead of the zeroth-order used
when modeling variance, we can express the expected value of KT as [106]

E[KT ] ≈ pT + T 2
∫

R
kT (ψ)O(‖ψ‖2)dψ = pT + T 2C ii

T ,

(4.42)

while the expected value of K1D is, by [110],

E[K1D] ≈ pRb + Rb

∫
R2

k1D(ψ)O(‖ψ‖2)dψ = pRb + RbC ii
1D,

(4.43)

where C ii
T and C ii

1D are constants dependent on the higher-order derivatives of the
spatio-temporal light distribution. Using (4.42) and (4.43), and L = pRb pT E[Φ] we
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finally compute E[εj] for iteration j as

E[εj] ≈ (pRb + Rb
2C ii

1D)(pT + T 2C ii
T )E[Φ]− pRb pT E[Φ]

= E[Φ](pRbT
2C ii
T + pT Rb

2C ii
1D + T 2C ii

T Rb
2C ii

1D). (4.44)

4.C Convergence analysis of progressive transient photon beams

Based on the expressions for Var[ε] and E[εj] defined above (Equations (4.41) and
(4.44)), we can know derive the asymptotic behaviour of Equation (4.21). For that,
we will compute the variance Var[L̂n] and bias E[εn] after n iterations.

Variance. Assuming that the random variables Ψ and εj are independent, we model
the variance of the estimator Var[L̂n] in Equation (4.34) as [127],

Var[L̂n] =
1
n

Var[ΨL] +
1
n2

n

∑
j=1

Var[Ψεj] (4.45)

=
1
n

Var[ΨL] + Var[Ψ]
1
n2

n

∑
j=1

Var[εj] +

E[Ψ]2
1
n2

n

∑
j=1

Var[εj] + Var[Ψ]
1
n2

n

∑
j=1

E[εj]
2.

Following [118], we can approximate Var[εn] as a function of the variance at the first
iteration Var[ε1] as:

Var[εn] ≈
Var[ε1]

(2− α)nα
= O(n−α). (4.46)

Finally, by applying Var[εn] and asypmtotic simplifications, we can formulate Var[L̂n] (4.46)
as

Var[L̂n] ≈
1
n

Var[ΨL] + E[Ψ]2Var[εn]

≈ 1
n

Var[ΨL] +
Var[ε1]

(2− α)nα

= O(n−1) + O(n−α) = O(n−α). (4.47)

Bias. The expected value of the error E[εn] is modeled in Equation (4.35) as a func-
tion of the averaged bias introduced at each iteration E[εj] (4.44). Computing the
kernels’ bandwidth Tj and Rb j at iteration j by expanding Equation (4.20) as a func-
tion of their initial value by we get

Tj = T1(j α B(α, j))−βT , (4.48)

Rb j = Rb1(j α B(α, j))−βRb , (4.49)
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where B(x, y) is the Beta function. Using (4.48) and (4.49) in Equation (4.44) we can
express E[εj] as a function of the initial kernel bandwidths

E[εj] = E[Φ]pRbC
ii
T T 2

1 Θ(j1−α)−2βT

+E[Φ]pT C ii
1DRb

2
1Θ(j1−α)−2βRb

+E[Φ]C ii
T C ii

1DT 2
1 Rb

2
1Θ(j1−α)−2(βT +βRb). (4.50)

Finally, we use ∑n
j=1 Θ(jx) = n O(nx) to plug Equation (4.50) into Equation (4.36) to

get the asymptotic behavior of E[εn] in transient progressive photon beams as

E[εn] = O(n1−α)−2βT + O(n1−α)−2βRb + O(n1−α)−2(βT +βRb),

which, by using the equality βRb = 1− βT , becomes

E[εn] = O(n1−α)−2βT + O(n1−α)2βT −2 + O(n1−α)−2

= O(n1−α)−2βT + O(n1−α)2βT −2. (4.51)

4.D Minimizing Asymptotic Mean Squared Error

Using the asymptotic expression for variance and bias in Equations (4.47) and (4.51),
we can express the AMSE (4.21) as

AMSE(L̂n) = O(n−α) +
(

O(n1−α)−2βT + O(n1−α)2βT −2
)2

.

(4.52)

which is a function of the parameters α and βT . Given that the variance is indepen-
dent of βT , we first obtain the optimal value for this parameter that yields the highest
convergence rate of the bias E[εn]. We differenciate Equation (4.51), apply asymp-
totic simplifications and equating to zero, we obtain the optimal value βT = 1/2. By
plugging this value in Equation (4.52), we obtain

AMSE(L̂n) = O(n−α) + O(n−2(1−α)). (4.53)

Finally, by finding the minimum again with respect to α we get the optimal param-
eter α = 2/3, which results in the optimal convergence rate of the AMSE for our
transient progressive photon beams as

AMSE(L̂n) = O(n−
2
3 ) + O(n−2(1− 2

3 )) = O(n−
2
3 ). (4.54)
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Chapter 5

Non-line-of-sight imaging using
Phasor Fields

This chapter introduces a new method for visualizing scenes which are outside the
direct line of sight of the observer, which is performed using transient information
captured using ultrafast imaging devices [40]. We introduce a new method based on
virtual wave optics, which converts a delta laser pulse propagated across the hid-
den scene using secondary visible surfaces into a computationally modulated sig-
nal, which then can be computationally focused into a virtual image of the hidden
scene. Compared with previous work, our method makes just the bare minimum as-
sumptions about light transport in the hidden scene, recovers a considerable amount
of detail, and it’s robust to noise and other capture artifacts. We provide both the
theoretical foundations of our technique, and empirical results generated from real
transient captures and simulations.

The project was done in collaboration with our colleagues at the Computational Op-
tics Group in the University of Wisconsin-Madison, Madison, which developed the
initial idea and were in charge of capturing real scenes. My role as the second au-
thor of this project focused on improving the implementation of the computational
camera systems, and generating the visualizations of the scene reconstructions that
are present across the chapter. Our group was also in charge of generating transient
simulations, as those present in Section 5.E.3 and Section 5.E.4, which were used as
a testbed to validate both the method and the capture system.

This work was originally published in Nature, and presented at the 29th Congreso
Español de Informática Gráfica (CEIG 2019). An extension of this work was pre-
sented at the 45th International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP 2020).

Non-line-of-sight imaging using phasor-field virtual wave optics
Xiaochun Liu, Ibón Guillén, Marco La Manna, Ji Hyun Nam, Syed Azer Reza,
Toan Huu Le, Diego Gutierrez, Adrian Jarabo & Andreas Velten
Nature, Vol. 572, 2019

On the effect of reflectance on phasor field non-line-of-sight imaging
Ibón Guillén, Xiaochun Liu, Andreas Velten, Diego Gutierrez & Adrian Jarabo
Proceedings of the 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing
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Chapter 5. Non-line-of-sight imaging using Phasor Fields

5.1 Introduction

Non-Line-of-Sight (NLOS) imaging allows to observe objects partially or fully oc-
cluded from direct view, by analyzing indirect diffuse reflections off a secondary,
relay surface. Despite its many potential applications [7; 30; 80; 92; 119; 125; 135;
164; 224], existing methods lack practical usability due to several shared limitations,
including the assumption of single scattering only, lack of occlusions, and diffuse
reflectance. Line of sight imaging systems, on the other hand, can address these and
other imaging challenges despite relying on the mathematically simple processes of
linear diffractive wave propagation. In this work we show that the NLOS imaging
problem can also be formulated as a diffractive wave propagation problem. This
allows to image NLOS scenes from raw time of flight data by applying the mathe-
matical operators that model wave propagation inside a conventional line of sight
(LOS) imaging system. By doing this, we have developed a method that yields a
new class of reconstruction algorithms mimicking the various capabilities of LOS
cameras. To demonstrate our method, we derive three imaging algorithms, each
with its own unique novel capabilities, modeled after three different LOS imaging
systems. These algorithms rely on solving wave diffraction integrals, namely the
Rayleigh-Sommerfeld Diffraction (RSD) integral. Fast solutions to RSD and its ap-
proximations are readily available, directly benefiting our method. We demonstrate
for the first time NLOS reconstruction of complex scenes with strong multiple scat-
tering and ambient light, arbitrary materials, large depth range, and occlusions. Our
method handles these challenging cases without explicitly developing a light trans-
port model. We believe that our approach will help unlock the potential of NLOS
imaging, and the development of novel applications not restricted to lab conditions,
as shown in our results.

5.2 Related work

We have recently witnessed large advances in transient imaging techniques [107],
employing streak cameras [225], gated sensors [135], amplitude-modulated continu-
ous waves [79], single-photon detectors (SPAD) [162], or interferometry [67]. Access
to time-resolved image information has in turn led to advances in imaging of objects
partially or fully hidden from direct view (NLOS imaging) [30; 80; 92; 125; 135; 139;
221; 224; 239; 241]. Other methods are able to use information encoded in the phase
of continuous light and do not use time of flight [119]. In the basic configuration
of an NLOS system, light bounces off a relay wall, travels to the hidden scene, then
propagates back to the relay wall, and finally reaches the sensor.

Recent NLOS reconstruction methods are based on heuristic filtered backprojec-
tion [30; 80; 134; 135; 224], or attempt to compute inverse operators of simplified
forward light transport models [91; 92; 164]. These simplified models do not take
into account multiple scattering, surfaces with anisotropic reflectance or, with a few
exceptions [91], occlusions and clutter. Moreover, the depth range that can be re-
covered is also limited, partially due to the difference in intensity between first- and
higher-order reflections. Existing methods are thus limited to carefully controlled
cases, imaging isolated objects of simple geometry with moderate or no occlusion.
Moreover, while the goal of previous works is limited to the reconstruction of hid-
den geometry, we develop a novel theoretical framework for general NLOS imaging,
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5.3. Phasor Fields in non-line-of-sight imaging

laser camera

P C

virtual 
aperture

virtual 
projector

virtual
sensor

virtual
lens

A
m

p
lit

u
d
e

Time

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

Time

ΔcΔpa b c d e

Time

Figure 5.1: NLOS as a virtual LOS imaging system. Capturing scene data: a, A pulsed laser
sequentially scans a relay wall; b, the light reflected back from the scene onto the wall is
recorded at the sensor yielding an impulse response H of the scene. c, Virtual light source:
The phasor field wave of a virtual light source P(xp, t) is modeled after the wavefront of the
light source of the template LOS system. d, The scene response to this virtual illumination
P(xc, t) is computed using H. e, The scene is reconstructed from the wavefrontP(xc, t) using
wave diffraction theory. The function Φ(·) is also taken from the template LOS system.

reconstructing the irradiance at a virtual sensor; this enables applications beyond ge-
ometry reconstruction, as we demonstrate in this work. Our data and reconstruction
code can be found in a figshare repository [141].

5.3 Phasor Fields in non-line-of-sight imaging

Time-of-flight LOS imaging has used a phasor formalism together with Fourier do-
main ranging [79] to describe the emitted modulated light signal. Kadambi et al.
[116] extended this concept to reconstruct NLOS scenes using phasors to describe
hardware intensity modulation. We show that a similar description can be used
to model the physics of light transport through the scene. The key insight of our
method is that propagation through a scene of intensity-modulated light can be
modeled using a Rayleigh-Sommerfeld diffraction (RSD) operator acting on a quan-
tity we term the phasor field. This allows us to formulate any NLOS imaging problem
as a wave imaging problem (Figure 5.1), and to transfer well-established insights
and techniques from classic optics into the NLOS domain. Given a captured time-
resolved dataset of light transport through a NLOS scene, and a choice of a template
LOS imaging system, our method provides a recipe that results in a NLOS imaging
algorithm mimicking the capabilities of the corresponding LOS system. This tem-
plate system can be any real or hypothetical wave imaging system that includes a
set of light sources and detectors. The resulting algorithms can then be efficiently
solved using diffraction integrals like the RSD, for which a variety of fast exact and
approximate solvers exist [194].

We start by mathematically defining our phasor field P(~x, t). Let E(x, t) [
√

Wm−2]
be a quasi-monochromatic scalar field at position x ∈ S and time t, incident on (or
reflected from) a Lambertian surface S , with center frequency Ω0 and bandwidth
∆Ω� Ω0. We can then define

P(x, t) ≡
〈

1
τ

∫ t+τ/2

t−τ/2

∣∣E(x, t′)
∣∣2 dt′

〉
−
〈

1
T

∫ t+T/2

t−T/2

∣∣E(x, t′)
∣∣2 dt′

〉
(5.1)

as the mean subtracted irradiance [Wm−2] at point x and time t. The 〈·〉 operator
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denotes spatial speckle averaging (for the reflected case) accounting for laser illu-
mination, and τ represents the averaging of the intensity at a fast detector, with
τ � 1/∆Ω � T. The second integral in the equation above is a long-term average
intensity over an interval T � τ of the signal as seen by a conventional non-transient
photodetector. Now, let us define the Fourier component of P(x, t) for frequency ω
as

P0,ω(x) ≡
∫ +∞

−∞
P(x, t) e−iωtdt, (5.2)

from which we can define a monochromatic component of the phasor field Pω(x, t)
as

Pω(x, t) ≡ P0,ω(x) eiωt. (5.3)

Using the above, our phasor field P(x, t) can be expressed as a superposition of
monochromatic plane waves asP(x, t) =

∫ +∞
−∞ Pω(x, t) dω/2π. SinceP(x, t) is a real

quantity, the Fourier components P0,ω(x) are complex and symmetric about ω = 0.
Note that in many places of this manuscript we assign P(x, t) an explicitly complex
value; in these cases it is implied that the correct real representation is 1

2 (P(x, t) +
P∗(x, t)). In practice the complex conjugate can be safely ignored in our calculations.
As can be seen in Appendix 5.A, given an isotropic source plane S and a destination
plane D, and assuming that the electric field at S is incoherent, the propagation of its
monochromatic component Pω(x, t) is defined by an RSD-like propagation integral

Pω(xd, t) = γ
∫

S
Pω(xs, t)

eik|xd−xs|

|xd − xs|
dxs, (5.4)

where γ is an attenuation factor, and k = 2π/λ is the wave number for wavelength
λ = 2π/ω, xs ∈ S and xd ∈ D. Note that, as described in Appendix 5.A, we approx-
imate γ as a constant over the plane S as γ ≈ 1/| 〈S〉 − xd|; this approximation has
a minor effect on the signal amplitude at the sensor, but does not change the phase
of our phasor field. While Equation (5.4) is defined for monochromatic signals, it
can be used to propagate broadband signals by propagating each monochromatic
component independently; this can be efficiently done by time-shifting the phasor
field (more details provided in Appendix 5.A.1).

The key insight of Equation (5.4) is that, given the assumption of constant γ, the
propagation of our phasor field is defined by the same RSD operator as any other
physical wave. Therefore, in order to image a scene from a virtual camera with aper-
ture at plane C, we can apply the image formation model of any wave-based LOS
imaging system directly over the phasor field P(xc, t) at the aperture, with xc ∈ C.
The challenge is how to compute P(xc, t) from an illuminating input phasor field
P(xp, t), where xp is a point in the virtual projector aperture P, given a particular
NLOS scene the one shown in Figure 5.1.

Since light transport is linear in space and time-invariant [163; 191], we can char-
acterize light transport through the scene as an impulse response function H(xp →
xc, t), where xp and xc are the positions of the emitter and detector, respectively. The
phasor field at the virtual aperture P(xc, t) can thus be expressed as a function of the
input phasor field P(xp, t) and H(xp → xc, t) as

P(xc, t) =
∫

P

[
P(xp, t) ? H(xp → xc, t)

]
dxp, (5.5)

where ? denotes the convolution operator. Any imaging system can be characterized
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Figure 5.2: Reconstructions of a complex NLOS scene. a, Photograph of the scene as seen
from the relay wall. The scene contains occluding geometries, multiple anisotropic surface
reflectances, large depth, and strong ambient and multiply scattered light. b, 3D visualiza-
tion of the reconstruction using phasor fields (λ = 6 cm). We include the relay wall location
and the coverage of the virtual aperture for illustration purposes. c, Frontal view of the
scene, captured with an exposure time of 10 ms per laser position. d, Frontal view captured
with just a 1 ms exposure time (24 seconds for the complete scan).

by its image formation function Φ(·), which transduces the incoming field into an
image

I(xv) = Φ (P (xc, t)) , (5.6)

where xv is the point being imaged (i.e., the point at the virtual sensor). This in turn
can be formulated as an RSD propagator, requiring to solve a diffraction integral in
order to generate the final image.

In an NLOS scenario, H(xp → xc, t) usually corresponds to 5D transients acquired
via an ultrafast sensor focused on xc, and sequentially illuminating the relay wall
with short pulses at different points xp as seen in Figure 5.1, and detailed in Ap-
pendix 5.D. Points xp and xc correspond to a virtual LOS imaging system projected
onto the relay wall. Once H(xp → xc, t) has been captured, both the wavefront
P(xp, t) and the imaging operator Φ(·) can be implemented computationally, so
they are not bounded by hardware limitations. We can leverage this to employ dif-
ferent P(xp, t) functions from any existing LOS imaging system [70] to emulate its
characteristics in an NLOS setting.

5.4 Results

We illustrate the robustness and versatility of our method by implementing three
virtual NLOS imaging systems based on common LOS techniques: a conventional
photography camera capable of imaging NLOS scenes without knowledge of the
timing or location of the illumination source; a transient photography system capa-
ble of capturing transient videos of the hidden scene revealing higher-order inter-
reflections beyond 3rd bounce; and a confocal time-gated imaging system robust to
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Figure 5.3: Robustness of our technique. a, Reconstruction in the presence of strong ambi-
ent illumination (all the lights on during capture). b, Hidden scene with a large depth range,
leading to very weak signals from objects farther away.

interreflections. An in-depth description of these example imaging systems is pro-
vided in Appendix 5.B, including their corresponding P(xp, t) functions and imag-
ing operators Φ(·), while Appendix 5.C describes some practical solver examples.

The spatial resolution of our virtual camera is ∆x = 0.61λL/d, where d is the virtual
aperture diameter, and L is the imaging distance (more details in Appendix 5.E.1).
The distance ∆p between sample points xp in P (see Figure 5.1) has to be small
enough to sample H at the phasor field wavelength. We fix ∆p = 1 cm, and unless
stated otherwise λ = 4 cm. The minimum sampling rate is ∆p < λ/2; in practice
we found ∆p = λ/4 to provide the best trade-off between reconstruction noise and
resolution.

The computational cost of our algorithm is bounded by the RSD solver computing
the image formation model Φ(·). Fast diffraction integral solvers exist [194], with
complexity O(N3 log(N)). For the particular case of our confocal system, we formu-
late the algorithm as a backprojection, as detailed in Appendix 5.C.2 for details, so
we are bounded by the computational cost of the backprojection algorithm used.

One common application of NLOS imaging is the reconstruction of hidden geome-
try. Figure 5.2 shows the result on a complex scene with our virtual confocal camera.
The scene contains multiple objects with occlusions distributed over a large depth, a
wide range of surface reflectances and albedos, and strong interreflections. Despite
this challenging scenario, our method is able to image many details of the scene, at
the correct depths, even with an ultra-short, 1 ms exposure. More analysis on the ro-
bustness of our method to capture noise can be found in Appendix 5.E.2. For simpler
scenes (no occlusions, limited depth, controlled reflectance, and no interreflections),
our method yields results on par with current techniques, which already approach
theoretical limits regarding reconstruction quality, as explained in Appendix 5.D.

In Figure 5.3 we demonstrate the robustness of our method when dealing with other
challenging scenarios, including strong multiple scattering and ambient illumina-
tion (5.3.a), or a high dynamic range from objects spanning very large depths range
(5.3.b). Last, our method also allows to implement novel NLOS imaging systems and
applications, leveraging the wealth of tools and processing methods available in LOS
imaging. Figure 5.4(top) demonstrates NLOS refocusing using our virtual photogra-
phy camera, computed with both the exact RSD operator and using a faster Fresnel
approximation, while the bottom row shows frames of NLOS femto-photography
reconstructed using our virtual transient photography system, revealing 4th and 5th
bounce components in the scene. The first, second and fourth frames, in green, show
how light first illuminates the chair, then propagates to the shelf, and finally hits the
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Figure 5.4: Additional novel NLOS imaging applications of our method. (Top) NLOS re-
focusing: The hidden letters (left) are progressively brought in and out of focus as seen from
a virtual photography camera at the relay wall, using the exact lens integral (blue), and the
faster Fresnel approximation (red). (Bottom) NLOS transient video: Example frames of light
traveling through a hidden office scene when illuminated by a pulsed laser. Timestamps
indicate the propagation time from the relay wall. Frames with a green border show third
bounce objects, frames on orange show 4th and 5th bounce effects.

back wall three meters away. The frames in orange show higher order bounces. The
third frame shows the chair being illuminated again by light bouncing back from the
relay wall, while the last two frames show how the pulse of light travels from the
wall back to the scene (see the supplementary video). A description of the Fresnel
approximation to the RSD operator, as well as the LOS projector-camera functions
used in these examples, appear in Appendices 5.C.1 and 5.B.2.

In the Appendix 5.E.3, we include comparisons against ground truth for two syn-
thetic scenes, inside a corridor of 2 m x 2 m x 3 m to create interreflections, sim-
ulated using an open source transient renderer [106]; these scenes are included in
a publicly available database [63]. We analyze the robustness of our method with
and without such interreflections; the reconstruction mean square error does not
increase, remaining below 5 mm. Last, in Appendix 5.E.4 we progressively vary
the specularity of the hidden geometry, from purely Lambertian to highly specular;
again, the quality of the reconstructions does not vary significantly (mean square
error of about 2 mm).

The examples shown highlight the primary benefit of our approach: By turning
NLOS into a virtual LOS system, the intrinsic limitations of previous approaches
no longer apply, enabling a new class of NLOS imaging methods that leverage exist-
ing wave-based imaging methods. Formulating NLOS light propagation as a wave
does not impose limitations on the types of problems that can be addressed, nor the
datasets that can be used. Any signal can be represented as a superposition of pha-
sor field waves; our formulation thus can be viewed as a choice of basis to represent
any kind of NLOS data. Expressing the NLOS problem this way allows to create a
direct analogy to LOS imaging, which can be exploited to derive suitable imaging
algorithms, and to implement them efficiently.

5.5 Conclusions

We have shown three novel imaging algorithms derived from our method. Our
results include significantly more complex scenes than any NLOS reconstruction
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shown so far in the literature, as well as novel applications. In addition, our ap-
proach is flexible, fast, memory-efficient, and lacks computational complexity since
it does not require inverting a light transport model. In the future, we anticipate its
application to other LOS imaging systems to, for instance, separate light transport
into direct and global components, or utilize the phase of Pω for enhanced depth
resolution. Our virtual imaging system could also be used to create a second virtual
imaging system to see around two corners, assuming the presence of a secondary
relay Lambertian surface in the hidden scene, or to select and manipulate individual
light paths to isolate specific aspects of the light transport in different NLOS scenes.
In that context, combining our theory with light transport inversions, via, e.g., an
iterative approach, could potentially lead to better results, and is an interesting av-
enue of future work.
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5.A. Phasor Field propagation

5.A Phasor Field propagation

Here we derive the Rayleigh-Sommerfeld diffraction (RSD) integral for the phasor
field. Consider a point light source at a location xs that emits light with a sinusoidal
time-varying irradiance L(x, t) = Re[L0 (e−iωt + 1)] with amplitude L0 and modula-
tion frequency ω. More formally, L(t) and L0 relate with the electromagnetic field
E(x, t) by

L(x, t) =
〈

1
τ

∫ t+τ/2

t−τ/2
|E(x, t′)|2 dt′

〉
and L0(x) = lim

T→∞

1
T

∫ +T/2

−T/2
|E(x, t)|2 dt,

with τ a sufficiently small value. The operator 〈·〉 is the spatial averaging operator
that takes into account multiple possible measurements for e.g. removing the effect
of laser’s speckle.

We define the real-valued phasor field P(x, t) at a point in space as

P(x, t) = L(x, t)− L0(x). (5.7)

Since L(x, t) is modulated with a single frequency ω, this allows us to consider
P(xs, t) as a monochromatic phasor field wave Pω emitted from a point light source
at location xs, with amplitude P0,ω(xs) and oscillating at a frequency ω:

P(xs, t) = Pω(xs, t) = P0,ω(xs)eiωt. (5.8)

In the following, wherever we write an explicitly complex expression for P(xs, t), it
is implied that the actual real phasor field is 1

2 (P(xs, t) + P∗(xs, t)). In practice we
can safely ignore the complex conjugate component in all our computations. Note
that the constant L0(x) term is only necessary to link the phasor field wave to a mea-
surable physical quantity, since real intensities cannot be negative. We can think of
it as the monochromatic wave component at frequency ω = 0. Since our propagator
is linear and does not mix different frequency components it can safely be ignored
as it can only create zero-frequency contributions.

To determine the light intensity and thereby the phasor field at any point in space
and time (xd, t) we have to account for the travel time from xs to xd, defined as tp =
|xd − xs|/c, with c the propagation speed, and the radial drop-off in light intensity:

Pω(xd, t) = P0,ω(xs)
eiω(t+tp)

|xd − xs|2
= P0,ω(xs)

eiω(t+|xd−xs|/c)

|xd − xs|2
= P0,ω(xs)

eiωt+ik|xd−xs|

|xd − xs|2
,

where k = 2π/λ is the wave number at the modulation wavelength, λ. If instead of
a single light source we have a collection of incoherent sources comprising a surface
S, we have

Pω(xd, t) =
∫

S
P0,ω(xs)

eiωt+ik|xs−xd|

|xs − xd|2
dxs. (5.9)

This equation looks like the Rayleigh-Sommerfeld propagator, except for the squared
denominator, and the missing 1/iλ. The 1/iλ term is a global constant that does not
qualitatively affect our propagator. We approximate |xs − xd|2 ≈ |xs − xd|| 〈S〉 − xd|
where 〈S〉 is the average position of all source points in S. Pulling this constant term
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out of the integral, we obtain

Pω(xd, t) ≈ 1
| 〈S〉 − xd|

∫
S
P0,ω(xs)

eiωt+ik|xs−xd|

|xs − xd|
dxs

=
1

| 〈S〉 − xd|

∫
S
Pω(xs, t)

eik|xs−xd|

|xs − xd|
dxs, (5.10)

which is the RSD in Equation (5.4) for scalar waves, with γ = 1/| 〈S〉 − xd| . This
approximation does not affect the phase term, causing only a slow-varying error in
amplitude. Given a known source plane, this error can be precomputed. Since it
does not alter the phase of the signal, it has no effect on the reconstructed geometry.

Furthermore, as we show in Section 5.B.1, most real imaging systems do not invert
the 1/r term in the RSD propagator. Further research may also lead to alternative
formulations of the phasor field that deal with this error in a more elegant way.

In the following, we useRxd (P(xs, t)) as a shorthand for the RSD operator:

Rxd (P(xs, t)) =
1

| 〈S〉 − xd|

∫
S
Pω(xs, t)

eik|xs−xd|

|xs − xd|
dxs. (5.11)

5.A.1 Propagating broadband signals

The derived RSD operator propagates monochromatic wavesPω(xs, t) = P0,ω(xs)eiωt.
Any broadband signal can be propagated by first writing it as a superposition of
monochromatic waves, then propagating each one individually. For a generalP(x, t)
we therefore define the RSD operator as:

Rxd(P(xs, t)) = Rxd

(∫ +∞

−∞
Pω(xs, t)

dω

2π

)
=
∫ +∞

−∞
Rxd (Pω(xs, t))

dω

2π
. (5.12)

Alternatively, a broadband RSD operator can be implemented in the time domain
by shifting the components of P in time as follows:

Rxd (P(xs, t)) =
∫ +∞

−∞
Rxd (Pω(xs, t))

dω

2π

=
∫ +∞

−∞

∫
S
P0,ω(xs)eiωt−ik|xs−xd|dxs

dω

2π

=
∫

S

∫ +∞

−∞
P0,ω(xs)eiω(t− 1

c |xs−xd|) dω

2π
dxs

=
∫

S
P(xs, t− 1

c
|xs − xd|)dxs (5.13)

We will make use of this property when deriving the camera functions for our ex-
ample cameras (see Table 5.2).

5.A.2 Non-Lambertian surfaces

The RSD propagator we derive requires that the source plane S be Lambertian. Since
all our cameras rely primarily on RSD propagators from the aperture of the relay
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Target

Virtual lens

Target
Reconstruc�on Reconstruc�on

Virtual lens

a b

Figure 5.5: Light hitting the relay wall (in yellow) illuminates the target scene, and is scat-
tered and bounced back by unknown objects in the scene (in blue). a) When the target
object is perfectly Lambertian, it bounces light back to the entire captured surface of the re-
lay (our virtual lens); our virtual imaging system then focuses the incoming irradiance. b)
Increasingly specular surfaces may cause the returning light to be reflected towards specific
directions; however, like a conventional camera, as long as such reflected light hits some
area of the virtual lens, it will be imaged correctly, with a potential spatial resolution loss if
few light sources are used. Increasing the number of light sources allows to obtain a pro-
gressively more complete irradiance reconstruction and improve resolution.

wall, the Lambertian constraint only applies to the relay wall. Rather than recon-
structing the geometry and BRDF of the scene, our virtual cameras reconstruct pha-
sor field irradiance from the scene towards our virtual aperture as a function of po-
sition and time, analogous to their LOS counterparts. The reconstructed signal thus
corresponds to the averaged irradiance for the entire aperture. This is illustrated in
Figure 5.5. Prior methods seek to reconstruct NLOS geometry, which requires correct
modelling of albedo, BRDF, occlusions, and interreflections, resulting in a nonlinear
inverse problem [91]. In the absence of such data from the hidden scene, these prior
methods need to rely on simplifying assumptions, thus limiting the range of scenes
that can be reconstructed. Since our method does not make any assumption about
the surface properties of the hidden scene, the changes in material appearance do
not significantly affect our irradiance reconstructions (see Results in Method sec-
tion). Simulations with varying BRDFs can be found in the Method Section.

5.B Line-of-sight template functions

In this section we show how to model the outgoing illumination wavefront P(xp, t),
as well as the image formation model Φ(·) for our example template LOS imaging
systems, using standard diffraction optics. We begin with some preliminary con-
siderations regarding the phase transformation by an ideal lens, which is essential
for deriving any arbitrary image formation model Φ(·). We then derive P(xp, t) and
Φ(·) for three example systems: (1) Conventional photography camera, (2) Transient
camera, and (3) Confocal time-gated camera.

5.B.1 Phase operator of an ideal computational thin lens

We define an ideal lens as an element that focuses a planar wavefront into a point at
the focal distance f from the lens, on the optic axis. This is equivalent to converting
light coming from a point x f and turning it into a planar wave, i.e., a wave with a
phase that is independent of the position xl on the plane of the lens. Light leaving
from a point at x f creates spherical wavefronts, i.e., the phase at a plane perpendic-
ular to the z-direction at a distance f from x f is
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System P(xp, t)
(1) Photo camera (ambient light) eiωt

(2) Transient camera (pulsed point light) eiωtδ(xp − xls)e
− (t−t0)

2

2σ2

(3) Confocal time-gated camera (pulsed focused
light)

eiω(t− 1
c |xv−xp|)e−

(t−t0−
1
c |xv−xp |)2

2σ2

Table 5.1: Illumination wave functions for different light sources, used in our three example
imaging systems.

φw(xl , x f ) = eiω
|x f −xl|

c . (5.14)

The lens phase shift, φl(xl , x f ), has to cancel this phase term, and thus the lens acts
on the wavefront of a monochromatic wave Pω(x) as

P ′ω(xl , t) = Pω(xl , t) · φl(x f , xl). (5.15)

where P ′ω(xl , t) is the wavefront after the lens and φl(xl , x f ) = e−iω |x f−xl|/c.

To understand how this lens affects a general broadband signal, consider a wave
P(x, t) expressed as a superposition of monochromatic waves:

P(x, t) =
∫ +∞

−∞
Pω(x, t)

dω

2π
=
∫ +∞

−∞
P0,ω(x)eiωt dω

2π
; (5.16)

Considering x f and xl ∈ L and applying the phase shift of the lens to this wavefront,
we find

P(x, t) φl(xl , x f ) =
∫ +∞

−∞
P0,ω(x) ei(ωt−ω

|x f −xl |
c ) dω

2π
= P(x, t−

|x f − xl |
c

). (5.17)

Like the RSD propagation, the phase shift of an ideal lens can thus also be described
as a shift in time.

Imaging with a lens. A lens that images a point xv onto a sensor pixel xr can be
described as a combination of two co-located lenses. One to collimate the light from
xv, and one to focus it onto xr. This results in a phase shift φ(xl) = −ω |xv−xl |−|xl−xr |

c .
In the camera, this is followed by a propagation from the lens to the sensor. If we
use Equations 5.13 and 5.17 for the propagation and lens, we obtain:

P(xr, t) =
∫

L
P(xl , t− |xv − xl |+ |xl − xr| − |xl − xr|)dxl

=
∫

L
P(xl , t− |xv − xl |)dxl

=Rxv(P(xl , t)),

(5.18)

where the 1/r factor in the RSD propagator can be omitted. The imaging lens thus
effectively propagates the field from the aperture xl back into the scene.
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System Φ(P(xc, t))
(1) Photo camera |

∫
C P(xc, t− 1

c |xv − xc|)dxc|2 = |Rxv(P(xc, t))|2
(2) Transient camera |

∫
C P(xc, t− 1

c |xv − xc|)dxc|2 = |Rxv(P(xc, t))|2
(3) Confocal time-gated
camera

|
∫

C P(xc,− 1
c |xv − xc|)dxc|2 =

|Rxv(P(xc,− 1
c |xv − xc|))|2

Table 5.2: Imaging operators to implement our three example imaging systems. The evalu-
ation functions essentially describe the imaging transform of a lens with the resulting image
being read out at different times with respect to the illumination.

5.B.2 Projector and camera functions

Our theoretical model allows us to implement any arbitrary (virtual) camera system
by defining the projector function P(xp, t) and imaging operator Φ(·). Methods for
modeling such function using Fourier optics are available in the literature [70]. In
our work we implement three of them: (1) conventional photography camera, (2)
Transient camera, and (3) Confocal time-gated camera. Each has capabilities never
before demonstrated in NLOS imaging. The derived P(xp, t) and Φ(·) functions are
listed in Tables 5.1 and 5.2.

(1) Our first example is a conventional photography camera system with a P-
field monochromatic illumination source at frequency ω. It reconstructs the
hidden scene with low computational effort. Like a LOS photography camera
it does not require knowledge of the position or timing of the light source.

In other words, the reconstruction is independent of the position of xp, which
reduces the need of careful calibration of the laser positions in the relay wall.
Since our illumination for this system is ambient light, the projector function
P(xp, t) can be anything. However, like in conventional imaging, the resolu-
tion of the image is determined by the temporal bandwidth of P(xp, t), cor-
responding to the wavelength in the conventional camera. We thus choose a
function with a short phasor field wavelength: P(xp, t) = eiωt. The camera op-
erator is represented by a lens that creates an image on a set of detector pixels
that record the absolute value squared of the field. Implementing the lens us-
ing the time shift property or the RSD propagator from Equation (5.18) yields
Φ(P(xc, t)) = |

∫
C P(xc, t− 1

c |xv − xc|)dxc|2 = |Rxv(P(xc, t))|2. Note that this
expression is constant with time, just like the intensity in the sensor of a LOS
photography camera, so it can be evaluated at any time t.

(2) The second example is a NLOS transient camera system. Like its LOS coun-
terpart [225], this camera captures the propagation of light through the scene,
revealing complex multibounce light transport phenomena. As a consequence
this virtual camera may be used to identify direct and global components
of such light transport. In this case we model a monochromatic point light
source at a single point xls which illuminates the scene with a short gaus-
sian shape flash of σ = 6λ

2.36 at time t0. The illumination function is thus

P(xp, t) = eiωtδ(xp − xls)e
−(t−t0)

2

2σ2 . The camera is the same as the conventional
photography camera, except that the reconstructed intensity on the sensor now
depends on time t, capturing frames at each t f . We assume that the camera fo-
cus follows the light pulse.
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(3) Last, we implement a confocal time-gated imaging system, which images spe-
cific voxels xv of a volumetric space, illuminated with a focused ultrashort
pulse of width σ. Note that our virtual imaging system is confocal, but the
data for H is not necessarily captured with a confocal arrangement as in prior
NLOS work [164].

In this case the illumination is a light pulse focused on a voxel xv, defined as

P(xp, t) = eiω(t− 1
c |xv−xp|)e−

(t−t0−
1
c |xv−xp |)2

2σ2 . In the design of this system we can
choose the phasor field pulse width σ. As this width increases, the depth res-
olution of the virtual imaging system worsens, although the signal-to-noise
ratio improves. In practice, we found that a pulse full width at half maxi-
mum of about six wavelengths σ = 6λ

2.36 yields the best results. Longer pulses
are effective for canceling more noise in the reconstruction. The camera is
again implemented as an imaging lens, like the cases above. However, in
this case the camera needs to focus on the same point xv as the light source.
Since we are only concerned with the 3rd bounce return directly reflected by
a scene surface at xv, we evaluate the signal only at a time t = − 1

c |xv − xc|,
when 3rd-bounce light from this location is seen. This results in a function
Φ(P(x, t)) = |

∫
C P(xc,− 1

c |xv − xc|)dxc|2 = |Rxv(P(xc,− 1
c |xv − xc|))|2.

5.C Implementation of RSD solvers

Here we describe an RSD diffraction integral solver to implement our conventional
photographic camera system, and a backprojection solver for the transient confocal
systems (refer to Section 5.B.2). Note that both solvers can be applied to any of the
systems.

5.C.1 Conventional photography camera using RSD

Using Equation 5.19 we write

I(xv) = Φ
(∫

P

[
P(xp, t) ? H(xp → xc, t)

]
dxp

)
= Φ

(∫
P

∫ +∞

−∞
P(xp, t− τ) H(xp → xc, τ)dτ dxp

)
. (5.19)

Plugging in the terms from Tables 5.1, and 5.2 for the conventional photographic
camera, we find:

I(xv) =

∣∣∣∣Rxv

(∫
P

[
eiωt ? H(xp → xc, t)

]
dxp

)∣∣∣∣2 . (5.20)

After this convolution, each time response can be represented entirely by a single
complex number. The result is the phasor field (complex amplitude) at the virtual
aperture, which is propagated back into the scene using an RSD propagator.

Solving the RSD propagator numerically for each voxel in the scene would be com-
putationally expensive. For a voxel space of side-length N, and N ∗ N points xc,
the complexity is N5. However, there are multiple algorithms that solve the RSD
integral for a plane of voxels as a 2D convolution. For all planes making up the
reconstruction space this results in a much lower complexity of N3 log(N). While
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there are efficient solvers for the exact RSD [194], we rely on the well-known Fresnel
approximation [70], to implement an efficient solver.

The Fresnel diffraction from a source plane S to a parallel destination plane D at
distance z can be approximated as

P(ud, vd, z) ≈ γ
eikz

z

∫∫
S
P(us, vs)eik (

ud−us)
2
+(vd−vs)

2

2z dusdvs, (5.21)

where u and v are plane coordinates, and subscripts s and d refer to the coordi-
nates in the source and destination planes, so that xs = [us, vs, 0] ∈ S and xd =
[ud, vd, z] ∈ D. This can be interpreted as a 2D spatial convolution with a kernel

K(u, v) = γ eikz

z eik u2+v2
2z .

This approximation can be used for the RSD propagator in all our camera operators.
The criteria for the validity of the Fresnel approximation is well known [70] and
given by

d4

4L3λ
<< 1, (5.22)

where d is the effective aperture radius of the virtual camera, L is the distance be-
tween the aperture and the focal plane, and λ is the wavelength.

5.C.2 Confocal time-gated system using backprojection

Plugging in the corresponding terms from Tables 5.1, and 5.2 for the confocal time-
gated imaging system in Equation 5.19 we obtain

I(xv) = Φ
(∫

P

∫ +∞

−∞
eiω(t−τ− 1

c |xv−xp|)e−
(t−τ−t0−

1
c |xv−xp |)2

2σ2 H(xp → xc, τ)dτ dxp

)
=∣∣∣∣∫C

∫
P

∫ +∞

−∞
eiω(− 1

c |xv−xc|−τ− 1
c |xv−xp|)e−

(− 1
c |xv−xc |−τ−t0−

1
c |xv−xp |)2

2σ2 H(xp → xc, τ)dτ dxp dxc

∣∣∣∣2 .

There are multiple ways of solving this expression. We can simply numerically com-
pute the integrals, or we can re-write the expression to include backprojection or
diffraction operators. This is desirable since fast methods to execute these operators
exist.

Let us first write the expression as a backprojection. We introduce a shifted time
ts = − 1

c |xv − xc| − 1
c |xv − xp| to obtain

Φ(P(xc, t)) =
∣∣∣∣∫C

∫
P

∫ +∞

−∞
eiω(ts−τ)e−

(ts−τ−t0)
2

2σ2 H(xp → xc, τ)dτ dxp dxc

∣∣∣∣2 . (5.23)

We break up this expression into two steps. First we perform a convolution on all
the collected time responses in H to obtain an intermediate result H′ by

H′(xp → xc, t) = (eiωte−
(t′−t0)

2

2σ2 ) ? H(xp → xc, t′), (5.24)
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followed by shifting and summing the results:

I(xv) =

∣∣∣∣∫C

∫
P

H′(xp → xc,−
1
c
|xv − xc| −

1
c
|xv − xp|)dxp dxc

∣∣∣∣2
≈
∣∣∣∣∣ ∑
xc∈C

∑
xp∈P

H′(xp → xc,−
1
c
|xv − xc| −

1
c
|xv − xp|)

∣∣∣∣∣
2

. (5.25)

where the second term is a backprojection, for which efficient implementations ex-
ist [7].

5.C.3 Transient camera using backprojection

Last, we derive our NLOS transient system. Operating similarly to the confocal
time-gated system, by plugging in the corresponding terms from Tables 5.1, and 5.2
in Equation 5.19 we obtain:

H′(xp → xc, t) = (eiωtδ(xp − xls)e
− (t′−t0)

2

2σ2 ) ? H(xp → xc, t′) (5.26)

and

I(xv, t) =
∣∣∣∣∫C

H′(xp → xc, t− 1
c
|xv − xc| −

1
c
|xv − xls|)dxc

∣∣∣∣2 . (5.27)

Besides the use of only one illumination point xp = xls, this reconstruction dif-
fers from the confocal system in that it depends on time t. The reconstruction is
4-dimensional, resulting in a video of the light propagation in the 3D reconstruction
space. To reduce computational cost, we can optionally locate empty voxels by first
using our confocal imaging functions.

5.D Details on data acquisition

5.D.1 Hardware configuration

Our capture system, shown in Figure 5.6, consists of a Onefive Katana HP amplified
diode laser (1 W at 532 nm, and a pulse width of about 35 ps used at a repetition
rate of 10 MHz), and a gated SPAD detector processed by a Time-Correlated Single
Photon Counter (TCSPC, PicoQuandt HydraHarp), with a time resolution of about
30 ps and a dead time of 100 ns. Two additional CCD cameras are used to calibrate
the laser’s position. The measured time resolution of our system is approximately
65 ps, a combination of the pulse width of the laser and the time jitter of the system.

5.D.2 NLOS measurement geometry

We obtain an impulse response function H(xp → xc, t) of the scene by sequentially
illuminating points xp on the relay wall with a short pulse, and detecting the signal
returning at points xc.

Our hardware device is located 2.5 m from the relay wall, with the NLOS scenes
hidden from direct view. The FOV is 25 degrees. The walls are made of standard
white styrofoam. The scanning area in the relay wall (virtual camera) is 1.8 m x
1.3 m, with laser points xp spaced by ∆p = 1 cm in each direction. The SPAD detector
is focused at a position near the center of the grid. We avoid scanning a small square
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Laser head

Galvometer

SPAD

CCD cameras

Figure 5.6: Capture hardware used for the results shown in this chapter.

region around the SPAD focused position (the ”confocal” position) since the signal
becomes very noisy at this location. Figures 5.2 and 5.3 provide additional details
for the specific scenes shown.

5.D.3 Exposure time

Our capture setup, shown in Figure 5.6, includes CCD cameras to confirm the 3D po-
sition of every laser during the measurement; these are a limiting factor in the speed
of our experiments. Since the capture process runs in parallel, we use a very long 1 s
exposure time per laser position for our main datasets. They are used for all results
unless otherwise specified. In addition, we capture scenes without the additional
CCD photographs that can be collected much faster and with much shorter expo-
sure times. In Figure 5.2 we show datasets of an office scene captured with exposure
times of 1 to 10 ms per laser position, which results into a total capture time as low as
24 s. Further reconstructions of a shelf dataset are shown later as additional results
showing that we can reduce exposure times at least down to 50 ms per data point
without a significant loss in quality even with ambient light. This results in less than
20 minutes of total capture time. Note also that in our current prototype, we capture
data sequentially with a single SPAD. Prototype SPAD arrays are currently under
development, and it seems likely that a 16x16 array will be available by the end of
the year. We thus expect to be able to capture 256 data points in less than 0.1 s in the
near future.

5.D.4 Collected data

In total, we use 10 experimental and two simulated datasets in the project. All ex-
perimental datasets use a single SPAD location and 130 by 180 laser positions. The
datasets and exposure times are:
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Total Photons Photons/bin Max. bin Avg./ laser pos.
Large depth scene 3215722952 9.7 552 13742

NLOS letters 6502986696 19.6 2889 27791
Shelf 6158590767 18.6 2074 26319

Office Scene 6201680972 18.7 1406 26503
Office Scene 10 ms 48017499 0.14 18 2716
Office Scene 5 ms 24012257 0.072 15 1026
Office Scene 1 ms 4801568 0.014 6 205

Table 5.3: Photon statistics for the captured data: used in the project. The first four scenes
were captured with 1 s exposure time. The first column shows the total photons counted, the
second the average photon count per time bin, the third is the maximum count over all time
bins and the last contains the average number of photons collected in each laser position in
the dataset.

• An Office Scene collected with 1 second exposure per laser position. This
dataset is used to create the video shown in the supplementary video, frames
of which are shown in Figure 5.4(bottom). A photograph and reconstruction
of this scene is also shown in the supplementary video. The data is analyzed
in Figure 5.7 and Table 5.3.

• An Office Scene collected with 10 ms, 5 ms, and 1 ms, used in Figures 5.2, 5.10,
5.12, 5.11, and Table 5.3.

• A scene of a bookshelf used in Figure 5.3(a) and Table 5.3.

• A scene of a bookshelf captured with various exposure times and ambient light
conditions shown in Figures 5.7 and 5.9.

• A scene with letters distributed over a large depth used in Figure 5.3(b) and
Table 5.3.

• A scene of the letters NLOS in a plane used inFigure 5.4(top) and Table 5.3.

To provide further insight into the noise and artifacts present in our data we go
through an analysis of the raw data from our 1 second exposure office scene. We
compare the maximum and average number of photons per second and laser posi-
tion ~xp for our captured scenes in Table 5.3. The dark count rate of our detector is 10
photons per second. We do not explicitly subtract dark counts nor ambient light or
backgrounds.

Note that the high total photon numbers in the transient responses (Table 5.3) are due
to the long responses associated with the large depth and volume of the scenes, and
not due to a particularly bright signal. Example data for a scene of a shelf is shown
in Figure 5.7 (whose reconstruction can be found on Figure 5.9). In this scene, our
longest 1 s exposure time peaks at about 150 photons/s (such peaks are probably
due to the presence of specular surfaces), and the captured signal is extremely noisy.
In comparison, the recent method by O’Toole et al. [164] acquires a brighter, cleaner
signal in 0.1 s, peaking at about 600 photons/s, due to the use of retroreflective
paint applied on the hidden objects (data from their data_resolution_chart_40cm
dataset).

Let us further analyze the captured data. In Figure 5.8 we show a visualization of
our data matrix for the 1s exposure office scene using the function imagesc in Matlab,
where each row is the data collected for a different location of the laser illumination
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Figure 5.7: Data Comparison: a, Raw data for one of the laser positions xp. Shown is the
number of photons per second accumulated in each time bin (i.e. the collected histogram
divided by the integration time in seconds). Time bins are 4 ps wide. As expected, all three
curves appear to follow the same mean, but have a larger variance for lower exposure times.
The raw data thus gets significantly noisier as exposure time decreases. The effects on the
reconstruction, however, are rather minor as Figure 5.13 shows. b, Example dataset from
O’Toole et al. [164] for comparison.
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Figure 5.8: Visualization of the raw data for our long exposure office scene. From left to
right: a, Base 10 logarithm of the photon counts in all time bins. b, After removing the first
833 time bins in each dataset the plots show the photon counts for the laser position that
received the largest total number of photons in the datset, c, the counts for the laser position
that received the median number of photon counts, and d, the laser position that contains
the time bin with the global maximum count in the entire set.

spot, and each column contains a different time bin. The first time bin corresponds
to the time when the illumination laser pulse leaves the relay wall. In the images we
do not show time bins 10001 to 15000 as they are mostly empty due to the closing of
the gate. As can be seen there are some sparse, very large peaks in the dataset that
saturate the counting registers of our TCSPC (216 − 1 counts). As we will see, these
artifacts in the data are likely due to imperfections in the gating or optical setup.

Let us focus on the first instants of the captured data shown in Figure 5.8(a), which
reveal features that look like straight diagonal lines in the first few time bins. The
fact that there are straight lines in this plot, indicates that they are likely related to
a first-bounce signal, rather than the actual scene response. NLOS signals should
show up as hyperbolas or sections of hyperbolas in this type of visualization and
the curvature of the hyperbolas should be highest at the earliest time bins. The
image contains many more features that look like straight lines that do not appear
to have the correct hyperbolic curvature to be actual NLOS signals. Many of them
also appear identically again in the other datasets which is another hint that they
are probably not real NLOS data, but artifacts related to the measurement system.
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Our algorithm is completely agnostic to the presence of these artifacts. The brightest
peaks also appear too early in the data to be associated with a NLOS object. To see
this, consider that the closest object in any of our scenes is the chair in the office scene
and it is more than 50 cm away from the wall. Consequently the first time response
from an actual object cannot arrive at the SPAD earlier than 3.3 ns after the laser
illuminates the relay wall. Time bins are 4 ps wide. Any data before time bin 833
therefore can only be an artifact. We will speculate more about the origin of these
artifacts later.

If we ignore those first 833 time bins that contain no useful data we obtain a dataset
that can yield some meaningful statistics about the data. In this dataset the largest
photon count in all our over 200 million time bins is smaller than 1400 photons.
Note that as we show below, this 1400 maximum is likely still due to a gate artifact
that just happened to occur slightly later than 3 ns into the dataset. Statistics for all
datasets are shown in Table 5.3.

Maximum photon counts usually come from the objects in the scene closest to the
wall. Considering the large depth and specularities of our scenes, most of the re-
constructed scene volume is actually using signals much weaker than the maximum
signal as voxels are further away from the wall. Signals from a given surface are
expected to drop in magnitude with one over distance to the power of four as dis-
tance is increased. An object generating 100 photon peaks at 50 cm distance in the
front of our scene would therefore only create 100/8 photons if placed at at 1 m and
100/625 = 0.2 photons at 2.5 m towards the end of our office scene. This ability to
handle scenes with large dynamic range in the data is another stated advantage of
our algorithm.

In extended data Figure 5.8(b) we show a plot of the photon counts over time bins
for the laser position that received the most total photons. We again see the extreme
peak of 216 − 1 counts in the beginning of the dataset. Again, this peak can not
possibly be a real third bounce signal as it would require for the pulse to travel
between laser position and SPAD position significantly faster than the speed of light.
The actual NLOS data starting around time bin 1000 and peaking at just above 50
photons.

Finally, we show a plot of the laser position that received the total photon count
closest to the median of all laser positions in Figure 5.8(c). We can see that this data
generally stays below 150 photons with what are likely specular peaks reaching up
to 200 photons and a large 450 photon peak at the beginning of the dataset that is
either a specular peak or another gate artifact. At this point we want to also point
out that since we illuminate only a grid of points at the wall, we do not capture all
the specular peaks in our data. In order to see a specular reflection peak from a scene
surface we have to get lucky and illuminate the exact spot on the wall that results in
the specular reflection to overlap with the the SPAD position (see Figure 5.5 for an
illustration). Therefore specular peaks in our measurements can vary greatly based
on how close to the peak the laser actually sampled the wall. Again we want to point
out that this type of uncontrolled artifact does not affect our algorithm.

As we stated above, the time bin with the highest photon count when ignoring obvi-
ous early artifacts contains about 1400 photons. Next we plot the laser position that
contains this time bin as shown in Figure 5.8(d). Note that zero on the x-axis here
corresponds to time bin 834. As we see the 1400 photon peak appears very close to
the beginning of the transient and may be a gating artifact that occurs in the data just
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after the opening of the gate. This type of data distortion is described further below.
If not a gating artifact, the peak is likely a specular reflection as it is very short and
could only be caused by a small isolated diffuse patch or a specular surface in the
scene. Peaks from extended diffuse surfaces are necessarily longer in duration.

We thus conclude that while our data contains significant spurious artifacts, the ac-
tual photon counts useful for reconstructions are no higher nor cleaner than in pre-
vious methods. Note that the removal of early artifacts is only done here to generate
Figure 5.8(b-d) to allow visualization. All reconstructions shown in the manuscript
contain the full recorded data without the removal of any potential artifacts or time
bins.

Even though an understanding of the origin of the artifacts in the data is not needed
for our method, we can offer some additional speculation for sources of some of
them:

• Many of the early peaks in our data are likely related to imperfections in
our gating method. When the SPAD gate opens just after the laser pulse has
passed, photoelectrons in the SPAD may can cause a detection event that is not
due to an actual photon, but rather might be due to the electrons excited by the
first bounce light and trapped in long lived states in the SPAD. Even so these
electrons are not amplified, they need to be transported off the SPAD junction
or they can cause counts as soon as the gate opens.

• In certain cases it is also possible that the gate does not actually block the pulse
for some laser positions. The gate has to be positioned such that it blocks
the laser in all laser positions, while not blocking any actual signal. This is
not always possible, and we do not re-adjust the gate for each position while
scanning.

• In our past setups we have observed many effects inside the imaging system
that can keep light trapped long enough to cause a peak at the time when the
the NLOS data arrives. This can be due to multiple reflections between lenses,
multiphoton fluorescence in the glass or coating of the lenses or stray light
reflecting off a random surface at the right distance. We have confirmed some
of these effects, but suspect there are many more.

• In particular we can see light that travels from the laser spot to the SPAD,
reflects off the surface of the SPAD pixel, is imaged back to the relay wall and
comes back to the SPAD. In confocal or near confocal configurations this can
create a peak that is many times brighter than the actual data.

• Retro-reflective targets can be used to reduce many of these artifacts, most of
which are created either by the laser or a first bounce reflection of the laser. If
the hidden target is retroreflecting, the ratio between the brightness of the laser
and its first bounce and the brightness of the 3rd bounce NLOS data is reduced
by multiple orders of magnitude.

5.D.5 Helmholtz reciprocity

Ideally, we would capture H(xp → xc, t) sampling points on both the projector aper-
ture xp ∈ P and the camera aperture xc ∈ C. In our current setup with a single SPAD
detector, we only sample a single point for xc. Using Helmholtz Reciprocity we can
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interpret these datasets as having a single xp and an array of xc. The choice of cap-
ture arrangement is made for convenience since it is easier to calibrate the position
of the laser spot on the wall. Improved results are anticipated once array sensors
become available (currently under development).

5.E Additional validation and discussion

5.E.1 Resolution limits

The resolution limit for NLOS imaging systems with an aperture diameter d at imag-
ing distance L is closely related to the Rayleigh diffraction limit [30]: ∆x = 1.22cσL/d,
with c the speed of light, for a pulse of full width at half maximum σ. O’Toole et
al. [164] derive a criterion for a resolvable object based on the separability of the
signal in the raw data, not in the reconstruction, resulting in a similar formula of
∆x = 0.5cσL/d ≈ 0.5λL/d.

In our virtual LOS imaging system, we can formulate a resolution limit that ensures
a minimum contrast in the reconstruction, based on the well-known resolution lim-
its of wave based imaging systems. The resolution limit therefore depends on the
particular choice of virtual imaging system. For an imaging system that uses fo-
cusing only on the detection or illumination side, this limit is approximated by the
Rayleigh criterion. For an imaging system that provides focusing both on the light
source and the detector side, the resolution doubles (as it does for example in a con-
focal or structured illumination microscope) and becomes ∆x = 0.61λL/d.

5.E.2 Effect of exposure time

Ambient light: To analyze how well our technique works in ambient light and
with much faster exposure times, we perform several additional measurements us-
ing progressively shorter exposure times, showing that we can reduce exposure
times at least down to 50 ms per data point without a significant loss in quality,
as can be seen in Figure 5.9. Raw data for one of the laser positions is shown in
Figure 5.7. In particular, it shows the number of photons per second accumulated
in each time bin (i.e. the collected histogram divided by the integration time in sec-
onds). As expected, all three curves appear to follow the same mean, but have a
larger variance for lower exposure times. The raw data thus gets significantly nois-
ier as exposure time decreases. The effects on our reconstruction, however, are rather
minor as Figure 5.9 shows.

Short exposure captured data: Figure 5.10 shows the reconstruction of the office
scene (same as Figure 5.2) for short exposure times of 10 ms, 5 ms, and 1 ms for
each of the roughly 24000 laser positions. This leads to total capture times of about 4
minutes, 2 minutes and 24 seconds respectively. Plots showing raw data from those
datasets are shown in Figure 5.12.

We compare the results of our reconstructions on the 1 ms-data, against filtered
backprojection with a Laplacian filter [224], as well as the LOG-filtered backpro-
jection [135], which generally achieves better results. In fact, we are not aware of
any reconstruction method that has been shown to consistently outperform a LOG-
filtered backprojection. Figure 5.11 shows the result of this comparison.
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Figure 5.9: Robustness to ambient light and noise: a, Hidden bookshelf. b, Imaging results
with increasingly higher exposure times; even at 50 ms, there is no significant loss in quality.
Top row: Using only the pulsed laser as illumination source. Bottom row: adding a large
amount of ambient light (same conditions as the photograph in (a)), the quality also remains
constant. c, Difference between the 50 ms and 1000 ms exposure captures for the lights off
case.

10 ms 5 ms 1ms

a b

Figure 5.10: Short exposure reconstructions: Reconstruction of the office scene using very
short capture times. a, Photograph of the captured scene. b, From left to right, reconstruc-
tions for data captured with 10, 5, and 1 ms exposure time per laser. The total capture time
was about 4 minutes, 2 minutes, and 24 seconds, respectively.

a b c

Figure 5.11: Comparison to prior methods: Reconstruction of the office scene using very
short capture times of 1 ms per laser (24 seconds in total). a, Filtered backprojection using
the Laplacian filter. b, LOG-filtered backprojection. c, Our method.
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Figure 5.12: Short exposure data: Photon counts in the raw data for our office scene for
10 ms (top row), 5 ms (center row), and 1 ms (bottom row) exposure times per laser. After
removing the first 833 time bins in each dataset the columns show (left) the photon counts for
the laser position that received the largest total number of photons in the dataset, (center) the
counts for the laser position that received the median number of photon counts, and (right)
the laser position that contains the time bin with the global maximum count in the entire set.

5.E.3 Effect of strong interreflections

In order to confirm the presence and effect of strong interreflections in our cap-
tured data, we compare it qualitatively with primary data from a synthetic book-
shelf scene, with and without interreflections. The bookshelf is placed in a corridor
of 2 m x 2 m x 3 m, with only a single lateral aperture of 1 m x 2 m to allow imaging
the hidden scene. The shelf has a size of 1.4 m x 0.5 m, placed at 1.7 m from the relay
wall, and 0.3 m from the lateral walls. The virtual aperture has a size of 1.792 m x
1.7920 m and a granularity of 256 x 256 laser points; we use a λ = 4 cm, ∆p = 2.8 cm.

As can be seen in Figure 5.13, the synthetic data clearly shows how the presence
of interreflections adds, as expected, low-frequency information resembling echoes
of light. This same behavior can be seen in the real captured data, revealing the
presence of strong interreflections.

Additionally, we evaluate the robustness of our method in the presence of such in-
terreflections. Similar to recent work [164], we compare between a voxelization of
the ground-truth geometry and a reconstructed voxel-grid obtained from our irra-
diance reconstructions, with and without including interreflections; the resulting
mean square error is:
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a b c

Figure 5.13: Robustness to multiple reflections: Result on the synthetic bookshelf scene. a,
Without interreflections. b, Including high-order interreflections. The quality of the results
is very similar. c, Primary data (streak images) from the same scene without (top), and with
interreflections (middle). This synthetic data clearly shows how the presence of interreflec-
tions adds, as expected, low-frequency information resembling echoes of light. The bottom
image shows primary data captured from the real office scene in Figure 5.2. It follows the
same behavior as the middle image, revealing the presence of strong interreflections.

MSE without interreflections, Figure 5.13(a): 4.93 mm.

MSE with interreflections, Figure 5.13(b): 4.66 mm.

5.E.4 Non-Lambertian surfaces

To validate the robustness of our method in the presence of non-Lambertian mate-
rials in the hidden scene, we have created a synthetic scene made up of two letters,
R and D, one partially occluding the other, placed in a corridor of 2m x 2m x 3m,
with only a single lateral aperture of 1 m x 2 m to allow imaging the hidden scene.
The letters have a size of 0.75 m x 0.8 m, placed at 1.25 m and 1.7 m from the relay
wall, respectively, and 0.5m from the lateral walls (see extended data Fig.9.a). The
virtual aperture has a size of 1.792 m x 1.792 m and a granularity of 128 x 128 laser
points; we use a λ = 4∆p with ∆p = 5.6 cm. We start with purely Lambertian targets,
and progressively increase their specularity; we use the Ward BRDF model [228], de-
creasing the surface roughness, using available transient rendering software [106].
The simulation includes up to the fifth indirect bounce.

Figure 5.14(b) shows the resulting irradiance reconstructions. Since our method
does not make any assumption about the surface properties of the hidden scene,
the changes in material appearance do not significantly affect our irradiance recon-
structions. Similar to recent work [164] we compare between a voxelization of the
ground-truth geometry, and the reconstructed voxel-grid; the resulting mean square
error for each of the different reflectances is as follows:

MSE for a surface roughness of 1 (perfect Lambertian): 2.1 mm.

MSE for a surface roughness of 0.4: 2.2 mm.

MSE for a surface roughness of 0.2: 2.2 mm.

5.E.5 Reconstruction comparison with other methods

Our imaging system allows to reconstruct hidden geometry. For this application, we
show here a comparison using the publicly available confocal dataset [164]. This set
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Figure 5.14: Robustness to scene reflectance: a, Geometry of our experimental setup. b,
From left to right, imaging results for the Lambertian targets (roughness 1), and increas-
ingly specular surfaces (roughness 0.4 and roughness 0.2). The reconstructed irradiance is
essentially the same for all cases.

can be reconstructed using different NLOS methods; we show results for the CN-
LOS deconvolution [164], filtered backprojection [30], and our proposed method.
For these confocal measurements, backprojection can be expressed as a convolution
with a pre-calculated kernel, and thus all three methods are using the same back-
projection operator. Neither our method nor filtered backprojection are limited to
confocal data, and can be acquired making use of simpler devices and capture con-
figurations. They can thus be applied to a broader set of configurations and consid-
erably more complex scenes. For the CNLOS deconvolution method [164], we leave
the optimal parameters unchanged. For our proposed virtual wave method, we
use the aperture size and its spatial sampling grid published in the supplementary
materials to calculate the optimal phasor field wavelength. For the filtered back-
projection it is important to choose a good discrete approximation of the Laplacian
operator in the presence of noise. Previous works implicitly do the denoising step
by adjusting the reconstruction grid size to approximately match the expected recon-
struction quality [30; 80; 224], or by downsampling across the measurements [164].
All of them can be considered as proper regularizers. To provide a fair comparison
without changing the reconstruction grid size, we convolve a Gaussian denoising
kernel with the Laplacian kernel, resulting in a LOG filter, which we apply over the
backprojected volume.

Note that a large improvement in reconstruction quality for the simple scenes in-
cluded in the dataset (isolated objects with no interreflections) is not to be expected,
since existing methods already deliver reconstructions approaching their resolution
limits. We nevertheless achieve improved contrast and cleaner contours in our wave
camera method, due to our better handling of multiply scattered light, which pol-
lutes the reconstructions in the other methods, as shown in Figure 5.15.

In noisy datasets, as the last two rows in Figure 5.15, filtered backprojection fails.
CNLOS includes a Wiener filter that performs well removing uniform background
noise, although a noise level must be explicitly estimated. Our phasor field virtual
wave method, on the other hand, performs well automatically, without the need to
explicitly estimate a noise level. This is particularly important in complex scenes
with interreflections, where the background is not uniform across the scene, and the
noise level cannot be reliably estimated.

Nevertheless, our main contribution is not improving the reconstruction for sim-
ple, 3rd-bounce scenes. Instead, our method allows to derive a new class of NLOS
algorithms, which can successfully handle scenes of much larger complexity.
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Figure 5.15: Reconstruction comparison on a public dataset. From left to right: CNLOS
deconvolution, filtered (LOG) backprojection, and our proposed method. A large improve-
ment in reconstruction quality for the simple scenes included in the dataset (isolated objects
with no interreflections) is not to be expected, since existing methods already deliver recon-
structions approaching their resolution limits. Nevertheless, our method achieves improved
contrast and cleaner contours, due to better handling of multiply scattered light.

105





Part IV

Conclusions

107





Chapter 6

Conclusions

Through this work we have explored the possibilities of light transport, and pre-
sented several contributions that increase the capabilities of the exiting models and
their applications on other fields. This thesis is divided in parts, with Part II (Chap-
ters 2 and 3) containing the contributions to steady-state light transport and Part III
(Chapters 4 and 5) the ones exploring the transient domain.

Part II - Steady state We have explored two lines of work in this part, one related
with improving efficiency and another focused on expanding the existing capabil-
ities. First, in Chapter 2 we address lighting computation, developing new tech-
niques to speed-up calculations when using stochastic methods. For that, we focus
on the case of disk-shaped luminaries, and devise new solid-angle based techniques
that reduces the overall variance of Monte Carlo computations. This results in a
lower number of stochastic samples, and therefore execution time, required to obtain
noise-free images. Our method can be incorporated into any Monte Carlo based ren-
dering engine, and has been integrated into the commercial Arnold renderer starting
on the 5.0 version [5].

Improving the efficiency of direct lighting computation is an active field of research,
since even when computing global illumination a good next-event estimation strat-
egy can reduce the overall variance in most practical scenarios.

In Chapter 3 we tackle the problem of reproducing the appearance of pearlescent
pigments, a class of materials whose properties are impossible or too inefficient
to replicate using existing models. We develop a new stochastic framework, with
which it is possible to match captures of existing materials, and it is possible to rep-
resent a wide gamut of plausible appearance. In order to do so, we build over ex-
isting techniques for complex, multi-layered materials and incorporate the relevant
parts from wave optics to create an accurate representation of the material inner
structure. Our virtual model can be directly linked to physical properties of the
simulated pigments, which in turn are determined by the manufacturing process,
opening the possibility of computational design of pearlescence appearance. Being
able to intuitively edit the aspect of these pigments, applied over a virtual represen-
tation of the object they are intended to be applied to, inside a computer simulation
and then reproduce them accurately in manufacture, would considerable speed-up
the design process, which currently relies heavily on trial-and-error with different
pigment mixtures until a desirable look is achieved.

Part III - Transient state Similarly to the steady-state domain, in transient state we
have worked in both efficient simulation of light transport and its applications. On
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the simulation side, in Chapter 4 we introduce a density estimation method which
reuses samples in the temporal and spatial domains, reducing the variance of the
estimation at the cost of introducing a sightly bias. This bias is progressively reduced
as the number of samples used in the radiance calculation increases, resulting in a
consistent method that converges asymptotically to the correct solution.

In Chapter 5 we introduce a new imaging technique for visualizing scenes that fall
outside the line of sight of the observer. This task is performed by shooting short
laser pulses towards secondary surfaces, which can reflect light towards the hidden
scene, and capturing their time of arrival when the pulses bounce back from the relay
surfaces after interacting with the objects in the hidden scene. The captured signal
can be posed as an impulse response function, which serves to propagate compu-
tationally an arbitrary signal inside the hidden scene. In our method, this impulse
function is used to propagate a virtual complex valued field with computationally
controlled phase, the phasor field, which behaves almost identically to a modulated
signal using the laser pulse as the carrier [183]. The phasor field is then focused com-
putationally, using a virtual camera system, yielding a result equivalent to imaging
the hidden scene using modulated light [183]. The resulting visualizations have
higher or equivalent quality than the previous state-of-the-art methods [134; 164],
while being robust in the present of noise and handling large scenes with complex
geometry and arbitrary materials.

While this line work is much more closely related to computational imaging than
to light transport simulation, the technique itself builds over a wave optics model
to represent the light propagation inside the scene, including the temporal domain.
In order to validate the technique, several simulations of virtual scenes with similar
characteristics of those captured were produced. The simulations served as a testbed
to detect errors in capture and empirically narrow down the limits of the method and
the kind of scenes that could be imaged.

This task was required because, despite the good performance of the method on
non-line-of-sight (NLOS) imaging, the validity conditions and implicit assumptions
of the phasor field model are still not fully understood. As a consequence, a con-
siderable amount of work has been done in trying to have a complete theoretical
description of the propagation and imaging process [46; 47; 143; 182]. Of special in-
terest is the limitation that objects in the hidden scene need to fall within the visible
cone [139] to be imaged, or otherwise are invisible to the computational camera. This
limitation is shared by virtually all convolution-based NLOS imaging systems, a cat-
egory which encompass virtually all the state of the art [3], and it can be explained
by missing frequencies in the captured signal. A better understanding of the under-
lying process could provide methods to infer those, leading to priors and iterative
methods that allow the system to infer the missing frequencies. Also of interest is
the effect that non-diffuse materials have in phasor field imaging. While we know
that specular materials can be displayed using the framework, they have a consid-
erable effect with the effective angular and spatial resolution of the virtual camera
system, sometimes even improving the result [73]. Formalizing this interplay could
lead to better imaging overall, and even open the possibility of classifying materials
on the hidden scene based on their response to the phasor field. Interconnected with
material properties is how speckle in the carrier signal, the laser pulse, after several
bounces from rough surfaces could affect the phasor field. In our work we simply
dismiss its influence since it doesn’t seem to show up in our images, but a more
in-depth analysis could lead to potentially exploit its effects [48; 215]
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Closely related to our own work, other NLOS techniques based on wave-based prop-
agation have been proposed. Lindell et al. [138] introduced an equivalent formula-
tion for NLOS imaging using a virtual field, the main difference being the use of a
fast approximate solver from seismology to bring the captured scene into focus [245].
Similarly, the base concepts from phasor fields can be translated to other kinds of
wave-like carries, like modulated acoustic waves [137] and radio signals [89].

Finally, while our technique took the order of tens of minutes to provide high qual-
ity images, faster solvers have already been proposed that took mere seconds [140]
and some NLOS techniques can produce results at rates near to real-time [138]. In
addition to speed-ups the imaging process, the capture side of the system is also
experiencing considerable improvements, moving away from the slow a-point-a-
time scanning as employed in our project by incorporating SPAD arrays [181], able
to capture a dense set of time-of-flight measurements concurrently. Not only that,
but the scale of the scenes that can be imaged using SPAD sensors is continually in-
creasing, and it has already been shown that NLOS reconstruction is viable at up to
1.43 km [238] and ToF imaging at over 200 km [136].
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Weyrich. 2019. Geometry-aware scattering compensation for 3D printing.
ACM Transactions on Graphics 38, 4 (2019). https://doi.org/10.1145/
3306346.3322992

[211] Xin Sun, Kun Zhou, Stephen Lin, and Baining Guo. 2010. Line space gathering
for single scattering in large scenes. ACM Transactions on Graphics 29, 4 (2010).
https://doi.org/10.1145/1778765.1778791

[212] Yinlong Sun. 2006. Rendering biological iridescences with RGB-based render-
ers. ACM Transactions on Graphics 25, 1 (2006). https://doi.org/10.1145/
1122501.1122506

[213] Yinlong Sun and Qiqi Wang. 2008. Interference shaders of thin films. Computer
Graphics Forum 27, 6 (2008). https://doi.org/10.1111/j.1467-8659.2007.
01110.x

[214] Kenichiro Tanaka, Yasuhiro Mukaigawa, Takuya Funatomi, Hiroyuki Kubo,
Yasuyuki Matsushita, and Yasushi Yagi. 2019. Material classification from
time-of-flight distortions. IEEE Transactions on Pattern Analysis and Machine
Intelligence 41, 12 (2019). https://doi.org/10.1109/TPAMI.2018.2869885

[215] Jeremy A. Teichman. 2019. Phasor field waves: a mathematical treatment.
Optics Express 27, 20 (2019). https://doi.org/10.1364/OE.27.027500

128

https://doi.org/10.1111/j.1467-8659.2009.01371.x
https://doi.org/10.1111/j.1467-8659.2009.01371.x
https://doi.org/10.1145/311535.311546
https://doi.org/10.1145/311535.311546
https://doi.org/10.1111/cgf.13774
https://doi.org/10.1111/cgf.13774
https://doi.org/10.1109/CVPR.2016.381
https://doi.org/10.1109/CVPR.2016.381
https://doi.org/10.1145/2461912.2462013
https://doi.org/10.1145/3306346.3322992
https://doi.org/10.1145/3306346.3322992
https://doi.org/10.1145/1778765.1778791
https://doi.org/10.1145/1122501.1122506
https://doi.org/10.1145/1122501.1122506
https://doi.org/10.1111/j.1467-8659.2007.01110.x
https://doi.org/10.1111/j.1467-8659.2007.01110.x
https://doi.org/10.1109/TPAMI.2018.2869885
https://doi.org/10.1364/OE.27.027500


BIBLIOGRAPHY

[216] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal
Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koe-
len, Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe
Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara
Nefian, and Pamela Mahoney. 2006. Stanley: The robot that won the DARPA
Grand Challenge. Journal of field Robotics 23, 9 (2006). https://doi.org/10.
1007/978-3-540-73429-1_1

[217] Dan M. Timus, Maria Jose Prata, Shyam Lal Kalla, Mahmoud I. Abbas, Feda
Öner, and Eduardo Galiano. 2007. Some further analytical results on the solid
angle subtended at a point by a circular disk using elliptic integrals. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 580, 1 (2007). https://doi.org/10.
1016/j.nima.2007.05.055

[218] Robert F. Tobler, László Neumann, Mateu Sbert, and Werner Purgathofer. 1998.
A new form factor analogy and its application to stochastic global illumination
algorithms. In Proceedings of the 9th Eurographics Workshop on Rendering (EGWR
’98). Eurographics Association.

[219] Antoine Toisoul and Abhijeet Ghosh. 2017. Practical acquisition and rendering
of diffraction effects in surface reflectance. ACM Transactions on Graphics 36, 5
(2017). https://doi.org/10.1145/3072959.3012001

[220] Kenneth E. Torrance and Ephraim M. Sparrow. 1967. Theory for off-specular
reflection from roughened surfaces. Journal of the Optical Society of America 57,
9 (1967). https://doi.org/10.1364/JOSA.57.001105

[221] Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis Gkioulekas. 2019. Be-
yond volumetric albedo — A surface optimization framework for non-line-of-
sight imaging. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2019). IEEE. https://doi.org/10.1109/
CVPR.2019.00164

[222] Carlos Ureña. 2000. Computation of irradiance from triangles by adaptive
sampling. Computer Graphics Forum 19, 2 (2000). https://doi.org/10.1111/
1467-8659.00452

[223] Carlos Ureña, Marcos Fajardo, and Alan King. 2013. An area-preserving
parametrization for spherical rectangles. Computer Graphics Forum 32, 4 (2013).
https://doi.org/10.1111/cgf.12151

[224] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan,
Moungi G Bawendi, and Ramesh Raskar. 2012. Recovering three-dimensional
shape around a corner using ultrafast time-of-flight imaging. Nature Commu-
nications 3 (2012). https://doi.org/10.1038/ncomms1747

[225] Andreas Velten, Di Wu, Adrian Jarabo, Belen Masia, Christopher Barsi, Chin-
maya Joshi, Everett Lawson, Moungi G. Bawendi, Diego Gutierrez, and
Ramesh Raskar. 2013. Femto-photography: capturing and visualizing the
propagation of light. ACM Transactions on Graphics 32, 4 (2013). https:
//doi.org/10.1145/2461912.2461928

129

https://doi.org/10.1007/978-3-540-73429-1_1
https://doi.org/10.1007/978-3-540-73429-1_1
https://doi.org/10.1016/j.nima.2007.05.055
https://doi.org/10.1016/j.nima.2007.05.055
https://doi.org/10.1145/3072959.3012001
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.1109/CVPR.2019.00164
https://doi.org/10.1109/CVPR.2019.00164
https://doi.org/10.1111/1467-8659.00452
https://doi.org/10.1111/1467-8659.00452
https://doi.org/10.1111/cgf.12151
https://doi.org/10.1038/ncomms1747
https://doi.org/10.1145/2461912.2461928
https://doi.org/10.1145/2461912.2461928


BIBLIOGRAPHY

[226] Changyaw Wang. 1992. Physically correct direct lighting for distribution ray
tracing. In Graphics Gems III. Academic Press Professional, Inc.

[227] Ping Wang, Liang Yang, John Andrew McDaniel, Gian Armand Juliana De-
Belder, and Gaoyang Wang. 2014. Pearlescent container. US Patent 8,859,067
B2.

[228] Gregory J. Ward. 1992. Measuring and modeling anisotropic reflection. In Pro-
ceedings of the 19th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’92). ACM. https://doi.org/10.1145/133994.134078

[229] Andrea Weidlich and Alexander Wilkie. 2007. Arbitrarily layered micro-facet
surfaces. In Proceedings of the 5th international conference on Computer graphics
and interactive techniques in Australia and Southeast Asia (GRAPHITE ’07). ACM.
https://doi.org/10.1145/1321261.1321292

[230] Philippe Weier and Laurent Belcour. 2020. Rendering layered materials with
anisotropic interfaces. Journal of Computer Graphics Techniques 9, 2 (2020).

[231] Daniel Weiskopf, Ute Kraus, and Hanns Ruder. 1999. Searchlight and Doppler
effects in the visualization of special relativity: A corrected derivation of the
transformation of radiance. ACM Transactions on Graphics 18, 3 (1999). https:
//doi.org/10.1145/336414.336459

[232] Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin.
2017. Scratch iridescence: Wave-optical rendering of diffractive surface struc-
ture. ACM Transactions on Graphics 36, 6 (2017). https://doi.org/10.1145/
3130800.3130840

[233] Turner Whitted. 1980. An improved illumination model for shaded display.
Communications of the ACM 23, 6 (1980). https://doi.org/10.1145/358876.
358882

[234] Alexander Wilkie, Sehara Nawaz, Marc Droske, Andrea Weidlich, and Jo-
hannes Hanika. 2014. Hero wavelength spectral sampling. Computer Graphics
Forum 33, 4 (2014). https://doi.org/10.1111/cgf.12419

[235] Alexander Wilkie, Andrea Weidlich, Marcus Magnor, and Alan Chalmers.
2009. Predictive rendering. In SIGGRAPH Asia 2009 Courses (SIGGRAPH Asia
’09). ACM. https://doi.org/10.1145/1665817.1665829

[236] Michael Maurice Rudolph Williams. 1971. Mathematical methods in particle
transport theory. Butterworths.

[237] Josh Wills, Sameer Agarwal, David Kriegman, and Serge Belongie. 2009. To-
ward a perceptual space for gloss. ACM Transactions on Graphics 28, 4 (2009).
https://doi.org/10.1145/1559755.1559760

[238] Cheng Wu, Jianjiang Liu, Xin Huang, Zheng-Ping Li, Chao Yu, Jun-Tian Ye,
Jun Zhang, Qiang Zhang, Xiankang Dou, Vivek K. Goyal, Feihu Xu, and Jian-
Wei Pan. 2021. Non-line-of-sight imaging over 1.43 km. Proceedings of the
National Academy of Sciences 118, 10 (2021). https://doi.org/10.1073/pnas.
2024468118

[239] Rihui Wu, Adrian Jarabo, Jinli Suo, Feng Dai, Yongdong Zhang, Qionghai Dai,
and Diego Gutierrez. 2018. Adaptive polarization-difference transient imaging

130

https://doi.org/10.1145/133994.134078
https://doi.org/10.1145/1321261.1321292
https://doi.org/10.1145/336414.336459
https://doi.org/10.1145/336414.336459
https://doi.org/10.1145/3130800.3130840
https://doi.org/10.1145/3130800.3130840
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/358876.358882
https://doi.org/10.1111/cgf.12419
https://doi.org/10.1145/1665817.1665829
https://doi.org/10.1145/1559755.1559760
https://doi.org/10.1073/pnas.2024468118
https://doi.org/10.1073/pnas.2024468118


BIBLIOGRAPHY

for depth estimation in scattering media. Optics Letters 43, 6 (2018). https:
//doi.org/10.1364/OL.43.001299

[240] Mengqi Xia, Bruce Walter, Christophe Hery, and Steve Marschner. 2020. Gaus-
sian Product Sampling for Rendering Layered Materials. Computer Graphics
Forum 39, 1 (2020). https://doi.org/10.1111/cgf.13883

[241] Shumian Xin, Sotiris Nousias, Kiriakos N Kutulakos, Aswin C Sankara-
narayanan, Srinivasa G Narasimhan, and Ioannis Gkioulekas. 2019. A theory
of fermat paths for non-line-of-sight shape reconstruction. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR
2019). IEEE. https://doi.org/10.1109/CVPR.2019.00696

[242] Tomoya Yamaguchi, Tatsuya Yatagawa, Yusuke Tokuyoshi, and Shigeo Mor-
ishima. 2019. Real-time rendering of layered materials with anisotropic nor-
mal distributions. In SIGGRAPH Asia 2019, Technical Briefs. ACM.

[243] Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ra-
mamoorthi. 2018. Rendering specular microgeometry with wave optics. ACM
Transactions on Graphics 37, 4 (2018). https://doi.org/10.1145/3197517.
3201351

[244] Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016.
Position-normal distributions for efficient rendering of specular microstruc-
ture. ACM Transactions on Graphics 35, 4 (July 2016). https://doi.org/10.
1145/2897824.2925915

[245] Dorian Chan Yao. 2021. On F-K migration and non-line-of-sight imaging.
(2021).

[246] Pochi Yeh. 1988. Optical waves in layered media. John Wiley & Sons, Ltd.

[247] Thomas Young. 1807. A course of lectures on natural philosophy and the mechanical
arts: in two volumes. Vol. 2. Johnson.

[248] Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki
Nishita. 2014. Poisson-based continuous surface generation for goal-based
caustics. ACM Transactions on Graphics 33, 3 (2014). https://doi.org/10.
1145/2580946

[249] Tizian Zeltner and Wenzel Jakob. 2018. The layer laboratory: a calculus for
additive and subtractive composition of anisotropic surface reflectance. ACM
Transactions on Graphics 37, 4 (2018). https://doi.org/10.1145/3197517.
3201321

[250] Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building
volumetric appearance models of fabric using micro CT imaging. ACM Trans-
actions on Graphics 30, 4 (2011). https://doi.org/10.1145/2010324.1964939

131

https://doi.org/10.1364/OL.43.001299
https://doi.org/10.1364/OL.43.001299
https://doi.org/10.1111/cgf.13883
https://doi.org/10.1109/CVPR.2019.00696
https://doi.org/10.1145/3197517.3201351
https://doi.org/10.1145/3197517.3201351
https://doi.org/10.1145/2897824.2925915
https://doi.org/10.1145/2897824.2925915
https://doi.org/10.1145/2580946
https://doi.org/10.1145/2580946
https://doi.org/10.1145/3197517.3201321
https://doi.org/10.1145/3197517.3201321
https://doi.org/10.1145/2010324.1964939

	1944_Gillén Serrano TESIS.pdf
	Abstract
	Resumen
	Contributions
	Acknowledgements
	I Introduction
	Introduction
	Physically-based rendering
	Wave optics
	Light transport in transient state

	Beyond computer graphics
	Predictive rendering
	Inverse rendering

	Goals and Overview
	Contributions and measurable results
	Publications
	Research stays and visits
	Projects
	Other contributions



	II Steady-state light transport
	Area-preserving parameterizations for spherical ellipses
	Introduction
	Problem statement and previous work
	Solid angle sampling of an oriented disk
	Area-preserving mappings
	Parallel Mapping
	Radial mapping

	Implementation
	Tabulation
	Efficiency

	Results
	Conclusions
	Derivation of eq:ellipses:deltasin
	Derivation of eq:ellipses:ellipse radius
	Numerical computation of incomplete elliptic integrals using Carlson forms
	Evaluating p+(p) using Carlson functions
	Evaluating r(r) using Carlson functions.


	A general framework for pearlescent materials
	Introduction
	Related work
	Pearlescent materials
	Scattering by iridescent platelets
	Scattering in substrate-based platelets
	Analysis

	Light transport in pearlescent materials
	Modeling optical properties of pearlescent media

	Implementation
	Position-free Monte Carlo
	Spectral rendering
	Directional distribution.
	Substrate thickness distribution
	Platelet stratum extinction coefficient

	Analysis and evaluation
	Comparison with captured data
	Exploration of the parameter space
	Additional results

	Conclusions
	Tables


	III Transient state light transport
	Progressive transient photon beams
	Introduction
	Related work
	Transient radiative transfer
	Transient photon beams
	Our algorithm

	Progressive transient photon beams
	Results
	Conclusions
	Error in transient progressive photon beams
	Variance and expected value of the error of the time-resolved beam radiance estimate
	Convergence analysis of progressive transient photon beams
	Minimizing Asymptotic Mean Squared Error

	Non-line-of-sight imaging using Phasor Fields
	Introduction
	Related work
	Phasor Fields in non-line-of-sight imaging
	Results
	Conclusions
	Phasor Field propagation
	Propagating broadband signals
	Non-Lambertian surfaces

	Line-of-sight template functions
	Phase operator of an ideal computational thin lens
	Projector and camera functions

	Implementation of RSD solvers
	Conventional photography camera using RSD
	Confocal time-gated system using backprojection
	Transient camera using backprojection

	Details on data acquisition
	Hardware configuration
	NLOS measurement geometry
	Exposure time
	Collected data
	Helmholtz reciprocity

	Additional validation and discussion
	Resolution limits
	Effect of exposure time
	Effect of strong interreflections
	Non-Lambertian surfaces
	Reconstruction comparison with other methods



	IV Conclusions
	Conclusions
	Bibliography



