000107455 001__ 107455
000107455 005__ 20211008135433.0
000107455 0247_ $$2doi$$a10.1039/d0dt02987d
000107455 0248_ $$2sideral$$a121253
000107455 037__ $$aART-2020-121253
000107455 041__ $$aeng
000107455 100__ $$0(orcid)0000-0002-2483-3264$$aRobles-Fernandez, A.
000107455 245__ $$aSuitability of strontium and cobalt-free perovskite cathodes with La9.67Si5AlO26apatite electrolyte for intermediate temperature solid oxide fuel cells
000107455 260__ $$c2020
000107455 5060_ $$aAccess copy available to the general public$$fUnrestricted
000107455 5203_ $$aAluminium-doped lanthanum silicate (LSAO) apatite-type compounds have been considered as promising candidates for substituting yttria-stabilized zirconia (YSZ) as electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC). Nevertheless, not many materials have been reported to work as cathodes in a LSAO apatite-based cell. In the present work, eight different strontium andcobalt-free compounds with a perovskite-type structure and the general composition LaM1-xNxO3-d (where M = Fe, Cr, Mn; N = Cu, Ni; and x = 0.2, 0.3) have been tested. This study includes the synthesis and structural characterization of the compounds, as wellas thermomechanical and chemical compatibility tests between them. Functional characterization of the individual components has been performed by electrochemical impedance spectroscopy (EIS). Apatite/perovskite symmetrical cells were used to measure area-specific resistance (ASR) of the half cellin an intermediate temperature range (500-850 °C) both with and without DC bias. According to its electrochemical behaviour, LaFe0.8Cu0.2O3-d is the most promising material for IT-SOFC among the compositions tested since its ASR is similar to that of thetraditional (LaxSr1-x)MnO3 (LSM) cathode.
000107455 536__ $$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/RTI2018-098944-J-I00$$9info:eu-repo/grantAgreement/ES/MCIU/BES-2016-078508$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2015-68078-R
000107455 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000107455 590__ $$a4.39$$b2020
000107455 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b8 / 45 = 0.178$$c2020$$dQ1$$eT1
000107455 592__ $$a0.98$$b2020
000107455 593__ $$aInorganic Chemistry$$c2020$$dQ1
000107455 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000107455 700__ $$0(orcid)0000-0001-8751-0983$$aOrera, A.$$uUniversidad de Zaragoza
000107455 700__ $$0(orcid)0000-0003-0747-405X$$aMerino, R.I.$$uUniversidad de Zaragoza
000107455 700__ $$aSlater, P.R.
000107455 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000107455 773__ $$g49, 40 (2020), 14280-14289$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000107455 8564_ $$s1805873$$uhttps://zaguan.unizar.es/record/107455/files/texto_completo.pdf$$yPostprint
000107455 8564_ $$s1231218$$uhttps://zaguan.unizar.es/record/107455/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000107455 909CO $$ooai:zaguan.unizar.es:107455$$particulos$$pdriver
000107455 951__ $$a2021-10-08-11:34:31
000107455 980__ $$aARTICLE