w2s Universidad
A0l Zaragoza

1542

Trabajo Fin de Grado

Manipulacion de objetos deformables en entornos
multi-robot

Deformable object manipulation in multi-robot
environments

Autor

Andrés Otero Garceia

Directores

Gonzalo Lopez Nicolas

Maria del Rosario Aragiiés Munoz

Grado en Ingenieria Informatica

ESCUELA DE INGENIERIA Y ARQUITECTURA
2021

AGRADECIMIENTOS

Agradezco a:

mis tutores Gonzalo y Rosario, por su pasion y ganas de ayudarme, ademas de
hacer que este Trabajo haya sido mucho mas ameno.

mis profesores, sobre todo a aquellos que me han guiado por el camino y no se han
conformado con sélo resolver mis dudas.

mi padre José Antonio, por su gran apoyo en todas las decisiones que hasta ahora
he tenido que tomar en la vida y su interés para resolver cualquier problema.

mi madre Alicia, por todo su amor y la ayuda que me ha prestado en todas las
etapas de mi vida, incluyendo la académica, por todas esas tardes conmigo para hacer
los deberes y aprender siempre maés.

mi hermana Alicia, por su apoyo incondicional, por siempre ser un perfecto ejemplo
a seguir y por toda la alegria que me ha traido, especialmente en los momentos que
mas los necesitaba de mi etapa universitaria.

también al resto de mi familia, por siempre hacerme tan feliz.

Santi, por acompafiarme siempre con una sonrisa en los momentos en los que més
lo necesitaba y por ser el mejor compafnero que podria pedir en mi vida universitaria.

Melany y Enri, por haberme acogido como un amigo mas, por las largas sesiones
de estudio juntos y por todos los buenos momentos.

Fernando, Pedro, Alba, Néstor, Cristina, Irene y Leti, por acompanarme desde el
principio hasta el final, que han hecho que el Grado sea una experiencia mucho mas
agradable.

al resto de mis companeros y amigos, de Zaragoza y de Cork, por escucharme

siempre y estar ahi, a pesar del paso del tiempo.

GRACIAS.

IT

Objetivos, herramientas y resultados

RESUMEN

Se estudia un caso en el que multiples robots IRB120 de la empresa ABB manipulan
simultaneamente un objeto de tipo deformable, como pudiera ser una tela. El objetivo
es desarrollar una simulacion en el que al menos dos robots puedan realizar movimientos
en sincronizacion para realizar cambios en el objeto deformable, como pudieran ser un
desplazamiento o una deformacion, sin que estos colisionen con el objeto durante la
manipulacién. Se plantea ademés que sea una simulacién que no esté intrinsecamente
relacionada con los robots que se vayan a utilizar, y que permita enviar comandos
de forma independiente a todos los robots. Se utiliza para esto el sistema operativo
robético (ROS™) para la comunicacién entre las distintas partes de la simulacion,
mientras que para albergar el entorno de la simulacién, asi como sus fisicas, se utiliza la
herramienta Gazebo. Para la planificacién de trayectorias de movimientos del robot se
ha empleado la biblioteca Movelt, y para la realizacion de pruebas, la interfaz RViz. Se
ha desarrollado una serie de programas que simulan los robots de forma independiente,
asi como un objeto deformable con un modelo Masa-Muelle-Amortiguador y se han
realizado multiples pruebas para evaluar su comportamiento. Los primeros programas
ejecutan diversos movimientos en un entorno de varios robots de forma independiente,
mientras que también se han desarrollado otras pruebas, en las que dos robots mueven
un objeto de tipo tela elastica a la vez, moviéndola y estirandola de formas diversas
para finalmente soltarla. Ademas, se ha realizado una implementaciéon para observar
el comportamiento de la tela en presencia de gravedad, con las cuatro esquinas sin
movimientos permitidos. Podemos observar que los comportamientos son los esperados

para una tela y los robots son capaces de evitar colisiones con la misma.

II1

IV

Indice

1. Introduccién y objetivos
1.1. Objetivos

1.2. Organizacion de esta Memoria

2. Herramientas
2.1. Robot Operating System (ROS™)
2.1.1. Intercambio de informacién en ROS . . .

2.2. Gazebo
2.3. Movelt Motion Planning Framework

3. Configuracion del entorno multi-robot
3.1. Paquetes de ROS para ABB IRB 120

3.1.1. Puesta en marcha de un robot en Gazebo y Movelt

3.2. Paquete multiple_abb_irb120

3.2.1. Puesta en marcha de dos robots en Gazebo

3.2.2. Puesta en marcha de Movelt para ambos robots

3.2.3. Conexion a los robots desde C++

4. Creaciéon del objeto deformable
4.1. Creacién por medio de servicios ROS
4.2. Creacién por medio de un plugin de Gazebo . .

4.2.1. Creacién del modelo con un WorldPlugin

5. Simulacién del objeto deformable
5.1. Modelo Mass-Spring-Damping
5.2. Estudio de implementacion en Matlab
5.3. Simulacién por medio de servicios ROS

5.4. Simulacién por plugins de Gazebo

6. Interaccién Robot - Objeto deformable

6.1. Obtencién de la posicion del objeto deformable

v

w

o 3 O ot G

10
11
12
12
14
14

17
17
18
18

21
21
23
24
24

27

6.2. Planificacién de trayectorias con evitacion de colisiones
6.3. Peticion de agarreo

6.4. Obtencién de la posicién de los robots

7. Experimentos realizados y resultados
7.1. Creacion de robots en la simulacion00
7.2. Movimiento de los robots en entorno multi-robot
7.3. Creacion y movimiento del objeto deformable
7.4. Manipulacion del objeto por robotso

7.5. Simulacion Final

8. Conclusiones y trabajo futuro
8.1. Valoracion de los resultadoso

8.2. Trabajo futuro
9. Bibliografia
Anexos
A. Organizacion de los ficheros desarrollados

B. Instalacién y Ejecucién de los programas desarrollados
B.1. Instalacién
B.2. Configuracién inicial
B.3. Ejecuciono
B.3.1. Ejecucion de trayectorias L.
B.3.2. robots _moving demo
B.3.3. robots _waving demo
B.3.4. grid _demo
B.3.5. test_grid
B.3.6. Manipulacién manual del objeto deformable
B.3.7. small_grid _manipulation

B.4. Realizacién de pruebas con una mesa L.

C. Algunos problemas encontrados
C.1. Espacios de nombres
C.1.1. Problemas en los archivos de configuraciéon de Gazebo
C.1.2. Problemas en los archivos de configuracion de Movelt

C.1.3. Utilizacién de parametros en ficheros yaml

VI

33
33
34
36
39
42

45
45
46

49

61

63

65
65
65
66
66
68
69
70
71
72
73
74

C.2. APl de Gazebo 80

D. Fragmentos de cddigo interesantes 81
D.1. grid.config 81
D.2. small grid.config 82
D.3. GrabPetition.msg 82
D.4. recursive spawn.launch 82
D.5. spawn_irb120.launch 83
D.6. multiple spawner _gazebo _script.bash 84
D.7. setup gazebo.launch 86
D.8. moweit_planning execution__gazebo.launch 86
D.9. abb_irb120 3 58.srdf.xacro 88
D.10.abb_irb120 3 58.srdf macro.xacro 88
D.11.small_cloth__manipulation.cpp 89

E. Recomendaciones para la modificacion del cédigo 99

VII

VIII

Capitulo 1

Introduccién y objetivos

Desde su aparicion en el ano 1938 [1], los robots industriales han despertado un gran
interés por sus capacidades para realizar diferentes tareas de forma automatica y precisa
que han mejorado el rendimiento de las fabricas [2]. Asi, es normal ver multiples robots
a lo largo del proceso industrial que pueden llegar a colaborar en muchas ocasiones
para conseguir realizar maniobras que serian mas dificiles o imprecisas si se realizaran
con un unico robot [3] [4].

Por otro lado, la programacion de tareas para un robot manipulando objetos rigidos
es la mas comun y que més avanzada se encuentra, en contraposicion a los objetos
deformables, que son aquellos que, sometidos a fuerzas externas, son capaces de cambiar
de forma y, en funciéon de su elasticidad, de volver a su forma inicial en ausencia de
éstas, es decir, son flexibles (en la Figura 1.1 se observa como dos robots manipulan un
platano, que es un objeto deformable) [3]. Estos objetos suponen un problema mayor
que los rigidos, pues no es sencillo determinar en qué posicion se encontraran las partes
que componen el objeto, mientras que en un objeto rigido siempre se mantiene la misma
proporcion entre distintos puntos del mismo. Es por esto que los objetos deformables
son un campo en el que la investigacion sigue avanzando y se desarrollan modelos y
métodos nuevos para encontrar mejores soluciones a las que tradicionalmente se les ha

ido dando a tareas pequenas, como doblar o cortar telas [4] [5] [6].

(1) ' 2)

Figura 1.1: Manipulacién de un platano por dos brazos robéticos [7]

Existen ademads, gran cantidad de formas de hacer que un robot realice
movimientos repetitivos por medio de ingenierfa automética (con dispositivos
mecanicos, neumaticos, hidrdulicos, electronicos...) y sistemas mas complejos como
autématas programables o controladores légicos programables [8]. Sin embargo, todas
estas soluciones, a pesar de ser robustas y generalmente sencillas de mantener, también
son siempre dependientes del robot que se utilice, asi como de todos los componentes

fisicos y de hardware para el correcto funcionamiento del sistema automatico.

1.1. Objetivos

En este Trabajo se intenta dar una solucion genérica a la manipulacién con varios
robots industriales de objetos deformables, en particular los de tipo tela elastica, y
que pueda ser extendida sencillamente a cualquier otro robot que se desee utilizar y
también al entorno en el que se desarrolle el proceso industrial. Se marca como objetivo
el aprendizaje del Sistema Operativo Robdtico (ROS™) y su uso para la simulacion,
que permite la creaciéon de entornos con robots industriales, junto con el simulador
de fisicas Gazebo y la biblioteca de manipulacién de robots Movelt. Estos se pueden
combinar para obtener una simulacién de robots industriales, asi como para controlar
robots reales y programar sus tareas de un modo que no dependa del robot utilizado
ni de las conexiones entre éste y el ordenador que lo controle (véase Capitulo 2).

Se plantea la realizacién de una simulacién con al menos dos robots (pero que
permita la utilizacién de un niimero arbitrario) en los que ambos puedan ser controlados
de manera independiente y que consigan tomar el objeto para desplazarlo y que se
produzcan deformaciones en el mismo (estirarlo o comprimirlo). También se desea una
implementacion realista pero sencilla para el comportamiento del objeto de tipo tela
elastica y también parametrizada, para poder cambiar las caracteristicas del objeto en
diferentes ejecuciones.

Finalmente, todas las pruebas deberan funcionar con el modelo IRB 120 de la
empresa de tecnologias ABB, que posee 6 grados de libertad y es el dltimo robot
desarrollado por la misma en la fecha de redaccion de este Trabajo de Fin de Grado
[9]. Ademas, la propia empresa ha desarrollado una serie de archivos para su utilizacién
en ROS, Gazebo y Movelt, si bien no estan verdaderamente adaptados para un entorno
multi-robot. Por este motivo, sera necesario modificarlos, pero se intentara que sea lo
minimo posible. Cabe destacar también que se poseen dos ejemplares del robot en el
laboratorio L0.06 del edificio Ada Byron de la Universidad de Zaragoza, por lo que se
podria llegar en un futuro a realizar pruebas con éstos sin realizar muchos cambios en

la estructura de los archivos desarrollados.

1.2. Organizacion de esta Memoria

Esta memoria se ha redactado siguiendo una estructura que pueda ayudar al lector a
entender el proceso con el que se desarroll6 el proyecto. De esta forma, en primer lugar se
describen las herramientas utilizadas en el Capitulo 2. Posteriormente se encuentran las
diferentes fases del proceso, comenzando por la configuracion y puesta en marcha de una
simulacién con varios robots, presentes en el Capitulo 3, pasando por el desarrollo del
objeto deformable y su inclusién en la simulacion en el Capitulo 4, y su comportamiento
en el Capitulo 5, para finalmente explicar como interactuaran los robots y el objeto en
el Capitulo 6. Después se dedica el Capitulo 7 a describir experimentos llevados a cabo
asi como sus resultados y el Capitulo 8 a detallar las conclusiones obtenidas y trabajo
futuro que podria realizarse para extender o mejorar los resultados y la usabilidad de
este Trabajo. Cabe destacar que o bien dentro de todos los capitulos, o bien en el
Apéndice C se detallan todas las soluciones que se han intentado dar a los objetivos
planteados, empezando por el primer intento y explicando sus resultados hasta llegar
a la solucién que ha permitido un comportamiento correcto del sistema.

Se incluyen ademads otros cuatro anexos para completar algunos aspectos, como
la estructura de los ficheros desarrollados en el Apéndice A, la forma de instalarlos
y realizar las pruebas en el Apéndice B, unas pautas o recomendaciones por si se
desea modificar o extender los ficheros en el Apéndice E y un listado de algunos
de los fragmentos de codigo que pudieran ser mas interesantes para el lector, en el
Apéndice D.

Capitulo 2

Herramientas

Para la puesta en marcha de la simulacién planteada, se han empleado unas
semanas para aprender a utilizar varias herramientas. En concreto, el sistema ROS™
y los programas Gazebo y Movelt y cémo interactian entre ellos. A continuacién, se
dedica este capitulo a describir su funcionamiento y algunos conceptos de utilidad que

apareceran en multiples ocasiones en el resto de esta memoria.

2.1. Robot Operating System (ROS™)

El sistema operativo robotico, mas conocido por sus siglas en inglés ROS, es un
entorno de trabajo de cédigo abierto creado para el disefio y desarrollo de software
en el ambito de la robética [10]. Surgié a raiz de los esfuerzos de varias instituciones,
como del STanford Artificial Intelligence Robot (STAIR) de la Universidad de Stanford
o el programa Personal Robots (PR) del MIT [11] y actualmente estd principalemente
operada por Open Robotics [12] (antes conocida como Open Source Robotics Foundation
[13]). Desde entonces ha crecido hasta ser vastamente utilizado en el entorno de
investigacion en roboética, asi como utilizado por grandes empresas, como Bosch o
BMW [14] [15].

En su nivel més inferior, ROS estd basado en una interfaz de paso de mensajes
(MPI), es decir, posee nodos que ejecutan ciertas funciones o actividades e
intercambian informacion entre ellos por medio de mensajes, permitiendo asi el trabajo
de manera distribuida [16]. De esta manera, ROS resulta muy adecuado para proyectos
con entornos multi-robot, puesto que se pueden controlar o simular varios robots de
forma separada e independiente. Ademé&s, ABB ofrece paquetes para el control de
muchos de sus robots industriales, incluido el IRB 120 [17]. Se utilizara la distribucion
Melodic, compatible con la version de Ubuntu a utilizar, que en este caso es Ubuntu

18.04 [18]. A continuacién se explica en detalle como ocurren dichos intercambios.

5

2.1.1. Intercambio de informaciéon en ROS

En ROS, cada nodo es un proceso que realiza cierta computacién. Ademas, siempre
existe un proceso denominado master, que aloja la informacién imprescindible para
que los nodos sean capaces de establecer conexiones entre ellos y también otros
parametros de ejecucion. Un nodo se conecta con el master para obtener la manera con
la que se podra conectar a otro nodo (en gran parte de las ocasiones, las conexiones se
realizan por el protocolo TCP/IP), asi, el master actiia como un servidor DNS [19].

Los paquetes de informacién o mensajes siempre tienen un formato determinado a
priori y se distribuyen por un “tema” o topic. Un topic es un bus de datos por el que se
puede pasar un tipo de mensajes. Asi, un nodo puede “subscribirse” a un topic si desea

recibir la informacién que es enviada a través de este, o puede “publicar” mensajes en

dicho topic [20].
00
00
00

Invocacion a un Servicio
o

> Topic
Publicacién Subscripcion

N

Lectura o
escritura
de parametros

>

y

Figura 2.1: Esquema del tratamiento de informacién en ROS. Logo ROS: [21]. Esquema
basado en: [19]

Sin embargo, este método no permite realizar intercambios de tipo
“peticion /respuesta” de forma inmediata, puesto que se trata de un sistema de
intercambio many-to-many (es decir, la conexién se realiza entre multiples nodos por
lo que no existe un destinatario determinado) y es de un solo sentido. Por ello, cada
nodo puede también anunciar sus propios servicios. Un servicio es un método de
llamadas a procedimientos remotos (RPC) definida por un par de tipos de mensajes,
uno para la peticién y otro para la respuesta. Esto es, un nodo anuncia un servicio
(bajo un nombre determinado) con un requerimiento sobre el tipo de mensaje que se

debe mandar al establecer la comunicacién. Al recibir la peticién, el nodo realizara

6

cierta computacion con los datos de la misma, y enviard otro mensaje del tipo
especificado con el resultado [19].

Finalmente, cabe destacar la presencia de un servidor de parametros en el
master. Se trata de un conjunto de variables nombradas que pueden ser creadas,
modificadas o leidas por cualquier nodo que se conecte al master. Asi es posible la
persistencia de datos para un intercambio asincrono de informacién [22]. Se ha incluido

un esquema del comportamiento descrito anteriormente, en la Figura 2.1.

2.2. Gazebo

Gazebo es un simulador de la dindmica de objetos y robots en tres dimensiones,
que ofrece la habilidad de simular multiples robots en diferentes entornos, ademas de
simulacion de fisicas, utilizacién de sensores (como camaras o laseres [23]) e interfaces
de usuario y programatica [24]. Podemos observar la interfaz gréfica en la Figura 2.2.

En ¢él, existen modelos que estan formados por enlaces o links que representan
las caracteristicas visuales y fisicas de distintas partes del objeto, asi como por
articulaciones o joints que son las que unen los enlaces del objeto y permiten el
movimiento de los mismos.

Se encuentra integrado en el sistema ROS gracias a la existencia de los paquetes
gazebo__ros pkgs, que aportan las interfaces necesarias para conseguir la simulacion
de un robot en Gazebo mediante mensajes y servicios de ROS [25]. Ademdas, ABB
proporciona paquetes ROS para la simulacién de los robots IRB 120 en Gazebo [26].

Se utilizara la versién Gazebo 9.0.0, recomendada con ROS Melodic [27].

Gazebo
File Edit Cames Help

MSHEY | insert | Laver X $OMN -~ - OB [#%Z(mEROIE

Gul

Scene
Spherical Coordinates
Physics
Atmosphere
Win

» Models

» Lights

Property Value
name |ground plane

Il) steps: 1+ Real Time Factor: Sim Time: Real Time: Iterations:

Figura 2.2: Captura del entorno de simulacién Gazebo con un robot ABB IRB120

2.3. Movelt Motion Planning Framework

Movelt es una plataforma de codigo abierto destinada a la manipulacion de
robots con ROS [28]. Contiene las funcionalidades del célculo de cinemaéticas inversas,
planificacién de movimientos y evitacién de obstaculos [29].

Movelt ofrece tanto interfaces para poder ser utilizada de forma programatica,
mediante las interfaces ofrecidas para C++ y Python [30], como mediante la interfaz
de usuario RViz, un visualizador 3D con diferentes métodos para manipular robots y
otros objetos [29].

Resulta de principal interés el calculo de las cinematicas inversas y la planificacion
de movimientos para este proyecto, ya que de esta manera, podremos hacer uso tanto de
la interfaz de programacion en C++ para conseguir el movimiento de los robots, como
de la interfaz de usuario RViz para la depuracién manual de la configuracién. Ademas,
ABB ofrece paquetes de ROS preparados para la utilizacion de Movelt y RViz para la
manipulacién de sus robots industriales, entre ellos el IRB 120 [31]. En la Figura 2.3
podemos observar un robot realizando un movimiento en la interfaz RViz.

Se utilizara la versiéon de Movelt para ROS Melodic [32], junto con el lenguaje de

programacion C++, en su version 11.

Eile Panels Help
) Interact " Move Camera I select * = @
O pisplays]
» @ Global Options.
» v Global status: Ok
» @ Grid v
~ 3 MotionPlanning vl
» v Status: Ok
Robot Description robot_description
Planning Scene Topic move_group/monitor....
» Scene Robot
» Planned Path

Add
 MotionPlanning [x]
Context | Planning | Manipulation | Scene Objects Stored Scenes | Stored states - »
Ccommands Query Options
Plan Planning Group: Planning Time (s): 5,0 E
Execute manipulator - | Pplanning Attempts: |10
Plan & Execute Start State: Velocity Scaling: 1,00
<current> ~| Accel scaling: 1,00 P

" Goal state:
Time: 0.088 Use Cartesian Path

¥ Collision-aware Ik
Approx IK Solutions
External Comm.
Replanning

None S Sensor Positioning

<current>

Path Constraints

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options. 31 fps

Figura 2.3: Captura del entorno de manipulacion RViz. Se muestra un robot ABB
IRB120 ejecutando una trayectoria (de la posicion de la derecha hasta la de la izquierda,
pasando por la del centro.

Capitulo 3

Configuracion del entorno
multi-robot

ROS es compatible con robots de diversos tipos, como robots aéreos, componentes
electronicos, robots terrestres, manipuladores industriales e incluso robots maritimos
[33]. Entre sus manipuladores se encuentran los de varias empresas, como Fanuc,
Universal Robots, Kuka y ABB [34]. Para desarrollar este Trabajo, se plantea una
simulaciéon con al menos dos robots que sea compatible con los robots IRB 120 de
la empresa ABB, que tienen 6 grados de libertad, son ligeros, compactos y pueden
realizar movimientos precisos a gran velocidad, por lo que podrian resultar adecuados
para manipular objetos deformables que son méas impredecibles que los rigidos [3] [9]. En

la Figura 3.1 se pueden observar tres ejemplares en distintas configuraciones posibles.

® Yw
= {
] \‘ -
- .
) r # ;} -
r ¢ "
- | % ,_P"
» -)
. L
° <l
e —

Figura 3.1: Tres robots IRB 120 en distintas configuraciones. Origen: [35].

Tanto ABB como el resto de empresas ofrecen paquetes para el control de sus
robots en ROS, pero son en gran parte para controlar exclusivamente un robot por
simulacién. Resulta bastante sencillo utilizar varios robots de diferentes modelos sin
cambiar los ficheros. Sin embargo, existe una serie de problemas en los ficheros que no

permiten introducir varios robots del mismo modelo en una tnica simulaciéon, por lo

9

que es necesario realizar varios cambios en los mismos.

Finalmente, ROS ofrece un tutorial para la utilizaciéon de su interfaz, asi como de
RViz para entornos multi-robot [36]. El método de afrontar el problema de varios robots
en dicho tutorial supone la creaciéon de un nuevo robot que a su vez contenga ambos
robots y asegurandose de que todas las articulaciones tienen nombres tnicos. Esto
supondria que si se quisiese anadir un nuevo robot, seria preciso repetir este proceso
y por tanto no seria una solucién muy flexible ni escalable. Por ello, se plantea una
solucion en la que los robots se encuentren diferenciados en el espacio de nombres de
ROS, que puedan ser controlados individualmente por diferentes instancias de Movelt
y RViz, pero que se encuentren en el mismo entorno de Gazebo. A continuacion se
describe la problematica con los archivos originales, y algunas de las modificaciones

necesarias para el correcto funcionamiento de este entorno.

3.1. Paquetes de ROS para ABB IRB 120

Como se ha mencionado en el capitulo anterior, ABB proporciona los paquetes
necesarios para el control y la simulaciéon con Gazebo y Movelt en ROS para multiples

de sus robots, incluyendo el ABB IRB 120.

Los nombres de estos paquetes son:
— abb__irb_120_support: para el control del robot por medio de ROS [17].
— abb_irb_ 120 _gazebo: para la simulacion del robot en Gazebo [26].

— abb_irb_120_mowveit_config: para la manipulacién del estado del robot por
medio de Movelt y RViz [31].

En ellos, existen archivos de diferentes tipos:

— Archivos launch: Archivos en el formato XML que son utilizados para el
lanzamiento de multiples nodos y para cargar parametros en el servidor de ROS,
necesarios para la simulacién o control de robot real [37]. Se ejecutan por el

comando “roslaunch” [38].

— Archivos yaml: Archivos que poseen diferentes datos, como las articulaciones del
robot (véase [39]) y sus caracteristicas fisicas (véase [40]) o el algoritmo para

calcular cinematicas (véase [41]), entre otros.

— Archivos en formato srdf o urdf: Archivos que poseen la descripcion del aspecto,
caracteristicas fisicas y articulaciones del modelo para su representacion en la

simulacion. Hacen uso de los lenguajes universales de descripcion de robots URDF

10

[42] y SRDF [43], asi como lenguaje de macros XML “xacro”, que permite una

mayor parametrizacién de dichos lenguajes [44].

Si bien es cierto que algunos de estos archivos poseen indicios de una estructura para
la utilizacién de los mismos en un entorno con multiples robots (por ejemplo, el archivo
para la descripcién del robot y sus articulaciones irb120_3 58 _macro.zacro [45] ahade
un prefijo especificado por un parametro al nombre de todas las articulaciones y
enlaces), su uso sin modificaciones no es posible ya que la mayorfa de éstos no estén
adaptados a una situaciéon en la que hubiera recursos duplicados, tales como topics,
nodos, enlaces, articulaciones o el propio modelo del robot (dos recursos no pueden
compartir nombre en el mismo nivel de la jerarquia de nombres [46]). E incluso si
fuera posible, los controladores no sabrian qué robot o articulacion deberian controlar.
Ademas, Movelt y RViz estan disefiados para el control de un tinico robot, por lo que

esta tarea no es trivial.

3.1.1. Puesta en marcha de un robot en Gazebo y Movelt

El paquete gazebo ros ofrece varios nodos y servicios cuya funcionalidad es colocar

un modelo, ya sea un objeto cualquiera o un robot, en el entorno de simulaciéon de

Gazebo [47].

En el caso de los paquetes de ABB, se hace uso del nodo spawn__model al que se
le debe pasar un parametro del servidor denominado robot description que contenga
toda la informacién del robot [48]. También es necesario la inicializacién de un nodo
robot__state__publisher, que se encarga de calcular las cinematicas directas del robot
(haciendo uso de las posiciones de las articulaciones del robot) para poder ser usadas
por el entorno RViz entre otros [49]. Por tltimo, serd necesario cargar los controladores

para poder manipular el robot.

El primer controlador es un joint state_controller, que se encarga de leer la
posicién de todas las articulaciones y publicarla en un topic [50] [51]. El segundo es un
joint__trajectory__controller, que se utiliza para enviar trayectorias completas al robot
[51].

Para controlarlo con Movelt, lo mas importante es que exista un nodo del tipo
move__group, que nos proporcionara la habilidad de manipular el robot por medio de
RViz o de otros nodos [52]. En la Figura 3.2 se incluye un esquema muy sencillo del

funcionamiento para un robot.

11

robot_state_publisher “

spawn_model move_group

“0hot_descriph®™

joint_state_controller

Figura 3.2: Esquema béasico del funcionamiento coordinado de ROS, Gazebo y Movelt
para controlar el robot. Se observan los nodos “robot__state publisher” “spawn__model”,
“joint__state__controller” y “move__group”. Se incluyen también los topics “joint__states”
y “joint_path__command”. Aparece el servidor de parametros, haciendo énfasis en
robot__description y por el otro lado, Gazebo y Movelt junto a RViz. Logo ROS: [21]
Logo Gazebo: [53] Logo Movelt: [54] Logo RViz: [55]

3.2. Paquete multiple__abb_irb120

Para realizar todas las modificaciones necesarias para el correcto funcionamiento
del entorno multi-robot, se ha creado un paquete llamado multiple _abb_irb120. Este
paquete contiene tnicamente los archivos que han sufrido algin cambio respecto a los
originales, de forma que se utilizan estos tltimos en la medida de lo posible. Para ver

la version final de los archivos que se incluyen en este paquete, véase el Apéndice A.

3.2.1. Puesta en marcha de dos robots en Gazebo

Si intentamos lanzar los nodos para la simulaciéon de un tinico robot dos veces, nos
encontraremos con una serie de conflictos de nombres, por lo que es necesario encontrar
una solucién para que o bien los nombres se encuentren separados en diferentes espacios
de nombres, o bien que todos posean nombres tnicos.

En primer lugar se realizaron pruebas que duplicaban el c6digo para cada robot que
se deseaba tener en la simulacion. Esta tarea no resulté ser trivial, puesto que surgio
una gran cantidad de problemas, que se detallan en la Subseccién C.1.1. Ademas, una

de las desventajas de esta soluciéon seria que duplica gran parte del cédigo, y si en algin

12

momento se quisieran anadir mas robots, requeriria hacerlo manualmente.

Por ello, se cre6 una organizaciéon de los archivos que permitiera una creacion
recursiva de los robots en Gazebo. Asi se disené el fichero recursive spawn.launch
(véase Seccién D.4), que invoca al fichero spawn__irb120.launch (véase Secciéon D.5) con
los pardametros del nombre del robot y su posicién en el mundo y también se invoca
a sl mismo, hasta que el parametro del niimero de robots que se debieran invocar sea
0 (véase Apéndice A para la organizacion final de los archivos desarrollados). Por su
lado, el fichero spawn_irb_ 120.launch (véase Seccion D.5) es el resultado de varios
intentos de introducir todos los nodos, parametros y servicios necesarios para un robot
en un namespace propio, para que asi aparecieran en Gazebo (por ejemplo, haciendo
uso del parametro “ns” al crear un nodo y cambiando directamente el nombre de
ciertos pardametros, como el robot_description). Se puede observar el resultado en la

Figura 3.3.

Il > steps: 1. RealTime Factor: sim Time: Real Time: Iterations:

Figura 3.3: Captura del entorno de simulacion Gazebo con dos robots ABB IRB120
después de la ejecuciéon de los ficheros launch creados.

De esta manera, la versién final posee un fichero setup_gazebo.launch (véase
Seccion D.7) que se encarga de cargar el mundo de la simulacién y que posee un
parametro que indica el naimero de robots a colocar en el mundo. Los robots aparecen
en la posicion p = (0,7 — 1,0), con i € N e ¢ > 0 el nimero del robot, de forma que
el primer robot aparece en el origen del sistema de coordenadas y el resto se colocan
separados por un metro a lo largo del eje Y. La Figura 3.3 ilustra este comportamiento
para dos robots.

Finalmente, se desarroll6 un fichero de bash con un parametro que se introduce
por la linea de comandos, que se encarga de crear un fichero launch temporal que al

lanzarlo inicialice Gazebo con el nimero de robots indicado por el parametro y deje

13

todos los nodos en los espacios de nombres necesarios para que Movelt y RViz puedan
ejecutarse con normalidad (véase Seccién D.6). Los robots se inicializaran con el nombre
de robot;, siendo ¢ un nimero natural desde 1 hasta el nimero total de robots. Asi, en
una simulacién con 2 robots, sus nombres seran robot! y robot2. La decisién de por qué
se desarroll6 un archivo de tipo bash se explican en la Subseccion C.1.1.

Estos archivos sufrirdn cambios también para poder lanzar Movelt con ambos
robots. Se recuerda al lector, que puede consultar la estructura de los ficheros en el
Apéndice A.

3.2.2. Puesta en marcha de Movelt para ambos robots

De la misma forma que en el paso anterior, todos los nodos, servicios y parametros
utilizados por Movelt deben introducirse en un espacio de nombres o namespace para
que Gazebo y Movelt se comuniquen entre si.

Se hizo uso de los comandos rosparam list, rostopic list y rosnode list para
observar las discordancias entre Gazebo y Movelt. Asi, tras varios intentos (véase
Subseccién C.1.2) y haciendo uso de namespaces o modificando el nombre de algunos
nodos, parametros o topics, se hicieron coincidir los nombres entre los dos sistemas
para conseguir una comunicacién correcta entre ellos y también con RViz.

Asi, se dispone de un fichero moveit planning execution gazebo.launch (véase
Seccion D.8) que se encarga de lanzar todos los nodos y pardmetros necesarios para
la puesta en marcha de Movelt para el robot indicado por su parametro robot_name.
Ademas inicializa RViz con dicho robot incluido para poder manipularlo manualmente.
De este modo deberemos ejecutar este fichero tantas veces como robots tengamos en

la simulacion, indicandole manualmente el nombre del robot.

3.2.3. Conexion a los robots desde C++4

Para poder mandar comandos a los robots desde C++ se utilizé la interfaz
MoveGroupInterface de Movelt. Para su puesta en marcha, se siguié uno de sus
tutoriales que explica en detalle las funcionalidades de dicha interfaz (véase [56]).

En primer lugar, es necesario instanciar la clase, indicandole el nombre del grupo
que forma el robot que queremos controlar [57]. Este estd definido en el fichero SRDF
utilizado por el paquete de la configuracién de Movelt de ABB [58], y es referido en
multiples ocasiones por otros ficheros. Para que dichos grupos tuvieran nombres tinicos,
se realizaron cambios en todos ellos, haciendo uso de parametros para transmitir el
nombre del robot de fichero a fichero. Ademas, fue preciso reescribir el fichero srdf en

un fichero de tipo zacro para poder aniadirle el parametro necesario (véase Secciéon D.9).

14

De esta forma, la interfaz en C++ puede distinguir qué robot se desea controlar. Todo

esto se realiza en una clase creada para este propédsito, denominada RobotInterface.
De esta manera, se desarroll6 un programa llamado robots moving demo, que se

detalla en el Capitulo 7. El sistema de comunicacion global y de simulacion se encuentra

detallado en el esquema de la Figura 3.4.

Figura 3.4: Esquema del funcionamiento de este trabajo.

Muestra las conexiones por medio de ROS y sus topics (representado con un sobre)
entre el nodo de ROS, Gazebo y Movelt. Aparece también un plugin de Gazebo
(véase Capitulo 5). Gazebo se encarga de la simulacion del mundo, objeto deformable
y los robots. El nodo se encarga de programar las tareas a realizar. Movelt se encarga
de planificar rutas. ROS tiene el modo de comunicacién por servicios (en el esquema,
el bocadillo con los tres puntos), los topics (sobre) y pardmetros (las barras
deslizadoras). Los caminos por topics o por conexién directa estdn en morado,
mientras que los caminos por pardmetros estan en rojo carmesi. Logo ROS: [21] Logo
Gazebo: [53] Logo Movelt: [54] Logo C++: [59] Vectores obtenidos de Microsoft
Office Powerpoint.

15

16

Capitulo 4

Creacion del objeto deformable

El modelo del objeto deformable sera simulado por medio de una malla de puntos
(véase Seccién 5.1) en los que los puntos tendran forma de esferas pequenas, para
lo cual, se pueden utilizar modelos independientes (un modelo por esfera) o bien un
modelo que tenga tantos enlaces como esferas sean necesarias. Gazebo posee varios
métodos para crear un nuevo modelo e incluirlo en la simulaciéon. Aunque la solucién
mas sencilla pudiera ser utilizar los ficheros launch para que el mundo de la simulacién
se inicialice con el modelo ya incluido, el formato no es muy flexible y no permite
crear modelos que pudieran tener un ntimero variable de enlaces, si se quiere probar el
segundo tipo de modelos. A continuacién se describen los métodos con los que se ha

trabajado.

4.1. Creacién por medio de servicios ROS

El primer enfoque que se probd fue el uso de los servicios en ROS que el simulador
Gazebo expone. En particular, el servicio /gazebo/spawn__sdf model [47].

En la Seccion 3.1 se mencionan los formatos URDF y SRDF. Ambos se utilizan en
la descripcién de modelos de robots [42] [43]. Sin embargo, existe ademas un formato
denominado SDF, el cual es mas genérico que los otros dos, puesto que se puede utilizar
para describir tanto objetos simples, como robots complejos [60]. De esta manera, es
posible definir una esfera de pequenas dimensiones en este formato. Se cre6 un nodo
inicial en C+4 que hacia uso de los métodos de la API de ROS para llamar al servicio
mencionado anteriormente, que lee el fichero y lo coloca en la simulacién [61]. Asi, se

pudo generar una cuadricula de un tamano predefinido en el codigo.

La principal desventaja de este método es que las esferas aparecian de una forma
excesivamente lenta (aproximadamente 26 segundos para un conjunto de 100 esferas).

Por ello fue descartada rapidamente.

17

4.2. Creacién por medio de un plugin de Gazebo

Gazebo es una herramienta muy potente, pues ofrece una serie de fisicas y
comportamientos preestablecidos, como gravedad, viento o deteccién de colisiones [62].
Pero ademéds permite un control mayor de la simulaciéon por medio de plugins [63].
Existen varios predefinidos [23] y también es posible la creacién de plugins propios [64].
Existen varios tipos de ellos para cumplir distintos objetivos [64], y son de principal

interés:

— WorldPlugin: se lanza al inicializar el mundo de la simulacién (véase la seccién
“Run the Code” en [65]) y puede cumplir varios objetivos, como control de fisicas,

generacién de modelos, su modificacién, entre otros [65].

— ModelPlugin: se lanza al inicializar un modelo, y es capaz de modificarlo,
cambiar sus propiedades fisicas, aplicar fuerzas, aceleracién o velocidad, entre

otros [66].

— VisualPlugin: se lanza al inicializar un objeto de tipo wvisual, el cual siempre
debe pertenecer a otro objeto, como un modelo. Se utiliza para personalizar el

aspecto de un modelo [64] [67].

A continuacion se detalla la solucién final que se tom6 para la creaciéon del modelo,

pero también se incluye en la Seccion C.2 otra de los enfoques que se le dio a esta tarea.

4.2.1. Creaciéon del modelo con un WorldPlugin

Los WorldPlugin nos ofrecen la posibilidad de modificar el mundo de la simulacién
al inicializarse [65]. También existen muchas funciones en la clase World del namespace
gazebo::physics, y en el namespace gazebo::msgs que sirven para completar esta tarea
[68] [69]. Asi, se cre6 un plugin para generar un nuevo modelo y anadir todas los enlaces
de la tela. Esto también causé algunos de los problemas descritos en la Seccién C.2
inicialmente, por lo que se usaron las funciones del namespace physics lo minimo posible
y se delegaron muchas de las tareas en el namespace sdf, que posee las funcionalidades
para definir un modelo SDF programaticamente [70]. Asi, podemos crear un modelo
con multiples enlaces con una forma esférica. Gracias a éste, se pudo completar el
objetivo: el plugin lee un fichero denominado grid.config (véase Seccién D.1) que posee
los parametros de la posicion inicial de la tela, su tamano, el nimero de esferas y otros
parametros necesarios para la simulacién de la misma y los carga en el servidor de

parametros y finalmente la tela aparece inmediatamente al inicializar Gazebo.

18

Método | Tiempo de ejecucién (s)
Servicios 25.9478
WorldPlugin 0.1988

Tabla 4.1: Comparaciéon entre el tiempo de ejecucion que los métodos de creacion del
modelo necesitan para generar una cuadricula de 10x10 esferas

Cabe destacar que se debe crear un enlace inicial (antes de cualquier esfera) para
que sea el enlace canodnico, que es el que define el sistema de referencia local del resto de
enlaces [47]. Se ha colocado en la posiciéon (0, 0, 0) para que coincida con la referencia
global.

Finalmente, se les ha anadido colores distintos a las esferas del objeto para que sean

mas distinguibles entre si. La version final se puede observar en la Figura 4.1.

Figura 4.1: Version final del objeto deformable, junto a los dos robots. Se trata de una
tela de 10x10 esferas, de 2x2 metros.

19

20

Capitulo 5

Simulaciéon del objeto deformable

La simulacion del objeto deformable y su creacion son tareas que fueron
desarrolladas en paralelo, por lo que todas las opciones exploradas en el capitulo
anterior (Capitulo 4) se han probado para la simulacién también. Para conseguir un
comportamiento realista de un objeto deformable (se implementard una tela elastica),
se pueden utilizar gran cantidad de modelos distintos, pero en nuestro caso, se va
a utilizar el modelo Mass-Spring-Damping o de “masa-muelle-amortiguador” y se
han analizado dos métodos distintos para implementarlo. Todo ello es descrito a

continuacion.

5.1. Modelo Mass-Spring-Damping

El modelo Mass-Spring-Damping (Masa-Muelle-Amortiguador) es un modelo para
representar las fuerzas a las que se encuentra sometido un objeto deformable [71]. El
principio béasico para representar el objeto es la presencia de unas masas puntuales a
lo largo de todo el objeto que se encuentran interconectadas por muelles que siguen
la ley de Hooke (aunque existen modelos que utilizan muelles de otros tipos para
conseguir simulaciones més realistas de otro tipo, como el tejido humano [71]) y con un
amortiguador [71] [72]. De esta manera, tenemos tres fuerzas distintas a las que puede

estar sometida cada una de las masas puntuales:

— Causadas por el muelle: Se oponen a los movimientos de compresion /

descompresion causados por otras fuerzas [73].

— De amortiguamiento: Sirven para representar la friccion a la que estaria sometido

el objeto deformable. Depende de la diferencia de las velocidades entre masas [74].

— Externas: Producidas por un agente externo que manipula el objeto o el viento,

u otras fuerzas como la gravedad [74].

21

Si juntamos los tres términos, obtenemos la siguiente ecuacion:

Fo = Feant Y (froa i) (5.1)

beV,

Donde]TM: es la suma de todas las fuerzas externas aplicadas a la masa a, V, es
el conjunto de todos las masas vecinas a la masa a, E es la fuerza producida por
la deformacion del muelle situado entre la masa a y la masa b, y m es la fuerza
producida por el amortiguamiento entre las masas a y b. Asi:

—

—
-— Tp — &
Froa = (17 = &2l = 170 — Zdl) - p=—=7 (5.2)
a

Donde k,; es la constante de elasticidad del muelle entre las masas a y b, Ef y :z:_>m son
las posiciones actual e inicial de una masa . Esto significa que se producen fuerzas que
dependen de las distancias inicial y final entre las masas, y se alejaran en caso de una
compresién y acercaran en caso de elongacion [75].

Ademas:

—
db—m - Dab : (’U—g - U—a>) (53)

Donde D, es la constante de amortiguamiento entre las masas a y b, y o7 es la velocidad
actual de una masa 7. Asi, se produce una fuerza que suaviza la deformacién, al oponerse
a los cambios de velocidad entre masas, pero no evita el movimiento global del objeto
deformable [73] [74].

Este modelo resulta interesante, pues es de facil implementacion debido a su
simpleza, pero causa un comportamiento lo suficientemente realista para experimentar

con un objeto deformable. Su comportamiento se ilustra en la Figura 5.1.

Figura 5.1: Representacion de un objeto tridimensional deformable con el modelo
Mass-Spring-Damping. Se muestran masas puntuales conectadas por un enlace
muelle-amortiguador a 6 vecinos como maximo: dos en vertical, dos en horizontal y
dos en profundidad. Origen: [71].

22

Mientras que la Figura 5.1 ilustra un comportamiento de un objeto tridimensional
con 6 vecinos: Arriba, abajo, a la izquierda, a la derecha, adelante y atras. En nuestro
caso, implementaremos un objeto bidimensional que tendra 8 vecinos: Arriba, Abajo, a
la izquierda, a la derecha, arriba a la izquierda, abajo a la izquierda, abajo a la derecha

y arriba a la derecha, como muestra la Figura 5.2

O OO

Figura 5.2: Representaciéon de un objeto bidimensional deformable con el modelo
Mass-Spring-Damping. Se muestran masas puntuales conectadas por un enlace
muelle-amortiguador a 8 vecinos como maximo: dos en vertical, dos en horizontal y
cuatro en diagonal.

5.2. Estudio de implementaciéon en Matlab

La implementacién del modelo ha estado muy influenciada por dos proyectos en el
entorno Matlab, desarrollados para la simulacién de objetos deformables de tipo tela
en una simulacién en 2D y 3D respectivamente [76] [77]. La Figura 5.3 demuestra el

comportamiento de una de estas implementaciones ([77]).

z[m]

Figura 5.3: Implementacion en Matlab del método Mass-Spring-Damping para un
objeto deformable de tipo tela, con las cuatro esquinas fijadas y con gravedad activada.

23

5.3. Simulacién por medio de servicios ROS

Como se ha descrito en la Seccién 4.1, Gazebo expone servicios muy utiles para
realizar modificaciones desde el exterior de la simulacion por medio de ROS. En este
caso, es destacable el servicio /gazebo/set _model_state, que permite cambiar el estado
en el que se encuentra un modelo de la simulacién [47]. Asi podemos enviar peticiones
que cambien la posiciéon en la que las esferas se encuentren. Nuevamente, la velocidad
de ejecucion fue muy pobre y no demostraba correctamente el comportamiento que

una tela debiera tener.

5.4. Simulacién por plugins de Gazebo

Si bien el ModelPlugin resulté una prueba fallida para generar el modelo (véase
Seccién C.2), sigue siendo una opciéon muy adecuada para indicar a la simulacién el
estado de las esferas. De esta manera, el WorldPlugin descrito en la Seccién 4.2 le indica
al modelo (en el formato SDF) que debe ejecutar un plugin al inicializarse. Por esto,
el ModelPlugin puede acceder facilmente a los enlaces y modificar sus propiedades con
las funciones de la clase Model del namespace gazebo::physics.

El primer paso es obtener punteros a todos los enlaces. Para ello, se invoca a
la funcion GetLink [78] con el nombre del enlace, que se les ha dado mediante el
WorldPlugin de la Subseccién 4.2.1. Estos enlaces se almacenan en una clase Grid
que posee una matriz de objetos de tipo GridVertex, los cuales albergan el puntero al
objeto de tipo gazebo::physics::Link (un enlace [79]) y ofrecen métodos para enviar a
la simulacion el resultado calculado por el modelo de objeto deformable.

Por otro lado, la clase MassSpringDamping es la encargada de implementar

el modelo descrito en la Seccién 5.1. Los parametros de rigidez k;;, masa m y

ijs
amortiguamiento D;; (descritos en la Ecuaciéon 5.1) se anaden al fichero grid.config
(véase Seccion D.1), asi como un parametro adicional que indica si se desea que
el objeto se vea afectado por la gravedad o no. Para poder acceder a los datos de
posicion, velocidad y fuerza, asi como modificarlos, esta clase recibe un puntero al
objeto Grid. Surge aqui una decisiéon que se debe tomar: ;deberia el modelo modificar
directamente la posicién de cada esfera? jo deberia indicarle a Gazebo la fuerza a la
que esta sometida?

En este caso se ha seguido un enfoque hacia la segunda opcion, calcular las fuerzas
y dejar que Gazebo simule las fisicas segin dichas fuerzas. La principal razén es que

el calculo de la velocidad y posicién precisan de la mediciéon del tiempo transcurrido

entre un instante de tiempo y el siguiente manualmente, lo cual puede introducir

24

ciertas imprecisiones. De esta manera, cada GridVertexr posee un campo force cache
que almacena la fuerza calculada por el objeto MassSpringDamping, y posteriormente,

se actualizan todos las esferas a la vez, enviando este valor a la simulacién en Gazebo.

25

26

Capitulo 6

Interaccion Robot - Objeto
deformable

Para conseguir una simulacion realista, es necesario que los robots conozcan la
posicion del objeto deformable para poder aproximarse y “agarrarlo”. Pero ademas, en
ese caso, el objeto deformable también debera saber la posicién del robot, para seguir
sus movimientos si dicho robot ha agarrado el objeto. ROS nos ofrece una buena forma
de lidiar con la comunicacion entre los nodos que conforman el control de los robots y

la simulacion del objeto deformable.

6.1. Obtencion de la posicién del objeto deformable

Como se ha mencionado en capitulos anteriores, Gazebo ofrece una serie de topics
y servicios que cumplen diversos objetivos. Para que el robot sea capaz de conocer la

posicion a la que deberd acercarse para agarrar el objeto deformable, existen:
— Topics ([47] - Gazebo Published Topics):

o /gazebo/model__states: Publica los estados de todos los modelos de la
simulacién.

o /gazebo/link_states: Publica los estados de todos los enlaces de la
simulacion.

— Servicios ([47] - Services: State and property setters):

» /gazebo/get _model _state: Devuelve el estado de un modelo.
o /gazebo/get link state: Devuelve el estado de un enlace.

o /gazebo/model__states: Devuelve el estado de todos los modelos de la

simulacién.

27

o /gazebo/link_states: Devuelve el estado de todos los enlaces de la

simulacion.

Debido a los resultados obtenidos con el uso de servicios en el desarrollo de capitulos
anteriores (véanse la Seccion 4.1 y la Seccién 5.3), no se han realizado pruebas con el uso
de los servicios, y se ha hecho uso exclusivo de los topics para este propésito. Asi, los dos
topics ofrecidos por Gazebo nos ofrecen una manera rapida de obtener la posicion de
los objetos en la simulacién. Si inspeccionamos los mensajes que se intercambian por el
primero de ellos, podemos observar que la informacién es demasiado genérica y no nos
aporta ninguna manera de conocer la posicion de las esferas, pues solo incluye la pose
del conjunto del modelo [80]. Por ello, se ha utilizado el topic “/gazebo/link_states”.

El nodo que controla el movimiento que deberian hacer los robots se subscribe al
topic y obtiene las poses de todos los enlaces cuyo nombre comience por “grid::link ",
pues es la combinacién del nombre del modelo y del enlace ([47] - Services: State and
property setters). Al llegar un mensaje, las posiciones se guardan en una matriz dentro
de una clase llamada GridState de forma que los robots puedan saber en todo momento
cual fue la ultima posicion que se ha recibido de cada esfera. La posicién en la matriz
depende del nimero incluido en el nombre del enlace.

Finalmente, se utiliza la posicion de una de las esferas como posicién objetivo
en las funciones de la interfaz de Movelt. Esto sin embargo produce una situacion
indeseable, que es que el robot golpee en su trayectoria a una de las esferas y mueva el
conjunto antes de agarrarlo, ademas de que Movelt movera el robot hasta que el centro
del extremo del robot esté exactamente en el centro de la esfera (véase Figura 6.1),

provocando el mismo efecto. La solucion a estos problemas se detalla en la Seccion 6.2.

Figura 6.1: Posicionamiento de las esferas dentro del extremo del robot. Los robots han
“agarrado” las esferas roja y verde y la mitad de las mismas se encuentra en el interior
del robot.

28

6.2. Planificacién de trayectorias con evitacion de
colisiones

Para que Movelt realice una trayectoria hasta una esfera sin golpear a las demaés, se
plantean dos posibilidades. Una primera que seria mas sencilla se trataria de realizar
una ruta manual que pasase por puntos que de antemano se conozca que sea segura

para el movimiento del robot.

Otra soluciéon mas genérica y que ha sido la que se ha decidido implementar, es
hacer saber a Movelt, gracias a las funciones de la interfaz PlanningScenelnterface,
[81]) que existen obstdculos en el camino que debe realizar. Para esto, se deben crear
mensajes del tipo CollisionObject, los cuales almacenan la forma del objeto (ya sean
modelos, planos o primitivas como esferas o cubos) o su posicién en el mundo, entre
otros. También posee flags que indican la operacién que se pretende hacer con dicho
objeto: anadirlo a la escena, eliminarlo, moverlo o encadenarlo a otro objeto de la escena
[56] [82].

Los archivos descritos en el Capitulo 5 crean, gracias al prefijo tf prefir una
“escena’” para cada robot, de forma que se puede instanciar una PlanningScenelnterface
para cada uno de ellos, y asi indicarle situaciones distintas a cada robot, como
se puede observar en la Figura 6.2. Asi, se ha modificado la clase GridState para
que su constructor se encargue de anadir las esferas a las escenas indicadas en la
posicion relativa al robot. Posteriormente, se crea un proceso asincrono que mueve
periédicamente dichos obstaculos a la posicién determinada por la matriz de posiciones,
que se actualiza segtin el procedimiento descrito en la Secciéon 6.1. En caso de que un
robot se encuentre agarrando el objeto deformable, estas esferas son eliminadas de la
escena para dejarle al robot total libertad de movimiento para poder manipular el

objeto de la manera que necesite.

Por otro lado, para que el extremo del robot no choque con la esfera a agarrar, se
ha aniadido un enlace (sin ningun tipo de geometria) al robot que simula la presencia
de una herramienta, a una distancia determinada del extremo del robot. Ademas, se
anade una articulacion que une este enlace con el denominado “tool0”, utilizado por los
paquetes de ROS para estandarizar el final de sus robots con ROS Industrial [83]. Asi,
Movelt planeara la ruta para quedarse a la distancia a la que se encuentra dicho enlace.
Esto no podra ser utilizado por Gazebo ni los plugins, al ser un enlace sin componentes
inerciales [84] y una articulacién fija (pues las articulaciones fijas se conectan para

reducir tiempos de compilacion [85]).

29

Figura 6.2: Presencia de obsticulos en Movelt (en la interfaz RViz) para planeado de
rutas seguro. A la izquierda se encuentra la ventana del robot1, y a la derecha el robot2.
Las esferas estan en las posiciones relativas a los robots y tienen un tamano superior
al de las esferas en Gazebo para evitar colisiones.

6.3. Peticiéon de agarre

El primer paso para que una esfera sea “agarrada” es que la simulacién del objeto
sepa que se ha producido el agarre y evite calcular las fuerzas para dicha esfera.
Entonces, debemos establecer un método para comunicar desde el nodo de los robots
al plugin que simula el objeto. En este caso, se ha creado un topic bajo el nombre
“ /grid/grab__petitions” con un tipo de mensaje personalizado “ GrabPetition”, que esta
compuesto por dos enteros ¢ y j que representan la posiciéon en la cuadricula de la
esfera que se quiere agarrar, un booleano grab, una cadena de caracteres link_name y
otra robot_name (véase Seccién D.3). En el momento en el que el plugin del modelo
lee un mensaje en el topic anterior, la esfera indicada se marca como “agarrada” o
“soltada” segin el parametro grab. Ademas, en caso de que la peticién sea de agarre, el
plugin obtendra la pose del enlace con el nombre link__name del robot robot__name. En
caso contrario, el comportamiento vendra definido por el modelo Mass-Spring-Damping
de nuevo. Al no hacer uso de una herramienta de manipulacién (y no poder usar el
procedimiento descrito en la Seccién 6.2) para la simulacién, el enlace que se utilizara

seré el dltimo del robot, en este caso, “link_ 67 [86].

6.4. Obtencion de la posicién de los robots

Una vez una esfera es “agarrada” por uno de los robots, su comportamiento esperado
seria que se moviera a la vez que el robot. Para poder conseguirlo, las esferas también
deben conocer el estado de los robots. Para esto, se obtiene un puntero al mundo de

la simulacién desde el modelo asociado al plugin, y con este puntero, se obtienen los

30

punteros al modelo del robot y del enlace indicados por la peticién (descrito en la
Seccion 6.3). De esta manera, sabemos la posicién en la que se encuentra el extremo
del robot (siempre y cuando este enlace exista) y se podra colocar la esfera en una
posicion ligeramente separada del mismo por medio de la composicion de la pose de la
esfera y la del robot, La Figura 6.3 muestra el mismo caso de estudio que la Figura 6.1.
Previamente, el extremo de los robots se colocaba en una posiciéon directamente en
contacto con la esfera, y una vez “agarrada”, ésta se colocaba en el interior del extremo.
Ahora, los robots se mueven hasta una posiciéon cercana y las esferas mantienen esa

distancia de forma satisfactoria.

Figura 6.3: Posicion final de la esfera tras haber sido “agarrada” por un robot.
En la imagen, el robot mas proximo ha cogido la esfera roja, y el mas lejano ha
cogido la verde.

31

32

Capitulo 7

Experimentos realizados y
resultados

Para comprobar el correcto funcionamiento del sistema disenado, se han
desarrollado varios programas y se han utilizado varios métodos de prueba. En este
capitulo se explicard en qué consisten estos experimentos y se analizaran los resultados

obtenidos. Para ver como se deben ejecutar, véase el Apéndice B.

7.1. Creacion de robots en la simulaciéon

El primer hito clave de este Trabajo se basaba en la puesta en marcha de un entorno
con varios robots (no necesariamente 2). Se han realizado experimentos para probar
que los nombres de nodos, parametros y topics no coincidian entre si al anadir méas de
un robot, por lo que los ficheros launch deberan funcionar para cualquier nimero de

robots indicado.

Figura 7.1: Simulaciéon de objeto deformable con 10 robots.

33

Resultados

Se puede colocar un ntimero arbitrario de robots en la simulacién gracias a los
ficheros launch y la terminal no debera mostrar errores de conflictos de nombres (s6lo
mostrara errores y avisos procedentes de la forma de ABB para definir los robots, puesto
que estos paquetes son para ROS Kinetic [17], por lo que pueden estar ciertamente

desactualizados). En la Figura 7.1 se observa un ejemplo con 10 robots.

7.2. Movimiento de los robots en entorno
multi-robot

Los robots creados en la secciéon anterior deben poder ser controlados
individualmente (Capitulo 3). La prueba més basica que se puede realizar es, una
vez abierta la simulacion, utilizar la interfaz grafica de RViz para indicar a uno de los
robots una pose objetivo (compuesta de una posiciéon y una orientacién) y hacer click
en los botones Plan y Fxecute y asi comprobar el estado de la conexién entre Movelt

y Gazebo (véase Figura 7.2).

File Panels Help
¢ interact | 67 Move Camera] Select ¢ = @

L3 pisplays [
» & Global Options E
» v Global Status: Ok
» @ Grid
~ 2 MotionPlanning v
» v Status: Ok
Move Group Namespace
Robot Description robot_description
Planning Scene Topic move group/monit... -

Add

<

+ MotionPlanning | *

Context Planning = Manipulation = Scene Objects = Stored Scenes Stored States = »

Commands Query Options
Plan Planning Group: Planning Time (s): 5,0 >
robot1_manipuli ~ Planning Attempts: | 10 =
Plan & Execute Start State: Velocity Scaling: 1,00 -
Stop <current> v Accel. Scaling: 1,00 -
Time: 0.086 Goal State:
<current> = Use Cartesian Path
v Collision-aware IK
Approx IK Solutions
External Comm.
Path Constraints Replanning
None 7 Sensor Positioning

Sim Time:

Figura 7.2: Resultado de una peticién de movimiento manual a través de RViz.
A la derecha se observa RViz con un robot que se ha controlado para pasar a otra
posicion. Después de pulsar los botones de Plan y Fxecute, el robot ha comenzado a
moverse también en Gazebo (a la izquierda).

Por otro lado también podremos ejecutar el programa robots moving demo, para
probar las conexiones con un nodo escrito en C++ gracias a la interfaz de Movelt.

Este toma control de dos robots y hace que vayan a la posicion de las cuatro esquinas

34

de un cuadrado (dejando a Movelt planear la ruta que considere 6ptima) y después
dibujen el cuadrado forzando a los robots a hacer movimientos cartesianos en linea
recta utilizando la funcion computeCartesianPath de Movelt, aunque no sea 6ptima
(es decir, que no sea la ruta mas rapida), y que pase por todos los puntos que se le
indique [56]).

Finalmente, también tenemos el programa robots waving demo, que es una version
un poco distinta del programa anterior, que mueve un niimero predeterminado de robots

(indicado por un argumento en la terminal) en un movimiento senoidal.

Resultados

Al realizar la primera prueba, el boton Plan debera provocar que el robot en RViz
muestre la trayectoria que realizard, y FEzecute hard que esta se ejecute en Gazebo
(véase Figura 7.2). Si se introduce una pose a la que el robot no puede llegar, RViz y
la terminal donde se estuviera ejecutando mostraran mensajes de error.

El programa robots moving demo deberda cumplir la especificacion anterior y

finalizar correctamente. El comportamiento esta ilustrado por la Figura 7.3.

1

A ——

2 ’_-"\"a'-:\ 4

3

Figura 7.3: Trayectorias realizadas por el programa robots_moving demo. La primera
trayectoria, en color amarillo, es realizada por el robotl y se mueve a las posiciones
1-4 con la punta del robot apuntando hacia el suelo por el camino 6ptimo. Después,
el mismo robot realizarda un cuadrado perfecto de las posiciones 5-8 marcadas en cian.
De la misma forma, el robot2 replicara posteriormente los mismos movimientos que el
robot1 en las trayectorias marcadas en rosa y verde. En la figura, el robot1 se encuentra
realizando la trayectoria cian.

35

Por su lado, el programa robots waving demo hace que los robots traten de
sincronizarse para formar una onda senoidal con sus extremos de manipulacion. Las
limitaciones de Movelt impiden un control de la velocidad en movimientos cartesianos
(es decir, movimientos en los que todos los puntos de paso estan definidos), por lo que
no siempre estaran sincronizados, pero hay distintos puntos de la trayectoria vertical
en los que los robots esperaran a que los deméas completen su movimiento. Se observan

unas capturas de esta simulacién en la Figura 7.4.

Figura 7.4: Trayectorias realizadas por el programa robots_waving demo. Los robots
se intentaran sincronizar para crear la forma de una onda senoidal.

7.3. Creaciéon y movimiento del objeto deformable

Para probar la creacion del objeto deformable, se puede utilizar el fichero
test_grid.launch, que coloca en la simulacién un objeto con las caracteristicas indicadas
por el fichero test grid.config. El primero tiene los extremos de la tela “anclados” por
lo que no se moveran y nos permitird observar como interactta el objeto en presencia
de gravedad. El segundo tiene la gravedad desactivada por defecto (siempre podemos
modificar el fichero grid.config) y colocard también los robots en el entorno.

En cualquiera de los dos podemos seleccionar una de las esferas y moverla a otra

posicién para comprobar como intenta volver a su posicion inicial.

Resultados

Deberemos obtener un objeto deformable en la simulacién de Gazebo dependiendo
de los parametros que se hubieran especificado.

En la Figura 7.5 y en la Figura 7.6, podemos observar una tela de 20x20 esferas que
tiene sus cuatro extremos (las esferas roja, verde, cian y morada) “anclados” de forma
que no se pueden mover. La gravedad ha provocado que el resto de esferas caigan hacia
abajo, y en su caso, reboten hacia arriba si han descendido demasiado, tal y como lo

haria una tela elastica real.

. .
Figura 7.5: Distintos fotogramas de la simulacién con text grid.launch.
El objeto mide 2x2 metros y 20x20 esferas, el centro se sittia inicialmente en (0,0,2.5).
Las esferas tienen una masa (m) de 0.08kg, y la tela tiene una rigidez (k;;) de

100N/m y un amortiguamiento (D;;) de 10Ns/m. A partir del fotograma 5, la tela
sube hacia arriba, pues se ha estirado mucho hacia abajo y esta rebotando.

Figura 7.6: Resultado de lanzar el fichero text grid.launch.
El objeto mide 2x2 metros y 20x20 esferas, el centro se sittia inicialmente en (0,0,2.5).
Las esferas tienen una masa (m) de 0.08kg, y la tela tiene una rigidez (k;;) de
100N/m y un amortiguamiento (D;;) de 10Ns/m.

37

Sin gravedad, al mover una de las esferas, observaremos que lentamente volvera a
su posicion inicial como se observa en la Figura 7.7. Sin embargo, si se realiza en el
eje normal al plano formado por el objeto deformable, las esferas se quedan en una
posicion distinta a la inicial por las caracteristicas del modelo. Esto ocurre porque el
modelo Mass Spring Damping esta basado en muelles rectos, por lo que los movimientos
en direcciones tangentes al plano siempre tendran muelles cuyas direcciones o suma de
direcciones coincidan con estas. Por otro lado, la direcciéon normal nunca tendra muelles
que tiren naturalmente en esa direcciéon, por lo que el objeto se acercara en los tres ejes.
La distancia llegara a ser igual a la inicial y quedara en reposo en un lugar distinto al

inicial, como se observa en la Figura 7.8.

Figura 7.7: Evolucién de la posicién de una esfera al ser desplazada en el eje Y (tangente
al plano de la cuadricula) y su efecto en el resto de esferas. Esta composicién de
iméagenes muestra las posiciones por las que pasa la esfera amarillenta al ser desplazada
en el eje Y. En la parte superior, se muestran las direcciones en las que se ha visto
desplazado el resto de esferas, desde la posicién de reposo inicial. La posicién final (7)
es igual a la inicial y las demés esferas no han visto su posicion final modificada.

Se han realizado pruebas de los programas de la Seccién 5.2 para comprobar que

los comportamientos coincidian.

38

Figura 7.8: Evolucion de la posicion de una esfera al ser desplazada en el eje normal
al plano de la cuadricula. Esta composicion de imagenes muestra las posiciones por
las que pasa la esfera blanquecina al ser desplazada en el eje Z. La posicién final (5)
no se corresponde con la inicial y ademas el resto de esferas también han resultado
desplazadas.

Cabe destacar que dependiendo de los parametros, el sistema puede llegar a ser
inestable al colisionar con algin robot o con el suelo si los pardmetros de la simulacién
no estan bien ajustados (por ejemplo, cuando las fuerzas de amortiguamiento son

superiores a las de rigidez).

7.4. Manipulacién del objeto por robots

Se dispone del programa de prueba grid_demo que, en presencia de una simulacion
con un objeto deformable y dos robots, hace que los robots se acerquen al objeto
deformable, lo cojan y realicen una serie de movimientos sincronos para moverlo.
También se ha desarrollado el programa grid wave demo, diseniado para usarse con
gravedad, puesto que los robots cogeran el objeto deformable y lo subiran hasta una
posicién mas elevada (adecuado cuando el objeto se encuentra en el suelo) y lo agitaran

un poco de izquierda a derecha hasta soltarlo.

Resultados

Los robots se moveran lentamente hasta el objeto, lo cogeran y, en primer lugar,

realizardn simultdneamente un movimiento en forma de cuadrado (ilustrado en la

39

Figura 7.9). Después, tirardn del objeto en direcciones opuestas (véase Figura 7.10),
y el robot2 lo soltard para observar la reacciéon del objeto, como se observa en la
Figura 7.11. Finalmente la misma figura muestra cémo el robot! también soltara el

objeto y el programa finalizara.

Figura 7.9: Fotogramas de una simulacion g¢rid_demo - Movimiento sincrono. Se
observan los dos robots preparados para coger las esferas. Una vez las cojan, realizaran
a la vez el cuadrado 1-4 y volveran al punto 1. Esta simulaciéon se ha realizado sin
gravedad.

Figura 7.10: Fotogramas de una simulacién grid demo - Estiramiento. Se muestran

cuatro fotogramas del comportamiento del objeto estirandose por la acciéon de dos
robots.

Figura 7.11: Fotogramas de una simulacién grid demo - Lanzamiento. Se observa una

secuencia de fotogramas en las que el objeto deformable, sin gravedad es “lanzado” por
los robots, al haberse estirado y después soltado por uno de sus extremos.

40

Se ha incluido un fichero adicional en el directorio worlds denominado
grid__table.world, que genera un mundo idéntico al original, pero que ademas
incluye una de las mesas predefinidas por Gazebo para poder realizar pruebas mas
comodamente con gravedad, sin que los robots deban coger el objeto en el suelo
(véase Apéndice B para su ejecucién). Se puede observar un ejemplo de simulacién

con gravedad y con mesa en la Figura 7.12.

Figura 7.12: Fotogramas de una simulaciéon grid_demo - Estiramiento con mesa. Se
muestran cuatro fotogramas del comportamiento del objeto estirandose sobre una mesa
por la accién de dos robots.

Por otro lado, el programa grid _wave_demo también manipula correctamente el
objeto y lo levanta del suelo (siempre y cuando no haya una mesa y exista gravedad),
sin embargo el movimiento de los robots resulta tan lento que no se llega a apreciar el
movimiento de “agitado” del objeto. La Figura 7.13 consta de una serie de fotogramas

del comportamiento anterior, que queda demostrado satisfactoriamente.

2 3

Figura 7.13: Fotogramas de la simulacién grid wave demo - Levantamiento de tela
grande. Se muestran seis fotogramas del comportamiento del objeto cuando dos robots
la levantan por sus extremos.

41

7.5. Simulacion Final

El programa small_cloth__manipulation (véase Seccién D.11) estd disenado para
trabajar con una tela elastica pequena, cuyos parametros estan definidos en el archivo
small__grid.config (véase Seccién D.2). Los robots deberan tomar la tela y realizar
manipulaciones similares a los de los apartados anteriores. Uno de los motivos que
llevé a la utilizacién de un objeto de dimensiones menores es para observar el objeto
una vez sea levantado por los robots y asi comprobar su comportamiento como si se

tratase de un objeto real.

Resultados

Los robots se acercaran lentamente hasta la tela y la agarraran por el extremo
que tengan mas cerca. Entonces, la levantaran y mantendran en el aire durante unos
instantes (véase Figura 7.14). Después agitaran el objeto varias veces de adelante hacia
atrds en el eje de coordenadas X (véase Figura 7.15). Al finalizar, tirardn de la tela
en direcciones opuestas del eje Y (véase Figura 7.16), y hardn una trayectoria hacia
abajo y adelante en el eje X para conseguir dejar la tela estirada en el suelo (véase

Figura 7.17). Finalmente, ambos robots volveran a la posicién inicial.

Figura 7.14: Fotogramas de la simulacién final - Agarre de la tela. Se muestran seis
fotogramas en los que los robots cogen una tela de 20x30 centimetros y 4x6 esferas.

Cabe destacar que en el momento en el que los robots agitan el objeto, los robots
realizan trayectorias completamente rectilineas, puesto que tienen alcance suficiente
como para chocar entre si, lo cual produciria una situaciéon de inestabilidad para los
robots, y que en el caso de robots reales podria causar una situacion extremadamente

peligrosa.

42

Figura 7.15: Composicién de fotogramas de la simulacion final - Zarandeo de la tela.
Se muestra el movimiento de zarandeo con los robots de una tela de 20x30 centimetros
y 4x6 esferas.

..

Figura 7.16: Fotogramas de la simulacion final - Estiramiento de la tela. Se muestran
ocho fotogramas en los que los robots estiran una tela de 20x30 centimetros y 4x6
esferas.

Figura 7.17: Fotogramas de la simulacién final - Recolocacién de la tela. Se muestran

ocho fotogramas en los que los robots colocan una tela de 20x30 centimetros y 4x6
esferas de nuevo en el suelo, la sueltan y vuelven a su posicion inicial.

43

44

Capitulo 8

Conclusiones y trabajo futuro

Para la realizacion de este proyecto, se han marcado como objetivos la simulacién
de un objeto deformable con la utilizacion de varios robots para su manipulacién, todo
de una forma generalizable para que pueda ser usada con cualquier robot sin necesidad
de rehacer todo el trabajo. En primer lugar se han aprendido las tecnologias ROS,
Gazebo y Movelt. Después, se han modificado los archivos del robot TRB120 en ROS
de ABB para que permitan incluir un numero personalizado de estos robots en una
simulacion en el programa Gazebo, y para que se puedan controlar individualmente
con Movelt y RViz, asi como con la interfaces de Movelt en C++, todo esto por
medio de ROS. También se ha incluido en la simulacién una implementacién del
modelo masa-muelle-amortiguador de objeto deformable con forma de tela y cuyas
caracteristicas estdn parametrizadas, por medio de un plugin de Gazebo incluido en
el modelo de la tela elastica. Ademds, se han desarrollado varios programas de prueba

para observar el comportamiento de la simulacion.

8.1. Valoracion de los resultados

Podemos concluir que se han obtenido unos resultados positivos, puesto que la
prueba final demuestra que el objeto es capaz de deformarse gracias a los movimientos
que realizan los robots tras agarrarlo. Ademaés el proyecto permitiria la sustitucién de
los IRB120 de ABB por otros robots en la simulacién, o incluso con robots reales.

Por otro lado, los principios que llevaron a la creacién de ROS nos resultan perfectos
para este Trabajo. Sin embargo, el desarrollo de entornos multi-robot en ROS 1 no
es una practica estandarizada y es un proceso lento y arduo. Gazebo y Movelt nos
permiten realizar una simulacién muy completa y de gran complejidad, con muchas
formas de interactuar con la misma y anadir elementos adicionales que se adecuarian
ma&s a un entorno real (como el ejemplo con la mesa).

También resulta adecuado el algoritmo de Mass-Spring-Damping, pues es sencillo

45

pero su comportamiento es muy similar a un objeto real, salvo los casos en los que
el sistema se volviera inestable. Ademads sus parametros nos permiten realizar muchas
pruebas para adecuarlos a nuestro objeto. Si desedaramos objetos de mas complejidad,
se podrian crear objetos de 3 dimensiones, pues el cédigo ya tiene herramientas para
crear cubos.

Finalmente, en este Trabajo, la estructura para la interaccion entre el objeto y los
robots es muy precisa, ya que asume que, al ser una simulacion, los robots tendran

pleno conocimiento de la posicién del objeto.

8.2. Trabajo futuro

Debido a las limitaciones de ROS 1, en el futuro se podria realizar una versién de
este Trabajo en ROS 2, el cual se estd desarrollando con este caso de uso en mente (y
con él, Gazebo 11.x, Movelt2, RViz2) [87] y asi reducir la cantidad de cédigo de ABB
que ha tenido que ser modificado.

Por otro lado, los robots siempre deben estar separados para evitar colisiones y es
por esto que en el futuro se podria implementar un método para que los robots sepan
la posicién en la que se encuentran, para poder cooperar mas facilmente, por ejemplo,
para realizar costuras, que son trabajos de gran precision y para los que se necesitarian
los dos robots juntos.

También se podria desarrollar una forma de introducir modelos complejos (o
meshes) y tratar los vértices del mismo como las esferas de este Trabajo. Igualmente,
se podrian probar distintos algoritmos para objetos deformables, como As Rigid As
Possible (ARAP), que es un sistema més complejo, pero sirve para crear objetos méas
consistentes, puesto que este algoritmo conserva las formas mejor [88], o incluso se
podria modificar el algoritmo actual para usar otro tipo de muelles, para simular otro
tipo de objetos, como el tejido humano (véase [71]).

ROS nos ofrece la posibilidad de ejecutar experimentos con robots reales, por lo
que en un Trabajo futuro, se podrian realizar pruebas con robots ABB IRB 120 con
un objeto como pudiera ser una tela gruesa. Se deberia adaptar el codigo para poder
interactuar con la herramienta que se acople a los robots, como pudieran ser ventosas
o preferiblemente, pinzas.

En la simulacion, los robots conocen su entorno en todo momento, sin embargo,
en el mundo real esto seria imposible sin una forma de deteccion, por ello, un Trabajo
futuro podria incluir un sistema de percepcién, como podrian ser sistemas de vision o
ultrasonidos para observar el entorno y tomar una decisiéon para poder manipular un

objeto deformable real.

46

Figura 8.1: Perspectivas futuras. De arriba abajo, y de izquierda a derecha: ROS 2 [21];
Colaboracién entre robots [89]; CAmara Kinect de XBOX 360 [90]; Robot ABB IRB120
de la Universidad de Zaragoza, interactuando con una persona [91].

47

48

Capitulo 9

Bibliografia

1]
2]

8]

An Automatic Block-Setting Crane. Meccano Magazine, 23(3):172, 1938.

Lene Kromann, Nikolaj Malchow-Mgller, Jan Rose Skaksen, and Anders
Sgrensen. Automation and productivity—a cross-country, cross-industry

comparison. Industrial and Corporate Change, 29(2):265-287, 07 2019.

Rafael Herguedas, Gonzalo Lépez Nicolds, Rosario Aragiiés, and Carlos Sagiiés.
Survey on multi-robot manipulation of deformable objects, 2019. IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA 2019).

Miguel Aranda, Juan Antonio Corrales, and Youcef Mezouar. Deformation-based
shape control with a multirobot system, 2019. IEEE International Conference

on Robotics and Automation.

Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas
Sindhwani, Ken Goldberg, and Andy Zeng. Learning to rearrange deformable
cables, fabrics, and bags with goal-conditioned transporter networks. CoRR,
abs/2012.03385, 2020.

Dominik Henrich and Heinz Worn. Robot manipulation of deformable objects.

Springer Science & Business Media, 2012.

Akihiko Yamaguchi. Science of robot cooking. http://akihikoy.net/p/cook.
html, 2016. Consultado el 30 de Agosto de 2021.

Florencio Jesis Cembranos Nistal. Automatismos eléctricos, neumdticos e
hidrdulicos. Editorial Paraninfo, 2008.

49

http://akihikoy.net/p/cook.html
http://akihikoy.net/p/cook.html

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

IRB 120. https://new.abb.com/products/robotics/robots-industriales/
irb-120. Descripcion del Robot Industrial IRB 120 de ABB. Consultado el: 26
de Agosto de 2021.

About ROS. https://www.ros.org/about-ros/. Descripcién del Sistema
Operativo Robdtico. Consultado el: 27 de Julio de 2021.

ROS history. https://www.ros.org/history/. Historia de la creacion del
Sistema Operativo Robdtico. Consultado el: 27 de Julio de 2021.

ROS @ OSRF. https://web.archive.org/web/20140815190347/https:
//www.osrfoundation.org/blog/ros-at-osrf.html. Transicion de la

administracion de ROS de Willow Garage a OSRF. Captura recuperada por
medio de Wayback Macine del 15 de Agosto de 2014.

Welcome to Open Robotics. https://www.osrfoundation.org/
welcome-to-open-robotics/. Cambio de nombre de la Open Source

Robotics Foundation a Open Robotics. Consultado el: 27 de Julio de 2021.

Is ROS for me? https://www.ros.org/is-ros-for-me/. ;Es ROS para mi?
Ventajas de su uso. Consultado el: 27 de Julio de 2021.

Christina Cardoza. Inside the robot operating system, the robotics industry and
the open source robotics foundation. SD Times - Software Development News,

2015.

ROS core components. https://www.ros.org/core-components/.

Caracteristicas principales de ROS. Consultado el: 27 de Julio de 2021.

ROS wiki - abb_irb120_support. http://wiki.ros.org/abb_irb120_

support?distro=kinetic.

ROS wiki - installation. http://wiki.ros.org/es/R0OS/Installation.
Instalacion de ROS. Consultado el: 27 de Agosto de 2021.

ROS concepts. http://wiki.ros.org/R0S/Concepts. Conceptos basicos de
ROS. Consultado el: 27 de Julio de 2021.

ROS topics. http://wiki.ros.org/Topics. Definicién del concepto de Topic
en ROS. Consultado el: 27 de Julio de 2021.

ROS press kit. https://www.ros.org/press-kit/. Pack de imagenes de ROS
para prensa. Obtenido el: 20 de Agosto de 2021.

50

https://new.abb.com/products/robotics/robots-industriales/irb-120
https://new.abb.com/products/robotics/robots-industriales/irb-120
https://www.ros.org/about-ros/
https://www.ros.org/history/
https://web.archive.org/web/20140815190347/https://www.osrfoundation.org/blog/ros-at-osrf.html
https://web.archive.org/web/20140815190347/https://www.osrfoundation.org/blog/ros-at-osrf.html
https://www.osrfoundation.org/welcome-to-open-robotics/
https://www.osrfoundation.org/welcome-to-open-robotics/
https://www.ros.org/is-ros-for-me/
https://www.ros.org/core-components/
http://wiki.ros.org/abb_irb120_support?distro=kinetic
http://wiki.ros.org/abb_irb120_support?distro=kinetic
http://wiki.ros.org/es/ROS/Installation
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Topics
https://www.ros.org/press-kit/

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

32]

[33]

ROS parameter server. http://wiki.ros.org/Parameter’20Server. Definicién
del Parameter Server de ROS. Consultado el: 27 de Julio de 2021.

Plugins available in gazebo_plugins. http://gazebosim.org/tutorials?tut=
ros_gzplugins#Pluginsavailableingazebo_plugins. Plugins disponibles
para Gazebo. Consultado el: 3 de Agosto de 2021.

Gazebo beginner: Overview. http://www.gazebosim.org/tutorials?tut=
guided_bl. Introduccién a Gazebo. Consultado el: 3 de Agosto de 2021.

Tutorial: ROS integration overview. http://gazebosim.org/tutorials?tut=

ros_overview. Integraciéon Gazebo + ROS. Consultado el: 3 de Agosto de 2021.

ROS wiki - abb_irb120_gazebo. http://wiki.ros.org/abb_irb120_gazebo?
distro=kinetic. Paquete abb irb120 gazebo. Consultado el: 4 de Agosto de
2021.

Gazebo - installing gazebo_ros_pkgs (ROS 1). http://gazebosim.org/
tutorials?tut=ros_installing. Instalacién de Movelt. Consultado el: 27 de
Agosto de 2021.

GitHub - ros-planning/moveit. https://github.com/ros-planning/moveit.
Repositorio de Movelt en GitHub. Consultado el: 3 de Agosto de 2021.

YouTube - Movelt capabilities overview. https://youtu.be/7KvF7Dj7bzO0.
Video en YouTube con las capacidades de Movelt. Consultado el: 3 de Agosto de
2021.

Moveit tutorials (ROS Melodic). http://docs.ros.org/en/melodic/api/
moveit_tutorials/html/index.html. Tutoriales de Movelt. Consultado el: 3
de Agosto de 2021.

ROS wiki - abb_irb120 moveit_config. http://wiki.ros.org/abb_irb120_
moveit_config?distro=kinetic. Paquete abb_irb120 moveit_ config.
Consultado el: 4 de Agosto de 2021.

Movelt tutorials - installation (ROS Melodic). http://docs.ros.org/en/
melodic/api/moveit_tutorials/html/doc/getting started/getting_
started.html. Instalacién de Movelt. Consultado el: 27 de Agosto de 2021.

ROS robots. https://robots.ros.org/. Algunos de los robots compatibles con
ROS.

51

http://wiki.ros.org/Parameter%20Server
http://gazebosim.org/tutorials?tut=ros_gzplugins#Pluginsavailableingazebo_plugins
http://gazebosim.org/tutorials?tut=ros_gzplugins#Pluginsavailableingazebo_plugins
http://www.gazebosim.org/tutorials?tut=guided_b1
http://www.gazebosim.org/tutorials?tut=guided_b1
http://gazebosim.org/tutorials?tut=ros_overview
http://gazebosim.org/tutorials?tut=ros_overview
http://wiki.ros.org/abb_irb120_gazebo?distro=kinetic
http://wiki.ros.org/abb_irb120_gazebo?distro=kinetic
http://gazebosim.org/tutorials?tut=ros_installing
http://gazebosim.org/tutorials?tut=ros_installing
https://github.com/ros-planning/moveit
https://youtu.be/7KvF7Dj7bz0
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/index.html
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/index.html
http://wiki.ros.org/abb_irb120_moveit_config?distro=kinetic
http://wiki.ros.org/abb_irb120_moveit_config?distro=kinetic
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/getting_started/getting_started.html
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/getting_started/getting_started.html
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/getting_started/getting_started.html
https://robots.ros.org/

[34]

[35]

[36]

[37]

[38]

39]

[41]

[42]

[43]

Robots - Movelt. https://moveit.ros.org/robots/. Robots compatibles con
Movelt. Consultado el: 14 de Septiembre de 2021.

ABB - informacién detallada para IRB 120. https://new.abb.com/products/
es/3HAC031431-001/irb-120. Consultado el: 14 de Septiembre de 2021.

ROS training for industry - motion planning with a multi robot
system. https://ut-ims-robotics.github.io/ros_training/html/day5/
multirobot_mp.html. Tutorial de utilizaciéon de un modelo dual para el control
de maultiples robots en Movelt - Universidad de Tartu. Consultado el: 10 de
Agosto de 2021.

ROS wiki - roslaunch/XML. http://wiki.ros.org/roslaunch/XML. Formato
XML para su ejecucién con roslaunch. Consultado el: 4 de Agosto de 2021.

ROS wiki - roslaunch. http://wiki.ros.org/roslaunch. Descripcién del
comando roslaunch. Consultado el: 4 de Agosto de 2021.

GitHub - ros-industrial/abb_experimental - joint names irb120 3 58.yaml.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_support/config/joint names_irb120_3_58.
yaml. Fichero joint _names_irb120_3 58.yaml del paquete abb__irb120 __support
(rama kinetic-devel). Consultado el: 4 de Agosto de 2021.

GitHub - ros-industrial/abb_experimental - joint_limits.yaml. https:
//github.com/ros-industrial/abb_experimental/blob/kinetic-devel/
abb_irb120_moveit_config/config/joint_limits.yaml. Fichero
joint__limits.yaml del paquete abb_irb120_moveit_config (rama kinetic-devel.
Consultado el: 4 de Agosto de 2021.

GitHub - ros-industrial/abb_experimental - kinematics.yaml. https://
github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_
irb120_moveit_config/config/kinematics.yaml. Fichero kinematics.yaml
del paquete abb_irb120_moveit_config (rama kinetic-devel. Consultado el: 4 de
Agosto de 2021.

ROS wiki - URDF. http://wiki.ros.org/urdf. Descripcion del paquete URDF
en ROS. Consultado el: 4 de Agosto de 2021.

ROS wiki - SRDF. http://wiki.ros.org/srdf. Descripcion del paquete SRDF
en ROS. Consultado el: 4 de Agosto de 2021.

52

https://moveit.ros.org/robots/
https://new.abb.com/products/es/3HAC031431-001/irb-120
https://new.abb.com/products/es/3HAC031431-001/irb-120
https://ut-ims-robotics.github.io/ros_training/html/day5/multirobot_mp.html
https://ut-ims-robotics.github.io/ros_training/html/day5/multirobot_mp.html
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_support/config/joint_names_irb120_3_58.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/joint_limits.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/joint_limits.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/joint_limits.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/kinematics.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/kinematics.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/kinematics.yaml
http://wiki.ros.org/urdf
http://wiki.ros.org/srdf

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

ROS wiki - xacro. http://wiki.ros.org/xacro. Descripcién del paquete xacro
en ROS. Consultado el: 4 de Agosto de 2021.

GitHub - ros-industrial/abb_experimental - irb120_3_ 58 macro.xacro.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/urdf/irb120_3_58_macro.xacro.
Fichero irb120 3 58 macro.zacro del paquete abb_irb120 gazebo (rama
kinetic-devel. Consultado el: 4 de Agosto de 2021.

ROS wiki - names. http://wiki.ros.org/Names. Descripcién de la jerarquia
de nombres en ROS. Consultado el: 4 de Agosto de 2021.

Gazebo - tutorial: ROS communication - services. http://gazebosim.org/
tutorials/?tut=ros_comm. Tutorial para la comunicaciéon entre ROS y Gazebo.
Consultado el: 10 de Agosto de 2021.

GitHub - ros-industrial/abb_ experimental - load_irb120_3_58.launch.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/launch/load_irb120_3_58.launch.
Fichero load irb120 3 58.launch del paquete abb irb120 gazebo (rama
kinetic-devel). Consultado el: 10 de Agosto de 2021.

ROS wiki - robot_state publisher. http://wiki.ros.org/robot_state_

publisher. Descripcién del paquete robot state publisher. Consultado el: 10
de Agosto de 2021.

GitHub - ros-controls/ros_controllers - joint_state_controller.h. https:
//github.com/ros-controls/ros_controllers/blob/melodic-devel/
joint_state_controller/include/joint_state_controller/joint_state_
controller.h. Fichero oint state controller.h del paquete ros controllers
(rama melodic-devel). Consultado el: 10 de Agosto de 2021.

Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo
Rodriguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar,
Gennaro Raiola, Mathias Liidtke, and Enrique Fernandez Perdomo. ros control:

A generic and simple control framework for ros. The Journal of Open Source
Software, 2017.

Movelt - concepts. https://moveit.ros.org/documentation/concepts/.

Conceptos basicos de Movelt. Consultado el: 16 de Septiembre de 2021.

53

http://wiki.ros.org/xacro
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/urdf/irb120_3_58_macro.xacro
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/urdf/irb120_3_58_macro.xacro
http://wiki.ros.org/Names
http://gazebosim.org/tutorials/?tut=ros_comm
http://gazebosim.org/tutorials/?tut=ros_comm
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/load_irb120_3_58.launch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/load_irb120_3_58.launch
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/robot_state_publisher
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://github.com/ros-controls/ros_controllers/blob/melodic-devel/joint_state_controller/include/joint_state_controller/joint_state_controller.h
https://moveit.ros.org/documentation/concepts/

[53]

[54]

[56]

[57]

[58]

[61]

Gazebo - media. http://gazebosim.org/media. Pack de imagenes de Gazebo.
Obtenido el: 29 de Agosto de 2021.

Movelt - press kit. https://moveit.ros.org/about/press_kit/. Pack de
imagenes de Movelt para prensa. Obtenido el: 29 de Agosto de 2021.

GitHub - ros-visualization/rviz. https://github.com/ros-planning/
moveit/blob/melodic-devel/moveit_ros/planning interface/move_
group_interface/src/move_group_interface.cpp#L1232. Repositorio oficial
de RViz. Consultado el: 16 de Septiembre de 2021.

Movelt - move group C++ interface. http://docs.ros.org/en/kinetic/
api/moveit_tutorials/html/doc/move_group_interface/move_group_
interface_tutorial.html. Tutorial de la interfaz de Movelt para C++).
Consultado el: 9 de Agosto de 2021.

ROS documentation - moveit::planning interface::MoveGrouplnterface class
reference (melodic). http://docs.ros.org/en/melodic/api/moveit _
ros_planning interface/html/classmoveit_1_ 1planning _interface_
1_1MoveGroupInterface.html. Manual de wusuario de la interfaz
MoveGrouplInterface de Movelt). Consultado el: 10 de Agosto de 2021.

GitHub - ros-industrial/abb_experimental - abb_irb120 3 58.srdf. https:
//github.com/ros-industrial/abb_experimental/blob/kinetic-devel/
abb_irb120_moveit_config/config/abb_irb120_3_58.srdf. Fichero
abb_irb120_3 58.srdf del paquete abb_irb120 _moveit_config (rama
kinetic-devel). Consultado el: 6 de Agosto de 2021.

GitHub - isocpp/logos. https://github.com/isocpp/logos. Repositorio logos
del estandar ISO para C++. Obtenido el: 29 de Agosto de 2021.

Gazebo - make a model. http://gazebosim.org/tutorials?tut=build_model.
Vista general de la creacién de modelos para Gazebo. Consultado el: 4 de Agosto
de 2021.

Gazebo - tutorial: Using roslaunch to start Gazebo, world files and URDF models
- using roslaunch to spawn URDF robots. http://gazebosim.org/tutorials?
tut=ros_roslaunch&cat=connect_ros#UsingroslaunchtoSpawnURDFRobots.
Tutorial para generar robots URDF en Gazebo mediante ROS. Consultado el: 4
de Agosto de 2021.

o4

http://gazebosim.org/media
https://moveit.ros.org/about/press_kit/
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
http://docs.ros.org/en/melodic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/abb_irb120_3_58.srdf
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/abb_irb120_3_58.srdf
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_moveit_config/config/abb_irb120_3_58.srdf
https://github.com/isocpp/logos
http://gazebosim.org/tutorials?tut=build_model
http://gazebosim.org/tutorials?tut=ros_roslaunch&cat=connect_ros#UsingroslaunchtoSpawnURDFRobots
http://gazebosim.org/tutorials?tut=ros_roslaunch&cat=connect_ros#UsingroslaunchtoSpawnURDFRobots

[62]

[63]

[68]

[69]

[71]

Gazebo tutorials - category: Physics library. http://gazebosim.org/
tutorials?cat=physics. Todos los tutoriales de Gazebo sobre la simulacién
de fisicas. Consultado el: 11 de Agosto de 2021.

Gazebo - tutorial: Using gazebo plugins with ros. http://gazebosim.org/
tutorials?tut=ros_gzplugins. Tutorial con ejemplos del uso de plugins en
Gazebo. Consultado el: 11 de Agosto de 2021.

Gazebo - overview of gazebo plugins. http://gazebosim.org/tutorials/?tut=
plugins_hello_world. Vista general de plugins en Gazebo. Ejemplo para crear

un primer plugin. Consultado el: 11 de Agosto de 2021.

Gazebo - world plugins. http://gazebosim.org/tutorials?tut=plugins_
world. Ejemplo para crear un plugin de tipo WorldPlugin. Consultado el: 11
de Agosto de 2021.

Gazebo - model plugins. http://gazebosim.org/tutorials?tut=plugins_
model. Ejemplo para crear un plugin de tipo ModelPlugin. Consultado el: 11
de Agosto de 2021.

Gazebo - rendering::Visual class reference. http://osrf-distributions.s3.
amazonaws . com/gazebo/api/dev/classgazebo_1_lrendering 1 1Visual.
html. Manual de Usuario de la clase gazebo::rendering::Visual. Consultado el:
11 de Agosto de 2021.

Gazebo - physics::World class reference. http://osrf-distributions.s3.
amazonaws . com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html.

Manual de Usuario de la clase gazebo::physics::World. Consultado el: 13 de
Agosto de 2021.

Gazebo - gazebo::msgs namespace reference. https://osrf-distributions.
s3.amazonaws.com/gazebo/api/dev/namespacegazebo_1_ 1msgs.html.
Manual de Usuario del namespace gazebo::msgs. Consultado el: 13 de Agosto de
2021.

Sdformat - sdf::vll namespace reference. http://osrf-distributions.s3.
amazonaws.com/sdformat/api/dev/namespacesdf 1 _1v11l.html. Manual de

Usuario del namespace sdf::v11. Consultado el: 13 de Agosto de 2021.

Sarah FF Gibson and Brian Mirtich. A survey of deformable modeling in

computer graphics. Technical report, Citeseer, 1997.

95

http://gazebosim.org/tutorials?cat=physics
http://gazebosim.org/tutorials?cat=physics
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://gazebosim.org/tutorials?tut=plugins_world
http://gazebosim.org/tutorials?tut=plugins_world
http://gazebosim.org/tutorials?tut=plugins_model
http://gazebosim.org/tutorials?tut=plugins_model
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1rendering_1_1Visual.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/namespacegazebo_1_1msgs.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/namespacegazebo_1_1msgs.html
http://osrf-distributions.s3.amazonaws.com/sdformat/api/dev/namespacesdf_1_1v11.html
http://osrf-distributions.s3.amazonaws.com/sdformat/api/dev/namespacesdf_1_1v11.html

[72]

73]

[74]

[75]

[76]

[80]

[81]

Matthias Teschner. Simulation in computer graphics. University of Freiburg.

https://cg.informatik.uni-freiburg.de/teaching.htm#material.

C. Henry. Mass-spring-system model for real time expressive behaviour synthesis

why and how to use physical model in pure data. 2015.

Joseph C. Watkins. The mass-spring oscillator. University of Arizona. Retrieved

from: https://www.math.arizona.edu/~jwatkins/h-ode.pdf.

M. Alex O. Vasilescu. Physically-based modeling: Mass-spring
systems. Massachusetts Institute of Technology. Retrieved from:
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/

lect/28_mass_springs_all.pdf.

Auralius Manurung. Deformable object with interconnected
mass-spring-damper. https://github.com/auralius/
matlab-mass-spring-damper-network-deformable-object, 2021.

Consultado el: 18 de Agosto de 2021.

Rafael Herguedas, Gonzalo Loépez-Nicolas, and Carlos Sagiiés. Collision-free
transport of 2d deformable objects, 2021. The 21st International Conference
on Control, Automation and Systems (ICCAS 2021).

Gazebo - physics::Model class reference. http://osrf-distributions.s3.
amazonaws . com/gazebo/api/dev/classgazebo_1_ 1physics_1_1Model.html.

Manual de Usuario de la clase gazebo::physics::Model. Consultado el: 13 de
Agosto de 2021.

Gazebo - physics::Link class reference. https://osrf-distributions.s3.
amazonaws . com/gazebo/api/dev/classgazebo_1 1physics_1 1Link.html.
Manual de Usuario de la clase gazebo::physics::Link. Consultado el: 17 de Agosto
de 2021.

gazebo__msgs/ModelStates message definition. http://docs.ros.org/en/
jade/api/gazebo_msgs/html/msg/ModelStates.html. Definicién del mensaje
gazebo__msgs/ModelStates. Consultado el: 18 de Agosto de 2021.

Movelt - moveit::planning_interface::PlanningScenelnterface class
reference. http://docs.ros.org/en/indigo/api/moveit_ros_
planning_interface/html/classmoveit_1_lplanning _interface_

1_1PlanningScenelInterface.html. Manual de Usuario de la clase

56

https://cg.informatik.uni-freiburg.de/teaching.htm#material
https://www.math.arizona.edu/~jwatkins/h-ode.pdf
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/28_mass_springs_all.pdf
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/28_mass_springs_all.pdf
https://github.com/auralius/matlab-mass-spring-damper-network-deformable-object
https://github.com/auralius/matlab-mass-spring-damper-network-deformable-object
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Model.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Model.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Link.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1Link.html
http://docs.ros.org/en/jade/api/gazebo_msgs/html/msg/ModelStates.html
http://docs.ros.org/en/jade/api/gazebo_msgs/html/msg/ModelStates.html
http://docs.ros.org/en/indigo/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1PlanningSceneInterface.html
http://docs.ros.org/en/indigo/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1PlanningSceneInterface.html
http://docs.ros.org/en/indigo/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1PlanningSceneInterface.html

[82]

[83]

[84]

[85]

[36]

[88]

[89]

mowveit::planning _interface::PlanningScenelnterface. Consultado el: 29 de
Agosto de 2021.

moveit_msgs/CollisionObject Message. http://docs.ros.org/en/melodic/
api/moveit_msgs/html/msg/CollisionObject.html. Descripcion del mensaje
de tipo moveit_ msgs/CollisionObject Message. Consultado el: 29 de Agosto de
2021.

ROS Wiki - Create a URDF for an Industrial Robot. http://wiki.ros.org/
Industrial/Tutorials/Create’20a%20URDF%20for%20an?%20Industrialy,
20Robot. Tutorial de ROS para la creacién de modelos en URDF para un robot
industrial. Consultado el: 29 de Agosto de 2021.

Gazebo - Tutorial: Using a URDF in Gazebo. http://gazebosim.org/
tutorials/?tut=ros_urdf. Tutorial de Gazebo sobre el uso de URDF.
Consultado el: 29 de Agosto de 2021.

GitHub - ignitionrobotics/sdformat - URDF to SDF conversion ignores links
without inertia #199. https://github.com/ignitionrobotics/sdformat/
issues/199. Propuesta (Issue) del repositorio ignitionrobotics/sdformat con
comentarios de los colaboradores sobre el comportamiento de las articulaciones
en Gazebo. Consultado el: 29 de Agosto de 2021.

GitHub - ros-industrial /abb__experimental - irb120_3 58 arm_ controller.yaml.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.
yaml. Fichero rb120 3 58 arm__controller.yaml del paquete
abb_irb120 gazebo (rama kinetic-devel. Consultado el: 4 de Agosto de
2021.

Brian Gerkey. Why ros 27 https://design.ros2.org/articles/why_ros2.
html. Explicacion de las causas que llevan al desarrollo de ROS 2. Consultado
el: 29 de Agosto de 2021.

Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In
Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry
Processing, pages 109-116, 2007.

YouTube - ABB Robotics - new small robot - IRB 120. https://www.
youtube.com/watch?v=-39W3fdD5WA&t=68s&ab_channel=ABBRobotics. Video

57

http://docs.ros.org/en/melodic/api/moveit_msgs/html/msg/CollisionObject.html
http://docs.ros.org/en/melodic/api/moveit_msgs/html/msg/CollisionObject.html
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials/?tut=ros_urdf
https://github.com/ignitionrobotics/sdformat/issues/199
https://github.com/ignitionrobotics/sdformat/issues/199
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.yaml
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/config/irb120_3_58_arm_controller.yaml
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
https://www.youtube.com/watch?v=-39W3fdD5WA&t=68s&ab_channel=ABBRobotics
https://www.youtube.com/watch?v=-39W3fdD5WA&t=68s&ab_channel=ABBRobotics

[90]

[92]

[95]

[96]

[97]

promocional en YouTube con las capacidades del robot ABB IRB120. Consultado
el: 29 de Agosto de 2021.

Wikimedia Commons contributors. Kinect Sensor at E3 2010. https:
//commons .wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_
E3_2010_(front) . jpg&oldid=508623234. Imagen de una cdmara Kinect de
XBOX 360. Consultado el: 29 de Agosto de 2021.

Rosario Aragiiés Munoz, Lopez Nicolas Gonzalo, and Sagiiés Blazquiz Carlos.
La Universidad de Zaragoza participa en un proyecto europeo para automatizar
procesos industriales y mejorar la calidad de vida de los trabajadores.
https://www.unizar.es/noticias/la-universidad-de-zaragoza-
participa-en-un-proyecto-europeo—para-automatizar-procesos-0.
Consultado el: 29 de Agosto de 2021.

GitHub - ros-industrial /abb__experimental - irb120 control.launch.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/launch/irb120_control.launch.
Fichero irb120 control.launch del paquete abb_irb120 gazebo (rama
kinetic-devel. Consultado el: 4 de Agosto de 2021.

ROS wiki - remap. http://wiki.ros.org/roslaunch/XML/remap. Descripcion
de la clausula remap. Consultado el: 9 de Agosto de 2021.

GitHub - ros-industrial/abb_experimental - irb120_3 58 gazebo.launch.
https://github.com/ros-industrial/abb_experimental/blob/
kinetic-devel/abb_irb120_gazebo/launch/irb120_3_58_gazebo.launch.
Fichero irb120 3 58 gazebo.launch del paquete abb_irb120 gazebo (rama
kinetic-devel). Consultado el: 6 de Agosto de 2021.

ROS wiki - group. http://wiki.ros.org/roslaunch/XML/group. Descripcién
de la clausula group. Consultado el: 9 de Agosto de 2021.

ROS wiki - coordinate frame conventions. http://wiki.ros.org/geometry/
CoordinateFrameConventions. Convenciones aplicadas a los espacios de
coordenadas de ROS. Consultado el: 9 de Agosto de 2021.

GitHub - ros-industrial/abb__experimental. https://github.com/
ros-industrial/abb_experimental. Repositorio abb__experimental
desarrollado por ABB para el uso de sus robots en ROS. Consultado el:
27 de Agosto de 2021.

58

https://commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_E3_2010_(front).jpg&oldid=508623234
https://commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_E3_2010_(front).jpg&oldid=508623234
https://commons.wikimedia.org/w/index.php?title=File:Kinect_Sensor_at_E3_2010_(front).jpg&oldid=508623234
https://www.unizar.es/noticias/la-universidad-de-zaragoza-participa-en-un-proyecto-europeo-para-automatizar-procesos-0
https://www.unizar.es/noticias/la-universidad-de-zaragoza-participa-en-un-proyecto-europeo-para-automatizar-procesos-0
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_control.launch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_control.launch
http://wiki.ros.org/roslaunch/XML/remap
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_3_58_gazebo.launch
https://github.com/ros-industrial/abb_experimental/blob/kinetic-devel/abb_irb120_gazebo/launch/irb120_3_58_gazebo.launch
http://wiki.ros.org/roslaunch/XML/group
http://wiki.ros.org/geometry/CoordinateFrameConventions
http://wiki.ros.org/geometry/CoordinateFrameConventions
https://github.com/ros-industrial/abb_experimental
https://github.com/ros-industrial/abb_experimental

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

ROS wiki - create a catkin workspace. http://wiki.ros.org/catkin/
Tutorials/create_a_workspace. Tutorial de ROS para la creaciéon de entornos
de trabajo de catkin. Consultado el: 27 de Agosto de 2021.

ROS Wiki - Creating a ROS msg and srv. http://wiki.ros.org/R0OS/
Tutorials/CreatingMsgAndSrv. Creacién de mensajes y servicios propios
Consultado el: 29 de Agosto de 2021.

Microsoft. Visual Studio Marketplace - ROS. https://marketplace.
visualstudio.com/items?itemName=ms-iot.vscode-ros. Extension ROS en

el mercado de extensiones de Visual Studio Code. Consultado el: 29 de Agosto
de 2021.

GitHub - andrewknoll/multiple abb_ irb120. https://github.com/
andrewknoll/multiple_abb_irb120. Repositorio en GitHub de los ficheros de

este Trabajo.

Movelt - low level controllers - remapping /joint_states topic.
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/
controller_configuration/controller_ configuration tutorial.html#
remapping-joint-states-topic. Tutorial de Movelt sobre como hacer un
remap del topic /joint states para un nodo move_group. Consultado el: 14 de
Septiembre de 2021.

GitHub - ros-industrial /abb__experimental. https://github.com/
ros-planning/moveit/blob/melodic-devel/moveit_ros/planning
interface/move_group_interface/src/move_group_interface.cpp#L1232.
Linea 1232 del fichero move_group interface.cpp que describe la clase
MoveGrouplInterface en la rama melodic-devel del repositorio oficial de Mowvelt.
Consultado el: 2 de Septiembre de 2021.

GitHub - ros-planning/moveit - current_ state_ monitor.h (rama melodic-devel).
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit _
ros/planning/planning_scene_monitor/include/moveit/planning scene_
monitor/current state monitor.h. Fichero current state monitor.h que
describe la clase CurrentStateMonitor en la rama melodic-devel del repositorio
oficial de Mowvelt. Consultado el: 2 de Septiembre de 2021.

GitHub - ros-planning/moveit - current_ state_monitor.h (rama melodic-devel) -

linea 142. https://github.com/ros-planning/moveit/blob/melodic-devel/

59

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://github.com/andrewknoll/multiple_abb_irb120
https://github.com/andrewknoll/multiple_abb_irb120
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/controller_configuration/controller_configuration_tutorial.html#remapping-joint-states-topic
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/controller_configuration/controller_configuration_tutorial.html#remapping-joint-states-topic
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/controller_configuration/controller_configuration_tutorial.html#remapping-joint-states-topic
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L1232
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning/planning_scene_monitor/include/moveit/planning_scene_monitor/current_state_monitor.h
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning/planning_scene_monitor/include/moveit/planning_scene_monitor/current_state_monitor.h
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning/planning_scene_monitor/include/moveit/planning_scene_monitor/current_state_monitor.h
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142

[106]

[107]

moveit_ros/planning interface/move_group_interface/src/move_group_
interface.cpp#L142. Linea 142 del fichero mowve group interface.cpp que
implementa la clase MoveGroupInterface en la rama melodic-devel del repositorio
oficial de Mowvelt. Consultado el: 2 de Septiembre de 2021.

GitHub - ros-planning/moveit - common_ objects.cpp (rama melodic-devel) -
linea 140. https://github.com/ros-planning/moveit/blob/melodic-devel/
moveit_ros/planning interface/common_planning interface_objects/
src/common_objects.cpp#L140. Linea 140 del fichero common_ objects.cpp
en la rama melodic-devel del repositorio oficial de Mowelt. Consultado el: 2 de
Septiembre de 2021.

Cplusplus - std::map::insert. https://www.cplusplus.com/reference/map/
map/insert/. Funcién insert de la clase std::map de C++. Consultado el: 2

de Septiembre de 2021.

60

https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/move_group_interface/src/move_group_interface.cpp#L142
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/common_planning_interface_objects/src/common_objects.cpp#L140
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/common_planning_interface_objects/src/common_objects.cpp#L140
https://github.com/ros-planning/moveit/blob/melodic-devel/moveit_ros/planning_interface/common_planning_interface_objects/src/common_objects.cpp#L140
https://www.cplusplus.com/reference/map/map/insert/
https://www.cplusplus.com/reference/map/map/insert/

Anexos

61

Anexos A

Organizacion de los ficheros
desarrollados

En este anexo se incluye en detalle la estructura de los ficheros que son estrictamente

necesarios para el funcionamiento de este Trabajo.

catkin_workspace
| %= src
| "= abb_experimental
B abb_irb120_gazebo*
B abb_irb120_moveit configk
& abb_irb120_supportx*
| multiple_abb_irb120
| "= config
abb_irb120_3_58.srdf.xacro
abb_irb120_3_58 macro.srdf.xacro
B grid.config
kinematics.yaml
ompl_planning.yaml
B small_grid.config
B test_grid.config
| & include
H DeformableObjectPlugin.hpp
H Demo . hpp
H Grid.hpp
H GridState.hpp
H GridvVertex.hpp
H MassSpringDamping.hpp
H RobotInterface.hpp
H utils.hpp
| & launch
t irb120_3_58_control.launch

63

move_group.launch

(2 moveit.rviz
moveit_planning execution_gazebo.launch
moveit rviz.launch

B-1 multiple_spawner_gazebo _script.bash
ompl_planning pipeline.launch.xml
planning context.launch
planning pipeline.launch.xml
recursive_spawn.launch
setup_gazebo.launch
setup_two_robots_gazebo.launch
spawn_irb120.launch
test_grid.launch

A mnsg
| % GrabPetition.msg
| = src

G+ DeformableObjectPlugin. cpp
G+ Grid.cpp

C+ GridState. cpp

G+ GridVertex.cpp

G+ MassSpringDamping.cpp

C+ RobotInterface. cpp

G+ WorldPlugin.cpp

C+ grid_demo.cpp

G+ grid_wave_demo. cpp

G+ robots_moving demo.cpp

G+ robots_waving demo.cpp

G+ small_cloth_manipulation.cpp
C+utils. cpp

| & urdf

& irb120_3 58 macro.xacro

& irb120 3 58 with_tool.xacro
| & worlds

@ grid.world

@ grid_table.world

@ small _grid.world

@ test_grid.world

P@ CMakeLists.txt

||| package.xml

* Se han omitido los contenidos de los paquetes desarrollados por ABB, que pueden
ser obtenidos directamente desde el repositorio de la empresa en GitHub [97]. Para este

Trabajo, se utiliz6 la version para ROS Kinetic (al no existir versién para Melodic).

64

Anexos B

Instalacion y Ejecucion de los
programas desarrollados

En este anexo se detalla la manera de obtener los ficheros desarrollados para el

funcionamiento de los programas descritos en este Trabajo y también como ejecutarlos.

B.1. Instalacion

En primer lugar, es necesario tener los ficheros descritos en el Apéndice A. Para
descargarlos, se ha dispuesto de un repositorio en la plataforma GitHub, por lo que
podemos ejecutar el comando:

git clone https://github.com/andrewknoll/multiple_abb_irb120
Si los paquetes abb__irb120 _gazebo, abb_irb120 _mowveit_config y abb _irb120 _support
no se descargan correctamente, deberemos descargarlos manualmente y colocarlos en la
carpeta src (obtenida desde el repositorio anterior). Si ademads surgiese cualquier otro
problema, se propone seguir el tutorial de ROS para la creacién de entornos de trabajo
de catkin [98], y colocar tanto los paquetes de ABB como el contenido de la carpeta

multiple _abb_irb120 en la carpeta src del nuevo entorno de trabajo.

B.2. Configuracion inicial

Para poder ejecutar las demostraciones, es necesario que usted tenga instalada
la versién de ROS adecuada a su sistema operativo Ubuntu [18]. También debera
asegurarse de que usted tenga instalados Gazebo [27] y Movelt [32]. Este Trabajo se
ha probado en Ubuntu 18.04 con ROS Melodic, por lo que no se puede asegurar que
funcione en otras versiones de ROS.

Antes de ejecutar cualquiera de los programas por primera vez (subsecuentes

ejecuciones de otro programa no lo requeriran), debera ejecutar los siguientes comandos:

— Debera colocar su terminal en la carpeta en la que haya descargado los archivos

65

https://github.com/andrewknoll/multiple_abb_irb120

(se le denominara catkin_workspace a partir de ahora):

cd catkin_workspace

— Debera realizar una compilacion por medio de catkin:

catkin_make

— Una vez terminado el proceso, debera ejecutar el siguiente comando para que
ROS sea capaz de localizar los paquetes:

source devel/setup.bash

Tras la primera compilacién, no sera necesario ejecutar el segundo de los comandos,

excepto cuando se hayan realizado cambios en el paquete.

B.3. Ejecucion

A continuacién se explica el método de ejecucion de los distintos programas descritos
en el Trabajo.
Nota: Para todas las pruebas se ha omitido que puede tener un proceso del tipo

roscore abierto en una terminal, si desea un mayor control sobre las simulaciones.

B.3.1. Ejecucién de trayectorias

En este apartado se demuestra como ejecutar un entorno multi-robot y enviar
posiciones objetivo a los robots de forma manual.

En primer lugar, debera abrir una terminal e iniciar el entorno en Gazebo:
roslaunch multiple_abb_irb120 setup_two_robots_gazebo.launch

Una ventana como la Figura B.1 se abrira.

ndowHelp
>+ OC -~ 008

Figura B.1: Resultado de la ejecucion de setup_ two__robots gazebo.launch

66

Asegtirese de que Gazebo no estd pausado (la parte inferior de la ventana debera
indicar que el tiempo estd avanzando).

A continuacién debera iniciar el control del robot al que desee mandar
tareas. En nuestro caso, utilizaremos el robotl. Para ello, deberd ejecutar
en una nueva terminal y sin cerrar la anterior, el siguiente comando:

roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \

robot_name:=robotl

Ahora observara una ventana como la Figura B.2.

File Panels Help

™) Interact | % Move Camera [_] Select F = =

L pisplays
» & Global Options
» v Global Status: Ok
» & Grid %
+ 3 MotionPlanning v
» v Status: Ok
Move Group Namespace

Robot Description robot_description
Planning Scene Topic move group/monit...
Add

¥ MotionPlanning

Context | Planning | Manipulation = Scene Objects = Stored Scenes Stored States

Commands Query Options
Plan Planning Group: Planning Time (s): | 5,0 =
robot1_manipul: - Planning Attempts: | 10 =
Plan & Execute Start State: Velocity Scaling: 1,00 =
<current> - Accel. Scaling: 1,00 =
Goal State:
e - Use Cartesian Path

| Collision-aware IK
Approx IK Solutions

External Comm.
Path Constraints .
Replanning

None - Sensor Positioning

Reset 31fps

Figura B.2: Resultado de la ejecucién de moweit planning execution gazebo.launch
con robot _name:=robotl

En esta ventana, podra utilizar tanto la esfera turquesa situada al final del robot,
como los ejes de rotacion y traslacion situados a su alrededor para modificar la posicion
del robot. También podra navegar hasta la pestana “Joints” donde podra modificar
manualmente el valor de cada articulacion.

Finalmente, en la pestana “Planning”, debera utilizar los botones “Plan” y
“Erecute” para que Movelt calcule una trayectoria hasta dicho punto y después se

ejecute en la simulacion en Gazebo.

67

moveit.rviz* - RViz

File Panels Help

@Interact =7 Move Camera | Select 9 = @

O pisplays [%]
» & Global Options E
» + Global Status: Ok
» © Grid v
~ 3 MotionPlanning v
» v Status: Ok
Move Group Namespace

Robot Description robot_description
Planning Scene Topic move group/monit... |~
Add
3 MotionPlanning [x]

9 Manipulation Scene Objects = Stored Scenes = Stored States | Status | Joints |4

Group joints of goal state

Joint Name Value

Nullspace exploration:

Reset 31fps

Figura B.3: Interfaz RViz con un robot al que se le ha modificado la posicién.

Ip File Panels Help
&
e, 0 0 DO | (interact | € Move Camera [Iselect | = @
insert_|| Layers e OUE -7 008 o -
isplays [*]
Scene » & Global Options E
Spherical Coordinates » v Global status: Ok
» ® Grid v
Atmosphere ~ ¥ MotionPlanning v

» v status: Ok
Move Group Namespace
Robot Description robot_description

Planning Scene Topic move group/monit... |~
Add
+ MotionPlanning [x]

Context = Planning = Manipulation = Scene Objects ~ Stored Scenes Stored States
Commands Query options
Plan Planning Group: Planning Time (s): [5,0

robot1_manipuli ¥ | planning Attempts: |10

(RRIEDD

Plan & Execute Start State: Velocity Scaling: 1,00
Stop <current> ~ | Accel Scaling: 1,00
Time: 0.086 Goal State:
<current> = Use Cartesian Path

VI Collision-aware IK
Approx IK Solutions
External Comm.
Path Constraints .
Replanning
None - Sensor Positioning

Il Real Time Factor: Sim Time:

Figura B.4: Ejecucién en Gazebo de la trayectoria indicada por Movelt para una
posicién objetivo introducida en RViz.

B.3.2. robots moving demo

Debera abrir 4 terminales simultidneamente. En la primera introducirda este
comando:
roslaunch multiple_abb_irb120 setup_two_robots_gazebo.launch
Una ventana como en la Figura B.1 se abrira.

Asegurese de que Gazebo no estd pausado (la parte inferior de la ventana deberd

indicar que el tiempo esta avanzando). Entonces, en la segunda terminal, sin cerrar la

68

primera, debera introducir el comando:

roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \

robot_name:=robotl

y de la misma forma, en la tercera sustituiremos “robot1” por “robot2”:

roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \

robot_name:=robot2

Cada uno de estos comandos abrird una ventana de RViz como en la Figura B.2.
Finalmente, ejecutara el siguiente comando en la cuarta terminal, sin cerrar las

anteriores:

rosrun multiple_abb_irb120 robots_moving demo

Podra observar el movimiento de los robots en la ventana de Gazebo. Para cerrarlo,

debera interrumpir la ejecucion de todas las terminales, por medio de la combinacién

de teclas Ctrl + C.

B.3.3. robots _waving demo

En primer lugar, debera elegir un niimero de robots para colocar en la simulacién.
En este caso, se van a utilizar 5 robots. Debera abrir 2 terminales mas una terminal
por robot simultaneamente, en nuestro caso, 7 terminales. En la primera introducira
este comando:

./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash x
siendo x el nimero de robots. En nuestro caso seran 5. Una ventana como en la

Figura B.5 se abrira.

Gazebo

File Edit Camera

world | Insert Layers o |- . . |é e f/ | B R | = 0O |_L
Gul
Scene
Spherical Coordinates
Physics
Atmosphere
wind
P Madels
» Lights

Property Value

Il Real Time Factor: Sim Time: Real Time: Iterations:

Figura B.5: Resultado de la ejecucion de multiple spawner _gazebo__script.bash con 5
robots

69

Entonces, debera ejecutar, para cada robot, el siguiente comando en una terminal
distinta:
roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \
robot _name:=robotx
siendo robotz el nombre del robot (en nuestro caso, robotl, robot2, robot3, robotj
y robots. Cada uno de estos comandos abrird una ventana de RViz como en la
Figura B.2.

Finalmente, ejecutara el siguiente comando en la cuarta terminal, sin cerrar las
anteriores:
rosrun multiple_abb_irbl20 robots_waving_demo robots:=x
siendo z el niimero de robots. En nuestro caso seran 5. Podra observar el movimiento
de los robots en la ventana de Gazebo. Para cerrarlo, debera interrumpir la ejecucion

de todas las terminales, por medio de la combinacion de teclas Ctrl + C.

B.3.4. grid demo

Debera abrir 4 terminales simultaneamente. En la primera ejecutara el script de
bash incluido con los ficheros:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 2
Es muy importante incluir un nimero igual o mayor a 2 en este comando, pues es
el nimero de robots que apareceran en la simulaciéon. Una ventana de este aspecto se

abrira.

File Edit Camera View Window Help

World Insert Layers % ..t. O Ej| - - . . ' |. C ‘:;/ | % B | |=v n | Tv
GuI
Scene
Spherical Coordinates
Physics
Atmosphere
Wind
» Models
) Lights

Property Value

Il RealTime Factor: Sim Time: Real Time: Iterations:

Figura B.6: Resultado de la ejecucion de multiple__spawner _gazebo__script.bash

70

Entonces, en la segunda terminal, sin cerrar la primera, deberd introducir el
comando:
roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \
robot_name:=robotl
y de la misma forma, en la tercera sustituiremos “robotl” por “robot2”:
roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \
robot_name:=robot2
Cada uno de estos comandos abrird una ventana de RViz como la de la Figura B.2.
Finalmente, ejecutara el siguiente comando en la cuarta terminal, sin cerrar las
anteriores:

rosrun multiple_abb_irb120 grid_demo

Podra observar el movimiento de los robots en la ventana de Gazebo.
Para cerrarlo, deberd interrumpir la ejecucion de todas las terminales, por medio

de la combinacién de teclas Ctrl + C.

B.3.5. test_grid

Debera abrir una terminal e introducir el siguiente comando:
roslaunch multiple_abb_irb120 test_grid.launch . (también tiene como opcién
utilizar el comando
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 0 -d
si prefiere, pero el resultado serd el mismo). Podra observar una simulacién en Gazebo

como la siguiente:

Gazebo

File Edit Cam

world Insert Layers B |- . . |é o f/ | BB | = N |‘L
GUI
Scene
Spherical Coordinates
Physics
Atmosphere
wind
-
» ground_plane
» grid
P Lights
Property Value

» Real Time Factor: Sim Time: Real Time: Iterations: 2 Reset Time

Figura B.7: Resultado de la ejecucion de multiple__spawner _gazebo__script.bash

71

Para observar el comportamiento de la tela, debera pulsar el boton de reproduccion
(P) situado en la parte inferior de la ventana. La tela deberd caer lentamente y rebotard

varias veces hasta quedarse en una posicion de reposo.

B.3.6. Manipulacién manual del objeto deformable

Si deseamos manipular nuestro objeto deformable de forma manual, podemos
utilizar cualquiera de las dos demostraciones anteriores para generar nuestro objeto
deformable.

También es posible la modificacion de los parametros en los archivos grid.config y
test__grid.config.

En este caso, se ha modificado el archivo test grid.config para que el parametro
gravity sea igual a 0. De esta forma, haremos que el objeto no se vea afectado por la
gravedad.

En la simulacién, podremos seleccionar una esfera desde la lista de enlaces del
modelo, o bien haciendo click sobre la misma varias veces hasta que se encuentre

rodeada por un cubo.

File Edit

world ! ay 'f/l.\jg||=vn|jv

Property Value
LEL grid:link_200
self_coll.
gravity
kinematic
canonit
enable_... M False
w pose
X -0,950000
y 0,050000
z 2,500000
roll 0,00
pitch 0,00
yaw 0,00
w inertial
mass 0,08
iXx 0,00
ixy 0,00
ixz 0,00
iyy 0,00
iyz 0,00
izz 0,00 » Real Time Factor: Sim Time: Real Time: Iterations: 2 Reset Time

Figura B.8: Seleccién manual de la esfera 200 en Gazebo.

Con el panel inferior izquierdo, podremos modificar la posicién de la esfera y (con

la simulaciéon no pausada) observar el comportamiento del conjunto.

72

Figura B.9: Esfera 200 con una posicién seleccionada manualmente en Gazebo.

B.3.7. small__grid _manipulation

Para ejecutar esta prueba, debera utilizar 4 terminales.
En la primera, debera introducir el siguiente comando:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 2 -s
La opcion -s hard que la simulacion cree un objeto con los pardametros en el
fichero small grid.config. Recuerde que es muy importante que haya al menos
2 robots para el funcionamiento correcto. Una vez inicializada la simulacion
en Gazebo, deberd observar una ventana como la de la Figura B.10, en
la segunda y tercera terminales debera lanzar Movelt para los dos robots:
roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \

robot _name:=robotl

roslaunch multiple_abb_irb120 moveit_planning execution_gazebo.launch \
robot_name:=robot2

Finalmente, cuando las dos ventanas de RViz se hayan iniciado, debera
inicializar la prueba, en la cuarta terminal, con el siguiente comando:
rosrun multiple_abb_irb120 small cloth_manipulation

Ya puede observar la ventana de Gazebo para ver la simulacion.

73

Gazebo

File Edit Camera View Window Help

werd e s W e O[S -4 (@OBE% %R EIROIE
Gul
Scene
Spherical Coordinates
Physics
Atmosphere
Wwind
» Models
P Lights

Property Value

Il Real Time Factor: Sim Time: Real Time: Iterations:

Figura B.10: Resultado de la ejecucion de multiple spawner _gazebo _script.bash con
dos robots y con la opcién -s.

B.4. Realizaciéon de pruebas con una mesa

Como se indica en la Seccién 7.4, se ha incluido un archivo para realizar pruebas
con una mesa por comodidad. Para ejecutarlo, deberemos introducir el siguiente
comando en una terminal:
./src/multiple_abb_irb120/launch/multiple_spawner_gazebo_script.bash 2 -t
y veremos asi una simulacién con dos robots y con una mesa sobre la que la tela
descansara (la mesa tiene unas medidas de (0,5,0,75,0,5) aproximadamente), como se

observa en la Figura B.11.

Figura B.11: Simulacién con el mundo grid table.world.

Cabe destacar, que si se desean utilizar mundos personalizados, se puede modificar
el fichero setup_gazebo.launch y sustituir el nombre del mundo incluido al inicializarlo
por el de grid_table.world. Si queremos volver a la normalidad, podremos eliminarla a
través de la interfaz de Gazebo, o cambiar el nombre a grid.world de nuevo. Esto nos

permite modificar el mundo a nuestro gusto, pero es importante que se mantenga la

74

clausula que declara el plugin del mundo para poder generar el objeto deformable.

name="r

file="%(find multip b) I n.launch” i

name ="n

file="%(world.launch”
ind multiple_ab

Figura B.12: Cémo modificar el mundo de la simulacién.
Subrayado en color naranja se encuentra el fragmento de cdédigo a cambiar si se desea
cambiar el mundo de la simulacion.

75

76

Anexos C

Algunos problemas encontrados

A lo largo del desarrollo de este Trabajo, ha habido muchos intentos de completar
ciertas tareas, pero que se han tenido que descartar por los problemas que ha causado su
implementacion, o se han tenido que encontrar alternativas a su uso. En las siguientes

secciones se detallan algunas de ellas.

C.1. Espacios de nombres

En varios momentos en la creacién de los ficheros de configuracion para el entorno
multi-robot, se ha precisado de parametros para especificar el nombre del robot, y asi
introducir todos los nodos y parametros del servidor de ROS en el espacio de nombres
del robot.

Para conseguir esto, es muy util la clausula <group> del lenguaje XML de ROS
[95], pero también puede hacerse manualmente modificando los nombres o anadiendo

el parametro ns en la declaracién de los nodos o parametros.

C.1.1. Problemas en los archivos de configuraciéon de Gazebo

Al crear un entorno en Gazebo con varios robots ABB IRB120, la primera solucién
que se probé, fue la utilizaciéon de nombres tinicos para cada uno de los nodos implicados
en el control o creacién de cada robot. Asi, se introdujeron todos los elementos de los
archivos en una clausula <group>, que introduce los pardmetros, nodos y servicios en
un namespace con el nombre especificado [95]. A pesar de ello, algunos de los nodos
daban errores de conflicto por lo que se opté por cambiarles manualmente el nombre
para evitar dicho error. Sin embargo, esta solucion inicializaba Gazebo sin ninguno de
los robots presentes, por lo que se descarto.

También se realizaron pruebas cambiando los nombres de todas las articulaciones
para que fueran unicas. Posteriormente se descubrié la opcién de utilizar tf prefiz,

un parametro bajo cuyo namespace se colocaran todas las articulaciones y enlaces del

7

robot, facilitando mucho la tarea a realizar [96].

Por otro lado, para la correcta introduccion de algunos topics en los espacios de
nombres, fueron necesarios varias clausulas del tipo <remap> (que se encargan de
redirigir un topic a otro nombre distinto [93]), algunos de ellos ya presentes en los
archivos proporcionados por ABB [94], para que los nombres coincidiesen. Sin embargo,
tras varios intentos de depuracién, se comprobd que estas redirecciones no se estaban
produciendo si las clausulas <remap> se encontraban en un fichero launch invocado
desde otro, dejando sélo la opcidén de que estas se encontraran en el fichero invocado
a través del comando roslaunch. No se ha llegado a ninguna conclusién sobre cual
pudiera ser la razén. Por esto, y para mantener el esquema recursivo, fue necesaria la
creacion de un fichero de bash cuya tnica funcién es crear un fichero temporal que
contenga las clausulas <remap> para cada robot (ddndoles un nombre de robot;, siendo
i un numero natural desde 1 hasta el niimero total de robots), e incluyendo el archivo
launch ya existente. Si bien no es el mejor método, supone una solucién temporal
hasta que se descubran las causas de las redirecciones erroneas. También se incluye un
fichero invocable por medio de roslaunch para la creacién de sélo dos robots, sin que

sea necesario el uso del fichero de bash.

C.1.2. Problemas en los archivos de configuracién de Movelt

A la hora de adecuar la configuracion de Movelt para que coincidiese con la de
Gazebo, se introdujeron todos los elementos de los archivos en una clausula <group>.
Sin embargo, varios de los nodos daban errores de conflicto por lo que se opté por
cambiarles manualmente el nombre para evitar dicho error.

Otro problema que se presenté durante las primeras ejecuciones fue que tanto RViz
como la interfaz de Movelt en C++ funcionaban correctamente para el primer robot,
pero no para cualquier otro que se anadiese. En primer lugar, RViz no era capaz de
enviar posiciones de objetivo a los robots a partir del segundo de ellos, mientras que
la interfaz de C++ devolvia siempre la posicién del primer robot al invocar funciones
como getCurrentPose desde cualquier robot. El primero se solucioné redirigiendo el
topic /joint_states a /robot;/joint states en el nodo move_group de un robot cuyo
nombre es robot; (los nombres de los robots serdn robot1, robot2...), tal y como indican
los tutoriales de Movelt [102].

El segundo fue mas complicado, pues no existen tutoriales o documentaciéon sobre
este tema, por lo que fue necesario observar el codigo fuente de Movelt. Se pudo
observar, que la clase MoveGrouplInterface hace uso de un CurrentStateMonitor para
obtener la posicién del robot [103] que a su vez hace uso del topic “joint_states” [104].

La creaciéon del CurrentStateMonitor requiere del nombre del modelo del robot que se

78

va a monitorizar, y también un objeto del tipo NodeHandle, entre otros. Es importante
ver que la interfaz MoveGrouplInterface hace uso de la funcion getSharedState Monitor
[105] para crear el objeto, y se observa que esta funcién inserta en un mapa estos
monitores como valor, y el nombre del modelo del robot como clave [106]. Por lo tanto,
si se inserta una entrada en el mapa con una clave repetida, la funciéon devolvera el
monitor que ya se encuentra en el mapa con la misma clave y no se creard el nuevo
[106] [107]. Es por ello que serd necesario que los nombres de los modelos de los
robots sean siempre tnicos en los archivos de definicion de URDF y SRDF, asi se
cambiaron los nombres en estos archivos (por medio de pardmetros) para que fueran
abb_1rb120 3 58 robot;, siendo robot; el nombre del robot, como se observa en la
Figura C.1.

version="1.0"

default=""
" default="r

58 macro.srdf.x

version="1.0"

name="

" default=

| multip bb_irb Hf/irl macro.xacro”

Figura C.1: Nombres de los modelos de los robots en los ficheros
abb_irb120 3 _58.srdf.xacroy irb120_3 58 with_tool.xzacro

C.1.3. Utilizacién de parametros en ficheros yaml

Los ficheros yaml no poseen ningiin mecanismo para la inclusién de parametros. Por
tanto, se investigd y se encontrd que existe la opcion subst_value=True en la clausula
rosparam del lenguaje XML de ROS.

Por ello, se modificaron los archivos para que contuvieran
controladores y articulaciones con mnombres t1nicos, especialmente el fichero
irb120 3 58 arm__controller.yaml, que contiene la definicion del controlador y
de sus articulaciones [86]. También se tuvo que modificar los archivos urdf para indicar
el namespace del robot. Esto permitié una ejecucion de Movelt y RViz para cada
robot, pero con la cual los robots no se movian y que hizo surgir varios mensajes
de aviso, que alertaban de conflictos o ajustes que hacian que Gazebo y Movelt no

estuvieran de acuerdo en los nombres de los nodos y pardametros.

79

Al colocar un nombre de variable (indicadas con el caracter $) en el fichero yaml,
si existe un parametro con el mismo nombre en el fichero launch que lo carga,
ROS se encargard de sustituir la variable en el yaml por el valor que tuviera el
parametro en el launch. En la Figura C.2 se observa un ejemplo, en el que el archivo
planning__context.launch cargard el contenido del kinematics.yaml sustituyendo “$(arg

robot_name)” por el valor del pardmetro robot_name en el momento de la ejecucion.

name="1load_robot_description" default="false"

lescription"” default="rob

name="robot_name" default="robotl"

ics.yaml" subst value="true"

: kdl_kinematics_plugin/KDLKinematicsPlugin
: 0.005

: 0.005

3

Figura C.2: Empleo del argumento subst wvalue. Los ficheros yaml tomaradn los
parametros del fichero launch que lo cargue, en este caso, en la parte de arriba, el
fichero planning context.launch define el parametro robot name y carga el fichero
kinematics.yaml, que hace uso del argumento robot_name en la parte inferior de la
imagen.

C.2. API de Gazebo

Cuando se intentaba implementar la creacion del objeto deformable, se intenté no
crear un nuevo modelo para cada esfera, como ocurria en la Seccién 4.1. La primera
solucion fue crear un modelo con un plugin del tipo ModelPlugin que seria el encargado
de modificar el modelo para anadir todos los enlaces que forman la cuadricula y
posteriormente controlarla. Para esto se utilizaron las funciones de la clase Model en el
namespace gazebo::physics [78]. Sin embargo, fue un intento fallido, pues el modelo no
lleg6 a modificarse nunca sin ningtin mensage de error, y puesto que la documentacion
de la API de Gazebo es mds bien escasa (todas las funciones en la pagina oficial poseen
exclusivamente una linea para explicar su objetivo y sus pardmetros [78]), se buscé otra

alternativa.

80

Anexos D

Fragmentos de cédigo interesantes

A lo largo de esta memoria, se mencionan algunos de los ficheros desarrollados
(recuerde que puede observar la estructura de ficheros en el Apéndice A). Se incluyen
a continuaciéon algunos de ellos. De todas formas, se recomienda visitar el repositorio
de GitHub de este Trabajo si se desea tener una perspectiva mejor y actualizada de

estos u otros ficheros [101].

D.1. grid.config

Este fichero posee los pardmetros del tamano de la tela en metros (width, height);
el nimero de filas (vertical _resolution) y columnas (horizontal resolution) de esferas;
la posicién del centro del objeto deformable (offset =z, offset_y, offset_z); el radio de
las esferas en metros (sphere_radius); la masa de cada esfera en kilogramos (mass) y
las constantes de elasticidad (stiffness) y de amortiguamiento (damping) y si se desea
que el objeto esté afectado por la gravedad, cuando el valor es 1, o no, cuando el valor
es 0 (gravity).

width:1

height:1

vertical _resolution:10
horizontal_resolution:10

5 offset_x:0.5

offset_y:0.75
offset_z:0.5
sphere_radius:0.025
mass:0.08
stiffness:100
damping:10

> gravity:0

Este archivo hard que se simule una tela de 1x1 metros, con 10x10 esferas de 25
cm de radio y una masa de 80 mg, alrededor de la posicién (0.5, 0.75, 0.5), a la que no
le afectara la gravedad y cuyas constantes de elasticidad y amortiguamiento seran 100

N/m y 10 N s/m, respectivamente.

81

V)

D.2. small _grid.config

Este fichero posee la misma estructura que el fichero anterior grid.config y es
utilizado para realizar algunas de las pruebas en este Trabajo.

width:0.2

height:0.3
vertical_resolution:6
horizontal_resolution:4
offset_x:0.5
offset_y:0.5
offset_z:0.5
sphere_radius:0.025
mass:0.04
stiffness:50
damping:3

gravity:1

Este archivo hard que se simule una tela de 20x30 centimetros, con 4x6 esferas de
25 cm de radio y una masa de 40 mg, alrededor de la posicién (0.5, 0.5, 0.5), a la que

le afectara la gravedad y cuyas constantes de elasticidad y amortiguamiento seran 50

N/m y 3 N s/m, respectivamente.

D.3. GrabPetition.msg

Este fichero define el mensaje utilizado por las diversas partes de la simulacién para
solicitar el “agarre” de una esfera.

int32 i

int32 j

bool grab

std_msgs/String robot_name
std_msgs/String link_name

D.4. recursive__spawn.launch

Se encarga de llamar al fichero spawn_ irb120.launch que carga un robot IRB120
en la simulacién, pero también a si mismo, siempre y cuando el parametro del nimero
de robots sea mayor que 0. Este niimero se reduce en cada iteracién, consiguiendo asi
un comportamiento recursivo.
<launch>

<arg name="number" default="0"/>

<include file="$(find multiple_abb_irb120)/launch/spawn_irb120.launch"
if="$(eval arg('number') >= 1)">

<arg name="robot_name" value="robot$ (arg number)"/>

<arg name="position_x" value="$(eval int(arg('number')) - 1)"/>
</include>

82

10

11

12

<include
file="$(find multiple_abb_irb120)/launch/recursive_spawn.launch"
if="$(eval arg('number') >= 1)">
<arg name="number" value="$(eval int(arg('number')) - 1)"/>
</include>
</launch>

D.5. spawn__irb120.launch

Se encarga de cargar un robot cuyo nombre serda el que se introduzca por el
parametro robot _name y en la posicion position_x,position_y, position_z en la
simulacion de Gazebo.
<launch>

<arg name="robot_name" default="robotl"/>
<arg name="position_x" default="0"/>

<arg name="position_y" default="0"/>
<arg name="position_z" default="0"/>

<!-- setup tf_prefix-->
<group ns="$(arg robot_name)">
<param name="tf_prefix" value="$(arg robot_name)"/>

</group>
<!-- since the tf_prefix will change the name of the "world" frame,
we need to publish the robot's world to "world" -->

<node pkg="tf" type="static_transform_publisher"
name="$ (arg robot_name) world_publisher"
args="0 0 0 0 0 0 world $(arg robot_name)/world 100"/>

<!-- urdf xml robot description loaded on the Parameter Server,
converting the xacro into a proper urdf file-->
<param name="/$(arg robot_name)/robot_description"

command="$ (find xacro)/xacro --inorder
'$(find multiple_abb_irb120)/urdf/irb120_3_58_with_tool.xacro'
robotns:='/$(arg robot_name)'" />

<!-- push robot_description to factory and spawn robot in gazebo -->

<node name="abb_irb120_$(arg robot_name) _spawn" pkg="gazebo_ros"
type="spawn_model" output="screen"
args="-urdf
-param /$(arg robot_name)/robot_description
-robot_namespace /$(arg robot_name)
-model abb_irb120_3_58_% (arg robot_name)
-x $(arg position_x)
-y $(arg position_y)
-z $(arg position_z)"
ns="$(arg robot_name)"/>

<!-- convert joint states to TF transforms for rviz, etc -->
<node name="robot_state_publisher" pkg="robot_state_publisher"

type="robot_state_publisher" output="screen" ns="$(arg robot_name)"/>

<!-- init and start Gazebo ros_control interface -->

83

<include

file="$(find multiple_abb_irb120)/launch/irb120_3_58_control.launch">
<arg name="robot_name" value="$(arg robot_name)"/>

</include>

; </launch>

D.6. multiple__spawner__gazebo__script.bash

Este fichero es un script de bash. Toma un argumento por linea de comandos
(variable robots) y se utiliza para crear un fichero launch temporal en un directorio
temporal con directivas remap y que incluird el fichero setup gazebo.launch con el
numero de robots introducido por la linea de comandos. Finalmente, lanza el fichero

mediante roslaunch y una vez finalizado lo borra. Posee tres opciones:

— =d : Utilizada para lanzar la prueba test grid. En este caso, el nimero de robots

es ignorado.

— -s : Utilizada para lanzar un programa con una tela con los pardmetros de

small__grid.cofig.
— -t : Utilizada para cargar el modelo de una mesa en la simulacion.

Si no se introduce el parametro del nimero de robots, muestra un mensaje de aviso y
usara un valor de 2.

#!/bin/bash

robots="8§1"

option="$2"

dir="$(cd "$(dirname "$0")" && pwd)"
5 reg_ex=""[0-9]+8"

; testing=0

; small=0

table=0

if [[$robots =~ $reg_ex 1] ; then
echo "Spawning $robots robots..."

else
echo -e "\033[33mWARNING: You have not introduced a valid number.
Defaulting to 2...\033[0m"

robots=2
echo "Usage: $(basename $0) <number of robots> [-d | -s | -t]"
echo " -d : debug grid physics"
echo " -s : small grid"
echo " -t : use a table"
fi

if ["$#" -gt "1"] ; then

if ["$option" = "-t"]; then
testing=1
echo "Testing... Robots will not be spawned, and a big grid will

84

26 spawn."

27 elif ["$option" = "-s"]; then

28 small=1

29 echo "Small grid applied."

30 else

31 echo -e "\033[33mWARNING: You have introduced an unknown option
32 \"$option\". Ignored.\033[Om"

33 echo "Usage: $(basename $0) <number of robots> [-d | -s | -t]"
34 echo " -d : debug grid physics"

35 echo " -s : small grid"

36 echo " -t : use a table"

37 fi

38 £i

a0 if ["$#" -gt "3"]; then
41 echo -e "\033[33mWARNING: You have introduced too many options
42 (more than 2).\033[0m"

a3 echo "Usage: $(basename $0) <number of robots> [-d | -s | -t]"
44 echo " -d : debug grid physics"

45 echo " -s : small grid"

46 echo " -t : use a table"

a7 1

a9 if ["$testing" -eq "1"]; then
50 roslaunch "$dir/text_grid.launch"
51 else

53 source "$dir/../../../devel/setup.bash"

54 temp_dir=$ (mktemp

55 -d "${TMPDIR:-/tmp/}multiple_robots_ros_package.XXXXXXXXXXXX")
56 temp_file=$(mktemp

57 "--tmpdir=$temp_dir" "gazebo_remapper_file_ XXXXXX.launch")
58 "gazebo_remapper_file_ XXXXXX.launch")

59 i=0

60

61 echo "<launch>" > $temp_file

62

63 while [$i -1t $robots]

64 do

65 i=$((i+1))

66 echo "<remap from=\"/robot$i/arm_controller/follow_joint_trajectory\" \
67 to=\"/robot$i/joint_trajectory_action\" />" \

68 >> $temp_file

69 echo "<remap from=\"/robot$i/arm_controller/state\" \

70 to=\"/robot$i/feedback_states\" />" >> $temp_file

71 echo "<remap from=\"/robot$i/arm_controller/command\" \

72 to=\"/robot$i/joint_path_command\"/>" >> $temp_file

73 done

5 echo "<include \

76 file=\"\$(find multiple_abb_irb120)/launch/setup_gazebo.launch\'">" \
77 >> $temp_file

78 echo "<arg name=\"robots\" value=\"$robots\"/>" >> $temp_file \

709 echo "<arg name=\"small\" value=\"$small\"/>" >> $temp_file

so echo "<arg name=\"table\" value=\"$table\"/>" >> $temp_file

81 echo "</include>" >> $temp_file

83 echo "</launch>" >> $temp_file

85

84

86

87

roslaunch $temp_file
rm $temp_file
rm -r $temp_dir

D.7.

setup__gazebo.launch

Este fichero se encarga de llamar al fichero recursive_spawn.launch para que se

cargen los robots en la simulacién y si su parametro must_start _world tiene valor

verdadero, carga el mundo de Gazebo, que en este caso es grid.world.

<launch>

<arg name="must_start_world" default="true"/>
<arg name="robots" default="2" doc="Number of robots to spawn" />

<!-- IMPORTANT: topics must be remapped before using this launchfile

<remap

<remap

<remap

-—>

from="/$(arg base_name)$(arg robots)/arm_controller/
follow_joint_trajectory"
to="/$(arg base_name)$ (arg robots)/joint_trajectory_action" />
from="/$(arg base_name)$(arg robots)/arm_controller/state"
to="/$(arg base_name)$ (arg robots)/feedback_states" />
from="/$(arg base_name)$(arg robots)/arm_controller/command"
to="/$(arg base_name)$ (arg robots)/joint_path_command"/>

<include if="$(eval arg('robots') >= 1)">

<arg

file="$(find multiple_abb_irb120)/launch/recursive_spawn.launch"

name ="number" value="$(arg robots)"/>

</include>

<!-- startup simulated world -->
<include if="$(arg must_start_world)"

<arg

<arg

<arg

<arg

file="$(find gazebo_ros)/launch/empty_world.launch">
unless="$(eval arg('small') or arg('table'))"
name="world_name"

value="$(find multiple_abb_irb120)/worlds/grid.world"/>
if="$(eval arg('small') and not arg('table'))"
name="world_name"

value="$(find multiple_abb_irb120)/worlds/small_grid.world"/>
if="$(arg table)"

name="world_name"

value="$(find multiple_abb_irb120)/worlds/grid_table.world"/>
name="gui" value="true"/>

</include>

; </launch>

D.8.

moveilt__planning execution__gazebo.launch

Este fichero se encarga de inicializar los nodos y parametros para ejecutar Movelt y

RViz con un robot indicado por su parametro robot _name que debera ser modificado

86

segtn el robot que se desea controlar.

1 <launch>

2 <!-- The planning and execution components of MovelIt! configured to run
3 against a Gazebo based, ros_control compatible simulation of the

4 IRB 120. This depends on the corresponding 'abb_irbl120_gazebo' pkg

5 to be installed first. This dependency is not expressed in the
6 MoveIt config pkg manifest, as adding a run_depend there would

7 cause Gazebo to be unconditionally installed, even if the user

8 never intends to use the MovelIt config with it.

9 Instead, installation is left to the user, as a kind of poor-mans
10 optional dependency.

11 Finally, this launch file assumes that gazebo is already running
12 and that the IRB 120 and ros_controllers are loaded.

13 -=>

14

15

16 <!-- By default, we do not start a database (it can be large) -->

17 <arg name="db" default="false" />

18 <!-- Allow user to specify database location -->

19 <arg name="db_path"
20 default="$(find abb_irb120_moveit_config)/default_warehouse_mongo_db"/>

22 <arg name="robot_name" default="robotl"/>

24 <remap from="/joint_trajectory_action"
25 to="/$(arg robot_name)/joint_trajectory_action"/>

27 <group ns="$(arg robot_name)">
28 <rosparam command="load"
29 file="$(find abb_irb120_support)/config/joint_names_irb120_3_58.yaml"/>

31 <include

32 file="$(find multiple_abb_irb120)/launch/planning_context.launch">
33 <arg name="load_robot_description" value="false" />

34 <arg name="robot_name" value="$(arg robot_name)"/>

35 </include>

36

37 <include

38 file="$(find multiple_abb_irb120)/launch/move_group.launch">
39 <arg name="publish monitored_planning_scene" value="true" />
40 <arg name="robot_name" value="$(arg robot_name)"/>

a1 </include>

42

43 <include

44 file="$(find multiple_abb_irb120)/launch/moveit_rviz.launch">
45 <arg name="config" value="true"/>

46 <arg name="robot_name" value="$(arg robot_name)"/>

47 </include>

48 </group>

50 <!-- If database loading was enabled, start mongodb as well -->

51 <include file="$(find

52 abb_irb120_moveit_config)/launch/default_warehouse_db.launch"

53 if="$(arg db)">

54 <arg name="moveit_warehouse_database_path" value="$(arg db_path)"/>
55 </include>

6 </launch>

t

87

D.9. abb_irbi120__3 58.srdf.xacro

Este fichero posee la informacion semantica del robot ABB IRB120, en un formato
xacro, que permite el uso de parametros para definir el nombre del robot. Este utiliza
una macro, que importa desde el fichero abb_irb120 3 58.srdf macro.zacro.

<?xml version="1.0" 7>
<robot name="abb_irb120_3_58" xmlns:xacro="http://ros.org/wiki/xacro">

<xacro:arg name="prefix" default="robotl_ " />
<xacro:arg name="robotns" default="robotl" />

<xacro:include filename="$(find
multiple_abb_irb120)/config/abb_irb120_3_58_macro.srdf.xacro"/>
<xacro:abb_irb120_3_58_g prefix="$(arg prefix)"
robotns="$ (arg robotns)"/>
</robot>

D.10. abb_irb120_3 58.srdf macro.xacro

Este fichero posee una macro que contiene la informacion semantica del robot ABB
IRB120, en un formato xacro, que permite el use de parametros para definir el nombre
del robot. Se pueden observar aqui el nombre del grupo ${robotns} manipulator, y
también las dos poses predefinidas de los robots all _zero y demo__pose.

<?xml version="1.0" 7>

<!--This does not replace URDF, and is not an extension of URDF.
This is a format for representing semantic information about the robot
structure.

A URDF file must exist for this robot as well, where the joints and
the links that are referenced are defined

-=>

<robot xmlns:xacro="http://ros.org/wiki/xacro">

<xacro:macro name="abb_irb120_3_58_g" params="prefix robotns">
<!--GROUPS: Representation of a set of joints and links. This can be
useful for specifying DOF to plan for, defining arms, end effectors,
etc-—->
<!--LINKS: When a link is specified, the parent joint of that link
(if it exists) is automatically included-->
<!--JOINTS: When a joint is specified, the child link of that joint
(which will always exist) is automatically included-->
<!--CHAINS: When a chain is specified, all the links along the chain
(including endpoints) are included in the group. Additionally, all
the joints that are parents to included links are also included.
This means that joints along the chain and the parent joint of the
base link are included in the group-->
<!--SUBGROUPS: Groups can also be formed by referencing to already
defined group names-->
<group name="${robotns}_manipulator">

<chain base_link="base_link" tip_link="tool_link" />

</group>
<!--GROUP STATES: Purpose: Define a named state for a particular

88

group, in terms of joint values. This is useful to define states
like 'folded arms'-->
<group_state name="all_zero" group="${robotns}_manipulator">
<joint name="joint_1" value="0" />
<joint name="joint_2" value="0" />
<joint name="joint_3" value="0" />
<joint name="joint_4" value="0" />
<joint name="joint_5" value="0" />
<joint name="joint_6" value="0" />
</group_state>

<group_state name="demo_pose" group="${robotns} _manipulator">

<joint name="joint_1" value="0" />

<joint name="joint_2" value="0.21" />

<joint name="joint_3" value="-0.1" />

<joint name="joint_4" value="0" />

<joint name="joint_5" value="1.466" />

<joint name="joint_6" value="0" />
</group_state>
<!--VIRTUAL JOINT: Purpose: this element defines a virtual joint
between a robot link and an external frame of reference (considered
fixed with respect to the robot)-->
<virtual_joint name="FixedBase" type="fixed" parent_frame="world"

child_link="base_link" />

<!--DISABLE COLLISIONS: By default it is assumed that any link of
the robot could potentially come into collision with any other link
in the robot. This tag disables collision checking between a specified
pair of links. -->

<disable_collisions linkl="base_link" 1link2="1link_1" reason="Adjacent"/>

<disable_collisions linkl="base_link" 1link2="1link 2" reason="Never"/>

<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions
<disable_collisions

link1="1link 1"
link1="1link 2"
link1="1link 2"
link1="1link 2"
link1="1link 3"
link1="1link 3"
link1="1link 3"
link1="1link 4"
link1="1link 4"
link1="1link 5"

link2="1ink 2"
link2="1ink 3"
link2="1ink 5"
link2="1ink 6"
link2="1ink 4"
link2="1ink 5"
link2="1ink 6"
link2="1ink 5"
link2="1ink 6"
link2="1ink 6"

reason="Adjacent"/>
reason="Adjacent"/>
reason="Never"/>
reason="Never"/>
reason="Adjacent"/>
reason="Never"/>
reason="Never"/>
reason="Adjacent"/>
reason="Default"/>
reason="Adjacent"/>

</xacro:macro>
</robot>

D.11. small_cloth _manipulation.cpp

Este fichero contiene el comportamiento de la simulacion final. Se crean las clases
para controlar los robots y conocer el estado de las esferas, y se ordenan movimientos

a los robots para que cojan y agiten la tela, la estiren y la dejen en el suelo.

/% KKK K ok ok ok K ok ok K K ok oK K K ok ok oK K ok ok K K ok ok oK K K ok ok K K o ok ok K K ok ok ok K ok ok K K ok ok ok K K oK kK K ok ok K K ok kK K
* Software License Agreement (BSD License)

* Copyright (c) 2013, SRI International
* All rights reserved.
*

89

by

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of SRI International nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.
sk ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok sk sk sk ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk k k ok k /

* X X X X X X X X X X X K K X X X X X X X X X ¥ * * *

/* Author: Sachin Chitta, Dave Coleman, Mike Lautman */
// MODIFIED BY: Andrés Otero Garcia, Gonzalo Lépez Nicolds and Maria del
// Rosario Aragiiés Muifloz

#include <moveit/robot_model_loader/robot_model_loader.h>
#include <moveit/planning_interface/planning_interface.h>
#include <moveit/planning_scene/planning_scene.h>

#include <moveit/planning_scene_monitor/planning_scene_monitor.h>

1+ #include <moveit/kinematic_constraints/utils.h>

#include <moveit_msgs/DisplayTrajectory.h>

; #include <moveit_msgs/PlanningScene.h>

#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/planning_scene_interface/planning_scene_interface.h>

#include <moveit_msgs/DisplayRobotState.h>
#include <moveit_msgs/DisplayTrajectory.h>

1+ #include <moveit_msgs/AttachedCollisionObject.h>

#include <moveit_msgs/CollisionObject.h>

#include "gazebo/common/common.hh"
#include "gazebo/gazebo.hh"

#include <iostream> // std::streambuf, std::cout
#include <fstream> // std::ofstream

#include <ros/service_client.h>
#include <ros/ros.h>

90

66 #include "RobotInterface.hpp"
67 #include "GridState.hpp"
68 #include <chrono>

70 #include <signal.h>
71 #include <chrono>

73 #include "utils.hpp"
75 #include <multiple_abb_irb120/GrabPetition.h>

77 #include <ros/console.h>
7¢ #include <tf2/LinearMath/Quaternion.h>

g0 #include "Demo.hpp"

g3 const int NUM_ROBOTS = 2;

g5 using MGIPtr =

86 std::shared_ptr <moveit::planning_interface::MoveGroupInterface>;
s7 using GridStatePtr = GridStatex;

s0 class SmallClothDemo : public Demo {

91 private:

93 ros::NodeHandle n;
94 ros::Publisher grabPub;

96 virtual void doDemo(RobotInterface& robot, int robot_i, int params,
o7 override {

98 if (params != 3){

99 ROS_ERROR("Wrong number of parameters for grid demo");
100 return;

101 }

102 else{

103 va_list args;

104 va_start (args, params) ;

106 GridStatePtr gridState = va_arg(args, GridStatePtr);
107 int sphere_i = va_arg(args, int);
108 int sphere_j = va_arg(args, int);

110 tf2::Quaternion facing_down;
111 multiple_abb_irb120::GrabPetition grabMsg;

112 std_msgs::String robot_name, link_name;

113 std::vector<geometry_msgs::Pose> waypoints (1) ;

114 geometry_msgs::Pose initial, target, sphere_initial;
115 moveit_msgs::RobotTrajectory trajectory;

116 moveit::planning_interface::MoveGroupInterface::Plan my_plan;
117 MGIPtr move_group = robot.getMoveGroup () ;

119 facing_down.setRPY(0, M_PI, 0);
120 move_group->setP1anningTime(10.0);

122 initial = move_group->getCurrentPose () .pose;

91

123 sphere_initial =
124 utils::getAdjustedSpherePose(gridState->getPose (sphere_i, sphere_j),
125 robot.getBasePosition(), facing_down);

127 std::cout << "Robot " << robot_i + 1 << ": " KL
128 "Approaching sphere " << sphere_i << " " << sphere_j << "..."<<
129 std::endl;

131 1117777177771 777777777777777777777
132 // Approach sphere

133 [1771177777777777777777777777777777
134 if (ros::o0k()){

135 do {

136 target =

137 utils::getAdjustedSpherePose(gridState->getPose (sphere_i,
138 sphere_j),

139 robot.getBasePosition(), facing_down);

141 move_group->setPoseTarget (target) ;

142 move_group->move () ;

143 } while(ros::ok() &&

144 lutils::isNear (move_group->getCurrentPose () .pose,

145 utils::getAdjustedSpherePose (gridState->getPose (sphere_i,
146 sphere_j), robot.getBasePosition(), facing_down), 0.03));
147 }

149 move_group->stop () ;

150 std::cout << "Robot " << robot_i + 1 << ": " <<

151 "Approached sphere " << sphere_i << << sphere_j << "." <<
152 std::endl;

154 [1177777777777777777777777717777777
155 // Grab sphere

156 LIT11707777777777777777777777777777
157 link name.data = LINK_NAME;

158 robot_name.data = ROBOT_PREFIX + std::to_string(robot_i + 1);
159 grabMsg.robot_name = robot_name;
160

161 grabMsg.i = sphere_ij;

162 grabMsg. j sphere_j;

163 grabMsg.link_name = link_name;

164 grabMsg.robot_name = robot_name;
165 grabMsg.grab = true;

166

167 // SYNC

168 if (!syncRobots (robot_i, 1)) {

169 va_end (args) ;

170 return;

171 }

173 grabPub.publish(grabMsg) ;
174 gridState->setGrabbed (robot_i, true);

176 std::cout << "Robot " << robot_i + 1 << ": " KL
177 "Grabbed sphere " << sphere_i << " " << sphere_j << "." <K<

178 std::endl;

180 std::this_thread::sleep_for(std::chrono::milliseconds (100));

92

LI711717777770777777777777777777777

// Go up

LI11177777777777777777777777777777

std::cout <<
"Going up...

"Robot " <<

robot_i << ": " <K<

<< std::endl;

//Get a position above the sphere
target = move_group->getCurrentPose () .pose;
target.position.z = sphe

re_initial.position.z + 0.3;

move_group->setPoseTarget (target) ;
move_group->move () ;

waypoints [0]
waypoints [0] .

= move_group->getCurrentPose () . pose;

position.x

= 0;

waypoints [0] . position.z += 0.1;

move_group->computeCartesianPath (waypoints, EEF_STEP,
JUMP_THRESHOLD, trajectory);

my_plan.trajectory_ = tr
move_group->execute (my_plan) ;

std::cout <<

"Robot " <K<

"Finished going up." <<

// SYNC

ajectory;

robot_i + 1 << ": " K<
std::endl;

if (! syncRobots (robot_i, 2)) {
va_end (args) ;

return;

3

std::cout <<

"Robot " <<

"Starting shaking..." <<

1177717711177 7777777777/7/7/77/77777
// Shake object

L1110 000777777777777777777777777

initial = move_group->getCurrentPose () .pose;

waypoints [0]
waypoints [0]

waypoints [0] .
waypoints [0]
waypoints [0]
waypoints [0] .

for (int i =
waypoints [0]

.position.y
.position.z

orientation.
.orientation.
.orientation.
orientation.

0; i < 3; 1
.position.x

robot_i + 1 << ": " <K<
std::endl;

= initial.position.y;
initial.position.z;

x = facing_down.x();
y = facing_down.y();
z = facing_down.z();
w = facing_down.w();

++) {

= initial.position.x + (i % 27 0.2

move_group->computeCartesianPath (waypoints, EEF_STEP,
JUMP_THRESHOLD, trajectory);

my_plan.trajectory_ =
move_group->execute (my_plan);

trajectory;

93

-0.2);

// SYNC

if (! syncRobots(robot_i, 3 + i)) {
va_end (args) ;
return;

}

std::cout << "Robot " << robot_i + 1 << ": " K<
"Finished shaking." << std::endl;

std::this_thread::sleep_for(std::chrono::milliseconds (10));

[171077777777777777777777777777777

//////// Stretch object //////////

L1710 77777777777777777777777777777

std::cout << "Robot " << robot_i + 1 << ": " <<
"Starting stretching..." << std::endl;

waypoints [0] = move_group->getCurrentPose () .pose;
waypoints [0] .position.x = sphere_initial.position.x - 0.1;

move_group->computeCartesianPath (waypoints, EEF_STEP,
JUMP_THRESHOLD, trajectory);

my_plan.trajectory_ = trajectory;
move_group->execute (my_plan);

target = move_group->getCurrentPose () .pose;
target.position.y += robot_i % 2 7 0.2 : -0.2;
std::cout << robot_i << " " << target.position.y << std::endl;

move_group->setPoseTarget (target) ;
move_group->move () ;

std::cout << "Robot " << robot_i + 1 << ": " K<
"Finished stretching." << std::endl;
//SYNC

if (!syncRobots (robot_i, 6)) {
va_end (args) ;
return;

}

L1117 77777777777 77777777777

//////// Go drop object //////////
11177177777777777777777177717777777

std::cout << "Robot " << robot_i + 1 << ": " <

"Starting drop trajectory..." << std::endl;
waypoints [0] .position.x = sphere_initial.position.x - 0.15;
waypoints [0] . position.y = sphere_initial.position.y;
waypoints [0] . position.z = sphere_initial.position.z + 0.2;

target.position.x = sphere_initial.position.x + 0.15;
target.position.y = sphere_initial.position.y;
target.position.z = sphere_initial.position.z;

waypoints.push_back(target) ;

94

JUMP_THRESHOLD, trajectory);
my_plan.trajectory_ = trajectory;
move_group->execute (my_plan);
//8YNC
syncRobots (robot_i, 7);
L1111 0070777777777777777777777777
// Release sphere by both robots and finish demo
[117177707077777777777777777771777777
std::cout << "Robot " << robot_ i + 1 << ": " K<
"Released sphere " << sphere_i << " " << sphere_j << std::endl;
grabMsg.grab = false;
grabPub.publish (grabMsg) ;
gridState->setGrabbed (robot_i, false);
move_group->setNamedTarget (ALL_ZERO_POSE_NAME) ;
move_group->move () ;
va_end (args) ;
}
}
public:
SmallClothDemo (int n_robots) : Demo(n_robots) {
grabPub =
n.advertise<multiple_abb_irb120::GrabPetition>("/grid/grab_petitions",
100) ;
}
void execute(RobotInterface& robot, int robot_i, GridState& gridState,
int sphere_i, int sphere_j){
doDemo (robot, robot_i, 3, &gridState, sphere_i, sphere_j);
}

5 ks

move_group->computeCartesianPath(waypoints, EEF_STEP,

int main(int argc, char** argv){

// Setup

// "7

std::string name_ = "robots_controller";
ros::init(argc, argv, name_);

ros: :NodeHandle n;

ros::AsyncSpinner spinner (1);

spinner.start () ;

geometry_msgs::Point robot_bases[2];
for(int i = 0; i < 2; i++){
robot_bases[i].x = 0;

robot_bases[i].y

i g

95

robot_bases[i]l.z = 0;

3

RobotInterface robots[2] = {RobotInterface(robot_bases[0],
"manipulator", "robotl"), RobotInterface(robot_bases[1],
"manipulator", "robot2")};

std::vector<std::shared_ptr
<moveit::planning_interface::PlanningScenelInterface> >
planning_scene_interfaces;

planning_scene_interfaces.push_back(

std: :make_shared<

moveit::planning_interface::PlanningSceneInterface>("robotl"));

planning_scene_interfaces.push_back(

std: :make_shared<

moveit::planning_interface::PlanningScenelnterface>("robot2"));

ros::Rate loop_rate(10);

// Start the Grid

[/ TTTTTTooToooossssssssmaes

std::vector<double> size(2);
ros::param::get("/grid/width", size[0]);
ros::param::get("/grid/height", size[1]);
std::vector<int> resolution;
ros::param::get("/grid/resolution", resolution);
std::vector<double> offset;
ros::param::get("/grid/offset", offset);

float sphere_radius = 0.025;
ros::param::get("/grid/sphere_radius", sphere_radius);

{0, resolution([0] - 1};
{0, 0};

const int sphere_i[2]
const int sphere_j[2]

GridState gridState(size, resolution, offset, sphere_radius,
planning_scene_interfaces, robots, 2);

ros::Subscriber sub = n.subscribe("/gazebo/link_states", 1000,
&GridState::updateCallback, &gridState);

while(!gridState.isReady()){
std::this_thread::sleep_for(std::chrono::milliseconds (100));
}
SmallClothDemo demo (NUM_ROBOTS);
std::thread t1(&SmallClothDemo::execute, &demo, std::ref(robots[1]),
1, std::ref(gridState), sphere_i[1], sphere_j[1]);
demo .execute (robots[0], O, gridState, sphere_i[0], sphere_j[0]);
t1.join();
if (ros::0k()){
ros::shutdown () ;

3

std::cout << "Shut down" << std::endl;

96

413

414 }

return O;

97

98

Anexos E

Recomendaciones para la
modificacion del cédigo

Este apéndice estd dirigido a cualquiera que desee realizar modificaciones a los
ficheros desarrollados para este Trabajo, con una serie de pautas que puedan ayudarle

a cumplir su objetivo:

— No modifique directamente los ficheros de ABB. Esto puede provocar
incompatibilidades en futuras actualizaciones o con el resto de paquetes de
la empresa. Siempre que pueda, mantenga éstos intactos y dupliquelos si su

proposito lo requiere.

— Si desea realizar modificaciones al mundo de la simulacion, vea el ejemplo provisto

en la Seccién B.4 y no olvide mantener la definicién del plugin.

— Tenga cuidado con los espacios de nombre, o namespaces, pues la estructura

puede ser delicada por las limitaciones de ROS 1.

— Si desea crear mensajes o servicios nuevos, siga el tutorial [99] y preste mucha
atencion a la estructura del fichero CMakeLists.txt, pues es el que garantizara la

correcta compilacion.

— Si usted utiliza el entorno de desarrollo Visual Studio Code, podra obtener
una extension para ROS [100]. En la vista general de la misma podra observar
distintos tutoriales, pero es particularmente interesante la forma para depurar
nodos de ROS desarrollados en C++ o Python. Deberd seguir los tutoriales, pero
es importante saber que es necesario realizar una compilacién con simbolos de
depuracion si desea colocar breakpoints en su codigo. Para ello debe utilizar el
siguiente comando para compilacion con catkin:
catkin_make -DCMAKE _BUILD_TYPE=Debug

99

o colocar la siguiente linea en su CMakeLists.txt para compilacién con rosbuild:
set (ROS_BUILD_TYPE Debug)

— Si desea utilizar otro modelo de robots, le recomiendo modificar los ficheros de
la carpeta wurdf, basandose en los ficheros provistos por el fabricante del robot.
También debera modificar los archivos srdf y debera adaptar los ficheros launch

para que utilicen los nuevos archivos.

100

	Introducción y objetivos
	Objetivos
	Organización de esta Memoria

	Herramientas
	Robot Operating System (ROS™)
	Intercambio de información en ROS

	Gazebo
	MoveIt Motion Planning Framework

	Configuración del entorno multi-robot
	Paquetes de ROS para ABB IRB 120
	Puesta en marcha de un robot en Gazebo y MoveIt

	Paquete multiple_abb_irb120
	Puesta en marcha de dos robots en Gazebo
	Puesta en marcha de MoveIt para ambos robots
	Conexión a los robots desde C++

	Creación del objeto deformable
	Creación por medio de servicios ROS
	Creación por medio de un plugin de Gazebo
	Creación del modelo con un WorldPlugin

	Simulación del objeto deformable
	Modelo Mass-Spring-Damping
	Estudio de implementación en Matlab
	Simulación por medio de servicios ROS
	Simulación por plugins de Gazebo

	Interacción Robot - Objeto deformable
	Obtención de la posición del objeto deformable
	Planificación de trayectorias con evitación de colisiones
	Petición de agarre
	Obtención de la posición de los robots

	Experimentos realizados y resultados
	Creación de robots en la simulación
	Movimiento de los robots en entorno multi-robot
	Creación y movimiento del objeto deformable
	Manipulación del objeto por robots
	Simulación Final

	Conclusiones y trabajo futuro
	Valoración de los resultados
	Trabajo futuro

	Bibliografía
	Anexos
	Organización de los ficheros desarrollados
	Instalación y Ejecución de los programas desarrollados
	Instalación
	Configuración inicial
	Ejecución
	Ejecución de trayectorias
	robots_moving_demo
	robots_waving_demo
	grid_demo
	test_grid
	Manipulación manual del objeto deformable
	small_grid_manipulation

	Realización de pruebas con una mesa

	Algunos problemas encontrados
	Espacios de nombres
	Problemas en los archivos de configuración de Gazebo
	Problemas en los archivos de configuración de MoveIt
	Utilización de parámetros en ficheros yaml

	API de Gazebo

	Fragmentos de código interesantes
	grid.config
	small_grid.config
	GrabPetition.msg
	recursive_spawn.launch
	spawn_irb120.launch
	multiple_spawner_gazebo_script.bash
	setup_gazebo.launch
	moveit_planning_execution_gazebo.launch
	abb_irb120_3_58.srdf.xacro
	abb_irb120_3_58.srdf_macro.xacro
	small_cloth_manipulation.cpp

	Recomendaciones para la modificación del código

