
Trabajo Fin de Grado

Manipulación de objetos deformables en entornos
multi-robot

Deformable object manipulation in multi-robot
environments

Autor

Andrés Otero García

Directores

Gonzalo López Nicolás
María del Rosario Aragüés Muñoz

Grado en Ingeniería Informática
ESCUELA DE INGENIERÍA Y ARQUITECTURA

2021

AGRADECIMIENTOS

Agradezco a:
mis tutores Gonzalo y Rosario, por su pasión y ganas de ayudarme, además de

hacer que este Trabajo haya sido mucho más ameno.
mis profesores, sobre todo a aquellos que me han guiado por el camino y no se han

conformado con sólo resolver mis dudas.
mi padre José Antonio, por su gran apoyo en todas las decisiones que hasta ahora

he tenido que tomar en la vida y su interés para resolver cualquier problema.
mi madre Alicia, por todo su amor y la ayuda que me ha prestado en todas las

etapas de mi vida, incluyendo la académica, por todas esas tardes conmigo para hacer
los deberes y aprender siempre más.

mi hermana Alicia, por su apoyo incondicional, por siempre ser un perfecto ejemplo
a seguir y por toda la alegría que me ha traído, especialmente en los momentos que
más los necesitaba de mi etapa universitaria.

también al resto de mi familia, por siempre hacerme tan feliz.
Santi, por acompañarme siempre con una sonrisa en los momentos en los que más

lo necesitaba y por ser el mejor compañero que podría pedir en mi vida universitaria.
Melany y Enri, por haberme acogido como un amigo más, por las largas sesiones

de estudio juntos y por todos los buenos momentos.
Fernando, Pedro, Alba, Néstor, Cristina, Irene y Leti, por acompañarme desde el

principio hasta el final, que han hecho que el Grado sea una experiencia mucho más
agradable.

al resto de mis compañeros y amigos, de Zaragoza y de Cork, por escucharme
siempre y estar ahí, a pesar del paso del tiempo.

Gracias.

I

II

Objetivos, herramientas y resultados

RESUMEN

Se estudia un caso en el que múltiples robots IRB120 de la empresa ABB manipulan
simultáneamente un objeto de tipo deformable, como pudiera ser una tela. El objetivo
es desarrollar una simulación en el que al menos dos robots puedan realizar movimientos
en sincronización para realizar cambios en el objeto deformable, como pudieran ser un
desplazamiento o una deformación, sin que estos colisionen con el objeto durante la
manipulación. Se plantea además que sea una simulación que no esté intrínsecamente
relacionada con los robots que se vayan a utilizar, y que permita enviar comandos
de forma independiente a todos los robots. Se utiliza para esto el sistema operativo
robótico (ROS™) para la comunicación entre las distintas partes de la simulación,
mientras que para albergar el entorno de la simulación, así como sus físicas, se utiliza la
herramienta Gazebo. Para la planificación de trayectorias de movimientos del robot se
ha empleado la biblioteca MoveIt, y para la realización de pruebas, la interfaz RViz. Se
ha desarrollado una serie de programas que simulan los robots de forma independiente,
así como un objeto deformable con un modelo Masa-Muelle-Amortiguador y se han
realizado múltiples pruebas para evaluar su comportamiento. Los primeros programas
ejecutan diversos movimientos en un entorno de varios robots de forma independiente,
mientras que también se han desarrollado otras pruebas, en las que dos robots mueven
un objeto de tipo tela elástica a la vez, moviéndola y estirándola de formas diversas
para finalmente soltarla. Además, se ha realizado una implementación para observar
el comportamiento de la tela en presencia de gravedad, con las cuatro esquinas sin
movimientos permitidos. Podemos observar que los comportamientos son los esperados
para una tela y los robots son capaces de evitar colisiones con la misma.

III

IV

Índice

1. Introducción y objetivos 1
1.1. Objetivos . 2
1.2. Organización de esta Memoria . 3

2. Herramientas 5
2.1. Robot Operating System (ROS™) . 5

2.1.1. Intercambio de información en ROS 6
2.2. Gazebo . 7
2.3. MoveIt Motion Planning Framework 8

3. Configuración del entorno multi-robot 9
3.1. Paquetes de ROS para ABB IRB 120 10

3.1.1. Puesta en marcha de un robot en Gazebo y MoveIt 11
3.2. Paquete multiple_abb_irb120 . 12

3.2.1. Puesta en marcha de dos robots en Gazebo 12
3.2.2. Puesta en marcha de MoveIt para ambos robots 14
3.2.3. Conexión a los robots desde C++ 14

4. Creación del objeto deformable 17
4.1. Creación por medio de servicios ROS 17
4.2. Creación por medio de un plugin de Gazebo 18

4.2.1. Creación del modelo con un WorldPlugin 18

5. Simulación del objeto deformable 21
5.1. Modelo Mass-Spring-Damping . 21
5.2. Estudio de implementación en Matlab 23
5.3. Simulación por medio de servicios ROS 24
5.4. Simulación por plugins de Gazebo . 24

6. Interacción Robot - Objeto deformable 27
6.1. Obtención de la posición del objeto deformable 27

V

6.2. Planificación de trayectorias con evitación de colisiones 29
6.3. Petición de agarre . 30
6.4. Obtención de la posición de los robots 30

7. Experimentos realizados y resultados 33
7.1. Creación de robots en la simulación . 33
7.2. Movimiento de los robots en entorno multi-robot 34
7.3. Creación y movimiento del objeto deformable 36
7.4. Manipulación del objeto por robots . 39
7.5. Simulación Final . 42

8. Conclusiones y trabajo futuro 45
8.1. Valoración de los resultados . 45
8.2. Trabajo futuro . 46

9. Bibliografía 49

Anexos 61

A. Organización de los ficheros desarrollados 63

B. Instalación y Ejecución de los programas desarrollados 65
B.1. Instalación . 65
B.2. Configuración inicial . 65
B.3. Ejecución . 66

B.3.1. Ejecución de trayectorias . 66
B.3.2. robots_moving_demo . 68
B.3.3. robots_waving_demo . 69
B.3.4. grid_demo . 70
B.3.5. test_grid . 71
B.3.6. Manipulación manual del objeto deformable 72
B.3.7. small_grid_manipulation . 73

B.4. Realización de pruebas con una mesa 74

C. Algunos problemas encontrados 77
C.1. Espacios de nombres . 77

C.1.1. Problemas en los archivos de configuración de Gazebo 77
C.1.2. Problemas en los archivos de configuración de MoveIt 78
C.1.3. Utilización de parámetros en ficheros yaml 79

VI

C.2. API de Gazebo . 80

D. Fragmentos de código interesantes 81
D.1. grid.config . 81
D.2. small_grid.config . 82
D.3. GrabPetition.msg . 82
D.4. recursive_spawn.launch . 82
D.5. spawn_irb120.launch . 83
D.6. multiple_spawner_gazebo_script.bash 84
D.7. setup_gazebo.launch . 86
D.8. moveit_planning_execution_gazebo.launch 86
D.9. abb_irb120_3_58.srdf.xacro . 88
D.10.abb_irb120_3_58.srdf_macro.xacro 88
D.11.small_cloth_manipulation.cpp . 89

E. Recomendaciones para la modificación del código 99

VII

VIII

Capítulo 1

Introducción y objetivos

Desde su aparición en el año 1938 [1], los robots industriales han despertado un gran
interés por sus capacidades para realizar diferentes tareas de forma automática y precisa
que han mejorado el rendimiento de las fábricas [2]. Así, es normal ver múltiples robots
a lo largo del proceso industrial que pueden llegar a colaborar en muchas ocasiones
para conseguir realizar maniobras que serían más difíciles o imprecisas si se realizaran
con un único robot [3] [4].

Por otro lado, la programación de tareas para un robot manipulando objetos rígidos
es la más común y que más avanzada se encuentra, en contraposición a los objetos
deformables, que son aquellos que, sometidos a fuerzas externas, son capaces de cambiar
de forma y, en función de su elasticidad, de volver a su forma inicial en ausencia de
éstas, es decir, son flexibles (en la Figura 1.1 se observa como dos robots manipulan un
plátano, que es un objeto deformable) [3]. Estos objetos suponen un problema mayor
que los rígidos, pues no es sencillo determinar en qué posición se encontrarán las partes
que componen el objeto, mientras que en un objeto rígido siempre se mantiene la misma
proporción entre distintos puntos del mismo. Es por esto que los objetos deformables
son un campo en el que la investigación sigue avanzando y se desarrollan modelos y
métodos nuevos para encontrar mejores soluciones a las que tradicionalmente se les ha
ido dando a tareas pequeñas, como doblar o cortar telas [4] [5] [6].

Figura 1.1: Manipulación de un plátano por dos brazos robóticos [7]

1

Existen además, gran cantidad de formas de hacer que un robot realice
movimientos repetitivos por medio de ingeniería automática (con dispositivos
mecánicos, neumáticos, hidráulicos, electrónicos...) y sistemas más complejos como
autómatas programables o controladores lógicos programables [8]. Sin embargo, todas
estas soluciones, a pesar de ser robustas y generalmente sencillas de mantener, también
son siempre dependientes del robot que se utilice, así como de todos los componentes
físicos y de hardware para el correcto funcionamiento del sistema automático.

1.1. Objetivos

En este Trabajo se intenta dar una solución genérica a la manipulación con varios
robots industriales de objetos deformables, en particular los de tipo tela elástica, y
que pueda ser extendida sencillamente a cualquier otro robot que se desee utilizar y
también al entorno en el que se desarrolle el proceso industrial. Se marca como objetivo
el aprendizaje del Sistema Operativo Robótico (ROS™) y su uso para la simulación,
que permite la creación de entornos con robots industriales, junto con el simulador
de físicas Gazebo y la biblioteca de manipulación de robots MoveIt. Éstos se pueden
combinar para obtener una simulación de robots industriales, así como para controlar
robots reales y programar sus tareas de un modo que no dependa del robot utilizado
ni de las conexiones entre éste y el ordenador que lo controle (véase Capítulo 2).

Se plantea la realización de una simulación con al menos dos robots (pero que
permita la utilización de un número arbitrario) en los que ambos puedan ser controlados
de manera independiente y que consigan tomar el objeto para desplazarlo y que se
produzcan deformaciones en el mismo (estirarlo o comprimirlo). También se desea una
implementación realista pero sencilla para el comportamiento del objeto de tipo tela
elástica y también parametrizada, para poder cambiar las características del objeto en
diferentes ejecuciones.

Finalmente, todas las pruebas deberán funcionar con el modelo IRB 120 de la
empresa de tecnologías ABB, que posee 6 grados de libertad y es el último robot
desarrollado por la misma en la fecha de redacción de este Trabajo de Fin de Grado
[9]. Además, la propia empresa ha desarrollado una serie de archivos para su utilización
en ROS, Gazebo y MoveIt, si bien no están verdaderamente adaptados para un entorno
multi-robot. Por este motivo, será necesario modificarlos, pero se intentará que sea lo
mínimo posible. Cabe destacar también que se poseen dos ejemplares del robot en el
laboratorio L0.06 del edificio Ada Byron de la Universidad de Zaragoza, por lo que se
podría llegar en un futuro a realizar pruebas con éstos sin realizar muchos cambios en
la estructura de los archivos desarrollados.

2

1.2. Organización de esta Memoria

Esta memoria se ha redactado siguiendo una estructura que pueda ayudar al lector a
entender el proceso con el que se desarrolló el proyecto. De esta forma, en primer lugar se
describen las herramientas utilizadas en el Capítulo 2. Posteriormente se encuentran las
diferentes fases del proceso, comenzando por la configuración y puesta en marcha de una
simulación con varios robots, presentes en el Capítulo 3, pasando por el desarrollo del
objeto deformable y su inclusión en la simulación en el Capítulo 4, y su comportamiento
en el Capítulo 5, para finalmente explicar cómo interactuarán los robots y el objeto en
el Capítulo 6. Después se dedica el Capítulo 7 a describir experimentos llevados a cabo
así como sus resultados y el Capítulo 8 a detallar las conclusiones obtenidas y trabajo
futuro que podría realizarse para extender o mejorar los resultados y la usabilidad de
este Trabajo. Cabe destacar que o bien dentro de todos los capítulos, o bien en el
Apéndice C se detallan todas las soluciones que se han intentado dar a los objetivos
planteados, empezando por el primer intento y explicando sus resultados hasta llegar
a la solución que ha permitido un comportamiento correcto del sistema.

Se incluyen además otros cuatro anexos para completar algunos aspectos, como
la estructura de los ficheros desarrollados en el Apéndice A, la forma de instalarlos
y realizar las pruebas en el Apéndice B, unas pautas o recomendaciones por si se
desea modificar o extender los ficheros en el Apéndice E y un listado de algunos
de los fragmentos de código que pudieran ser más interesantes para el lector, en el
Apéndice D.

3

4

Capítulo 2

Herramientas

Para la puesta en marcha de la simulación planteada, se han empleado unas
semanas para aprender a utilizar varias herramientas. En concreto, el sistema ROS™,
y los programas Gazebo y MoveIt y cómo interactúan entre ellos. A continuación, se
dedica este capítulo a describir su funcionamiento y algunos conceptos de utilidad que
aparecerán en múltiples ocasiones en el resto de esta memoria.

2.1. Robot Operating System (ROS™)

El sistema operativo robótico, más conocido por sus siglas en inglés ROS, es un
entorno de trabajo de código abierto creado para el diseño y desarrollo de software
en el ámbito de la robótica [10]. Surgió a raíz de los esfuerzos de varias instituciones,
como del STanford Artificial Intelligence Robot (STAIR) de la Universidad de Stanford
o el programa Personal Robots (PR) del MIT [11] y actualmente está principalemente
operada por Open Robotics [12] (antes conocida como Open Source Robotics Foundation
[13]). Desde entonces ha crecido hasta ser vastamente utilizado en el entorno de
investigación en robótica, así como utilizado por grandes empresas, como Bosch o
BMW [14] [15].

En su nivel más inferior, ROS está basado en una interfaz de paso de mensajes
(MPI), es decir, posee nodos que ejecutan ciertas funciones o actividades e
intercambian información entre ellos por medio de mensajes, permitiendo así el trabajo
de manera distribuida [16]. De esta manera, ROS resulta muy adecuado para proyectos
con entornos multi-robot, puesto que se pueden controlar o simular varios robots de
forma separada e independiente. Además, ABB ofrece paquetes para el control de
muchos de sus robots industriales, incluido el IRB 120 [17]. Se utilizará la distribución
Melodic, compatible con la versión de Ubuntu a utilizar, que en este caso es Ubuntu
18.04 [18]. A continuación se explica en detalle cómo ocurren dichos intercambios.

5

2.1.1. Intercambio de información en ROS

En ROS, cada nodo es un proceso que realiza cierta computación. Además, siempre
existe un proceso denominado master, que aloja la información imprescindible para
que los nodos sean capaces de establecer conexiones entre ellos y también otros
parámetros de ejecución. Un nodo se conecta con el master para obtener la manera con
la que se podrá conectar a otro nodo (en gran parte de las ocasiones, las conexiones se
realizan por el protocolo TCP/IP), así, el master actúa como un servidor DNS [19].

Los paquetes de información o mensajes siempre tienen un formato determinado a
priori y se distribuyen por un “tema” o topic. Un topic es un bus de datos por el que se
puede pasar un tipo de mensajes. Así, un nodo puede “subscribirse” a un topic si desea
recibir la información que es enviada a través de este, o puede “publicar” mensajes en
dicho topic [20].

Figura 2.1: Esquema del tratamiento de información en ROS. Logo ROS: [21]. Esquema
basado en: [19]

Sin embargo, este método no permite realizar intercambios de tipo
“petición/respuesta” de forma inmediata, puesto que se trata de un sistema de
intercambio many-to-many (es decir, la conexión se realiza entre múltiples nodos por
lo que no existe un destinatario determinado) y es de un solo sentido. Por ello, cada
nodo puede también anunciar sus propios servicios. Un servicio es un método de
llamadas a procedimientos remotos (RPC) definida por un par de tipos de mensajes,
uno para la petición y otro para la respuesta. Esto es, un nodo anuncia un servicio
(bajo un nombre determinado) con un requerimiento sobre el tipo de mensaje que se
debe mandar al establecer la comunicación. Al recibir la petición, el nodo realizará

6

cierta computación con los datos de la misma, y enviará otro mensaje del tipo
especificado con el resultado [19].

Finalmente, cabe destacar la presencia de un servidor de parámetros en el
master. Se trata de un conjunto de variables nombradas que pueden ser creadas,
modificadas o leídas por cualquier nodo que se conecte al master. Así es posible la
persistencia de datos para un intercambio asíncrono de información [22]. Se ha incluido
un esquema del comportamiento descrito anteriormente, en la Figura 2.1.

2.2. Gazebo

Gazebo es un simulador de la dinámica de objetos y robots en tres dimensiones,
que ofrece la habilidad de simular múltiples robots en diferentes entornos, además de
simulación de físicas, utilización de sensores (como cámaras o láseres [23]) e interfaces
de usuario y programática [24]. Podemos observar la interfaz gráfica en la Figura 2.2.

En él, existen modelos que están formados por enlaces o links que representan
las características visuales y físicas de distintas partes del objeto, así como por
articulaciones o joints que son las que unen los enlaces del objeto y permiten el
movimiento de los mismos.

Se encuentra integrado en el sistema ROS gracias a la existencia de los paquetes
gazebo_ros_pkgs, que aportan las interfaces necesarias para conseguir la simulación
de un robot en Gazebo mediante mensajes y servicios de ROS [25]. Además, ABB
proporciona paquetes ROS para la simulación de los robots IRB 120 en Gazebo [26].
Se utilizará la versión Gazebo 9.0.0, recomendada con ROS Melodic [27].

Figura 2.2: Captura del entorno de simulación Gazebo con un robot ABB IRB120

7

2.3. MoveIt Motion Planning Framework
MoveIt es una plataforma de código abierto destinada a la manipulación de

robots con ROS [28]. Contiene las funcionalidades del cálculo de cinemáticas inversas,
planificación de movimientos y evitación de obstáculos [29].

MoveIt ofrece tanto interfaces para poder ser utilizada de forma programática,
mediante las interfaces ofrecidas para C++ y Python [30], como mediante la interfaz
de usuario RViz, un visualizador 3D con diferentes métodos para manipular robots y
otros objetos [29].

Resulta de principal interés el cálculo de las cinemáticas inversas y la planificación
de movimientos para este proyecto, ya que de esta manera, podremos hacer uso tanto de
la interfaz de programación en C++ para conseguir el movimiento de los robots, como
de la interfaz de usuario RViz para la depuración manual de la configuración. Además,
ABB ofrece paquetes de ROS preparados para la utilización de MoveIt y RViz para la
manipulación de sus robots industriales, entre ellos el IRB 120 [31]. En la Figura 2.3
podemos observar un robot realizando un movimiento en la interfaz RViz.

Se utilizará la versión de MoveIt para ROS Melodic [32], junto con el lenguaje de
programación C++, en su versión 11.

Figura 2.3: Captura del entorno de manipulación RViz. Se muestra un robot ABB
IRB120 ejecutando una trayectoria (de la posición de la derecha hasta la de la izquierda,
pasando por la del centro.

8

Capítulo 3

Configuración del entorno
multi-robot

ROS es compatible con robots de diversos tipos, como robots aéreos, componentes
electrónicos, robots terrestres, manipuladores industriales e incluso robots marítimos
[33]. Entre sus manipuladores se encuentran los de varias empresas, como Fanuc,
Universal Robots, Kuka y ABB [34]. Para desarrollar este Trabajo, se plantea una
simulación con al menos dos robots que sea compatible con los robots IRB 120 de
la empresa ABB, que tienen 6 grados de libertad, son ligeros, compactos y pueden
realizar movimientos precisos a gran velocidad, por lo que podrían resultar adecuados
para manipular objetos deformables que son más impredecibles que los rígidos [3] [9]. En
la Figura 3.1 se pueden observar tres ejemplares en distintas configuraciones posibles.

Figura 3.1: Tres robots IRB 120 en distintas configuraciones. Origen: [35].

Tanto ABB como el resto de empresas ofrecen paquetes para el control de sus
robots en ROS, pero son en gran parte para controlar exclusivamente un robot por
simulación. Resulta bastante sencillo utilizar varios robots de diferentes modelos sin
cambiar los ficheros. Sin embargo, existe una serie de problemas en los ficheros que no
permiten introducir varios robots del mismo modelo en una única simulación, por lo

9

que es necesario realizar varios cambios en los mismos.
Finalmente, ROS ofrece un tutorial para la utilización de su interfaz, así como de

RViz para entornos multi-robot [36]. El método de afrontar el problema de varios robots
en dicho tutorial supone la creación de un nuevo robot que a su vez contenga ambos
robots y asegurándose de que todas las articulaciones tienen nombres únicos. Esto
supondría que si se quisiese añadir un nuevo robot, sería preciso repetir este proceso
y por tanto no sería una solución muy flexible ni escalable. Por ello, se plantea una
solución en la que los robots se encuentren diferenciados en el espacio de nombres de
ROS, que puedan ser controlados individualmente por diferentes instancias de MoveIt
y RViz, pero que se encuentren en el mismo entorno de Gazebo. A continuación se
describe la problemática con los archivos originales, y algunas de las modificaciones
necesarias para el correcto funcionamiento de este entorno.

3.1. Paquetes de ROS para ABB IRB 120

Como se ha mencionado en el capítulo anterior, ABB proporciona los paquetes
necesarios para el control y la simulación con Gazebo y MoveIt en ROS para múltiples
de sus robots, incluyendo el ABB IRB 120.

Los nombres de estos paquetes son:

− abb_irb_120_support: para el control del robot por medio de ROS [17].

− abb_irb_120_gazebo: para la simulación del robot en Gazebo [26].

− abb_irb_120_moveit_config: para la manipulación del estado del robot por
medio de MoveIt y RViz [31].

En ellos, existen archivos de diferentes tipos:

− Archivos launch: Archivos en el formato XML que son utilizados para el
lanzamiento de múltiples nodos y para cargar parámetros en el servidor de ROS,
necesarios para la simulación o control de robot real [37]. Se ejecutan por el
comando “roslaunch” [38].

− Archivos yaml: Archivos que poseen diferentes datos, como las articulaciones del
robot (véase [39]) y sus características físicas (véase [40]) o el algoritmo para
calcular cinemáticas (véase [41]), entre otros.

− Archivos en formato srdf o urdf : Archivos que poseen la descripción del aspecto,
características físicas y articulaciones del modelo para su representación en la
simulación. Hacen uso de los lenguajes universales de descripción de robots URDF

10

[42] y SRDF [43], así como lenguaje de macros XML “xacro”, que permite una
mayor parametrización de dichos lenguajes [44].

Si bien es cierto que algunos de estos archivos poseen indicios de una estructura para
la utilización de los mismos en un entorno con múltiples robots (por ejemplo, el archivo
para la descripción del robot y sus articulaciones irb120_3_58_macro.xacro [45] añade
un prefijo especificado por un parámetro al nombre de todas las articulaciones y
enlaces), su uso sin modificaciones no es posible ya que la mayoría de éstos no están
adaptados a una situación en la que hubiera recursos duplicados, tales como topics,
nodos, enlaces, articulaciones o el propio modelo del robot (dos recursos no pueden
compartir nombre en el mismo nivel de la jerarquía de nombres [46]). E incluso si
fuera posible, los controladores no sabrían qué robot o articulación deberían controlar.
Además, MoveIt y RViz están diseñados para el control de un único robot, por lo que
esta tarea no es trivial.

3.1.1. Puesta en marcha de un robot en Gazebo y MoveIt

El paquete gazebo_ros ofrece varios nodos y servicios cuya funcionalidad es colocar
un modelo, ya sea un objeto cualquiera o un robot, en el entorno de simulación de
Gazebo [47].

En el caso de los paquetes de ABB, se hace uso del nodo spawn_model al que se
le debe pasar un parámetro del servidor denominado robot_description que contenga
toda la información del robot [48]. También es necesario la inicialización de un nodo
robot_state_publisher, que se encarga de calcular las cinemáticas directas del robot
(haciendo uso de las posiciones de las articulaciones del robot) para poder ser usadas
por el entorno RViz entre otros [49]. Por último, será necesario cargar los controladores
para poder manipular el robot.

El primer controlador es un joint_state_controller, que se encarga de leer la
posición de todas las articulaciones y publicarla en un topic [50] [51]. El segundo es un
joint_trajectory_controller, que se utiliza para enviar trayectorias completas al robot
[51].

Para controlarlo con MoveIt, lo más importante es que exista un nodo del tipo
move_group, que nos proporcionará la habilidad de manipular el robot por medio de
RViz o de otros nodos [52]. En la Figura 3.2 se incluye un esquema muy sencillo del
funcionamiento para un robot.

11

Figura 3.2: Esquema básico del funcionamiento coordinado de ROS, Gazebo y MoveIt
para controlar el robot. Se observan los nodos “robot_state_publisher” “spawn_model”,
“joint_state_controller” y “move_group”. Se incluyen también los topics “joint_states”
y “joint_path_command”. Aparece el servidor de parámetros, haciendo énfasis en
robot_description y por el otro lado, Gazebo y MoveIt junto a RViz. Logo ROS: [21]
Logo Gazebo: [53] Logo MoveIt: [54] Logo RViz: [55]

3.2. Paquete multiple_abb_irb120
Para realizar todas las modificaciones necesarias para el correcto funcionamiento

del entorno multi-robot, se ha creado un paquete llamado multiple_abb_irb120. Este
paquete contiene únicamente los archivos que han sufrido algún cambio respecto a los
originales, de forma que se utilizan estos últimos en la medida de lo posible. Para ver
la versión final de los archivos que se incluyen en este paquete, véase el Apéndice A.

3.2.1. Puesta en marcha de dos robots en Gazebo

Si intentamos lanzar los nodos para la simulación de un único robot dos veces, nos
encontraremos con una serie de conflictos de nombres, por lo que es necesario encontrar
una solución para que o bien los nombres se encuentren separados en diferentes espacios
de nombres, o bien que todos posean nombres únicos.

En primer lugar se realizaron pruebas que duplicaban el código para cada robot que
se deseaba tener en la simulación. Esta tarea no resultó ser trivial, puesto que surgió
una gran cantidad de problemas, que se detallan en la Subsección C.1.1. Además, una
de las desventajas de esta solución sería que duplica gran parte del código, y si en algún

12

momento se quisieran añadir más robots, requeriría hacerlo manualmente.
Por ello, se creó una organización de los archivos que permitiera una creación

recursiva de los robots en Gazebo. Así se diseñó el fichero recursive_spawn.launch
(véase Sección D.4), que invoca al fichero spawn_irb120.launch (véase Sección D.5) con
los parámetros del nombre del robot y su posición en el mundo y también se invoca
a sí mismo, hasta que el parámetro del número de robots que se debieran invocar sea
0 (véase Apéndice A para la organización final de los archivos desarrollados). Por su
lado, el fichero spawn_irb_120.launch (véase Sección D.5) es el resultado de varios
intentos de introducir todos los nodos, parámetros y servicios necesarios para un robot
en un namespace propio, para que así aparecieran en Gazebo (por ejemplo, haciendo
uso del parámetro “ns” al crear un nodo y cambiando directamente el nombre de
ciertos parámetros, como el robot_description). Se puede observar el resultado en la
Figura 3.3.

Figura 3.3: Captura del entorno de simulación Gazebo con dos robots ABB IRB120
después de la ejecución de los ficheros launch creados.

De esta manera, la versión final posee un fichero setup_gazebo.launch (véase
Sección D.7) que se encarga de cargar el mundo de la simulación y que posee un
parámetro que indica el número de robots a colocar en el mundo. Los robots aparecen
en la posición p = (0, i − 1, 0), con i ∈ N e i > 0 el número del robot, de forma que
el primer robot aparece en el origen del sistema de coordenadas y el resto se colocan
separados por un metro a lo largo del eje Y. La Figura 3.3 ilustra este comportamiento
para dos robots.

Finalmente, se desarrolló un fichero de bash con un parámetro que se introduce
por la línea de comandos, que se encarga de crear un fichero launch temporal que al
lanzarlo inicialice Gazebo con el número de robots indicado por el parámetro y deje

13

todos los nodos en los espacios de nombres necesarios para que MoveIt y RViz puedan
ejecutarse con normalidad (véase Sección D.6). Los robots se inicializarán con el nombre
de roboti, siendo i un número natural desde 1 hasta el número total de robots. Así, en
una simulación con 2 robots, sus nombres serán robot1 y robot2. La decisión de por qué
se desarrolló un archivo de tipo bash se explican en la Subsección C.1.1.

Estos archivos sufrirán cambios también para poder lanzar MoveIt con ambos
robots. Se recuerda al lector, que puede consultar la estructura de los ficheros en el
Apéndice A.

3.2.2. Puesta en marcha de MoveIt para ambos robots

De la misma forma que en el paso anterior, todos los nodos, servicios y parámetros
utilizados por MoveIt deben introducirse en un espacio de nombres o namespace para
que Gazebo y MoveIt se comuniquen entre sí.

Se hizo uso de los comandos rosparam list, rostopic list y rosnode list para
observar las discordancias entre Gazebo y MoveIt. Así, tras varios intentos (véase
Subsección C.1.2) y haciendo uso de namespaces o modificando el nombre de algunos
nodos, parámetros o topics, se hicieron coincidir los nombres entre los dos sistemas
para conseguir una comunicación correcta entre ellos y también con RViz.

Así, se dispone de un fichero moveit_planning_execution_gazebo.launch (véase
Sección D.8) que se encarga de lanzar todos los nodos y parámetros necesarios para
la puesta en marcha de MoveIt para el robot indicado por su parámetro robot_name.
Además inicializa RViz con dicho robot incluido para poder manipularlo manualmente.
De este modo deberemos ejecutar este fichero tantas veces como robots tengamos en
la simulación, indicándole manualmente el nombre del robot.

3.2.3. Conexión a los robots desde C++

Para poder mandar comandos a los robots desde C++ se utilizó la interfaz
MoveGroupInterface de MoveIt. Para su puesta en marcha, se siguió uno de sus
tutoriales que explica en detalle las funcionalidades de dicha interfaz (véase [56]).

En primer lugar, es necesario instanciar la clase, indicándole el nombre del grupo
que forma el robot que queremos controlar [57]. Éste está definido en el fichero SRDF
utilizado por el paquete de la configuración de MoveIt de ABB [58], y es referido en
múltiples ocasiones por otros ficheros. Para que dichos grupos tuvieran nombres únicos,
se realizaron cambios en todos ellos, haciendo uso de parámetros para transmitir el
nombre del robot de fichero a fichero. Además, fue preciso reescribir el fichero srdf en
un fichero de tipo xacro para poder añadirle el parámetro necesario (véase Sección D.9).

14

De esta forma, la interfaz en C++ puede distinguir qué robot se desea controlar. Todo
esto se realiza en una clase creada para este propósito, denominada RobotInterface.

De esta manera, se desarrolló un programa llamado robots_moving_demo, que se
detalla en el Capítulo 7. El sistema de comunicación global y de simulación se encuentra
detallado en el esquema de la Figura 3.4.

Figura 3.4: Esquema del funcionamiento de este trabajo.
Muestra las conexiones por medio de ROS y sus topics (representado con un sobre)
entre el nodo de ROS, Gazebo y MoveIt. Aparece también un plugin de Gazebo

(véase Capítulo 5). Gazebo se encarga de la simulación del mundo, objeto deformable
y los robots. El nodo se encarga de programar las tareas a realizar. MoveIt se encarga
de planificar rutas. ROS tiene el modo de comunicación por servicios (en el esquema,

el bocadillo con los tres puntos), los topics (sobre) y parámetros (las barras
deslizadoras). Los caminos por topics o por conexión directa están en morado,

mientras que los caminos por parámetros están en rojo carmesí. Logo ROS: [21] Logo
Gazebo: [53] Logo MoveIt: [54] Logo C++: [59] Vectores obtenidos de Microsoft

Office Powerpoint.

15

16

Capítulo 4

Creación del objeto deformable

El modelo del objeto deformable será simulado por medio de una malla de puntos
(véase Sección 5.1) en los que los puntos tendrán forma de esferas pequeñas, para
lo cual, se pueden utilizar modelos independientes (un modelo por esfera) o bien un
modelo que tenga tantos enlaces como esferas sean necesarias. Gazebo posee varios
métodos para crear un nuevo modelo e incluirlo en la simulación. Aunque la solución
más sencilla pudiera ser utilizar los ficheros launch para que el mundo de la simulación
se inicialice con el modelo ya incluido, el formato no es muy flexible y no permite
crear modelos que pudieran tener un número variable de enlaces, si se quiere probar el
segundo tipo de modelos. A continuación se describen los métodos con los que se ha
trabajado.

4.1. Creación por medio de servicios ROS

El primer enfoque que se probó fue el uso de los servicios en ROS que el simulador
Gazebo expone. En particular, el servicio /gazebo/spawn_sdf_model [47].

En la Sección 3.1 se mencionan los formatos URDF y SRDF. Ambos se utilizan en
la descripción de modelos de robots [42] [43]. Sin embargo, existe además un formato
denominado SDF, el cual es más genérico que los otros dos, puesto que se puede utilizar
para describir tanto objetos simples, como robots complejos [60]. De esta manera, es
posible definir una esfera de pequeñas dimensiones en este formato. Se creó un nodo
inicial en C++ que hacía uso de los métodos de la API de ROS para llamar al servicio
mencionado anteriormente, que lee el fichero y lo coloca en la simulación [61]. Así, se
pudo generar una cuadrícula de un tamaño predefinido en el código.

La principal desventaja de este método es que las esferas aparecían de una forma
excesivamente lenta (aproximadamente 26 segundos para un conjunto de 100 esferas).
Por ello fue descartada rápidamente.

17

4.2. Creación por medio de un plugin de Gazebo

Gazebo es una herramienta muy potente, pues ofrece una serie de físicas y
comportamientos preestablecidos, como gravedad, viento o detección de colisiones [62].
Pero además permite un control mayor de la simulación por medio de plugins [63].
Existen varios predefinidos [23] y también es posible la creación de plugins propios [64].
Existen varios tipos de ellos para cumplir distintos objetivos [64], y son de principal
interés:

− WorldPlugin: se lanza al inicializar el mundo de la simulación (véase la sección
“Run the Code” en [65]) y puede cumplir varios objetivos, como control de físicas,
generación de modelos, su modificación, entre otros [65].

− ModelPlugin: se lanza al inicializar un modelo, y es capaz de modificarlo,
cambiar sus propiedades físicas, aplicar fuerzas, aceleración o velocidad, entre
otros [66].

− VisualPlugin: se lanza al inicializar un objeto de tipo visual, el cual siempre
debe pertenecer a otro objeto, como un modelo. Se utiliza para personalizar el
aspecto de un modelo [64] [67].

A continuación se detalla la solución final que se tomó para la creación del modelo,
pero también se incluye en la Sección C.2 otra de los enfoques que se le dio a esta tarea.

4.2.1. Creación del modelo con un WorldPlugin

Los WorldPlugin nos ofrecen la posibilidad de modificar el mundo de la simulación
al inicializarse [65]. También existen muchas funciones en la clase World del namespace
gazebo::physics, y en el namespace gazebo::msgs que sirven para completar esta tarea
[68] [69]. Así, se creó un plugin para generar un nuevo modelo y añadir todas los enlaces
de la tela. Esto también causó algunos de los problemas descritos en la Sección C.2
inicialmente, por lo que se usaron las funciones del namespace physics lo mínimo posible
y se delegaron muchas de las tareas en el namespace sdf, que posee las funcionalidades
para definir un modelo SDF programáticamente [70]. Así, podemos crear un modelo
con múltiples enlaces con una forma esférica. Gracias a éste, se pudo completar el
objetivo: el plugin lee un fichero denominado grid.config (véase Sección D.1) que posee
los parámetros de la posición inicial de la tela, su tamaño, el número de esferas y otros
parámetros necesarios para la simulación de la misma y los carga en el servidor de
parámetros y finalmente la tela aparece inmediatamente al inicializar Gazebo.

18

Método Tiempo de ejecución (s)
Servicios 25.9478

WorldPlugin 0.1988

Tabla 4.1: Comparación entre el tiempo de ejecución que los métodos de creación del
modelo necesitan para generar una cuadrícula de 10x10 esferas

Cabe destacar que se debe crear un enlace inicial (antes de cualquier esfera) para
que sea el enlace canónico, que es el que define el sistema de referencia local del resto de
enlaces [47]. Se ha colocado en la posición (0, 0, 0) para que coincida con la referencia
global.

Finalmente, se les ha añadido colores distintos a las esferas del objeto para que sean
más distinguibles entre sí. La versión final se puede observar en la Figura 4.1.

Figura 4.1: Versión final del objeto deformable, junto a los dos robots. Se trata de una
tela de 10x10 esferas, de 2x2 metros.

19

20

Capítulo 5

Simulación del objeto deformable

La simulación del objeto deformable y su creación son tareas que fueron
desarrolladas en paralelo, por lo que todas las opciones exploradas en el capítulo
anterior (Capítulo 4) se han probado para la simulación también. Para conseguir un
comportamiento realista de un objeto deformable (se implementará una tela elástica),
se pueden utilizar gran cantidad de modelos distintos, pero en nuestro caso, se va
a utilizar el modelo Mass-Spring-Damping o de “masa-muelle-amortiguador” y se
han analizado dos métodos distintos para implementarlo. Todo ello es descrito a
continuación.

5.1. Modelo Mass-Spring-Damping

El modelo Mass-Spring-Damping (Masa-Muelle-Amortiguador) es un modelo para
representar las fuerzas a las que se encuentra sometido un objeto deformable [71]. El
principio básico para representar el objeto es la presencia de unas masas puntuales a
lo largo de todo el objeto que se encuentran interconectadas por muelles que siguen
la ley de Hooke (aunque existen modelos que utilizan muelles de otros tipos para
conseguir simulaciones más realistas de otro tipo, como el tejido humano [71]) y con un
amortiguador [71] [72]. De esta manera, tenemos tres fuerzas distintas a las que puede
estar sometida cada una de las masas puntuales:

− Causadas por el muelle: Se oponen a los movimientos de compresión /
descompresión causados por otras fuerzas [73].

− De amortiguamiento: Sirven para representar la fricción a la que estaría sometido
el objeto deformable. Depende de la diferencia de las velocidades entre masas [74].

− Externas: Producidas por un agente externo que manipula el objeto o el viento,
u otras fuerzas como la gravedad [74].

21

Si juntamos los tres términos, obtenemos la siguiente ecuación:

−→
Fa =

−−→
Fexta +

∑
b∈Va

(
−−→
fb→a +

−−→
db→a) (5.1)

Donde −−→
Fexta es la suma de todas las fuerzas externas aplicadas a la masa a, Va es

el conjunto de todos las masas vecinas a la masa a, −−→fb→a es la fuerza producida por
la deformación del muelle situado entre la masa a y la masa b, y −−→

db→a es la fuerza
producida por el amortiguamiento entre las masas a y b. Así:

−−→
fb→a = kab·(∥−→xb −−→xa∥ − ∥−→xb0 −−→xa0∥)·

−→xb −−→xa

∥−→xb −−→xa∥
(5.2)

Donde kab es la constante de elasticidad del muelle entre las masas a y b, −→xi y −→xi0 son
las posiciones actual e inicial de una masa i. Esto significa que se producen fuerzas que
dependen de las distancias inicial y final entre las masas, y se alejarán en caso de una
compresión y acercarán en caso de elongación [75].

Además:
−−→
db→a = Dab·(−→vb −−→va) (5.3)

DondeDab es la constante de amortiguamiento entre las masas a y b, y−→vi es la velocidad
actual de una masa i. Así, se produce una fuerza que suaviza la deformación, al oponerse
a los cambios de velocidad entre masas, pero no evita el movimiento global del objeto
deformable [73] [74].

Este modelo resulta interesante, pues es de fácil implementación debido a su
simpleza, pero causa un comportamiento lo suficientemente realista para experimentar
con un objeto deformable. Su comportamiento se ilustra en la Figura 5.1.

Figura 5.1: Representación de un objeto tridimensional deformable con el modelo
Mass-Spring-Damping. Se muestran masas puntuales conectadas por un enlace
muelle-amortiguador a 6 vecinos como máximo: dos en vertical, dos en horizontal y
dos en profundidad. Origen: [71].

22

Mientras que la Figura 5.1 ilustra un comportamiento de un objeto tridimensional
con 6 vecinos: Arriba, abajo, a la izquierda, a la derecha, adelante y atrás. En nuestro
caso, implementaremos un objeto bidimensional que tendrá 8 vecinos: Arriba, Abajo, a
la izquierda, a la derecha, arriba a la izquierda, abajo a la izquierda, abajo a la derecha
y arriba a la derecha, como muestra la Figura 5.2

Figura 5.2: Representación de un objeto bidimensional deformable con el modelo
Mass-Spring-Damping. Se muestran masas puntuales conectadas por un enlace
muelle-amortiguador a 8 vecinos como máximo: dos en vertical, dos en horizontal y
cuatro en diagonal.

5.2. Estudio de implementación en Matlab

La implementación del modelo ha estado muy influenciada por dos proyectos en el
entorno Matlab, desarrollados para la simulación de objetos deformables de tipo tela
en una simulación en 2D y 3D respectivamente [76] [77]. La Figura 5.3 demuestra el
comportamiento de una de estas implementaciones ([77]).

Figura 5.3: Implementación en Matlab del método Mass-Spring-Damping para un
objeto deformable de tipo tela, con las cuatro esquinas fijadas y con gravedad activada.

23

5.3. Simulación por medio de servicios ROS

Como se ha descrito en la Sección 4.1, Gazebo expone servicios muy útiles para
realizar modificaciones desde el exterior de la simulación por medio de ROS. En este
caso, es destacable el servicio /gazebo/set_model_state, que permite cambiar el estado
en el que se encuentra un modelo de la simulación [47]. Así podemos enviar peticiones
que cambien la posición en la que las esferas se encuentren. Nuevamente, la velocidad
de ejecución fue muy pobre y no demostraba correctamente el comportamiento que
una tela debiera tener.

5.4. Simulación por plugins de Gazebo

Si bien el ModelPlugin resultó una prueba fallida para generar el modelo (véase
Sección C.2), sigue siendo una opción muy adecuada para indicar a la simulación el
estado de las esferas. De esta manera, el WorldPlugin descrito en la Sección 4.2 le indica
al modelo (en el formato SDF) que debe ejecutar un plugin al inicializarse. Por esto,
el ModelPlugin puede acceder fácilmente a los enlaces y modificar sus propiedades con
las funciones de la clase Model del namespace gazebo::physics.

El primer paso es obtener punteros a todos los enlaces. Para ello, se invoca a
la función GetLink [78] con el nombre del enlace, que se les ha dado mediante el
WorldPlugin de la Subsección 4.2.1. Estos enlaces se almacenan en una clase Grid
que posee una matriz de objetos de tipo GridVertex, los cuales albergan el puntero al
objeto de tipo gazebo::physics::Link (un enlace [79]) y ofrecen métodos para enviar a
la simulación el resultado calculado por el modelo de objeto deformable.

Por otro lado, la clase MassSpringDamping es la encargada de implementar
el modelo descrito en la Sección 5.1. Los parámetros de rigidez kij, masa m y
amortiguamiento Dij (descritos en la Ecuación 5.1) se añaden al fichero grid.config
(véase Sección D.1), así como un parámetro adicional que indica si se desea que
el objeto se vea afectado por la gravedad o no. Para poder acceder a los datos de
posición, velocidad y fuerza, así como modificarlos, esta clase recibe un puntero al
objeto Grid. Surge aquí una decisión que se debe tomar: ¿debería el modelo modificar
directamente la posición de cada esfera? ¿o debería indicarle a Gazebo la fuerza a la
que está sometida?

En este caso se ha seguido un enfoque hacia la segunda opción, calcular las fuerzas
y dejar que Gazebo simule las físicas según dichas fuerzas. La principal razón es que
el cálculo de la velocidad y posición precisan de la medición del tiempo transcurrido
entre un instante de tiempo y el siguiente manualmente, lo cual puede introducir

24

ciertas imprecisiones. De esta manera, cada GridVertex posee un campo force_cache
que almacena la fuerza calculada por el objeto MassSpringDamping, y posteriormente,
se actualizan todos las esferas a la vez, enviando este valor a la simulación en Gazebo.

25

26

Capítulo 6

Interacción Robot - Objeto
deformable

Para conseguir una simulación realista, es necesario que los robots conozcan la
posición del objeto deformable para poder aproximarse y “agarrarlo”. Pero además, en
ese caso, el objeto deformable también deberá saber la posición del robot, para seguir
sus movimientos si dicho robot ha agarrado el objeto. ROS nos ofrece una buena forma
de lidiar con la comunicación entre los nodos que conforman el control de los robots y
la simulación del objeto deformable.

6.1. Obtención de la posición del objeto deformable

Como se ha mencionado en capítulos anteriores, Gazebo ofrece una serie de topics
y servicios que cumplen diversos objetivos. Para que el robot sea capaz de conocer la
posición a la que deberá acercarse para agarrar el objeto deformable, existen:

− Topics ([47] - Gazebo Published Topics):

• /gazebo/model_states: Publica los estados de todos los modelos de la
simulación.

• /gazebo/link_states: Publica los estados de todos los enlaces de la
simulación.

− Servicios ([47] - Services: State and property setters):

• /gazebo/get_model_state: Devuelve el estado de un modelo.

• /gazebo/get_link_state: Devuelve el estado de un enlace.

• /gazebo/model_states: Devuelve el estado de todos los modelos de la
simulación.

27

• /gazebo/link_states: Devuelve el estado de todos los enlaces de la
simulación.

Debido a los resultados obtenidos con el uso de servicios en el desarrollo de capítulos
anteriores (véanse la Sección 4.1 y la Sección 5.3), no se han realizado pruebas con el uso
de los servicios, y se ha hecho uso exclusivo de los topics para este propósito. Así, los dos
topics ofrecidos por Gazebo nos ofrecen una manera rápida de obtener la posición de
los objetos en la simulación. Si inspeccionamos los mensajes que se intercambian por el
primero de ellos, podemos observar que la información es demasiado genérica y no nos
aporta ninguna manera de conocer la posición de las esferas, pues solo incluye la pose
del conjunto del modelo [80]. Por ello, se ha utilizado el topic “/gazebo/link_states”.

El nodo que controla el movimiento que deberían hacer los robots se subscribe al
topic y obtiene las poses de todos los enlaces cuyo nombre comience por “grid::link_”,
pues es la combinación del nombre del modelo y del enlace ([47] - Services: State and
property setters). Al llegar un mensaje, las posiciones se guardan en una matriz dentro
de una clase llamada GridState de forma que los robots puedan saber en todo momento
cuál fue la última posición que se ha recibido de cada esfera. La posición en la matriz
depende del número incluido en el nombre del enlace.

Finalmente, se utiliza la posición de una de las esferas como posición objetivo
en las funciones de la interfaz de MoveIt. Esto sin embargo produce una situación
indeseable, que es que el robot golpee en su trayectoria a una de las esferas y mueva el
conjunto antes de agarrarlo, además de que MoveIt moverá el robot hasta que el centro
del extremo del robot esté exactamente en el centro de la esfera (véase Figura 6.1),
provocando el mismo efecto. La solución a estos problemas se detalla en la Sección 6.2.

Figura 6.1: Posicionamiento de las esferas dentro del extremo del robot. Los robots han
“agarrado” las esferas roja y verde y la mitad de las mismas se encuentra en el interior
del robot.

28

6.2. Planificación de trayectorias con evitación de
colisiones

Para que MoveIt realice una trayectoria hasta una esfera sin golpear a las demás, se
plantean dos posibilidades. Una primera que sería más sencilla se trataría de realizar
una ruta manual que pasase por puntos que de antemano se conozca que sea segura
para el movimiento del robot.

Otra solución más genérica y que ha sido la que se ha decidido implementar, es
hacer saber a MoveIt, gracias a las funciones de la interfaz PlanningSceneInterface,
[81]) que existen obstáculos en el camino que debe realizar. Para esto, se deben crear
mensajes del tipo CollisionObject, los cuales almacenan la forma del objeto (ya sean
modelos, planos o primitivas como esferas o cubos) o su posición en el mundo, entre
otros. También posee flags que indican la operación que se pretende hacer con dicho
objeto: añadirlo a la escena, eliminarlo, moverlo o encadenarlo a otro objeto de la escena
[56] [82].

Los archivos descritos en el Capítulo 5 crean, gracias al prefijo tf_prefix una
“escena” para cada robot, de forma que se puede instanciar una PlanningSceneInterface
para cada uno de ellos, y así indicarle situaciones distintas a cada robot, como
se puede observar en la Figura 6.2. Así, se ha modificado la clase GridState para
que su constructor se encargue de añadir las esferas a las escenas indicadas en la
posición relativa al robot. Posteriormente, se crea un proceso asíncrono que mueve
periódicamente dichos obstáculos a la posición determinada por la matriz de posiciones,
que se actualiza según el procedimiento descrito en la Sección 6.1. En caso de que un
robot se encuentre agarrando el objeto deformable, estas esferas son eliminadas de la
escena para dejarle al robot total libertad de movimiento para poder manipular el
objeto de la manera que necesite.

Por otro lado, para que el extremo del robot no choque con la esfera a agarrar, se
ha añadido un enlace (sin ningún tipo de geometría) al robot que simula la presencia
de una herramienta, a una distancia determinada del extremo del robot. Además, se
añade una articulación que une este enlace con el denominado “tool0”, utilizado por los
paquetes de ROS para estandarizar el final de sus robots con ROS Industrial [83]. Así,
MoveIt planeará la ruta para quedarse a la distancia a la que se encuentra dicho enlace.
Esto no podrá ser utilizado por Gazebo ni los plugins, al ser un enlace sin componentes
inerciales [84] y una articulación fija (pues las articulaciones fijas se conectan para
reducir tiempos de compilación [85]).

29

Figura 6.2: Presencia de obstáculos en MoveIt (en la interfaz RViz) para planeado de
rutas seguro. A la izquierda se encuentra la ventana del robot1, y a la derecha el robot2.
Las esferas están en las posiciones relativas a los robots y tienen un tamaño superior
al de las esferas en Gazebo para evitar colisiones.

6.3. Petición de agarre

El primer paso para que una esfera sea “agarrada” es que la simulación del objeto
sepa que se ha producido el agarre y evite calcular las fuerzas para dicha esfera.
Entonces, debemos establecer un método para comunicar desde el nodo de los robots
al plugin que simula el objeto. En este caso, se ha creado un topic bajo el nombre
“/grid/grab_petitions” con un tipo de mensaje personalizado “GrabPetition”, que está
compuesto por dos enteros i y j que representan la posición en la cuadrícula de la
esfera que se quiere agarrar, un booleano grab, una cadena de caracteres link_name y
otra robot_name (véase Sección D.3). En el momento en el que el plugin del modelo
lee un mensaje en el topic anterior, la esfera indicada se marca como “agarrada” o
“soltada” según el parámetro grab. Además, en caso de que la petición sea de agarre, el
plugin obtendrá la pose del enlace con el nombre link_name del robot robot_name. En
caso contrario, el comportamiento vendrá definido por el modelo Mass-Spring-Damping
de nuevo. Al no hacer uso de una herramienta de manipulación (y no poder usar el
procedimiento descrito en la Sección 6.2) para la simulación, el enlace que se utilizará
será el último del robot, en este caso, “link_6” [86].

6.4. Obtención de la posición de los robots

Una vez una esfera es “agarrada” por uno de los robots, su comportamiento esperado
sería que se moviera a la vez que el robot. Para poder conseguirlo, las esferas también
deben conocer el estado de los robots. Para esto, se obtiene un puntero al mundo de
la simulación desde el modelo asociado al plugin, y con este puntero, se obtienen los

30

punteros al modelo del robot y del enlace indicados por la petición (descrito en la
Sección 6.3). De esta manera, sabemos la posición en la que se encuentra el extremo
del robot (siempre y cuando este enlace exista) y se podrá colocar la esfera en una
posición ligeramente separada del mismo por medio de la composición de la pose de la
esfera y la del robot, La Figura 6.3 muestra el mismo caso de estudio que la Figura 6.1.
Previamente, el extremo de los robots se colocaba en una posición directamente en
contacto con la esfera, y una vez “agarrada”, ésta se colocaba en el interior del extremo.
Ahora, los robots se mueven hasta una posición cercana y las esferas mantienen esa
distancia de forma satisfactoria.

Figura 6.3: Posición final de la esfera tras haber sido “agarrada” por un robot.
En la imagen, el robot más próximo ha cogido la esfera roja, y el más lejano ha

cogido la verde.

31

32

Capítulo 7

Experimentos realizados y
resultados

Para comprobar el correcto funcionamiento del sistema diseñado, se han
desarrollado varios programas y se han utilizado varios métodos de prueba. En este
capítulo se explicará en qué consisten estos experimentos y se analizarán los resultados
obtenidos. Para ver cómo se deben ejecutar, véase el Apéndice B.

7.1. Creación de robots en la simulación

El primer hito clave de este Trabajo se basaba en la puesta en marcha de un entorno
con varios robots (no necesariamente 2). Se han realizado experimentos para probar
que los nombres de nodos, parámetros y topics no coincidían entre sí al añadir más de
un robot, por lo que los ficheros launch deberán funcionar para cualquier número de
robots indicado.

Figura 7.1: Simulación de objeto deformable con 10 robots.

33

Resultados

Se puede colocar un número arbitrario de robots en la simulación gracias a los
ficheros launch y la terminal no deberá mostrar errores de conflictos de nombres (sólo
mostrará errores y avisos procedentes de la forma de ABB para definir los robots, puesto
que estos paquetes son para ROS Kinetic [17], por lo que pueden estar ciertamente
desactualizados). En la Figura 7.1 se observa un ejemplo con 10 robots.

7.2. Movimiento de los robots en entorno
multi-robot

Los robots creados en la sección anterior deben poder ser controlados
individualmente (Capítulo 3). La prueba más básica que se puede realizar es, una
vez abierta la simulación, utilizar la interfaz gráfica de RViz para indicar a uno de los
robots una pose objetivo (compuesta de una posición y una orientación) y hacer click
en los botones Plan y Execute y así comprobar el estado de la conexión entre MoveIt
y Gazebo (véase Figura 7.2).

Figura 7.2: Resultado de una petición de movimiento manual a través de RViz.
A la derecha se observa RViz con un robot que se ha controlado para pasar a otra
posición. Después de pulsar los botones de Plan y Execute, el robot ha comenzado a

moverse también en Gazebo (a la izquierda).

Por otro lado también podremos ejecutar el programa robots_moving_demo, para
probar las conexiones con un nodo escrito en C++ gracias a la interfaz de MoveIt.
Este toma control de dos robots y hace que vayan a la posición de las cuatro esquinas

34

de un cuadrado (dejando a MoveIt planear la ruta que considere óptima) y después
dibujen el cuadrado forzando a los robots a hacer movimientos cartesianos en línea
recta utilizando la función computeCartesianPath de MoveIt, aunque no sea óptima
(es decir, que no sea la ruta más rápida), y que pase por todos los puntos que se le
indique [56]).

Finalmente, también tenemos el programa robots_waving_demo, que es una versión
un poco distinta del programa anterior, que mueve un número predeterminado de robots
(indicado por un argumento en la terminal) en un movimiento senoidal.

Resultados

Al realizar la primera prueba, el botón Plan deberá provocar que el robot en RViz
muestre la trayectoria que realizará, y Execute hará que esta se ejecute en Gazebo
(véase Figura 7.2). Si se introduce una pose a la que el robot no puede llegar, RViz y
la terminal donde se estuviera ejecutando mostrarán mensajes de error.

El programa robots_moving_demo deberá cumplir la especificación anterior y
finalizar correctamente. El comportamiento está ilustrado por la Figura 7.3.

Figura 7.3: Trayectorias realizadas por el programa robots_moving_demo. La primera
trayectoria, en color amarillo, es realizada por el robot1 y se mueve a las posiciones
1-4 con la punta del robot apuntando hacia el suelo por el camino óptimo. Después,
el mismo robot realizará un cuadrado perfecto de las posiciones 5-8 marcadas en cian.
De la misma forma, el robot2 replicará posteriormente los mismos movimientos que el
robot1 en las trayectorias marcadas en rosa y verde. En la figura, el robot1 se encuentra
realizando la trayectoria cian.

35

Por su lado, el programa robots_waving_demo hace que los robots traten de
sincronizarse para formar una onda senoidal con sus extremos de manipulación. Las
limitaciones de MoveIt impiden un control de la velocidad en movimientos cartesianos
(es decir, movimientos en los que todos los puntos de paso están definidos), por lo que
no siempre estarán sincronizados, pero hay distintos puntos de la trayectoria vertical
en los que los robots esperarán a que los demás completen su movimiento. Se observan
unas capturas de esta simulación en la Figura 7.4.

Figura 7.4: Trayectorias realizadas por el programa robots_waving_demo. Los robots
se intentarán sincronizar para crear la forma de una onda senoidal.

7.3. Creación y movimiento del objeto deformable

Para probar la creación del objeto deformable, se puede utilizar el fichero
test_grid.launch, que coloca en la simulación un objeto con las características indicadas
por el fichero test_grid.config. El primero tiene los extremos de la tela “anclados” por
lo que no se moverán y nos permitirá observar cómo interactúa el objeto en presencia
de gravedad. El segundo tiene la gravedad desactivada por defecto (siempre podemos
modificar el fichero grid.config) y colocará también los robots en el entorno.

En cualquiera de los dos podemos seleccionar una de las esferas y moverla a otra
posición para comprobar como intenta volver a su posición inicial.

Resultados

Deberemos obtener un objeto deformable en la simulación de Gazebo dependiendo
de los parámetros que se hubieran especificado.

En la Figura 7.5 y en la Figura 7.6, podemos observar una tela de 20x20 esferas que
tiene sus cuatro extremos (las esferas roja, verde, cian y morada) “anclados” de forma
que no se pueden mover. La gravedad ha provocado que el resto de esferas caigan hacia
abajo, y en su caso, reboten hacia arriba si han descendido demasiado, tal y como lo
haría una tela elástica real.

36

Figura 7.5: Distintos fotogramas de la simulación con text_grid.launch.
El objeto mide 2x2 metros y 20x20 esferas, el centro se sitúa inicialmente en (0,0,2.5).

Las esferas tienen una masa (m) de 0.08kg, y la tela tiene una rigidez (kij) de
100N/m y un amortiguamiento (Dij) de 10Ns/m. A partir del fotograma 5, la tela

sube hacia arriba, pues se ha estirado mucho hacia abajo y está rebotando.

Figura 7.6: Resultado de lanzar el fichero text_grid.launch.
El objeto mide 2x2 metros y 20x20 esferas, el centro se sitúa inicialmente en (0,0,2.5).

Las esferas tienen una masa (m) de 0.08kg, y la tela tiene una rigidez (kij) de
100N/m y un amortiguamiento (Dij) de 10Ns/m.

37

Sin gravedad, al mover una de las esferas, observaremos que lentamente volverá a
su posición inicial como se observa en la Figura 7.7. Sin embargo, si se realiza en el
eje normal al plano formado por el objeto deformable, las esferas se quedan en una
posición distinta a la inicial por las características del modelo. Esto ocurre porque el
modelo Mass Spring Damping está basado en muelles rectos, por lo que los movimientos
en direcciones tangentes al plano siempre tendrán muelles cuyas direcciones o suma de
direcciones coincidan con estas. Por otro lado, la dirección normal nunca tendrá muelles
que tiren naturalmente en esa dirección, por lo que el objeto se acercará en los tres ejes.
La distancia llegará a ser igual a la inicial y quedará en reposo en un lugar distinto al
inicial, como se observa en la Figura 7.8.

Figura 7.7: Evolución de la posición de una esfera al ser desplazada en el eje Y (tangente
al plano de la cuadrícula) y su efecto en el resto de esferas. Esta composición de
imágenes muestra las posiciones por las que pasa la esfera amarillenta al ser desplazada
en el eje Y. En la parte superior, se muestran las direcciones en las que se ha visto
desplazado el resto de esferas, desde la posición de reposo inicial. La posición final (7)
es igual a la inicial y las demás esferas no han visto su posición final modificada.

Se han realizado pruebas de los programas de la Sección 5.2 para comprobar que
los comportamientos coincidían.

38

Figura 7.8: Evolución de la posición de una esfera al ser desplazada en el eje normal
al plano de la cuadrícula. Esta composición de imágenes muestra las posiciones por
las que pasa la esfera blanquecina al ser desplazada en el eje Z. La posición final (5)
no se corresponde con la inicial y además el resto de esferas también han resultado
desplazadas.

Cabe destacar que dependiendo de los parámetros, el sistema puede llegar a ser
inestable al colisionar con algún robot o con el suelo si los parámetros de la simulación
no están bien ajustados (por ejemplo, cuando las fuerzas de amortiguamiento son
superiores a las de rigidez).

7.4. Manipulación del objeto por robots

Se dispone del programa de prueba grid_demo que, en presencia de una simulación
con un objeto deformable y dos robots, hace que los robots se acerquen al objeto
deformable, lo cojan y realicen una serie de movimientos síncronos para moverlo.
También se ha desarrollado el programa grid_wave_demo, diseñado para usarse con
gravedad, puesto que los robots cogerán el objeto deformable y lo subirán hasta una
posición más elevada (adecuado cuando el objeto se encuentra en el suelo) y lo agitarán
un poco de izquierda a derecha hasta soltarlo.

Resultados

Los robots se moverán lentamente hasta el objeto, lo cogerán y, en primer lugar,
realizarán simultáneamente un movimiento en forma de cuadrado (ilustrado en la

39

Figura 7.9). Después, tirarán del objeto en direcciones opuestas (véase Figura 7.10),
y el robot2 lo soltará para observar la reacción del objeto, como se observa en la
Figura 7.11. Finalmente la misma figura muestra cómo el robot1 también soltará el
objeto y el programa finalizará.

Figura 7.9: Fotogramas de una simulación grid_demo - Movimiento síncrono. Se
observan los dos robots preparados para coger las esferas. Una vez las cojan, realizarán
a la vez el cuadrado 1-4 y volverán al punto 1. Esta simulación se ha realizado sin
gravedad.

Figura 7.10: Fotogramas de una simulación grid_demo - Estiramiento. Se muestran
cuatro fotogramas del comportamiento del objeto estirándose por la acción de dos
robots.

Figura 7.11: Fotogramas de una simulación grid_demo - Lanzamiento. Se observa una
secuencia de fotogramas en las que el objeto deformable, sin gravedad es “lanzado” por
los robots, al haberse estirado y después soltado por uno de sus extremos.

40

Se ha incluido un fichero adicional en el directorio worlds denominado
grid_table.world, que genera un mundo idéntico al original, pero que además
incluye una de las mesas predefinidas por Gazebo para poder realizar pruebas más
cómodamente con gravedad, sin que los robots deban coger el objeto en el suelo
(véase Apéndice B para su ejecución). Se puede observar un ejemplo de simulación
con gravedad y con mesa en la Figura 7.12.

Figura 7.12: Fotogramas de una simulación grid_demo - Estiramiento con mesa. Se
muestran cuatro fotogramas del comportamiento del objeto estirándose sobre una mesa
por la acción de dos robots.

Por otro lado, el programa grid_wave_demo también manipula correctamente el
objeto y lo levanta del suelo (siempre y cuando no haya una mesa y exista gravedad),
sin embargo el movimiento de los robots resulta tan lento que no se llega a apreciar el
movimiento de “agitado” del objeto. La Figura 7.13 consta de una serie de fotogramas
del comportamiento anterior, que queda demostrado satisfactoriamente.

Figura 7.13: Fotogramas de la simulación grid_wave_demo - Levantamiento de tela
grande. Se muestran seis fotogramas del comportamiento del objeto cuando dos robots
la levantan por sus extremos.

41

7.5. Simulación Final

El programa small_cloth_manipulation (véase Sección D.11) está diseñado para
trabajar con una tela elástica pequeña, cuyos parámetros están definidos en el archivo
small_grid.config (véase Sección D.2). Los robots deberán tomar la tela y realizar
manipulaciones similares a los de los apartados anteriores. Uno de los motivos que
llevó a la utilización de un objeto de dimensiones menores es para observar el objeto
una vez sea levantado por los robots y así comprobar su comportamiento como si se
tratase de un objeto real.

Resultados

Los robots se acercarán lentamente hasta la tela y la agarrarán por el extremo
que tengan más cerca. Entonces, la levantarán y mantendrán en el aire durante unos
instantes (véase Figura 7.14). Después agitarán el objeto varias veces de adelante hacia
atrás en el eje de coordenadas X (véase Figura 7.15). Al finalizar, tirarán de la tela
en direcciones opuestas del eje Y (véase Figura 7.16), y harán una trayectoria hacia
abajo y adelante en el eje X para conseguir dejar la tela estirada en el suelo (véase
Figura 7.17). Finalmente, ambos robots volverán a la posición inicial.

Figura 7.14: Fotogramas de la simulación final - Agarre de la tela. Se muestran seis
fotogramas en los que los robots cogen una tela de 20x30 centímetros y 4x6 esferas.

Cabe destacar que en el momento en el que los robots agitan el objeto, los robots
realizan trayectorias completamente rectilíneas, puesto que tienen alcance suficiente
como para chocar entre sí, lo cual produciría una situación de inestabilidad para los
robots, y que en el caso de robots reales podría causar una situación extremadamente
peligrosa.

42

Figura 7.15: Composición de fotogramas de la simulación final - Zarandeo de la tela.
Se muestra el movimiento de zarandeo con los robots de una tela de 20x30 centímetros
y 4x6 esferas.

Figura 7.16: Fotogramas de la simulación final - Estiramiento de la tela. Se muestran
ocho fotogramas en los que los robots estiran una tela de 20x30 centímetros y 4x6
esferas.

Figura 7.17: Fotogramas de la simulación final - Recolocación de la tela. Se muestran
ocho fotogramas en los que los robots colocan una tela de 20x30 centímetros y 4x6
esferas de nuevo en el suelo, la sueltan y vuelven a su posición inicial.

43

44

Capítulo 8

Conclusiones y trabajo futuro

Para la realización de este proyecto, se han marcado como objetivos la simulación
de un objeto deformable con la utilización de varios robots para su manipulación, todo
de una forma generalizable para que pueda ser usada con cualquier robot sin necesidad
de rehacer todo el trabajo. En primer lugar se han aprendido las tecnologías ROS,
Gazebo y MoveIt. Después, se han modificado los archivos del robot IRB120 en ROS
de ABB para que permitan incluir un número personalizado de estos robots en una
simulación en el programa Gazebo, y para que se puedan controlar individualmente
con MoveIt y RViz, así como con la interfaces de MoveIt en C++, todo esto por
medio de ROS. También se ha incluido en la simulación una implementación del
modelo masa-muelle-amortiguador de objeto deformable con forma de tela y cuyas
características están parametrizadas, por medio de un plugin de Gazebo incluido en
el modelo de la tela elástica. Además, se han desarrollado varios programas de prueba
para observar el comportamiento de la simulación.

8.1. Valoración de los resultados

Podemos concluir que se han obtenido unos resultados positivos, puesto que la
prueba final demuestra que el objeto es capaz de deformarse gracias a los movimientos
que realizan los robots tras agarrarlo. Además el proyecto permitiría la sustitución de
los IRB120 de ABB por otros robots en la simulación, o incluso con robots reales.

Por otro lado, los principios que llevaron a la creación de ROS nos resultan perfectos
para este Trabajo. Sin embargo, el desarrollo de entornos multi-robot en ROS 1 no
es una práctica estandarizada y es un proceso lento y arduo. Gazebo y MoveIt nos
permiten realizar una simulación muy completa y de gran complejidad, con muchas
formas de interactuar con la misma y añadir elementos adicionales que se adecuarían
más a un entorno real (como el ejemplo con la mesa).

También resulta adecuado el algoritmo de Mass-Spring-Damping, pues es sencillo

45

pero su comportamiento es muy similar a un objeto real, salvo los casos en los que
el sistema se volviera inestable. Además sus parámetros nos permiten realizar muchas
pruebas para adecuarlos a nuestro objeto. Si deseáramos objetos de más complejidad,
se podrían crear objetos de 3 dimensiones, pues el código ya tiene herramientas para
crear cubos.

Finalmente, en este Trabajo, la estructura para la interacción entre el objeto y los
robots es muy precisa, ya que asume que, al ser una simulación, los robots tendrán
pleno conocimiento de la posición del objeto.

8.2. Trabajo futuro

Debido a las limitaciones de ROS 1, en el futuro se podría realizar una versión de
este Trabajo en ROS 2, el cual se está desarrollando con este caso de uso en mente (y
con él, Gazebo 11.x, MoveIt2, RViz2) [87] y así reducir la cantidad de código de ABB
que ha tenido que ser modificado.

Por otro lado, los robots siempre deben estar separados para evitar colisiones y es
por esto que en el futuro se podría implementar un método para que los robots sepan
la posición en la que se encuentran, para poder cooperar más fácilmente, por ejemplo,
para realizar costuras, que son trabajos de gran precisión y para los que se necesitarían
los dos robots juntos.

También se podría desarrollar una forma de introducir modelos complejos (o
meshes) y tratar los vértices del mismo como las esferas de este Trabajo. Igualmente,
se podrían probar distintos algoritmos para objetos deformables, como As Rigid As
Possible (ARAP), que es un sistema más complejo, pero sirve para crear objetos más
consistentes, puesto que este algoritmo conserva las formas mejor [88], o incluso se
podría modificar el algoritmo actual para usar otro tipo de muelles, para simular otro
tipo de objetos, como el tejido humano (véase [71]).

ROS nos ofrece la posibilidad de ejecutar experimentos con robots reales, por lo
que en un Trabajo futuro, se podrían realizar pruebas con robots ABB IRB 120 con
un objeto como pudiera ser una tela gruesa. Se debería adaptar el código para poder
interactuar con la herramienta que se acople a los robots, como pudieran ser ventosas
o preferiblemente, pinzas.

En la simulación, los robots conocen su entorno en todo momento, sin embargo,
en el mundo real esto sería imposible sin una forma de detección, por ello, un Trabajo
futuro podría incluir un sistema de percepción, como podrían ser sistemas de visión o
ultrasonidos para observar el entorno y tomar una decisión para poder manipular un
objeto deformable real.

46

Figura 8.1: Perspectivas futuras. De arriba abajo, y de izquierda a derecha: ROS 2 [21];
Colaboración entre robots [89]; Cámara Kinect de XBOX 360 [90]; Robot ABB IRB120
de la Universidad de Zaragoza, interactuando con una persona [91].

47

48

Capítulo 9

Bibliografía

[1] An Automatic Block-Setting Crane. Meccano Magazine, 23(3):172, 1938.

[2] Lene Kromann, Nikolaj Malchow-Møller, Jan Rose Skaksen, and Anders
Sørensen. Automation and productivity—a cross-country, cross-industry
comparison. Industrial and Corporate Change, 29(2):265–287, 07 2019.

[3] Rafael Herguedas, Gonzalo López Nicolás, Rosario Aragüés, and Carlos Sagüés.
Survey on multi-robot manipulation of deformable objects, 2019. IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA 2019).

[4] Miguel Aranda, Juan Antonio Corrales, and Youcef Mezouar. Deformation-based
shape control with a multirobot system, 2019. IEEE International Conference
on Robotics and Automation.

[5] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas
Sindhwani, Ken Goldberg, and Andy Zeng. Learning to rearrange deformable
cables, fabrics, and bags with goal-conditioned transporter networks. CoRR,
abs/2012.03385, 2020.

[6] Dominik Henrich and Heinz Wörn. Robot manipulation of deformable objects.
Springer Science & Business Media, 2012.

[7] Akihiko Yamaguchi. Science of robot cooking. http://akihikoy.net/p/cook.
html, 2016. Consultado el 30 de Agosto de 2021.

[8] Florencio Jesús Cembranos Nistal. Automatismos eléctricos, neumáticos e
hidráulicos. Editorial Paraninfo, 2008.

49

http://akihikoy.net/p/cook.html
http://akihikoy.net/p/cook.html

[9] IRB 120. https://new.abb.com/products/robotics/robots-industriales/
irb-120. Descripción del Robot Industrial IRB 120 de ABB. Consultado el: 26
de Agosto de 2021.

[10] About ROS. https://www.ros.org/about-ros/. Descripción del Sistema
Operativo Robótico. Consultado el: 27 de Julio de 2021.

[11] ROS history. https://www.ros.org/history/. Historia de la creación del
Sistema Operativo Robótico. Consultado el: 27 de Julio de 2021.

[12] ROS @ OSRF. https://web.archive.org/web/20140815190347/https:
//www.osrfoundation.org/blog/ros-at-osrf.html. Transición de la
administración de ROS de Willow Garage a OSRF. Captura recuperada por
medio de Wayback Macine del 15 de Agosto de 2014.

[13] Welcome to Open Robotics. https://www.osrfoundation.org/
welcome-to-open-robotics/. Cambio de nombre de la Open Source
Robotics Foundation a Open Robotics. Consultado el: 27 de Julio de 2021.

[14] Is ROS for me? https://www.ros.org/is-ros-for-me/. ¿Es ROS para mí?
Ventajas de su uso. Consultado el: 27 de Julio de 2021.

[15] Christina Cardoza. Inside the robot operating system, the robotics industry and
the open source robotics foundation. SD Times - Software Development News,
2015.

[16] ROS core components. https://www.ros.org/core-components/.
Características principales de ROS. Consultado el: 27 de Julio de 2021.

[17] ROS wiki - abb_irb120_support. http://wiki.ros.org/abb_irb120_
support?distro=kinetic.

[18] ROS wiki - installation. http://wiki.ros.org/es/ROS/Installation.
Instalación de ROS. Consultado el: 27 de Agosto de 2021.

[19] ROS concepts. http://wiki.ros.org/ROS/Concepts. Conceptos básicos de
ROS. Consultado el: 27 de Julio de 2021.

[20] ROS topics. http://wiki.ros.org/Topics. Definición del concepto de Topic
en ROS. Consultado el: 27 de Julio de 2021.

[21] ROS press kit. https://www.ros.org/press-kit/. Pack de imágenes de ROS
para prensa. Obtenido el: 20 de Agosto de 2021.

50

https://new.abb.com/products/robotics/robots-industriales/irb-120
https://new.abb.com/products/robotics/robots-industriales/irb-120
https://www.ros.org/about-ros/
https://www.ros.org/history/
https://web.archive.org/web/20140815190347/https://www.osrfoundation.org/blog/ros-at-osrf.html
https://web.archive.org/web/20140815190347/https://www.osrfoundation.org/blog/ros-at-osrf.html
https://www.osrfoundation.org/welcome-to-open-robotics/
https://www.osrfoundation.org/welcome-to-open-robotics/
https://www.ros.org/is-ros-for-me/
https://www.ros.org/core-components/
http://wiki.ros.org/abb_irb120_support?distro=kinetic
http://wiki.ros.org/abb_irb120_support?distro=kinetic
http://wiki.ros.org/es/ROS/Installation
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Topics
https://www.ros.org/press-kit/

[22] ROS parameter server. http://wiki.ros.org/Parameter%20Server. Definición
del Parameter Server de ROS. Consultado el: 27 de Julio de 2021.

[23] Plugins available in gazebo_plugins. http://gazebosim.org/tutorials?tut=
ros_gzplugins#Pluginsavailableingazebo_plugins. Plugins disponibles
para Gazebo. Consultado el: 3 de Agosto de 2021.

[24] Gazebo beginner: Overview. http://www.gazebosim.org/tutorials?tut=
guided_b1. Introducción a Gazebo. Consultado el: 3 de Agosto de 2021.

[25] Tutorial: ROS integration overview. http://gazebosim.org/tutorials?tut=
ros_overview. Integración Gazebo + ROS. Consultado el: 3 de Agosto de 2021.

[26] ROS wiki - abb_irb120_gazebo. http://wiki.ros.org/abb_irb120_gazebo?
distro=kinetic. Paquete abb_irb120_gazebo. Consultado el: 4 de Agosto de
2021.

[27] Gazebo - installing gazebo_ros_pkgs (ROS 1). http://gazebosim.org/
tutorials?tut=ros_installing. Instalación de MoveIt. Consultado el: 27 de
Agosto de 2021.

[28] GitHub - ros-planning/moveit. https://github.com/ros-planning/moveit.
Repositorio de MoveIt en GitHub. Consultado el: 3 de Agosto de 2021.

[29] YouTube - MoveIt capabilities overview. https://youtu.be/7KvF7Dj7bz0.
Vídeo en YouTube con las capacidades de MoveIt. Consultado el: 3 de Agosto de
2021.

[30] Moveit tutorials (ROS Melodic). http://docs.ros.org/en/melodic/api/
moveit_tutorials/html/index.html. Tutoriales de MoveIt. Consultado el: 3
de Agosto de 2021.

[31] ROS wiki - abb_irb120_moveit_config. http://wiki.ros.org/abb_irb120_
moveit_config?distro=kinetic. Paquete abb_irb120_moveit_config.
Consultado el: 4 de Agosto de 2021.

[32] MoveIt tutorials - installation (ROS Melodic). http://docs.ros.org/en/
melodic/api/moveit_tutorials/html/doc/getting_started/getting_
started.html. Instalación de MoveIt. Consultado el: 27 de Agosto de 2021.

[33] ROS robots. https://robots.ros.org/. Algunos de los robots compatibles con
ROS.

51

http://wiki.ros.org/Parameter%20Server
http://gazebosim.org/tutorials?tut=ros_gzplugins#Pluginsavailableingazebo_plugins
http://gazebosim.org/tutorials?tut=ros_gzplugins#Pluginsavailableingazebo_plugins
http://www.gazebosim.org/tutorials?tut=guided_b1
http://www.gazebosim.org/tutorials?tut=guided_b1
http://gazebosim.org/tutorials?tut=ros_overview
http://gazebosim.org/tutorials?tut=ros_overview
http://wiki.ros.org/abb_irb120_gazebo?distro=kinetic
http://wiki.ros.org/abb_irb120_gazebo?distro=kinetic
http://gazebosim.org/tutorials?tut=ros_installing
http://gazebosim.org/tutorials?tut=ros_installing
https://github.com/ros-planning/moveit
https://youtu.be/7KvF7Dj7bz0
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/index.html
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/index.html
http://wiki.ros.org/abb_irb120_moveit_config?distro=kinetic
http://wiki.ros.org/abb_irb120_moveit_config?distro=kinetic
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/getting_started/getting_started.html
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/getting_started/getting_started.html
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/getting_started/getting_started.html
https://robots.ros.org/

[34] Robots - MoveIt. https://moveit.ros.org/robots/. Robots compatibles con
MoveIt. Consultado el: 14 de Septiembre de 2021.

[35] ABB - información detallada para IRB 120. https://new.abb.com/products/
es/3HAC031431-001/irb-120. Consultado el: 14 de Septiembre de 2021.

[36] ROS training for industry - motion planning with a multi robot
system. https://ut-ims-robotics.github.io/ros_training/html/day5/
multirobot_mp.html. Tutorial de utilización de un modelo dual para el control
de múltiples robots en MoveIt - Universidad de Tartu. Consultado el: 10 de
Agosto de 2021.

[37] ROS wiki - roslaunch/XML. http://wiki.ros.org/roslaunch/XML. Formato
XML para su ejecución con roslaunch. Consultado el: 4 de Agosto de 2021.

[38] ROS wiki - roslaunch. http://wiki.ros.org/roslaunch. Descripción del
comando roslaunch. Consultado el: 4 de Agosto de 2021.

[39] GitHub - ros-industrial/abb_experimental - joint_names_irb120_3_58.yaml.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.
yaml. Fichero joint_names_irb120_3_58.yaml del paquete abb_irb120_support
(rama kinetic-devel). Consultado el: 4 de Agosto de 2021.

[40] GitHub - ros-industrial/abb_experimental - joint_limits.yaml. https:
//github.com/ros-industrial/abb_experimental/blob/kinetic-devel/
abb_irb120_moveit_config/config/joint_limits.yaml. Fichero
joint_limits.yaml del paquete abb_irb120_moveit_config (rama kinetic-devel.
Consultado el: 4 de Agosto de 2021.

[41] GitHub - ros-industrial/abb_experimental - kinematics.yaml. https://
github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_
irb120_moveit_config/config/kinematics.yaml. Fichero kinematics.yaml
del paquete abb_irb120_moveit_config (rama kinetic-devel. Consultado el: 4 de
Agosto de 2021.

[42] ROS wiki - URDF. http://wiki.ros.org/urdf. Descripción del paquete URDF
en ROS. Consultado el: 4 de Agosto de 2021.

[43] ROS wiki - SRDF. http://wiki.ros.org/srdf. Descripción del paquete SRDF
en ROS. Consultado el: 4 de Agosto de 2021.

52

https://moveit.ros.org/robots/
https://new.abb.com/products/es/3HAC031431-001/irb-120
https://new.abb.com/products/es/3HAC031431-001/irb-120
https://ut-ims-robotics.github.io/ros_training/html/day5/multirobot_mp.html
https://ut-ims-robotics.github.io/ros_training/html/day5/multirobot_mp.html
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/joint_limits.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/joint_limits.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/joint_limits.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/kinematics.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/kinematics.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/kinematics.yaml
http://wiki.ros.org/urdf
http://wiki.ros.org/srdf

[44] ROS wiki - xacro. http://wiki.ros.org/xacro. Descripción del paquete xacro
en ROS. Consultado el: 4 de Agosto de 2021.

[45] GitHub - ros-industrial/abb_experimental - irb120_3_58_macro.xacro.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/urdf/irb120_3_58_macro.xacro.
Fichero irb120_3_58_macro.xacro del paquete abb_irb120_gazebo (rama
kinetic-devel. Consultado el: 4 de Agosto de 2021.

[46] ROS wiki - names. http://wiki.ros.org/Names. Descripción de la jerarquía
de nombres en ROS. Consultado el: 4 de Agosto de 2021.

[47] Gazebo - tutorial: ROS communication - services. http://gazebosim.org/
tutorials/?tut=ros_comm. Tutorial para la comunicación entre ROS y Gazebo.
Consultado el: 10 de Agosto de 2021.

[48] GitHub - ros-industrial/abb_experimental - load_irb120_3_58.launch.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/launch/load_irb120_3_58.launch.
Fichero load_irb120_3_58.launch del paquete abb_irb120_gazebo (rama
kinetic-devel). Consultado el: 10 de Agosto de 2021.

[49] ROS wiki - robot_state_publisher. http://wiki.ros.org/robot_state_
publisher. Descripción del paquete robot_state_publisher. Consultado el: 10
de Agosto de 2021.

[50] GitHub - ros-controls/ros_controllers - joint_state_controller.h. https:
//github.com/ros-controls/ros_controllers/blob/melodic-devel/
joint_state_controller/include/joint_state_controller/joint_state_
controller.h. Fichero oint_state_controller.h del paquete ros_controllers
(rama melodic-devel). Consultado el: 10 de Agosto de 2021.

[51] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo
Rodríguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar,
Gennaro Raiola, Mathias Lüdtke, and Enrique Fernández Perdomo. ros_control:
A generic and simple control framework for ros. The Journal of Open Source
Software, 2017.

[52] MoveIt - concepts. https://moveit.ros.org/documentation/concepts/.
Conceptos básicos de MoveIt. Consultado el: 16 de Septiembre de 2021.

53

http://wiki.ros.org/xacro
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/urdf/irb120_3_58_macro.xacro
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/urdf/irb120_3_58_macro.xacro
http://wiki.ros.org/Names
http://gazebosim.org/tutorials/?tut=ros_comm
http://gazebosim.org/tutorials/?tut=ros_comm
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/load_irb120_3_58.launch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/load_irb120_3_58.launch
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/robot_state_publisher
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://moveit.ros.org/documentation/concepts/

[53] Gazebo - media. http://gazebosim.org/media. Pack de imágenes de Gazebo.
Obtenido el: 29 de Agosto de 2021.

[54] MoveIt - press kit. https://moveit.ros.org/about/press_kit/. Pack de
imágenes de MoveIt para prensa. Obtenido el: 29 de Agosto de 2021.

[55] GitHub - ros-visualization/rviz. https://github.com/ros-planning/
moveit/blob/melodic-devel/moveit_ros/planning_interface/move_
group_interface/src/move_group_interface.cpp#L1232. Repositorio oficial
de RViz. Consultado el: 16 de Septiembre de 2021.

[56] MoveIt - move group C++ interface. http://docs.ros.org/en/kinetic/
api/moveit_tutorials/html/doc/move_group_interface/move_group_
interface_tutorial.html. Tutorial de la interfaz de MoveIt para C++).
Consultado el: 9 de Agosto de 2021.

[57] ROS documentation - moveit::planning_interface::MoveGroupInterface class
reference (melodic). http://docs.ros.org/en/melodic/api/moveit_
ros_planning_interface/html/classmoveit_1_1planning__interface_
1_1MoveGroupInterface.html. Manual de usuario de la interfaz
MoveGroupInterface de MoveIt). Consultado el: 10 de Agosto de 2021.

[58] GitHub - ros-industrial/abb_experimental - abb_irb120_3_58.srdf. https:
//github.com/ros-industrial/abb_experimental/blob/kinetic-devel/
abb_irb120_moveit_config/config/abb_irb120_3_58.srdf. Fichero
abb_irb120_3_58.srdf del paquete abb_irb120_moveit_config (rama
kinetic-devel). Consultado el: 6 de Agosto de 2021.

[59] GitHub - isocpp/logos. https://github.com/isocpp/logos. Repositorio logos
del estándar ISO para C++. Obtenido el: 29 de Agosto de 2021.

[60] Gazebo - make a model. http://gazebosim.org/tutorials?tut=build_model.
Vista general de la creación de modelos para Gazebo. Consultado el: 4 de Agosto
de 2021.

[61] Gazebo - tutorial: Using roslaunch to start Gazebo, world files and URDF models
- using roslaunch to spawn URDF robots. http://gazebosim.org/tutorials?
tut=ros_roslaunch&cat=connect_ros#UsingroslaunchtoSpawnURDFRobots.
Tutorial para generar robots URDF en Gazebo mediante ROS. Consultado el: 4
de Agosto de 2021.

54

http://gazebosim.org/media
https://moveit.ros.org/about/press_kit/
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/abb_irb120_3_58.srdf
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/abb_irb120_3_58.srdf
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/abb_irb120_3_58.srdf
https://github.com/isocpp/logos
http://gazebosim.org/tutorials?tut=build_model
http://gazebosim.org/tutorials?tut=ros_roslaunch&cat=connect_ros#UsingroslaunchtoSpawnURDFRobots
http://gazebosim.org/tutorials?tut=ros_roslaunch&cat=connect_ros#UsingroslaunchtoSpawnURDFRobots

[62] Gazebo tutorials - category: Physics library. http://gazebosim.org/
tutorials?cat=physics. Todos los tutoriales de Gazebo sobre la simulación
de físicas. Consultado el: 11 de Agosto de 2021.

[63] Gazebo - tutorial: Using gazebo plugins with ros. http://gazebosim.org/
tutorials?tut=ros_gzplugins. Tutorial con ejemplos del uso de plugins en
Gazebo. Consultado el: 11 de Agosto de 2021.

[64] Gazebo - overview of gazebo plugins. http://gazebosim.org/tutorials/?tut=
plugins_hello_world. Vista general de plugins en Gazebo. Ejemplo para crear
un primer plugin. Consultado el: 11 de Agosto de 2021.

[65] Gazebo - world plugins. http://gazebosim.org/tutorials?tut=plugins_
world. Ejemplo para crear un plugin de tipo WorldPlugin. Consultado el: 11
de Agosto de 2021.

[66] Gazebo - model plugins. http://gazebosim.org/tutorials?tut=plugins_
model. Ejemplo para crear un plugin de tipo ModelPlugin. Consultado el: 11
de Agosto de 2021.

[67] Gazebo - rendering::Visual class reference. http://osrf-distributions.s3.
amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.
html. Manual de Usuario de la clase gazebo::rendering::Visual. Consultado el:
11 de Agosto de 2021.

[68] Gazebo - physics::World class reference. http://osrf-distributions.s3.
amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html.
Manual de Usuario de la clase gazebo::physics::World. Consultado el: 13 de
Agosto de 2021.

[69] Gazebo - gazebo::msgs namespace reference. https://osrf-distributions.
s3.amazonaws.com/gazebo/api/dev/namespacegazebo_1_1msgs.html.
Manual de Usuario del namespace gazebo::msgs. Consultado el: 13 de Agosto de
2021.

[70] Sdformat - sdf::v11 namespace reference. http://osrf-distributions.s3.
amazonaws.com/sdformat/api/dev/namespacesdf_1_1v11.html. Manual de
Usuario del namespace sdf::v11. Consultado el: 13 de Agosto de 2021.

[71] Sarah FF Gibson and Brian Mirtich. A survey of deformable modeling in
computer graphics. Technical report, Citeseer, 1997.

55

http://gazebosim.org/tutorials?cat=physics
http://gazebosim.org/tutorials?cat=physics
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://gazebosim.org/tutorials?tut=plugins_world
http://gazebosim.org/tutorials?tut=plugins_world
http://gazebosim.org/tutorials?tut=plugins_model
http://gazebosim.org/tutorials?tut=plugins_model
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/namespacegazebo_1_1msgs.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/namespacegazebo_1_1msgs.html
http://osrf-distributions.s3.amazonaws.com/sdformat/api/dev/namespacesdf_1_1v11.html
http://osrf-distributions.s3.amazonaws.com/sdformat/api/dev/namespacesdf_1_1v11.html

[72] Matthias Teschner. Simulation in computer graphics. University of Freiburg.
https://cg.informatik.uni-freiburg.de/teaching.htm#material.

[73] C. Henry. Mass-spring-system model for real time expressive behaviour synthesis
why and how to use physical model in pure data. 2015.

[74] Joseph C. Watkins. The mass-spring oscillator. University of Arizona. Retrieved
from: https://www.math.arizona.edu/~jwatkins/h-ode.pdf.

[75] M. Alex O. Vasilescu. Physically-based modeling: Mass-spring
systems. Massachusetts Institute of Technology. Retrieved from:
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/
lect/28_mass_springs_all.pdf.

[76] Auralius Manurung. Deformable object with interconnected
mass-spring-damper. https://github.com/auralius/
matlab-mass-spring-damper-network-deformable-object, 2021.
Consultado el: 18 de Agosto de 2021.

[77] Rafael Herguedas, Gonzalo López-Nicolás, and Carlos Sagüés. Collision-free
transport of 2d deformable objects, 2021. The 21st International Conference
on Control, Automation and Systems (ICCAS 2021).

[78] Gazebo - physics::Model class reference. http://osrf-distributions.s3.
amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Model.html.
Manual de Usuario de la clase gazebo::physics::Model. Consultado el: 13 de
Agosto de 2021.

[79] Gazebo - physics::Link class reference. https://osrf-distributions.s3.
amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Link.html.
Manual de Usuario de la clase gazebo::physics::Link. Consultado el: 17 de Agosto
de 2021.

[80] gazebo_msgs/ModelStates message definition. http://docs.ros.org/en/
jade/api/gazebo_msgs/html/msg/ModelStates.html. Definición del mensaje
gazebo_msgs/ModelStates. Consultado el: 18 de Agosto de 2021.

[81] MoveIt - moveit::planning_interface::PlanningSceneInterface class
reference. http://docs.ros.org/en/indigo/api/moveit_ros_
planning_interface/html/classmoveit_1_1planning__interface_
1_1PlanningSceneInterface.html. Manual de Usuario de la clase

56

https://cg.informatik.uni-freiburg.de/teaching.htm#material
https://www.math.arizona.edu/~jwatkins/h-ode.pdf
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/28_mass_springs_all.pdf
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/28_mass_springs_all.pdf
https://github.com/auralius/matlab-mass-spring-damper-network-deformable-object
https://github.com/auralius/matlab-mass-spring-damper-network-deformable-object
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Model.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Model.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Link.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Link.html
http://docs.ros.org/en/jade/api/gazebo_msgs/html/msg/ModelStates.html
http://docs.ros.org/en/jade/api/gazebo_msgs/html/msg/ModelStates.html
http://docs.ros.org/en/indigo/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1PlanningSceneInterface.html
http://docs.ros.org/en/indigo/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1PlanningSceneInterface.html
http://docs.ros.org/en/indigo/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1PlanningSceneInterface.html

moveit::planning_interface::PlanningSceneInterface. Consultado el: 29 de
Agosto de 2021.

[82] moveit_msgs/CollisionObject Message. http://docs.ros.org/en/melodic/
api/moveit_msgs/html/msg/CollisionObject.html. Descripción del mensaje
de tipo moveit_msgs/CollisionObject Message. Consultado el: 29 de Agosto de
2021.

[83] ROS Wiki - Create a URDF for an Industrial Robot. http://wiki.ros.org/
Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%
20Robot. Tutorial de ROS para la creación de modelos en URDF para un robot
industrial. Consultado el: 29 de Agosto de 2021.

[84] Gazebo - Tutorial: Using a URDF in Gazebo. http://gazebosim.org/
tutorials/?tut=ros_urdf. Tutorial de Gazebo sobre el uso de URDF.
Consultado el: 29 de Agosto de 2021.

[85] GitHub - ignitionrobotics/sdformat - URDF to SDF conversion ignores links
without inertia #199. https://github.com/ignitionrobotics/sdformat/
issues/199. Propuesta (Issue) del repositorio ignitionrobotics/sdformat con
comentarios de los colaboradores sobre el comportamiento de las articulaciones
en Gazebo. Consultado el: 29 de Agosto de 2021.

[86] GitHub - ros-industrial/abb_experimental - irb120_3_58_arm_controller.yaml.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.
yaml. Fichero irb120_3_58_arm_controller.yaml del paquete
abb_irb120_gazebo (rama kinetic-devel. Consultado el: 4 de Agosto de
2021.

[87] Brian Gerkey. Why ros 2? https://design.ros2.org/articles/why_ros2.
html. Explicación de las causas que llevan al desarrollo de ROS 2. Consultado
el: 29 de Agosto de 2021.

[88] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In
Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry
Processing, pages 109–116, 2007.

[89] YouTube - ABB Robotics - new small robot - IRB 120. https://www.
youtube.com/watch?v=-39W3fdD5WA&t=68s&ab_channel=ABBRobotics. Vídeo

57

http://docs.ros.org/en/melodic/api/moveit_msgs/html/msg/CollisionObject.html
http://docs.ros.org/en/melodic/api/moveit_msgs/html/msg/CollisionObject.html
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials/?tut=ros_urdf
https://github.com/ignitionrobotics/sdformat/issues/199
https://github.com/ignitionrobotics/sdformat/issues/199
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.yaml
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
https://www.youtube.com/watch?v=-39W3fdD5WA&t=68s&ab_channel=ABBRobotics
https://www.youtube.com/watch?v=-39W3fdD5WA&t=68s&ab_channel=ABBRobotics

promocional en YouTube con las capacidades del robot ABB IRB120. Consultado
el: 29 de Agosto de 2021.

[90] Wikimedia Commons contributors. Kinect Sensor at E3 2010. https:
//commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_
E3_2010_(front).jpg&oldid=508623234. Imagen de una cámara Kinect de
XBOX 360. Consultado el: 29 de Agosto de 2021.

[91] Rosario Aragüés Muñoz, López Nicolás Gonzalo, and Sagüés Blázquiz Carlos.
La Universidad de Zaragoza participa en un proyecto europeo para automatizar
procesos industriales y mejorar la calidad de vida de los trabajadores.
https://www.unizar.es/noticias/la-universidad-de-zaragoza-
participa-en-un-proyecto-europeo-para-automatizar-procesos-0.
Consultado el: 29 de Agosto de 2021.

[92] GitHub - ros-industrial/abb_experimental - irb120_control.launch.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/launch/irb120_control.launch.
Fichero irb120_control.launch del paquete abb_irb120_gazebo (rama
kinetic-devel. Consultado el: 4 de Agosto de 2021.

[93] ROS wiki - remap. http://wiki.ros.org/roslaunch/XML/remap. Descripción
de la cláusula remap. Consultado el: 9 de Agosto de 2021.

[94] GitHub - ros-industrial/abb_experimental - irb120_3_58_gazebo.launch.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/launch/irb120_3_58_gazebo.launch.
Fichero irb120_3_58_gazebo.launch del paquete abb_irb120_gazebo (rama
kinetic-devel). Consultado el: 6 de Agosto de 2021.

[95] ROS wiki - group. http://wiki.ros.org/roslaunch/XML/group. Descripción
de la cláusula group. Consultado el: 9 de Agosto de 2021.

[96] ROS wiki - coordinate frame conventions. http://wiki.ros.org/geometry/
CoordinateFrameConventions. Convenciones aplicadas a los espacios de
coordenadas de ROS. Consultado el: 9 de Agosto de 2021.

[97] GitHub - ros-industrial/abb_experimental. https://github.com/
ros-industrial/abb_experimental. Repositorio abb_experimental
desarrollado por ABB para el uso de sus robots en ROS. Consultado el:
27 de Agosto de 2021.

58

https://commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_E3_2010_(front).jpg&oldid=508623234
https://commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_E3_2010_(front).jpg&oldid=508623234
https://commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_E3_2010_(front).jpg&oldid=508623234
https://www.unizar.es/noticias/la-universidad-de-zaragoza-participa-en-un-proyecto-europeo-para-automatizar-procesos-0
https://www.unizar.es/noticias/la-universidad-de-zaragoza-participa-en-un-proyecto-europeo-para-automatizar-procesos-0
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_control.launch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_control.launch
http://wiki.ros.org/roslaunch/XML/remap
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_3_58_gazebo.launch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_3_58_gazebo.launch
http://wiki.ros.org/roslaunch/XML/group
http://wiki.ros.org/geometry/CoordinateFrameConventions
http://wiki.ros.org/geometry/CoordinateFrameConventions
https://github.com/ros-industrial/abb_experimental
https://github.com/ros-industrial/abb_experimental

[98] ROS wiki - create a catkin workspace. http://wiki.ros.org/catkin/
Tutorials/create_a_workspace. Tutorial de ROS para la creación de entornos
de trabajo de catkin. Consultado el: 27 de Agosto de 2021.

[99] ROS Wiki - Creating a ROS msg and srv. http://wiki.ros.org/ROS/
Tutorials/CreatingMsgAndSrv. Creación de mensajes y servicios propios
Consultado el: 29 de Agosto de 2021.

[100] Microsoft. Visual Studio Marketplace - ROS. https://marketplace.
visualstudio.com/items?itemName=ms-iot.vscode-ros. Extensión ROS en
el mercado de extensiones de Visual Studio Code. Consultado el: 29 de Agosto
de 2021.

[101] GitHub - andrewknoll/multiple_abb_irb120. https://github.com/
andrewknoll/multiple_abb_irb120. Repositorio en GitHub de los ficheros de
este Trabajo.

[102] MoveIt - low level controllers - remapping /joint_states topic.
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/
controller_configuration/controller_configuration_tutorial.html#
remapping-joint-states-topic. Tutorial de MoveIt sobre cómo hacer un
remap del topic /joint_states para un nodo move_group. Consultado el: 14 de
Septiembre de 2021.

[103] GitHub - ros-industrial/abb_experimental. https://github.com/
ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_
interface/move_group_interface/src/move_group_interface.cpp#L1232.
Línea 1232 del fichero move_group_interface.cpp que describe la clase
MoveGroupInterface en la rama melodic-devel del repositorio oficial de MoveIt.
Consultado el: 2 de Septiembre de 2021.

[104] GitHub - ros-planning/moveit - current_state_monitor.h (rama melodic-devel).
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_
ros/planning/planning_scene_monitor/include/moveit/planning_scene_
monitor/current_state_monitor.h. Fichero current_state_monitor.h que
describe la clase CurrentStateMonitor en la rama melodic-devel del repositorio
oficial de MoveIt. Consultado el: 2 de Septiembre de 2021.

[105] GitHub - ros-planning/moveit - current_state_monitor.h (rama melodic-devel) -
línea 142. https://github.com/ros-planning/moveit/blob/melodic-devel/

59

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://github.com/andrewknoll/multiple_abb_irb120
https://github.com/andrewknoll/multiple_abb_irb120
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/controller_configuration/controller_configuration_tutorial.html#remapping-joint-states-topic
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/controller_configuration/controller_configuration_tutorial.html#remapping-joint-states-topic
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/controller_configuration/controller_configuration_tutorial.html#remapping-joint-states-topic
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning/planning_scene_monitor/include/moveit/planning_scene_monitor/current_state_monitor.h
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning/planning_scene_monitor/include/moveit/planning_scene_monitor/current_state_monitor.h
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning/planning_scene_monitor/include/moveit/planning_scene_monitor/current_state_monitor.h
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142

moveit_ros/planning_interface/move_group_interface/src/move_group_
interface.cpp#L142. Línea 142 del fichero move_group_interface.cpp que
implementa la clase MoveGroupInterface en la rama melodic-devel del repositorio
oficial de MoveIt. Consultado el: 2 de Septiembre de 2021.

[106] GitHub - ros-planning/moveit - common_objects.cpp (rama melodic-devel) -
línea 140. https://github.com/ros-planning/moveit/blob/melodic-devel/
moveit_ros/planning_interface/common_planning_interface_objects/
src/common_objects.cpp#L140. Línea 140 del fichero common_objects.cpp
en la rama melodic-devel del repositorio oficial de MoveIt. Consultado el: 2 de
Septiembre de 2021.

[107] Cplusplus - std::map::insert. https://www.cplusplus.com/reference/map/
map/insert/. Función insert de la clase std::map de C++. Consultado el: 2
de Septiembre de 2021.

60

https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/common_planning_interface_objects/src/common_objects.cpp#L140
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/common_planning_interface_objects/src/common_objects.cpp#L140
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/common_planning_interface_objects/src/common_objects.cpp#L140
https://www.cplusplus.com/reference/map/map/insert/
https://www.cplusplus.com/reference/map/map/insert/

Anexos

61

Anexos A

Organización de los ficheros
desarrollados

En este anexo se incluye en detalle la estructura de los ficheros que son estrictamente
necesarios para el funcionamiento de este Trabajo.

 catkin_workspace
 src

 abb_experimental
 abb_irb120_gazebo*
 abb_irb120_moveit_config*
 abb_irb120_support*

 multiple_abb_irb120
 config

 abb_irb120_3_58.srdf.xacro
 abb_irb120_3_58_macro.srdf.xacro
 grid.config
 kinematics.yaml
 ompl_planning.yaml
 small_grid.config
 test_grid.config

 include
 DeformableObjectPlugin.hpp
 Demo.hpp
 Grid.hpp
 GridState.hpp
 GridVertex.hpp
 MassSpringDamping.hpp
 RobotInterface.hpp
 utils.hpp

 launch
 irb120_3_58_control.launch
...

...
...

63

...
...

...
 move_group.launch
 moveit.rviz
 moveit_planning_execution_gazebo.launch
 moveit_rviz.launch
 multiple_spawner_gazebo _script.bash
 ompl_planning_pipeline.launch.xml
 planning_context.launch
 planning_pipeline.launch.xml
 recursive_spawn.launch
 setup_gazebo.launch
 setup_two_robots_gazebo.launch
 spawn_irb120.launch
 test_grid.launch

 msg
 GrabPetition.msg

 src
 DeformableObjectPlugin.cpp
 Grid.cpp
 GridState.cpp
 GridVertex.cpp
 MassSpringDamping.cpp
 RobotInterface.cpp
 WorldPlugin.cpp
 grid_demo.cpp
 grid_wave_demo.cpp
 robots_moving_demo.cpp
 robots_waving_demo.cpp
 small_cloth_manipulation.cpp
 utils.cpp

 urdf
 irb120_3_58_macro.xacro
 irb120_3_58_with_tool.xacro

 worlds
 grid.world
 grid_table.world
 small_grid.world
 test_grid.world

 CMakeLists.txt
 package.xml

* Se han omitido los contenidos de los paquetes desarrollados por ABB, que pueden
ser obtenidos directamente desde el repositorio de la empresa en GitHub [97]. Para este
Trabajo, se utilizó la versión para ROS Kinetic (al no existir versión para Melodic).

64

Anexos B

Instalación y Ejecución de los
programas desarrollados

En este anexo se detalla la manera de obtener los ficheros desarrollados para el
funcionamiento de los programas descritos en este Trabajo y también como ejecutarlos.

B.1. Instalación

En primer lugar, es necesario tener los ficheros descritos en el Apéndice A. Para
descargarlos, se ha dispuesto de un repositorio en la plataforma GitHub, por lo que
podemos ejecutar el comando:

git clone https://github.com/andrewknoll/multiple_abb_irb120
Si los paquetes abb_irb120_gazebo, abb_irb120_moveit_config y abb_irb120_support
no se descargan correctamente, deberemos descargarlos manualmente y colocarlos en la
carpeta src (obtenida desde el repositorio anterior). Si además surgiese cualquier otro
problema, se propone seguir el tutorial de ROS para la creación de entornos de trabajo
de catkin [98], y colocar tanto los paquetes de ABB como el contenido de la carpeta
multiple_abb_irb120 en la carpeta src del nuevo entorno de trabajo.

B.2. Configuración inicial

Para poder ejecutar las demostraciones, es necesario que usted tenga instalada
la versión de ROS adecuada a su sistema operativo Ubuntu [18]. También deberá
asegurarse de que usted tenga instalados Gazebo [27] y MoveIt [32]. Este Trabajo se
ha probado en Ubuntu 18.04 con ROS Melodic, por lo que no se puede asegurar que
funcione en otras versiones de ROS.

Antes de ejecutar cualquiera de los programas por primera vez (subsecuentes
ejecuciones de otro programa no lo requerirán), deberá ejecutar los siguientes comandos:

− Deberá colocar su terminal en la carpeta en la que haya descargado los archivos

65

https://github.com/andrewknoll/multiple_abb_irb120

(se le denominará catkin_workspace a partir de ahora):
cd catkin_workspace

− Deberá realizar una compilación por medio de catkin:
catkin_make

− Una vez terminado el proceso, deberá ejecutar el siguiente comando para que
ROS sea capaz de localizar los paquetes:
source devel/setup.bash

Tras la primera compilación, no será necesario ejecutar el segundo de los comandos,
excepto cuando se hayan realizado cambios en el paquete.

B.3. Ejecución

A continuación se explica el método de ejecución de los distintos programas descritos
en el Trabajo.

Nota: Para todas las pruebas se ha omitido que puede tener un proceso del tipo
roscore abierto en una terminal, si desea un mayor control sobre las simulaciones.

B.3.1. Ejecución de trayectorias

En este apartado se demuestra cómo ejecutar un entorno multi-robot y enviar
posiciones objetivo a los robots de forma manual.

En primer lugar, deberá abrir una terminal e iniciar el entorno en Gazebo:
roslaunch multiple_abb_irb120 setup_two_robots_gazebo.launch
Una ventana como la Figura B.1 se abrirá.

Figura B.1: Resultado de la ejecución de setup_two_robots_gazebo.launch

66

Asegúrese de que Gazebo no está pausado (la parte inferior de la ventana deberá
indicar que el tiempo está avanzando).

A continuación deberá iniciar el control del robot al que desee mandar
tareas. En nuestro caso, utilizaremos el robot1. Para ello, deberá ejecutar
en una nueva terminal y sin cerrar la anterior, el siguiente comando:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot1

Ahora observará una ventana como la Figura B.2.

Figura B.2: Resultado de la ejecución de moveit_planning_execution_gazebo.launch
con robot_name:=robot1

En esta ventana, podrá utilizar tanto la esfera turquesa situada al final del robot,
como los ejes de rotación y traslación situados a su alrededor para modificar la posición
del robot. También podrá navegar hasta la pestaña “Joints” donde podrá modificar
manualmente el valor de cada articulación.

Finalmente, en la pestaña “Planning”, deberá utilizar los botones “Plan” y
“Execute” para que MoveIt calcule una trayectoria hasta dicho punto y después se
ejecute en la simulación en Gazebo.

67

Figura B.3: Interfaz RViz con un robot al que se le ha modificado la posición.

Figura B.4: Ejecución en Gazebo de la trayectoria indicada por MoveIt para una
posición objetivo introducida en RViz.

B.3.2. robots_moving_demo

Deberá abrir 4 terminales simultáneamente. En la primera introducirá este
comando:
roslaunch multiple_abb_irb120 setup_two_robots_gazebo.launch
Una ventana como en la Figura B.1 se abrirá.

Asegúrese de que Gazebo no está pausado (la parte inferior de la ventana deberá
indicar que el tiempo está avanzando). Entonces, en la segunda terminal, sin cerrar la

68

primera, deberá introducir el comando:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot1
y de la misma forma, en la tercera sustituiremos “robot1” por “robot2”:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot2
Cada uno de estos comandos abrirá una ventana de RViz como en la Figura B.2.

Finalmente, ejecutará el siguiente comando en la cuarta terminal, sin cerrar las
anteriores:
rosrun multiple_abb_irb120 robots_moving_demo
Podrá observar el movimiento de los robots en la ventana de Gazebo. Para cerrarlo,
deberá interrumpir la ejecución de todas las terminales, por medio de la combinación
de teclas Ctrl + C.

B.3.3. robots_waving_demo

En primer lugar, deberá elegir un número de robots para colocar en la simulación.
En este caso, se van a utilizar 5 robots. Deberá abrir 2 terminales más una terminal
por robot simultáneamente, en nuestro caso, 7 terminales. En la primera introducirá
este comando:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash x
siendo x el número de robots. En nuestro caso serán 5. Una ventana como en la
Figura B.5 se abrirá.

Figura B.5: Resultado de la ejecución de multiple_spawner_gazebo_script.bash con 5
robots

69

Entonces, deberá ejecutar, para cada robot, el siguiente comando en una terminal
distinta:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robotx
siendo robotx el nombre del robot (en nuestro caso, robot1, robot2, robot3, robot4
y robot5. Cada uno de estos comandos abrirá una ventana de RViz como en la
Figura B.2.

Finalmente, ejecutará el siguiente comando en la cuarta terminal, sin cerrar las
anteriores:
rosrun multiple_abb_irb120 robots_waving_demo robots:=x
siendo x el número de robots. En nuestro caso serán 5. Podrá observar el movimiento
de los robots en la ventana de Gazebo. Para cerrarlo, deberá interrumpir la ejecución
de todas las terminales, por medio de la combinación de teclas Ctrl + C.

B.3.4. grid_demo

Deberá abrir 4 terminales simultáneamente. En la primera ejecutará el script de
bash incluido con los ficheros:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 2
Es muy importante incluir un número igual o mayor a 2 en este comando, pues es
el número de robots que aparecerán en la simulación. Una ventana de este aspecto se
abrirá.

Figura B.6: Resultado de la ejecución de multiple_spawner_gazebo_script.bash

70

Entonces, en la segunda terminal, sin cerrar la primera, deberá introducir el
comando:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot1
y de la misma forma, en la tercera sustituiremos “robot1” por “robot2”:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot2
Cada uno de estos comandos abrirá una ventana de RViz como la de la Figura B.2.

Finalmente, ejecutará el siguiente comando en la cuarta terminal, sin cerrar las
anteriores:
rosrun multiple_abb_irb120 grid_demo

Podrá observar el movimiento de los robots en la ventana de Gazebo.
Para cerrarlo, deberá interrumpir la ejecución de todas las terminales, por medio

de la combinación de teclas Ctrl + C.

B.3.5. test_grid

Deberá abrir una terminal e introducir el siguiente comando:
roslaunch multiple_abb_irb120 test_grid.launch . (también tiene como opción
utilizar el comando
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 0 -d
si prefiere, pero el resultado será el mismo). Podrá observar una simulación en Gazebo
como la siguiente:

Figura B.7: Resultado de la ejecución de multiple_spawner_gazebo_script.bash

71

Para observar el comportamiento de la tela, deberá pulsar el botón de reproducción
() situado en la parte inferior de la ventana. La tela deberá caer lentamente y rebotará
varias veces hasta quedarse en una posición de reposo.

B.3.6. Manipulación manual del objeto deformable

Si deseamos manipular nuestro objeto deformable de forma manual, podemos
utilizar cualquiera de las dos demostraciones anteriores para generar nuestro objeto
deformable.

También es posible la modificación de los parámetros en los archivos grid.config y
test_grid.config.

En este caso, se ha modificado el archivo test_grid.config para que el parámetro
gravity sea igual a 0. De esta forma, haremos que el objeto no se vea afectado por la
gravedad.

En la simulación, podremos seleccionar una esfera desde la lista de enlaces del
modelo, o bien haciendo click sobre la misma varias veces hasta que se encuentre
rodeada por un cubo.

Figura B.8: Selección manual de la esfera 200 en Gazebo.

Con el panel inferior izquierdo, podremos modificar la posición de la esfera y (con
la simulación no pausada) observar el comportamiento del conjunto.

72

Figura B.9: Esfera 200 con una posición seleccionada manualmente en Gazebo.

B.3.7. small_grid_manipulation

Para ejecutar esta prueba, deberá utilizar 4 terminales.
En la primera, deberá introducir el siguiente comando:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 2 -s
La opción -s hará que la simulación cree un objeto con los parámetros en el
fichero small_grid.config. Recuerde que es muy importante que haya al menos
2 robots para el funcionamiento correcto. Una vez inicializada la simulación
en Gazebo, deberá observar una ventana como la de la Figura B.10, en
la segunda y tercera terminales deberá lanzar MoveIt para los dos robots:
roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot1

roslaunch multiple_abb_irb120 moveit_planning_execution_gazebo.launch \
robot_name:=robot2

Finalmente, cuando las dos ventanas de RViz se hayan iniciado, deberá
inicializar la prueba, en la cuarta terminal, con el siguiente comando:
rosrun multiple_abb_irb120 small_cloth_manipulation
Ya puede observar la ventana de Gazebo para ver la simulación.

73

Figura B.10: Resultado de la ejecución de multiple_spawner_gazebo_script.bash con
dos robots y con la opción -s.

B.4. Realización de pruebas con una mesa

Como se indica en la Sección 7.4, se ha incluido un archivo para realizar pruebas
con una mesa por comodidad. Para ejecutarlo, deberemos introducir el siguiente
comando en una terminal:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 2 -t
y veremos así una simulación con dos robots y con una mesa sobre la que la tela
descansará (la mesa tiene unas medidas de (0,5, 0,75, 0,5) aproximadamente), como se
observa en la Figura B.11.

Figura B.11: Simulación con el mundo grid_table.world.

Cabe destacar, que si se desean utilizar mundos personalizados, se puede modificar
el fichero setup_gazebo.launch y sustituir el nombre del mundo incluido al inicializarlo
por el de grid_table.world. Si queremos volver a la normalidad, podremos eliminarla a
través de la interfaz de Gazebo, o cambiar el nombre a grid.world de nuevo. Esto nos
permite modificar el mundo a nuestro gusto, pero es importante que se mantenga la

74

cláusula que declara el plugin del mundo para poder generar el objeto deformable.

Figura B.12: Cómo modificar el mundo de la simulación.
Subrayado en color naranja se encuentra el fragmento de código a cambiar si se desea

cambiar el mundo de la simulación.

75

76

Anexos C

Algunos problemas encontrados

A lo largo del desarrollo de este Trabajo, ha habido muchos intentos de completar
ciertas tareas, pero que se han tenido que descartar por los problemas que ha causado su
implementación, o se han tenido que encontrar alternativas a su uso. En las siguientes
secciones se detallan algunas de ellas.

C.1. Espacios de nombres

En varios momentos en la creación de los ficheros de configuración para el entorno
multi-robot, se ha precisado de parámetros para especificar el nombre del robot, y así
introducir todos los nodos y parámetros del servidor de ROS en el espacio de nombres
del robot.

Para conseguir esto, es muy util la cláusula <group> del lenguaje XML de ROS
[95], pero también puede hacerse manualmente modificando los nombres o añadiendo
el parámetro ns en la declaración de los nodos o parámetros.

C.1.1. Problemas en los archivos de configuración de Gazebo

Al crear un entorno en Gazebo con varios robots ABB IRB120, la primera solución
que se probó, fue la utilización de nombres únicos para cada uno de los nodos implicados
en el control o creación de cada robot. Así, se introdujeron todos los elementos de los
archivos en una cláusula <group>, que introduce los parámetros, nodos y servicios en
un namespace con el nombre especificado [95]. A pesar de ello, algunos de los nodos
daban errores de conflicto por lo que se optó por cambiarles manualmente el nombre
para evitar dicho error. Sin embargo, esta solución inicializaba Gazebo sin ninguno de
los robots presentes, por lo que se descartó.

También se realizaron pruebas cambiando los nombres de todas las articulaciones
para que fueran únicas. Posteriormente se descubrió la opción de utilizar tf_prefix,
un parámetro bajo cuyo namespace se colocarán todas las articulaciones y enlaces del

77

robot, facilitando mucho la tarea a realizar [96].
Por otro lado, para la correcta introducción de algunos topics en los espacios de

nombres, fueron necesarios varias cláusulas del tipo <remap> (que se encargan de
redirigir un topic a otro nombre distinto [93]), algunos de ellos ya presentes en los
archivos proporcionados por ABB [94], para que los nombres coincidiesen. Sin embargo,
tras varios intentos de depuración, se comprobó que estas redirecciones no se estaban
produciendo si las cláusulas <remap> se encontraban en un fichero launch invocado
desde otro, dejando sólo la opción de que estas se encontraran en el fichero invocado
a través del comando roslaunch. No se ha llegado a ninguna conclusión sobre cuál
pudiera ser la razón. Por esto, y para mantener el esquema recursivo, fue necesaria la
creación de un fichero de bash cuya única función es crear un fichero temporal que
contenga las cláusulas <remap> para cada robot (dándoles un nombre de roboti, siendo
i un número natural desde 1 hasta el número total de robots), e incluyendo el archivo
launch ya existente. Si bien no es el mejor método, supone una solución temporal
hasta que se descubran las causas de las redirecciones erróneas. También se incluye un
fichero invocable por medio de roslaunch para la creación de sólo dos robots, sin que
sea necesario el uso del fichero de bash.

C.1.2. Problemas en los archivos de configuración de MoveIt

A la hora de adecuar la configuración de MoveIt para que coincidiese con la de
Gazebo, se introdujeron todos los elementos de los archivos en una cláusula <group>.
Sin embargo, varios de los nodos daban errores de conflicto por lo que se optó por
cambiarles manualmente el nombre para evitar dicho error.

Otro problema que se presentó durante las primeras ejecuciones fue que tanto RViz
como la interfaz de MoveIt en C++ funcionaban correctamente para el primer robot,
pero no para cualquier otro que se añadiese. En primer lugar, RViz no era capaz de
enviar posiciones de objetivo a los robots a partir del segundo de ellos, mientras que
la interfaz de C++ devolvía siempre la posición del primer robot al invocar funciones
como getCurrentPose desde cualquier robot. El primero se solucionó redirigiendo el
topic /joint_states a /roboti/joint_states en el nodo move_group de un robot cuyo
nombre es roboti (los nombres de los robots serán robot1, robot2...), tal y como indican
los tutoriales de MoveIt [102].

El segundo fue más complicado, pues no existen tutoriales o documentación sobre
este tema, por lo que fue necesario observar el código fuente de MoveIt. Se pudo
observar, que la clase MoveGroupInterface hace uso de un CurrentStateMonitor para
obtener la posición del robot [103] que a su vez hace uso del topic “joint_states” [104].
La creación del CurrentStateMonitor requiere del nombre del modelo del robot que se

78

va a monitorizar, y también un objeto del tipo NodeHandle, entre otros. Es importante
ver que la interfaz MoveGroupInterface hace uso de la función getSharedStateMonitor
[105] para crear el objeto, y se observa que esta función inserta en un mapa estos
monitores como valor, y el nombre del modelo del robot como clave [106]. Por lo tanto,
si se inserta una entrada en el mapa con una clave repetida, la función devolverá el
monitor que ya se encuentra en el mapa con la misma clave y no se creará el nuevo
[106] [107]. Es por ello que será necesario que los nombres de los modelos de los
robots sean siempre únicos en los archivos de definición de URDF y SRDF, así se
cambiaron los nombres en estos archivos (por medio de parámetros) para que fueran
abb_irb120_3_58_roboti, siendo roboti el nombre del robot, como se observa en la
Figura C.1.

Figura C.1: Nombres de los modelos de los robots en los ficheros
abb_irb120_3_58.srdf.xacro y irb120_3_58_with_tool.xacro

C.1.3. Utilización de parámetros en ficheros yaml

Los ficheros yaml no poseen ningún mecanismo para la inclusión de parámetros. Por
tanto, se investigó y se encontró que existe la opción subst_value=True en la cláusula
rosparam del lenguaje XML de ROS.

Por ello, se modificaron los archivos para que contuvieran
controladores y articulaciones con nombres únicos, especialmente el fichero
irb120_3_58_arm_controller.yaml, que contiene la definición del controlador y
de sus articulaciones [86]. También se tuvo que modificar los archivos urdf para indicar
el namespace del robot. Esto permitió una ejecución de MoveIt y RViz para cada
robot, pero con la cual los robots no se movían y que hizo surgir varios mensajes
de aviso, que alertaban de conflictos o ajustes que hacían que Gazebo y MoveIt no
estuvieran de acuerdo en los nombres de los nodos y parámetros.

79

Al colocar un nombre de variable (indicadas con el carácter $) en el fichero yaml,
si existe un parámetro con el mismo nombre en el fichero launch que lo carga,
ROS se encargará de sustituir la variable en el yaml por el valor que tuviera el
parámetro en el launch. En la Figura C.2 se observa un ejemplo, en el que el archivo
planning_context.launch cargará el contenido del kinematics.yaml sustituyendo “$(arg
robot_name)” por el valor del parámetro robot_name en el momento de la ejecución.

Figura C.2: Empleo del argumento subst_value. Los ficheros yaml tomarán los
parámetros del fichero launch que lo cargue, en este caso, en la parte de arriba, el
fichero planning_context.launch define el parámetro robot_name y carga el fichero
kinematics.yaml, que hace uso del argumento robot_name en la parte inferior de la
imagen.

C.2. API de Gazebo

Cuando se intentaba implementar la creación del objeto deformable, se intentó no
crear un nuevo modelo para cada esfera, como ocurría en la Sección 4.1. La primera
solución fue crear un modelo con un plugin del tipo ModelPlugin que sería el encargado
de modificar el modelo para añadir todos los enlaces que forman la cuadrícula y
posteriormente controlarla. Para esto se utilizaron las funciones de la clase Model en el
namespace gazebo::physics [78]. Sin embargo, fue un intento fallido, pues el modelo no
llegó a modificarse nunca sin ningún mensage de error, y puesto que la documentación
de la API de Gazebo es más bien escasa (todas las funciones en la página oficial poseen
exclusivamente una línea para explicar su objetivo y sus parámetros [78]), se buscó otra
alternativa.

80

Anexos D

Fragmentos de código interesantes

A lo largo de esta memoria, se mencionan algunos de los ficheros desarrollados
(recuerde que puede observar la estructura de ficheros en el Apéndice A). Se incluyen
a continuación algunos de ellos. De todas formas, se recomienda visitar el repositorio
de GitHub de este Trabajo si se desea tener una perspectiva mejor y actualizada de
estos u otros ficheros [101].

D.1. grid.config

Este fichero posee los parámetros del tamaño de la tela en metros (width, height);
el número de filas (vertical_resolution) y columnas (horizontal_resolution) de esferas;
la posición del centro del objeto deformable (offset_x, offset_y, offset_z); el radio de
las esferas en metros (sphere_radius); la masa de cada esfera en kilogramos (mass) y
las constantes de elasticidad (stiffness) y de amortiguamiento (damping) y si se desea
que el objeto esté afectado por la gravedad, cuando el valor es 1, o no, cuando el valor
es 0 (gravity).

1 width:1
2 height:1
3 vertical_resolution:10
4 horizontal_resolution:10
5 offset_x:0.5
6 offset_y:0.75
7 offset_z:0.5
8 sphere_radius:0.025
9 mass:0.08

10 stiffness:100
11 damping:10
12 gravity:0

Este archivo hará que se simule una tela de 1x1 metros, con 10x10 esferas de 25
cm de radio y una masa de 80 mg, alrededor de la posición (0.5, 0.75, 0.5), a la que no
le afectará la gravedad y cuyas constantes de elasticidad y amortiguamiento serán 100
N/m y 10 N s/m, respectivamente.

81

D.2. small_grid.config
Este fichero posee la misma estructura que el fichero anterior grid.config y es

utilizado para realizar algunas de las pruebas en este Trabajo.
1 width:0.2
2 height:0.3
3 vertical_resolution:6
4 horizontal_resolution:4
5 offset_x:0.5
6 offset_y:0.5
7 offset_z:0.5
8 sphere_radius:0.025
9 mass:0.04

10 stiffness:50
11 damping:3
12 gravity:1

Este archivo hará que se simule una tela de 20x30 centímetros, con 4x6 esferas de
25 cm de radio y una masa de 40 mg, alrededor de la posición (0.5, 0.5, 0.5), a la que
le afectará la gravedad y cuyas constantes de elasticidad y amortiguamiento serán 50
N/m y 3 N s/m, respectivamente.

D.3. GrabPetition.msg
Este fichero define el mensaje utilizado por las diversas partes de la simulación para

solicitar el “agarre” de una esfera.
1 int32 i
2 int32 j
3 bool grab
4 std_msgs/String robot_name
5 std_msgs/String link_name

D.4. recursive_spawn.launch
Se encarga de llamar al fichero spawn_irb120.launch que carga un robot IRB120

en la simulación, pero también a sí mismo, siempre y cuando el parámetro del número
de robots sea mayor que 0. Este número se reduce en cada iteración, consiguiendo así
un comportamiento recursivo.

1 <launch>
2 <arg name="number" default="0"/>
3

4 <include file="$(find multiple_abb_irb120)/launch/spawn_irb120.launch"
5 if="$(eval arg('number ') >= 1)">
6 <arg name="robot_name" value="robot$(arg number)"/>
7 <arg name="position_x" value="$(eval int(arg('number ')) - 1)"/>
8 </include>
9

82

10 <include
11 file="$(find multiple_abb_irb120)/launch/recursive_spawn.launch"
12 if="$(eval arg('number ') >= 1)">
13 <arg name="number" value="$(eval int(arg('number ')) - 1)"/>
14 </include>
15 </launch>

D.5. spawn_irb120.launch
Se encarga de cargar un robot cuyo nombre será el que se introduzca por el

parámetro robot_name y en la posición position_x, position_y, position_z en la
simulación de Gazebo.

1 <launch>
2

3 <arg name="robot_name" default="robot1"/>
4 <arg name="position_x" default="0"/>
5 <arg name="position_y" default="0"/>
6 <arg name="position_z" default="0"/>
7

8 <!-- setup tf_prefix-->
9 <group ns="$(arg robot_name)">

10 <param name="tf_prefix" value="$(arg robot_name)"/>
11 </group>
12

13 <!-- since the tf_prefix will change the name of the "world" frame,
14 we need to publish the robot's world to "world" -->
15 <node pkg="tf" type="static_transform_publisher"
16 name="$(arg robot_name)_world_publisher"
17 args="0 0 0 0 0 0 world $(arg robot_name)/world 100"/>
18

19 <!-- urdf xml robot description loaded on the Parameter Server,
20 converting the xacro into a proper urdf file-->
21 <param name="/$(arg robot_name)/robot_description"
22 command="$(find xacro)/xacro --inorder
23 '$(find multiple_abb_irb120)/urdf/irb120_3_58_with_tool.xacro'
24 robotns:='/$(arg robot_name)'" />
25

26 <!-- push robot_description to factory and spawn robot in gazebo -->
27 <node name="abb_irb120_$(arg robot_name)_spawn" pkg="gazebo_ros"
28 type="spawn_model" output="screen"
29 args="-urdf
30 -param /$(arg robot_name)/robot_description
31 -robot_namespace /$(arg robot_name)
32 -model abb_irb120_3_58_$(arg robot_name)
33 -x $(arg position_x)
34 -y $(arg position_y)
35 -z $(arg position_z)"
36 ns="$(arg robot_name)"/>
37

38 <!-- convert joint states to TF transforms for rviz, etc -->
39 <node name="robot_state_publisher" pkg="robot_state_publisher"
40 type="robot_state_publisher" output="screen" ns="$(arg robot_name)"/>
41

42 <!-- init and start Gazebo ros_control interface -->

83

43 <include
44 file="$(find multiple_abb_irb120)/launch/irb120_3_58_control.launch">
45 <arg name="robot_name" value="$(arg robot_name)"/>
46 </include>
47

48 </launch>

D.6. multiple_spawner_gazebo_script.bash
Este fichero es un script de bash. Toma un argumento por línea de comandos

(variable robots) y se utiliza para crear un fichero launch temporal en un directorio
temporal con directivas remap y que incluirá el fichero setup_gazebo.launch con el
número de robots introducido por la línea de comandos. Finalmente, lanza el fichero
mediante roslaunch y una vez finalizado lo borra. Posee tres opciones:

− -d : Utilizada para lanzar la prueba test_grid. En este caso, el número de robots
es ignorado.

− -s : Utilizada para lanzar un programa con una tela con los parámetros de
small_grid.cofig.

− -t : Utilizada para cargar el modelo de una mesa en la simulación.

Si no se introduce el parámetro del número de robots, muestra un mensaje de aviso y
usará un valor de 2.

1 #!/bin/bash
2 robots="$1"
3 option="$2"
4 dir="$(cd "$(dirname "$0")" && pwd)"
5 reg_ex="^[0-9]+$"
6 testing=0
7 small=0
8 table=0
9

10 if [[$robots =~ $reg_ex]] ; then
11 echo "Spawning $robots robots..."
12 else
13 echo -e "\033[33mWARNING: You have not introduced a valid number.
14 Defaulting to 2...\033[0m"
15 robots=2
16 echo "Usage: $(basename $0) <number of robots> [-d | -s | -t]"
17 echo " -d : debug grid physics"
18 echo " -s : small grid"
19 echo " -t : use a table"
20 fi
21

22 if ["$#" -gt "1"] ; then
23 if ["$option" = "-t"]; then
24 testing=1
25 echo "Testing... Robots will not be spawned, and a big grid will

84

26 spawn."
27 elif ["$option" = "-s"]; then
28 small=1
29 echo "Small grid applied."
30 else
31 echo -e "\033[33mWARNING: You have introduced an unknown option
32 \"$option\". Ignored.\033[0m"
33 echo "Usage: $(basename $0) <number of robots> [-d | -s | -t]"
34 echo " -d : debug grid physics"
35 echo " -s : small grid"
36 echo " -t : use a table"
37 fi
38 fi
39

40 if ["$#" -gt "3"]; then
41 echo -e "\033[33mWARNING: You have introduced too many options
42 (more than 2).\033[0m"
43 echo "Usage: $(basename $0) <number of robots> [-d | -s | -t]"
44 echo " -d : debug grid physics"
45 echo " -s : small grid"
46 echo " -t : use a table"
47 fi
48

49 if ["$testing" -eq "1"]; then
50 roslaunch "$dir/text_grid.launch"
51 else
52

53 source "$dir/../../../devel/setup.bash"
54 temp_dir=$(mktemp
55 -d "${TMPDIR:-/tmp/}multiple_robots_ros_package.XXXXXXXXXXXX")
56 temp_file=$(mktemp
57 "--tmpdir=$temp_dir" "gazebo_remapper_file_XXXXXX.launch")
58 "gazebo_remapper_file_XXXXXX.launch")
59 i=0
60

61 echo "<launch>" > $temp_file
62

63 while [$i -lt $robots]
64 do
65 i=$((i+1))
66 echo "<remap from=\"/robot$i/arm_controller/follow_joint_trajectory\" \
67 to=\"/robot$i/joint_trajectory_action\" />" \
68 >> $temp_file
69 echo "<remap from=\"/robot$i/arm_controller/state\" \
70 to=\"/robot$i/feedback_states\" />" >> $temp_file
71 echo "<remap from=\"/robot$i/arm_controller/command\" \
72 to=\"/robot$i/joint_path_command\"/>" >> $temp_file
73 done
74

75 echo "<include \
76 file=\"\$(find multiple_abb_irb120)/launch/setup_gazebo.launch\">" \
77 >> $temp_file
78 echo "<arg name=\"robots\" value=\"$robots\"/>" >> $temp_file \
79 echo "<arg name=\"small\" value=\"$small\"/>" >> $temp_file
80 echo "<arg name=\"table\" value=\"$table\"/>" >> $temp_file
81 echo "</include>" >> $temp_file
82

83 echo "</launch>" >> $temp_file

85

84

85 roslaunch $temp_file
86 rm $temp_file
87 rm -r $temp_dir

D.7. setup_gazebo.launch
Este fichero se encarga de llamar al fichero recursive_spawn.launch para que se

cargen los robots en la simulación y si su parámetro must_start_world tiene valor
verdadero, carga el mundo de Gazebo, que en este caso es grid.world.

1 <launch>
2 <arg name="must_start_world" default="true"/>
3 <arg name="robots" default="2" doc="Number of robots to spawn" />
4

5 <!-- IMPORTANT: topics must be remapped before using this launchfile
6 <remap from="/$(arg base_name)$(arg robots)/arm_controller/
7 follow_joint_trajectory"
8 to="/$(arg base_name)$(arg robots)/joint_trajectory_action" />
9 <remap from="/$(arg base_name)$(arg robots)/arm_controller/state"

10 to="/$(arg base_name)$(arg robots)/feedback_states" />
11 <remap from="/$(arg base_name)$(arg robots)/arm_controller/command"
12 to="/$(arg base_name)$(arg robots)/joint_path_command"/>
13 -->
14

15 <include if="$(eval arg('robots ') >= 1)">
16 file="$(find multiple_abb_irb120)/launch/recursive_spawn.launch"
17

18 <arg name ="number" value="$(arg robots)"/>
19 </include>
20

21 <!-- startup simulated world -->
22 <include if="$(arg must_start_world)"
23 file="$(find gazebo_ros)/launch/empty_world.launch">
24 <arg unless="$(eval arg('small ') or arg('table'))"
25 name="world_name"
26 value="$(find multiple_abb_irb120)/worlds/grid.world"/>
27 <arg if="$(eval arg('small ') and not arg('table'))"
28 name="world_name"
29 value="$(find multiple_abb_irb120)/worlds/small_grid.world"/>
30 <arg if="$(arg table)"
31 name="world_name"
32 value="$(find multiple_abb_irb120)/worlds/grid_table.world"/>
33 <arg name="gui" value="true"/>
34 </include>
35

36 </launch>

D.8. moveit_planning_execution_gazebo.launch
Este fichero se encarga de inicializar los nodos y parámetros para ejecutar MoveIt y

RViz con un robot indicado por su parámetro robot_name que deberá ser modificado

86

según el robot que se desea controlar.
1 <launch>
2 <!-- The planning and execution components of MoveIt! configured to run
3 against a Gazebo based, ros_control compatible simulation of the
4 IRB 120. This depends on the corresponding 'abb_irb120_gazebo ' pkg
5 to be installed first. This dependency is not expressed in the
6 MoveIt config pkg manifest , as adding a run_depend there would
7 cause Gazebo to be unconditionally installed , even if the user
8 never intends to use the MoveIt config with it.
9 Instead, installation is left to the user, as a kind of poor-mans

10 optional dependency.
11 Finally, this launch file assumes that gazebo is already running
12 and that the IRB 120 and ros_controllers are loaded.
13 -->
14

15

16 <!-- By default, we do not start a database (it can be large) -->
17 <arg name="db" default="false" />
18 <!-- Allow user to specify database location -->
19 <arg name="db_path"
20 default="$(find abb_irb120_moveit_config)/default_warehouse_mongo_db"/>
21

22 <arg name="robot_name" default="robot1"/>
23

24 <remap from="/joint_trajectory_action"
25 to="/$(arg robot_name)/joint_trajectory_action"/>
26

27 <group ns="$(arg robot_name)">
28 <rosparam command="load"
29 file="$(find abb_irb120_support)/config/joint_names_irb120_3_58.yaml"/>
30

31 <include
32 file="$(find multiple_abb_irb120)/launch/planning_context.launch">
33 <arg name="load_robot_description" value="false" />
34 <arg name="robot_name" value="$(arg robot_name)"/>
35 </include>
36

37 <include
38 file="$(find multiple_abb_irb120)/launch/move_group.launch">
39 <arg name="publish_monitored_planning_scene" value="true" />
40 <arg name="robot_name" value="$(arg robot_name)"/>
41 </include>
42

43 <include
44 file="$(find multiple_abb_irb120)/launch/moveit_rviz.launch">
45 <arg name="config" value="true"/>
46 <arg name="robot_name" value="$(arg robot_name)"/>
47 </include>
48 </group>
49

50 <!-- If database loading was enabled, start mongodb as well -->
51 <include file="$(find
52 abb_irb120_moveit_config)/launch/default_warehouse_db.launch"
53 if="$(arg db)">
54 <arg name="moveit_warehouse_database_path" value="$(arg db_path)"/>
55 </include>
56 </launch>

87

D.9. abb_irb120_3_58.srdf.xacro
Este fichero posee la información semántica del robot ABB IRB120, en un formato

xacro, que permite el uso de parámetros para definir el nombre del robot. Este utiliza
una macro, que importa desde el fichero abb_irb120_3_58.srdf_macro.xacro.

1 <?xml version="1.0" ?>
2

3 <robot name="abb_irb120_3_58" xmlns:xacro="http://ros.org/wiki/xacro">
4

5 <xacro:arg name="prefix" default="robot1_" />
6 <xacro:arg name="robotns" default="robot1" />
7

8 <xacro:include filename="$(find
9 multiple_abb_irb120)/config/abb_irb120_3_58_macro.srdf.xacro"/>

10 <xacro:abb_irb120_3_58_g prefix="$(arg prefix)"
11 robotns="$(arg robotns)"/>
12 </robot>

D.10. abb_irb120_3_58.srdf_macro.xacro
Este fichero posee una macro que contiene la información semántica del robot ABB

IRB120, en un formato xacro, que permite el use de parámetros para definir el nombre
del robot. Se pueden observar aquí el nombre del grupo ${robotns}_manipulator, y
también las dos poses predefinidas de los robots all_zero y demo_pose.

1 <?xml version="1.0" ?>
2 <!--This does not replace URDF, and is not an extension of URDF.
3 This is a format for representing semantic information about the robot
4 structure.
5 A URDF file must exist for this robot as well, where the joints and
6 the links that are referenced are defined
7 -->
8 <robot xmlns:xacro="http://ros.org/wiki/xacro">
9 <xacro:macro name="abb_irb120_3_58_g" params="prefix robotns">

10 <!--GROUPS: Representation of a set of joints and links. This can be
11 useful for specifying DOF to plan for, defining arms, end effectors ,
12 etc-->
13 <!--LINKS: When a link is specified , the parent joint of that link
14 (if it exists) is automatically included-->
15 <!--JOINTS: When a joint is specified , the child link of that joint
16 (which will always exist) is automatically included-->
17 <!--CHAINS: When a chain is specified , all the links along the chain
18 (including endpoints) are included in the group. Additionally , all
19 the joints that are parents to included links are also included.
20 This means that joints along the chain and the parent joint of the
21 base link are included in the group-->
22 <!--SUBGROUPS: Groups can also be formed by referencing to already
23 defined group names-->
24 <group name="${robotns}_manipulator">
25 <chain base_link="base_link" tip_link="tool_link" />
26 </group>
27 <!--GROUP STATES: Purpose: Define a named state for a particular

88

28 group, in terms of joint values. This is useful to define states
29 like 'folded arms'-->
30 <group_state name="all_zero" group="${robotns}_manipulator">
31 <joint name="joint_1" value="0" />
32 <joint name="joint_2" value="0" />
33 <joint name="joint_3" value="0" />
34 <joint name="joint_4" value="0" />
35 <joint name="joint_5" value="0" />
36 <joint name="joint_6" value="0" />
37 </group_state >
38

39 <group_state name="demo_pose" group="${robotns}_manipulator">
40 <joint name="joint_1" value="0" />
41 <joint name="joint_2" value="0.21" />
42 <joint name="joint_3" value="-0.1" />
43 <joint name="joint_4" value="0" />
44 <joint name="joint_5" value="1.466" />
45 <joint name="joint_6" value="0" />
46 </group_state >
47 <!--VIRTUAL JOINT: Purpose: this element defines a virtual joint
48 between a robot link and an external frame of reference (considered
49 fixed with respect to the robot)-->
50 <virtual_joint name="FixedBase" type="fixed" parent_frame="world"
51 child_link="base_link" />
52 <!--DISABLE COLLISIONS: By default it is assumed that any link of
53 the robot could potentially come into collision with any other link
54 in the robot. This tag disables collision checking between a specified
55 pair of links. -->
56 <disable_collisions link1="base_link" link2="link_1" reason="Adjacent"/>
57 <disable_collisions link1="base_link" link2="link_2" reason="Never"/>
58 <disable_collisions link1="link_1" link2="link_2" reason="Adjacent"/>
59 <disable_collisions link1="link_2" link2="link_3" reason="Adjacent"/>
60 <disable_collisions link1="link_2" link2="link_5" reason="Never"/>
61 <disable_collisions link1="link_2" link2="link_6" reason="Never"/>
62 <disable_collisions link1="link_3" link2="link_4" reason="Adjacent"/>
63 <disable_collisions link1="link_3" link2="link_5" reason="Never"/>
64 <disable_collisions link1="link_3" link2="link_6" reason="Never"/>
65 <disable_collisions link1="link_4" link2="link_5" reason="Adjacent"/>
66 <disable_collisions link1="link_4" link2="link_6" reason="Default"/>
67 <disable_collisions link1="link_5" link2="link_6" reason="Adjacent"/>
68 </xacro:macro>
69 </robot>

D.11. small_cloth_manipulation.cpp
Este fichero contiene el comportamiento de la simulación final. Se crean las clases

para controlar los robots y conocer el estado de las esferas, y se ordenan movimientos
a los robots para que cojan y agiten la tela, la estiren y la dejen en el suelo.

1 /***
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2013, SRI International
5 * All rights reserved.
6 *

89

7 * Redistribution and use in source and binary forms, with or without
8 * modification , are permitted provided that the following conditions
9 * are met:

10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of SRI International nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT ,
26 * INCIDENTAL , SPECIAL, EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING ,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
30 * LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 ***/
34

35 /* Author: Sachin Chitta, Dave Coleman, Mike Lautman */
36 // MODIFIED BY: Andrés Otero García, Gonzalo López Nicolás and María del
37 // Rosario Aragüés Muñoz
38

39

40 #include <moveit/robot_model_loader/robot_model_loader.h>
41 #include <moveit/planning_interface/planning_interface.h>
42 #include <moveit/planning_scene/planning_scene.h>
43 #include <moveit/planning_scene_monitor/planning_scene_monitor.h>
44 #include <moveit/kinematic_constraints/utils.h>
45 #include <moveit_msgs/DisplayTrajectory.h>
46 #include <moveit_msgs/PlanningScene.h>
47

48 #include <moveit/move_group_interface/move_group_interface.h>
49 #include <moveit/planning_scene_interface/planning_scene_interface.h>
50

51 #include <moveit_msgs/DisplayRobotState.h>
52 #include <moveit_msgs/DisplayTrajectory.h>
53

54 #include <moveit_msgs/AttachedCollisionObject.h>
55 #include <moveit_msgs/CollisionObject.h>
56

57 #include "gazebo/common/common.hh"
58 #include "gazebo/gazebo.hh"
59

60 #include <iostream> // std::streambuf , std::cout
61 #include <fstream> // std::ofstream
62

63 #include <ros/service_client.h>
64 #include <ros/ros.h>

90

65

66 #include "RobotInterface.hpp"
67 #include "GridState.hpp"
68 #include <chrono>
69

70 #include <signal.h>
71 #include <chrono>
72

73 #include "utils.hpp"
74

75 #include <multiple_abb_irb120/GrabPetition.h>
76

77 #include <ros/console.h>
78 #include <tf2/LinearMath/Quaternion.h>
79

80 #include "Demo.hpp"
81

82

83 const int NUM_ROBOTS = 2;
84

85 using MGIPtr =
86 std::shared_ptr <moveit::planning_interface::MoveGroupInterface >;
87 using GridStatePtr = GridState*;
88

89 class SmallClothDemo : public Demo {
90

91 private:
92

93 ros::NodeHandle n;
94 ros::Publisher grabPub;
95

96 virtual void doDemo(RobotInterface& robot, int robot_i, int params, ...)
97 override {
98 if(params != 3){
99 ROS_ERROR("Wrong number of parameters for grid demo");

100 return;
101 }
102 else{
103 va_list args;
104 va_start(args, params);
105

106 GridStatePtr gridState = va_arg(args, GridStatePtr);
107 int sphere_i = va_arg(args, int);
108 int sphere_j = va_arg(args, int);
109

110 tf2::Quaternion facing_down;
111 multiple_abb_irb120::GrabPetition grabMsg;
112 std_msgs::String robot_name , link_name;
113 std::vector<geometry_msgs::Pose> waypoints(1);
114 geometry_msgs::Pose initial, target, sphere_initial;
115 moveit_msgs::RobotTrajectory trajectory;
116 moveit::planning_interface::MoveGroupInterface::Plan my_plan;
117 MGIPtr move_group = robot.getMoveGroup();
118

119 facing_down.setRPY(0, M_PI, 0);
120 move_group ->setPlanningTime(10.0);
121

122 initial = move_group ->getCurrentPose().pose;

91

123 sphere_initial =
124 utils::getAdjustedSpherePose(gridState ->getPose(sphere_i , sphere_j),
125 robot.getBasePosition(), facing_down);
126

127 std::cout << "Robot " << robot_i + 1 << ": " <<
128 "Approaching sphere " << sphere_i << " " << sphere_j << "..."<<
129 std::endl;
130

131 //////////////////////////////////
132 // Approach sphere
133 //////////////////////////////////
134 if(ros::ok()){
135 do {
136 target =
137 utils::getAdjustedSpherePose(gridState ->getPose(sphere_i ,
138 sphere_j),
139 robot.getBasePosition(), facing_down);
140

141 move_group ->setPoseTarget(target);
142 move_group ->move();
143 } while(ros::ok() &&
144 !utils::isNear(move_group ->getCurrentPose().pose,
145 utils::getAdjustedSpherePose(gridState ->getPose(sphere_i ,
146 sphere_j), robot.getBasePosition(), facing_down), 0.03));
147 }
148

149 move_group ->stop();
150 std::cout << "Robot " << robot_i + 1 << ": " <<
151 "Approached sphere " << sphere_i << " " << sphere_j << "." <<
152 std::endl;
153

154 //////////////////////////////////
155 // Grab sphere
156 //////////////////////////////////
157 link_name.data = LINK_NAME;
158 robot_name.data = ROBOT_PREFIX + std::to_string(robot_i + 1);
159 grabMsg.robot_name = robot_name;
160

161 grabMsg.i = sphere_i;
162 grabMsg.j = sphere_j;
163 grabMsg.link_name = link_name;
164 grabMsg.robot_name = robot_name;
165 grabMsg.grab = true;
166

167 // SYNC
168 if(!syncRobots(robot_i, 1)) {
169 va_end(args);
170 return;
171 }
172

173 grabPub.publish(grabMsg);
174 gridState ->setGrabbed(robot_i, true);
175

176 std::cout << "Robot " << robot_i + 1 << ": " <<
177 "Grabbed sphere " << sphere_i << " " << sphere_j << "." <<
178 std::endl;
179

180 std::this_thread::sleep_for(std::chrono::milliseconds(100));

92

181

182 //////////////////////////////////
183 // Go up
184 //////////////////////////////////
185 std::cout << "Robot " << robot_i << ": " <<
186 "Going up..." << std::endl;
187

188 //Get a position above the sphere
189 target = move_group ->getCurrentPose().pose;
190 target.position.z = sphere_initial.position.z + 0.3;
191

192 move_group ->setPoseTarget(target);
193 move_group ->move();
194

195 waypoints[0] = move_group ->getCurrentPose().pose;
196 waypoints[0].position.x = 0;
197 waypoints[0].position.z += 0.1;
198

199 move_group ->computeCartesianPath(waypoints , EEF_STEP ,
200 JUMP_THRESHOLD , trajectory);
201

202 my_plan.trajectory_ = trajectory;
203 move_group ->execute(my_plan);
204

205

206 std::cout << "Robot " << robot_i + 1 << ": " <<
207 "Finished going up." << std::endl;
208

209 // SYNC
210 if(!syncRobots(robot_i, 2)) {
211 va_end(args);
212 return;
213 }
214

215 std::cout << "Robot " << robot_i + 1 << ": " <<
216 "Starting shaking..." << std::endl;
217 //////////////////////////////////
218 // Shake object
219 //////////////////////////////////
220 initial = move_group ->getCurrentPose().pose;
221

222 waypoints[0].position.y = initial.position.y;
223 waypoints[0].position.z = initial.position.z;
224

225 waypoints[0].orientation.x = facing_down.x();
226 waypoints[0].orientation.y = facing_down.y();
227 waypoints[0].orientation.z = facing_down.z();
228 waypoints[0].orientation.w = facing_down.w();
229

230 for (int i = 0; i < 3; i++) {
231 waypoints[0].position.x = initial.position.x + (i % 2? 0.2 : -0.2);
232

233 move_group ->computeCartesianPath(waypoints , EEF_STEP ,
234 JUMP_THRESHOLD , trajectory);
235

236 my_plan.trajectory_ = trajectory;
237 move_group ->execute(my_plan);
238

93

239 // SYNC
240 if(!syncRobots(robot_i, 3 + i)) {
241 va_end(args);
242 return;
243 }
244 }
245

246

247 std::cout << "Robot " << robot_i + 1 << ": " <<
248 "Finished shaking." << std::endl;
249

250 std::this_thread::sleep_for(std::chrono::milliseconds(10));
251

252 //////////////////////////////////
253 //////// Stretch object //////////
254 //////////////////////////////////
255 std::cout << "Robot " << robot_i + 1 << ": " <<
256 "Starting stretching..." << std::endl;
257

258 waypoints[0] = move_group ->getCurrentPose().pose;
259 waypoints[0].position.x = sphere_initial.position.x - 0.1;
260

261 move_group ->computeCartesianPath(waypoints , EEF_STEP ,
262 JUMP_THRESHOLD , trajectory);
263

264 my_plan.trajectory_ = trajectory;
265 move_group ->execute(my_plan);
266

267 target = move_group ->getCurrentPose().pose;
268

269 target.position.y += robot_i % 2 ? 0.2 : -0.2;
270 std::cout << robot_i << " " << target.position.y << std::endl;
271 move_group ->setPoseTarget(target);
272 move_group ->move();
273

274 std::cout << "Robot " << robot_i + 1 << ": " <<
275 "Finished stretching." << std::endl;
276 //SYNC
277 if(!syncRobots(robot_i, 6)) {
278 va_end(args);
279 return;
280 }
281

282 //////////////////////////////////
283 //////// Go drop object //////////
284 //////////////////////////////////
285 std::cout << "Robot " << robot_i + 1 << ": " <<
286 "Starting drop trajectory..." << std::endl;
287 waypoints[0].position.x = sphere_initial.position.x - 0.15;
288 waypoints[0].position.y = sphere_initial.position.y;
289 waypoints[0].position.z = sphere_initial.position.z + 0.2;
290

291 target.position.x = sphere_initial.position.x + 0.15;
292 target.position.y = sphere_initial.position.y;
293 target.position.z = sphere_initial.position.z;
294

295 waypoints.push_back(target);
296

94

297 move_group ->computeCartesianPath(waypoints , EEF_STEP ,
298 JUMP_THRESHOLD , trajectory);
299

300 my_plan.trajectory_ = trajectory;
301 move_group ->execute(my_plan);
302

303 //SYNC
304 syncRobots(robot_i, 7);
305

306 //////////////////////////////////
307 // Release sphere by both robots and finish demo
308 //////////////////////////////////
309

310 std::cout << "Robot " << robot_i + 1 << ": " <<
311 "Released sphere " << sphere_i << " " << sphere_j << std::endl;
312 grabMsg.grab = false;
313 grabPub.publish(grabMsg);
314 gridState ->setGrabbed(robot_i, false);
315

316 move_group ->setNamedTarget(ALL_ZERO_POSE_NAME);
317 move_group ->move();
318

319 va_end(args);
320

321 }
322 }
323

324 public:
325 SmallClothDemo(int n_robots) : Demo(n_robots) {
326 grabPub =
327 n.advertise <multiple_abb_irb120::GrabPetition >("/grid/grab_petitions",
328 100);
329 }
330

331 void execute(RobotInterface& robot, int robot_i, GridState& gridState ,
332 int sphere_i, int sphere_j){
333 doDemo(robot, robot_i, 3, &gridState , sphere_i , sphere_j);
334 }
335

336 };
337

338 int main(int argc, char** argv){
339

340 // Setup
341 // ^^^^^
342

343 std::string name_ = "robots_controller";
344 ros::init(argc, argv, name_);
345 ros::NodeHandle n;
346 ros::AsyncSpinner spinner(1);
347 spinner.start();
348

349

350

351 geometry_msgs::Point robot_bases[2];
352 for(int i = 0; i < 2; i++){
353 robot_bases[i].x = 0;
354 robot_bases[i].y = i;

95

355 robot_bases[i].z = 0;
356 }
357

358 RobotInterface robots[2] = {RobotInterface(robot_bases[0],
359 "manipulator", "robot1"), RobotInterface(robot_bases[1],
360 "manipulator", "robot2")};
361

362 std::vector<std::shared_ptr
363 <moveit::planning_interface::PlanningSceneInterface > >
364 planning_scene_interfaces;
365 planning_scene_interfaces.push_back(
366 std::make_shared <
367 moveit::planning_interface::PlanningSceneInterface >("robot1"));
368 planning_scene_interfaces.push_back(
369 std::make_shared <
370 moveit::planning_interface::PlanningSceneInterface >("robot2"));
371

372 ros::Rate loop_rate(10);
373

374 // Start the Grid
375 // ^^^^^^^^^^^^^^^^^^^^^^^^^
376 std::vector<double> size(2);
377 ros::param::get("/grid/width", size[0]);
378 ros::param::get("/grid/height", size[1]);
379 std::vector<int> resolution;
380 ros::param::get("/grid/resolution", resolution);
381 std::vector<double> offset;
382 ros::param::get("/grid/offset", offset);
383 float sphere_radius = 0.025;
384 ros::param::get("/grid/sphere_radius", sphere_radius);
385

386 const int sphere_i[2] = {0, resolution[0] - 1};
387 const int sphere_j[2] = {0, 0};
388

389 GridState gridState(size, resolution , offset, sphere_radius ,
390 planning_scene_interfaces , robots, 2);
391

392 ros::Subscriber sub = n.subscribe("/gazebo/link_states", 1000,
393 &GridState::updateCallback , &gridState);
394

395 while(!gridState.isReady()){
396 std::this_thread::sleep_for(std::chrono::milliseconds(100));
397 }
398

399 SmallClothDemo demo(NUM_ROBOTS);
400

401 std::thread t1(&SmallClothDemo::execute, &demo, std::ref(robots[1]),
402 1, std::ref(gridState), sphere_i[1], sphere_j[1]);
403 demo.execute(robots[0], 0, gridState , sphere_i[0], sphere_j[0]);
404

405 t1.join();
406

407 if(ros::ok()){
408 ros::shutdown();
409 }
410

411 std::cout << "Shut down" << std::endl;
412

96

413 return 0;
414 }

97

98

Anexos E

Recomendaciones para la
modificación del código

Este apéndice está dirigido a cualquiera que desee realizar modificaciones a los
ficheros desarrollados para este Trabajo, con una serie de pautas que puedan ayudarle
a cumplir su objetivo:

− No modifique directamente los ficheros de ABB. Esto puede provocar
incompatibilidades en futuras actualizaciones o con el resto de paquetes de
la empresa. Siempre que pueda, mantenga éstos intactos y duplíquelos si su
propósito lo requiere.

− Si desea realizar modificaciones al mundo de la simulación, vea el ejemplo provisto
en la Sección B.4 y no olvide mantener la definición del plugin.

− Tenga cuidado con los espacios de nombre, o namespaces, pues la estructura
puede ser delicada por las limitaciones de ROS 1.

− Si desea crear mensajes o servicios nuevos, siga el tutorial [99] y preste mucha
atención a la estructura del fichero CMakeLists.txt, pues es el que garantizará la
correcta compilación.

− Si usted utiliza el entorno de desarrollo Visual Studio Code, podrá obtener
una extensión para ROS [100]. En la vista general de la misma podrá observar
distintos tutoriales, pero es particularmente interesante la forma para depurar
nodos de ROS desarrollados en C++ o Python. Deberá seguir los tutoriales, pero
es importante saber que es necesario realizar una compilación con símbolos de
depuración si desea colocar breakpoints en su código. Para ello debe utilizar el
siguiente comando para compilación con catkin:
catkin_make -DCMAKE_BUILD_TYPE=Debug

99

o colocar la siguiente línea en su CMakeLists.txt para compilación con rosbuild:
set(ROS_BUILD_TYPE Debug)

− Si desea utilizar otro modelo de robots, le recomiendo modificar los ficheros de
la carpeta urdf, basándose en los ficheros provistos por el fabricante del robot.
También deberá modificar los archivos srdf y deberá adaptar los ficheros launch
para que utilicen los nuevos archivos.

100

	Introducción y objetivos
	Objetivos
	Organización de esta Memoria

	Herramientas
	Robot Operating System (ROS™)
	Intercambio de información en ROS

	Gazebo
	MoveIt Motion Planning Framework

	Configuración del entorno multi-robot
	Paquetes de ROS para ABB IRB 120
	Puesta en marcha de un robot en Gazebo y MoveIt

	Paquete multiple_abb_irb120
	Puesta en marcha de dos robots en Gazebo
	Puesta en marcha de MoveIt para ambos robots
	Conexión a los robots desde C++

	Creación del objeto deformable
	Creación por medio de servicios ROS
	Creación por medio de un plugin de Gazebo
	Creación del modelo con un WorldPlugin

	Simulación del objeto deformable
	Modelo Mass-Spring-Damping
	Estudio de implementación en Matlab
	Simulación por medio de servicios ROS
	Simulación por plugins de Gazebo

	Interacción Robot - Objeto deformable
	Obtención de la posición del objeto deformable
	Planificación de trayectorias con evitación de colisiones
	Petición de agarre
	Obtención de la posición de los robots

	Experimentos realizados y resultados
	Creación de robots en la simulación
	Movimiento de los robots en entorno multi-robot
	Creación y movimiento del objeto deformable
	Manipulación del objeto por robots
	Simulación Final

	Conclusiones y trabajo futuro
	Valoración de los resultados
	Trabajo futuro

	Bibliografía
	Anexos
	Organización de los ficheros desarrollados
	Instalación y Ejecución de los programas desarrollados
	Instalación
	Configuración inicial
	Ejecución
	Ejecución de trayectorias
	robots_moving_demo
	robots_waving_demo
	grid_demo
	test_grid
	Manipulación manual del objeto deformable
	small_grid_manipulation

	Realización de pruebas con una mesa

	Algunos problemas encontrados
	Espacios de nombres
	Problemas en los archivos de configuración de Gazebo
	Problemas en los archivos de configuración de MoveIt
	Utilización de parámetros en ficheros yaml

	API de Gazebo

	Fragmentos de código interesantes
	grid.config
	small_grid.config
	GrabPetition.msg
	recursive_spawn.launch
	spawn_irb120.launch
	multiple_spawner_gazebo_script.bash
	setup_gazebo.launch
	moveit_planning_execution_gazebo.launch
	abb_irb120_3_58.srdf.xacro
	abb_irb120_3_58.srdf_macro.xacro
	small_cloth_manipulation.cpp

	Recomendaciones para la modificación del código

