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Resumen

El Electrocardiograma es una de las herramientas mas sencillas y utilizadas en el
diagnostico de patologias cardiacas. Esta es una prueba no invasiva que registra las
sefiales eléctricas del miocardio mediante electrodos colocados en la superficie del torso
y las extremidades, y permite observar algunos aspectos del funcionamiento del corazon.

Este trabajo de fin de grado aborda el diagndstico automatico de patologias cardiacas
mediante el ECG y el uso de redes neuronales. Para ello se ha implementado y evaluado
un sistema de procesado del ECG y un modelo de red neuronal de clasificacion.

En primer lugar, nos hemos centrado en como extraer informacion del ECG y como
representarla de forma apropiada para una red neuronal. En este trabajo se ha optado por
una representacion grafica en forma de imagen. De este modo podremos usar estas
imagenes para entrenar una Red Neuronal que sea capaz de dar un diagndstico cuando se
le presente un ECG procesado de esta forma. En segundo lugar, se han disefiado y
utilizado redes neuronales convolucionales para la clasificacion de los ECGs. Como
datos, se han tomado senales electrocardiograficas de diferentes bases de datos
internacionales etiquetadas por expertos segun distintos tipos de patologias.

Y finalmente, se ha evaluado la efectividad del procesado en cuanto a la extraccion de
caracteristicas del ECG en cada patologia, asi como la precision del diagndstico
automatico.

Como conclusion del trabajo, podemos decir que el procesado de los ECG ha conseguido
extraer con €éxito las caracteristicas de las patologias escogidas, gracias a las cuales se ha
podido llevar a cabo una clasificacion satisfactoria de las patologias con una red de tipo
convolucional.
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CAPITULO 1. INTRODUCCION

1.1 Motivacidon

Las patologias cardiacas representan una de las principales causas de mortalidad en la
poblacion mundial, siendo en 2020 la primera causa de muerte en el mundo la cardiopatia
isquémica [1]. Adicionalmente, estas afecciones habitualmente pueden causar otras
condiciones mortales, haciendo que su impacto se refleje en millones de personas en todo
el mundo. Por este motivo, un gran nimero de profesionales se encuentran dedicados a
la prevenciony tratamiento de estas patologias cardiacas; siendo un aspecto esencial para
ello un diagnostico temprano y preciso de la condicion de cada paciente.

Este trabajo surge del interés personal del autor de relacionar e integrar conocimientos de
procesado de sefial con la resolucion de problemas del ambito médico y de las sefiales
biomédicas. Dada la naturaleza del mismo, este agrupa aspectos de varias disciplinas
como la Fisiologia, las Sefiales Biomédicas y suprocesado, y el disefio y manejo de Redes
Neuronales. Este caracter interdisciplinar ha supuesto uno de los retos mas importantes
en la realizacion de este trabajo.

1.2 Fundamentos teodricos del corazon. Anatomia Basicay Sistema de

Conduccion.

El corazdén es un 6rgano que actua como una bomba, recibiendo sangre oxigenada y
enviandola a las células del resto del cuerpo. Tiene dos tipos de cavidades, llamadas
auriculas y ventriculos. Las auriculas, situadas en la parte superior del corazon se
encargan de dejar entrar la sangre en el corazén y de hacer pasar esta sangre a los
ventriculos. Posteriormente, los ventriculos la bombean al resto del cuerpo.

Todo este movimiento de la sangre entre auriculas, ventriculos, y después el resto del
cuerpo, es posible gracias a la contraccion de las fibras musculares que conforman el
corazon, llamadas miocitos. En situacion de reposo los miocitos presentan una diferencia
de potencial negativa entre el interiory el exterior de la célula. Cuando estas reciben una
estimulacion eléctrica, entran iones positivos en la célula gracias a la apertura de un
conjunto de canales i6nicos. Este fenomeno se denomina despolarizaciény provoca que
las células del miocardio se contraigan. Dicha despolarizacion se propaga como una onda
entre células vecinas, cambiando su potencial de acciéon y provocando la contraccidn
sincronizada del miocardio [2].

El conjunto de procesos ordenados que tienen lugar en el transcurso de un latido es el
siguiente:

Primero se genera un impulso eléctrico de activacion en la auricula derecha en una region
denominada nodo sino-auricular (SA), cuya frecuencia de activacion estda modulada por
el sistema nervioso autonomo. Este impulso eléctrico se va propagando entre células
musculares vecinas estimulando ambas auriculas y provocando su contraccion. Esta
contraccion hace que la sangre pase de las auriculas a los ventriculos a través de las
valvulas auriculoventriculares. Tras la contraccion, las células de las auriculas se
polarizan de nuevo volviendo a su estado de reposo y cerrandose las valvulas
auriculoventriculares.



Sin embargo, la sefial eléctricano se propaga directamente a los ventriculos, debido a que
entre auriculas y ventriculos existe un tejido aislante que hace que la propagacion solo
sea posible en una zona concreta. Esta zona es el nodo auriculo-ventricular (AV)y en ¢l
el impulso eléctrico se propaga lentamente, sufriendo un retardo de unos 0.1 segundos
antes de pasar a los ventriculos. A continuacion, el estimulo eléctrico se propaga por unas
células especializadas para la conduccion y que conforman un camino llamado Haz de
His. El Haz de His se divide en dos ramas, izquierda y derecha, que terminan en las
llamadas células de Purkinje, las cuales activan las células del miocardio y provocan la
contraccion simultdnea de los ventriculos, bombeando la sangre hacia el exterior del
corazon [2].

Frontal plane
through heart

Arch of aorta

Bachman’s bundle
Sinoatrial
(SA) node
Anterior internodal
Atrioventricular
(AV) node

Middle internodal
Posterior intemnodal

Left atrium

Atrioventricular (AV)
bundle (bundle of His)

Left ventricle

Right and left bundle
branches

Right atrium
Right ventricle

Purkinje fibers

Anterior view of frontal section

Figura 1.2.1: Estructura de conduccion del corazon.

Imagen obtenida de: https.//courses.lumenlearning.com/suny-ap 2/chapter/cardiac-muscle-and-electrical-
activity/

Posteriormente la relajacion de auriculas y ventriculos también se debe a una corriente de
repolarizacion, que se produce cuando el potencial de accion (la diferencia de potencial
entre el interior y el exterior de la célula) vuelve a los valores de reposo (negativos). Tras
un periodo refractario, las células son capaces de despolarizarse nuevamente, en un nuevo
ciclo cardiaco.

Dado que el funcionamiento del corazon estd guiado por la propagacion de impulsos
eléctricos que generan corrientes, la medicion de esta actividad eléctrica nos permite
comprender el funcionamiento del corazon, tanto en condiciones fisioldgicas como en
condiciones andmalas, es decir, en presencia de patologias cardiacas.

Para poder medir esta actividad de manera no invasiva, se colocan electrodos sobre el
torso o las extremidades del paciente, de manera que cuando una onda de despolarizacion
(contracciodn, el potencial de accion de células pasa a ser positivo) se acercaa un electrodo
positivo se registra una deflexion positiva en el ECG. Con las sefales de repolarizacion
tendriamos el caso andlogo, observando una deflexioén negativaen el ECG [2].


https://courses.lumenlearning.com/suny-ap2/chapter/cardiac-muscle-and-electrical-activity/
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1.3 La sefial ECG

1.3.1 Formaciény partes del ECG

En circunstancias no patologicas, la sefial ECG durante un ciclo cardiaco completo
(Figura 1.3.2) estd compuesta por varias ondas. La llamada onda P registra el impulso
eléctrico que provoca la contraccién auricular y, por tanto, el paso de la sangre de las
auriculas a los ventriculos. A la onda P le sigue un conjunto de ondas que, usualmente,
se estudian conjuntamente. Este es el complejo QRS, compuesto por las ondas Q, Ry S,
que es reflejo de la propagacion del impulso eléctrico que provoca la contraccion de los
ventriculos. Este complejo es la componente del ECG que presenta mayores frecuencias
y energia, ya que la contraccion ventricular debe ser rdpida y fuerte, lo que facilita su
identificacion automaticaen la sefial ECG.

Tras la contraccion ventricular existe una pausa que queda representada en el ECG como
una parte plana de la linea basal l1lamada segmento ST. Siguiendo a esta pausa aparece la
onda T, que es la onda producida por la repolarizacion de las células de los ventriculos.

Cabe destacar aqui que las auriculas también se repolarizan, volviendo al potencial de
reposo, y por tanto generan una onda eléctricaasociadaa la repolarizacion de las células
del miocardio. Sin embargo, esta onda de repolarizacion auricular suele coincidir en el
tiempo con la contraccion ventricular, por lo que en el ECG queda enmascarada por el
complejo QRS.
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Figura 1.3.1: Formaciondel ECG a partir de la propagacion del potencial de accion.

Imagen obtenida de: https.//thoracickey.com/2-the-ecg-curve-what-is-it-and-how-does-it-originate/
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Figura 1.3.2: Conjunto de ondas que conforman el ECG.

Imagen obtenida de: https.//medicinageneraluniversal.blogspot.com/2017/01/que-es-un-
electrocardiograma.html

1.3.2 Registro del ECG. Tipos de derivaciones

Para captar la senal electrocardiografica anteriormente descrita, se colocan electrodos
sobre la piel del sujeto. La colocacion de estos electrodos define distintas proyecciones
de la misma actividad cardiaca que se denominan derivaciones.

El sistema de derivaciones mas utilizado es el de “12 derivaciones estandar”, que es el
que utilizan las sefiales usadas en ese trabajo. Como su nombre indica, se cuenta con 12
sefiales diferentes, obtenidas a partir de 12 combinaciones diferentes de 10 electrodos [2].
Estas derivaciones se pueden dividir en derivaciones frontales y derivaciones
precordiales. En las derivaciones frontales se colocan electrodos en los brazos izquierdo
y derecho y en la pierna izquierda, formando un tridngulo (denominado tridngulo de
Einthoven) (Figura 1.3.2.1). Cada lado de este triangulo conforma una derivacion (I, 11,
II), obteniéndose el ECG como la diferencia de potencial entre cada par de electrodos.

Otras derivaciones frontales sonlas AVR, AVL y AVF. En estas derivaciones se colocan
electrodos en brazos y piernas y se calcula la diferencia de potencial entre uno de ellos
(considerado de polaridad positiva) y un punto comun calculado como el promedio de los
tres electrodos. En la AVR es el brazo derecho, en la AVL el izquierdo, y en el AVF el
pie izquierdo. La orientacion de las derivaciones AVR, AVL y AVF corresponde a la
direccion desde el centro del triangulo hasta el electrodo considerado positivo en cada
caso. Al tener una orientacion espacial diferente a las I, I y III, permiten observar la
actividad cardiaca desde otras tres direcciones distintas.

Dicho de otro modo, cada derivacién frontal toma un registro desde distinto angulo, por
lo que cada derivacion puede verse como una proyeccion diferente de la misma actividad
cardiaca.


https://medicinageneraluniversal.blogspot.com/2017/01/que-es-un-electrocardiograma.html
https://medicinageneraluniversal.blogspot.com/2017/01/que-es-un-electrocardiograma.html
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Figura 1.3.2.1: Posicion de los electrodos para captar las derivaciones frontales.

Imagen obtenida de: https://www.cablesandsensors.com/pages/l 2-lead-ecg-placement-guide-with-
illustrations

Por otro lado, para obtener las derivaciones precordiales se colocan electrodos positivos
en 6 puntos distintos del torax. Recordemos que el hecho de que estos electrodos sean
positivos hara que cualquier onda de despolarizacion que avance hacia ellos provoque
una deflexion positivaen el ECG. Se puede pensar en las derivaciones precordiales como
proyecciones horizontales que se cruzan en el nédulo AV, considerando que la polaridad
negativa de las mismas estd en la parte posterior del sujeto. Las derivaciones precordiales
son V1, V2, V3, V4, V5 y Ve.

o o®

Figura 1.3.2.2: Posicion de los electrodos para captar las derivaciones precordiales.

Imagen obtenida de: https://www.cablesandsensors.com/pages/l 2-lead-ecg-placement-guide-with-
illustrations

Estas 12 derivaciones conforman 12 proyecciones simultaneas diferentes del mismo
fendmeno cardiaco, por lo que entre distintas derivaciones tenemos tanto informacion
complementaria como redundante.


https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations
https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations
https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations
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Figura 1.3.2.3: Proyecciones de la actividad cardiaca en las distintas derivaciones.

Imagen obtenida de: https://www.cablesandsensors.com/pages/l 2-lead-ecg-placement-guide-with-
illustrations

1.3.3 El ECG como herramienta de diagndstico

Debido a que el ECG recoge toda la actividad eléctrica que modela el funcionamiento del
corazon, es posible detectar patologias en un paciente observando ciertas caracteristicas
o patrones en su ECG. Algunos aspectos que pueden indicar la presencia de patologias
cardiacas son la amplitud, duracion y forma de las ondas que conforman el ECG en las
diferentes derivaciones, o el ritmo de aparicion y la separacion entre las mismas.

Cuando la forma de las ondas es normal pero su ritmo de aparicidon no lo es, pueden existir
patologias relacionadas con el ritmo cardiaco como la taquicardia (ritmo superior al
normal) o la bradicardia (ritmo inferior al normal)'. Entre las patologias que tienen que
ver con alteraciones del ritmo cardiaco también podemos encontrar la Arritmia sinusal,
el marcapaso migratorio? o la fibrilacion auricular.

Estas variaciones en el ritmo cardiaco pueden ser consecuencia de problemas de
conduccion en el mecanismo de contraccion del corazéon. Entre los problemas de
conduccion que puede sufrir un corazén podemos destacar desde alteraciones de la
activacion del nodo SA, hasta focos ectopicos de activacion?, o bloqueos de las ramas de
conduccidn de impulsos eléctricos. Estos problemas de conduccion suelen manifestarse
en el ECG alterando la forma de las ondas que lo componen. Algunas de las patologias
mas comunes relacionadas con problemas de conduccion son los bloqueos, ya sean
sinusales, auriculoventriculares, de rama, etc.

U Un ritmo cardiaco fisiologicamente normal estd, en reposo, entre 60y 100 latidos por minuto [2].

2 El marcapaso migratorio es un ritmo variable debido al cambio del punto de activacionde las células
que inician el latido. En estos casos el proceso de contraccion auricular es irregular, traduciéndose en
cambios de forma de la onda P.

3 Un foco ectdpico es una célula o conjunto de células que inician un impulso eléctrico independiente del
nodo SA. Eso puede provocar la aparicion de ondas anormales antes de lo esperado en el ECG.
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1.3.4 Degradaciones comunes en la sefial ECG

Debido al modo de captacion de las sefiales eléctricas, el electrocardiograma suele estar
afectado por varias fuentes de ruido e interferencias. Debido al movimiento ligero de los
electrodos, por movimiento del paciente o simple respiracion, se producen variaciones de
la impedancia en la union de los electrodos con la piel, provocando la aparicion de una
linea de base sobre la que esta la sefial del ECG. En condiciones normales 'y de reposo
esta variacion suele tener frecuencias menores a 1 Hz, aunque puede ser mayor en
mediciones especificas como las pruebas de esfuerzo, o los registros Holter.

Por otro lado, puede existir ruido debido a la actividad de otros musculos cercanos, es
decir, ruido electromiografico (EMG), y su presencia en el ECG depende del movimiento
y nivel de esfuerzo del sujeto (nivel de contraccion muscular) y del equipo médico
utilizado para su registro, que también puede provocar la aparicion de ruido electrénico.

Otra interferencia comun es la interferencia por acoplamiento eléctrico del equipo médico
(PLI, Power-Line Interference noise). En este ultimo caso, los cables que llevan las
sefiales del ECG desde los electrodos hasta el equipo médico de grabacion pueden sufrir
interferencias electromagnéticas del entorno. Esto puede ser especialmente problematico
debido a que las frecuencias de red (50 Hz - 60 Hz) estan dentro de la banda de la senal
ECG util [3].

Por todo ello, uno de los primeros pasos del procesado del ECG que deberemos llevar a
cabo es realizar filtrados con el fin de limpiar la sefial al maximo de estos ruidos
interferentes, y eliminar en lo posible la linea de base que presenten las sefales del ECG

[4].
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1.4 Introduccion al uso de redes neuronales

1.4.1 Estado del arte

La historia de las redes neuronales comienza en 1958 con la creacion por parte de F.
Rosenblatt del Perceptron [5]. Estas estructuras tienen entradas y salidas binarias, y por
si mismas, solo sirven para modelar decisiones binarias sencillas, o funciones l6gicas con
AND o OR.

Posteriormente, la composicion de redes multicapa a partir de unidades basicas, (MLP,
Multilayer Perceptron) mediante el algoritmo FeedForward (conectar salida de unas
capas con entrada de otras) o el algoritmo de back-propagation [6] para entrenar de forma
eficiente, permitieron desarrollar la rama del aprendizaje automatico basada en redes
neuronales, desarrollando la base tedrica de las redes neuronales profundas actuales.

Unos afios después Yann LeCun crearia la primera red neuronal convolucional (CNN,
Convolutional Neural Network) [7], usdndola para el reconocimiento de caracteres
manuscritos, y sentando las bases de una de las familias de modelos con més éxito en la
ultima década. Este tipo de redes son una herramienta muy potente para el tratamiento de
datos en forma de imagenes y por ello ha sido la eleccion en cuanto a arquitectura para
este trabajo.

En la actualidad estas técnicas han evolucionado, dando lugar a redes neuronales de gran
complejidad y nimero de pardmetros denominadas redes profundas (Deep Learning [8]);
e incluso mas recientemente a arquitecturas novedosas mas alld de las redes
convolucionales [9], algunas de ellas capaces de generar imagenes muy realistas casi
indistinguibles de imagenes reales [10].

1.4.2 Fundamentos de redes neuronales

Una red neuronal pretende resolver un problema tomando valores como entrada y
generando una salida a partir de estos. Los problemas mas habituales suelen ser de
regresion o de clasificacion. En cualquier caso, lared debe ser capaz de procesar los datos
de entrada y, mediante un disefio adecuado de sus dimensiones, generar una salida
satisfactoria.

Para hacerlo, estas redes estan formadas por diferentes capas, las cuales procesan los
datos de salida de la anterior capa y sirven de entrada para la siguiente. Después de cada
capa se aplica una funcion no lineal llamada funcion de activacion. Esto permite que la
red pueda modelar fendmenos mas complejos y se puede conseguir usando una gran
variedad de funciones de activacion.

Las capas pueden procesar los datos de diversas formas: convolucional, lineal...;y cada
una tiene unos parametros internos cuyos valores se ajustaran durante el entrenamiento.

El entrenamiento se llevaa cabo introduciendo datos de ejemplo en la red y comparando
su salida con la salida deseada mediante una funcion de coste que mide el grado de ajuste
entre estos dos valores. Posteriormente, se aplica el algoritmo de back-propagation, que
calcula de forma eficiente el gradiente de la funcion de coste, y nos indica como
deberiamos modificar cada parametro de la red para que el coste en la salida sea menor.
Normalmente esto se hace de forma iterativa, mediante una actualizacion de los valores
sucesiva, es decir, se realizauna optimizacion de tipo gradiente descendiente [6].
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En las técnicas llamas SGD (Stochastic Gradient Descent) cada vez que realizamos esta
operacion de evaluacion del coste, calculo del gradiente y actualizacidn de los pardmetros,
utilizamos un subconjunto de datos diferente. De esta manera, y entrenando con muchos
ejemplos distintos, idealmente podemos hacer que los parametros de las capas que
componen la red converjan a los valores 0ptimos que hacen que la red en su conjunto
modele el comportamiento deseado, es decir, que aprenda a generalizar incluso en datos
no vistos en el proceso de ajuste o entrenamiento.

Teniendo en cuenta la gran cantidad de ejemplos que puede necesitar una red para
entrenarse, una practica habitual es utilizar para las actualizaciones de gradiente un
conjunto pequefio (varias decenas) de ejemplos de manera simultanea. Este bloque de
ejemplos se denominabatch (o lote) y es muy empleado para optimizar el entrenamiento
y mejorar su estabilidad y velocidad de convergencia.

Las operaciones a realizar para calcular el gradiente y actualizar los pesos pueden verse
como operaciones matriciales por lo que, computacionalmente, son tareas que se pueden
paralelizar y realizar simultdneamente. Por este motivo se suelen usar GPUs durante el
entrenamiento de redes neuronales, puesto que su arquitectura (enfocada al procesado de
imagenes) estd optimizada para el calculo matricial en paralelo, permitiendo liberar ciclos
de CPU para otras tareas.

Otros parametros que se pueden elegir en el entrenamiento son el tipo de funcion de coste,
que define como se calcula el parecido entre la salida real y la salida deseada; el
optimizador, que gestiona como se actualizan los pesos y cuanto se avanza cada vez en
la direccion del gradiente (learning rate, Ir); y los ciclos de entrenamiento o epochs, que
definen cuantas veces servimos a la red el conjunto completo de datos de entrenamiento.
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1.5 Objetivos del trabajo

Con la realizacion de este trabajo se pretende estudiar la sefial electrocardiograficay su
relacion con distintas patologias del corazon, para después extraer en forma de imagenes
las caracteristicas propias de cada patologia, de forma que una red neuronal sea capaz de
aprender estar caracteristicas y ofrecer una clasificacion de patologias satisfactoria.

Para conseguir esto se ha perseguido completar las siguientes metas parciales:

e Disefiar un sistema de procesado de sefales que genere imagenes que representen
las caracteristicas propias de un ECG concreto.

e Disefiar una red neuronal convolucional que tome como entrada estas imagenes y
pueda clasificarlos ECG segun las patologias que presentan.

e Entrenary validar esta red para distintas variaciones sobre un disefio basico.

e Estudiar posibles mejoras para el sistemay futuras aplicaciones.

1.6 Organizacion de la memoria

El planteamiento de la estructura de la memoria coincide con el flujo de los datos a lo
largo del sistema que se ha disefiado. Por esto, tras el resumen y la introduccion previa,
se van a ir tratando los siguientes puntos.

En primer lugar, los aspectos relativos al procesado de las senales ECG se expondran en
el Capitulo 2. En €l se explicaran los pasos seguidos para el remuestreo, filtrado y demas
procesado requerido para extraer la informacioén del ECG y plasmarlaen imagenes.

Después, el Capitulo 3 describira el disefio de la red neuronal y su entrenamiento. Aqui
se explicara la metodologiay las decisiones de disefio tomadas en este &mbito.

Seguidamente, el Capitulo 4 abordara la discusion los resultados obtenidos. Se trataran
las condiciones de las pruebas realizadas, asi como su efecto en los resultados finales.

Y, por ultimo, el Capitulo 5 cerrard la memoria con las conclusiones a extraer, asi como
posibles ampliaciones o lineas futuras de trabajo.

13



CAPITULO 2. MATERIALES Y METODOS

2.1 Datos de estudio. PhysioNet/ Computing in Cardiology Challenge

Las sefiales ECG sobre las que trabajaremos proceden de una serie de datasets
internacionales, recopilados por la entidad PhysioNet para organizar el Computing in
Cardiology Challenge 2020. En este concurso se abordaba un problema de clasificacion
de ECG por patologias, teniendo datos de ECG muy diferentes para el entrenamiento en
cuanto a frecuencia de muestreo, duracion, localizacion geografica, etc. [11].

Una tabla con las caracteristicas de los distintos datasets puede verse a continuacion
(Tabla2.1.1).

Frecuencia de

Dataset Grabaciones Media (seg) (anos) (masculino/femenino) :\:I-I:)estreo

Duracion Edad media Sexo

CPSC 15.9 60.2 54% [ 46%
CPSC-2 3453 15.9 63.7 53% / 47% 500

INCART 72 1800.0 56.0 54% [ 46% 257

516 110.8 56.3 73% / 27% 1000
PTB-XL 21837 10.0 59.8 52% / 48% 500

G12EC 10344 10.0 60.5 54% [ 46% 500

Tabla 2.1.1: Grabaciones de los distintos datasets utilizados en el trabajo.

En nuestro caso, se hizo uso de los datasets CPS, CPS-2, INCART, PTB, PTB-XL y
G12EC. La premisa original del concurso era lograr clasificar con el mayor indice de
acierto un grupo de 27 patologias concretas. Sin embargo, en los datasets hay datos de
hasta 111 patologias diferentes.

Todos los datos estdn en formato WFDB y cada grabacion tiene un fichero binario Matlab
v4 para los datos de la sefial, y un fichero de texto con formato WFDB de cabecera, que
describe las caracteristicas de la grabacion y los datos del paciente, incluyendo el
diagnostico.

Estos ECGs son los datos que se procesardn para extraer sus caracteristicas y plasmarlas
en forma de iméagenes, que posteriormente puedan servir de entrada a una red neuronal.
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2.2 Tratamiento del ECG para extraccion de caracteristicas

Los ficheros binarios con la sefial de cada ECG estaban almacenados en forma de matriz,
donde cada fila contenia la sefial grabada en cada derivacion.

Estas grabaciones presentan (o pueden presentar) alguna o varias de las degradaciones
que hemos explicado al hablar del ECG. Por ello antes de hacer ninguna extraccion de
caracteristicas es preciso limpiar la sefial.

A modo de ejemplo iremos siguiendo el procesado de las sefiales fijdndonos en las
derivaciones I, AVF y V5. Se han escogido estas tres derivaciones para ilustrar el
procesado de los ECG debido a que cada una pertenece a un plano de proyeccion distinto
de la actividad cardiaca. I proyecta de brazo derecho a izquierdo, AVF proyecta hacia los
pies y V5 proyectaen horizontal desde la espalda hacia el frente.

2.2.1 Lectura, remuestreo v filtrado de valores no fisioldgicos del ECG

En primer lugar, cargaremos el fichero .mat que contiene esta matriz, y leeremos su
fichero de encabezado .hea. Después convertiremos su aplitud a uV y comprobaremos
que su frecuencia de muestreo es de 500 Hz.

Por simplicidad se ha decidido trabajar con las sefales muestreadas a 5S00Hz, ya que es
una frecuencia suficiente para capturar la informacion relevante, y es conveniente que la
red tenga a la entrada sefales con una misma frecuencia de muestreo. Esto supone que se
deberan remuestrear todas aquellas sefiales que esténa 275 Hz o a 1000 Hz.

Partimos de las senales ECG originales (Figura 2.2.1).

Fichero original AOO10.mat

Derivacion |
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Figura 2.2.1.1: Derivaciones I, AVFy V5 originales.
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En el ejemplo, las senales originales estaban muestreadas a 500 Hz, pero entre los ficheros
utilizados podemos encontrar sefiales muestreadas tambiéna 275 o 1000 Hz, realizandose
en estos casos un remuestreo.

Después de esto, analizaremos si la sefal presenta valores de amplitud no fisiologicos.
Estos artefactos pueden ser causados por un error de codificacion de la sefial o del equipo
de medida de la misma y en ocasiones pueden ser eliminados al diezmar la sefial en el
remuestreo (cuando pasamos de 1000 Hz a 500 Hz). Sin embargo, estos errores pueden
persistir en las sefiales tras el remuestreo, generandose picos de amplitud de unas pocas
muestras. Para detectar estos casos comprobaremos en cada derivacion si la diferencia de
amplitud maxima entre muestras es superior a 5000 uV. Este es un limite generoso, ya
que la méxima variacioén de amplitud fisiologica en un ECG esta entre los 2,5 mV y los 3
mV [12].

En el caso de detectar variaciones que superen este rango dindmico tan amplio en una
derivacion, se aplica un filtro de mediana de 5 muestras a toda la sefial. El filtro de
mediana ha sido empleado en casos similares a este en los que se desea eliminar arte factos
poco frecuentes de la senal. Esto genera una version suavizada de la sefial y se ha
demostrado su superioridad frente a un filtro lineal a la hora de preprocesar otras sefiales
biologicas como los potenciales evocados del cerebro (ERPs) [13].

2.2.2 Primera delineaciony eliminacion de linea de base

Una vez eliminadas la mayoria de las componentes no fisiologicas, es necesario localizar
los latidos y las ondas correspondientes a cada fase de los mismos. Para ello, se realiza
una primera delineacion de cada una de las derivaciones.

La delineacion es el proceso por el cual, mediante algoritmos y procesado de sefial, se
obtienen las localizaciones de cada tipo de evento en el ECG. Es decir, es el proceso que
generan unas anotaciones indicando donde esta cada onda del ECG.

En nuestro caso haremos uso de un delineador desarrollado en el grupo de investigacion
y descritoen [14], llamado Wavedet. Wavedet es un software basado en la transformada
wavelet que permite analizar la sefial en distintas escalas para detectar en ellas las
diferentes componentes de ECG. Pudiendo trabajar con sefiales a 250 Hz, 500 Hz y
1000Hz. Implementa la deteccion de QRS como primer paso antes de detectar el resto de
ondas, sus inicios y finales, pero también permite el uso de anotacion externa de QRS (en
este modo, le indicamos donde estan los QRS, y el delineador intenta encontrar el resto
de ondas de cada latido). Delinearemos cada una de las 12 derivaciones obteniendo la
posicion de los eventos mas importantes de cada sefial ECG.

Con la posicion de los QRS podemos hacer uso de una funcion para limpiar la variacion
de la linea de base de las derivaciones (Figura 2.2.2.1). Era preciso delinear el ECG
previamente debido a que esta funcién toma como pardmetro la posicion temporal de los
intervalos PR, es decir, el tramo entre el final de la onda P y el inicio del complejo QRS.
En este punto puede ocurrir que el delineador no sea capaz de delinear correctamente
alguna de las derivaciones. En estos casos se sigue adelante, obviando la limpiezade las
variaciones de la linea de base, ya que posteriormente serd posible volver a delinear estas
senales y obtener unas anotaciones validas.
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Fichero A0010.mat sin linea de base

500 T T T Derlvalciér‘I T T T T
o \ I P P I Orgral
\ I j in linea de base
L R T SV T e
| |
| \l \ | | tl \( | 1
-500 \| I l\ I I' I I' |Ii ‘I I Ill I IH‘ I II I : ]
0 1 2 3 4 5 6 7 8 9 10
Tiempo (s)

Derivacion aVF
500 T T T T T T

0 ;-~"“1FW-\W'J ‘\J;ﬂ *;ﬁwﬁw’.lwu\h&:%ﬁMﬁ

w L

1000 I I I I I I I I I
1] 1 2 3 4 5 6 T 8 9 10

Tiempo (s)

uy

Derivacion V3
1000 T T T T T T T T

— Original
/ Sin linea de base {

. |
~A ool sl mall Al Al A
0 i ”H{wﬁwl NI M"ﬁ:‘\.“ﬁ?w%l }.}f =] A ;f k'L‘ufl' T ‘1#\ R f MJL ,j - E{.ﬁ \J

-500 b L | I i -
1] 1 2 3 4 5 6 7 8 9 10
Tiempo (s)

uV

f‘_;ff::J

————

Figura 2.2.2.1: Derivaciones I, AVFy V5 eliminada su variacion de linea de base.

2.2.3 Cdlculo de indices globales de QRS

Debido a que tenemos 12 derivaciones, el delineador nos daré los indices de ocurrencia
de cada evento del ECG en cada una de ellas. Es de esperar que sean diferentes, pues las
proyecciones son diferentes, y ademds puede haber errores del delineador en unas
derivaciones y no en otras. Como todas las derivaciones son descripciones simultaneas
de la misma actividad cardiaca podemos usar esa redundancia para calcular unos indices
que llamaremos globales, resultado de la informacion presente en todas las derivaciones.
Este calculo lo realizaremos inicialmente para la deteccion de QRS.

Los indices globales de QRS son las anotaciones que nos diran en qué muestras estan los
QRS haciendo uso de la informacion de todas las derivaciones. Para calcularlos
tomaremos para cada derivacion sus indices de QRS y generaremos un tren de deltas,
poniendo una delta en cada deteccion de QRS. Posteriormente estos trenes de deltas se
convolucionaran con una ventana de Hanning de duracion 100 ms*.

En este punto tendremos 12 trenes de ventanas de Hanning, que sumaremos para obtener
una sefial en cuyos maximos tendremos algo similar al centro de masas del indice de
deteccion de cada latido®. Localizado el primer QRS en cada derivacion, el indice global
de este QRS serd posicion del maximo al sumar todas las ventanas de Hanning solapadas.
(Figura2.2.3.1).

4100 ms es la duracion aproximada normal de un QRS [15].
> Este método puede asemejarse a un método de estimacion con ventanas de kernel, abordado en en otras
publicaciones [16].
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Localizacion de los indices de QRS en cada derivacion (Fichero S0002.mat)
T T T T T

0.95 1 1.05 1.1 1.15 12 1.25 1.3 1.35
Tiempo (s)

Figura 2.2.3.1: Ventanas de Hanning asociadas al primer QRS en las 12 derivaciones.

Tras realizar esta suma, calculamos el valor de amplitud umbral, a partir del cual se
consider6 que un maximo correspondia con un indice de QRS global. El umbral es
necesario para filtrar aquellos casos en los que se detecta un QRS erroneamente, ya que,
si no, tomariamos como indice global de QRS también los outliers® que pudiera haber.

Inicialmente consideramos un umbral fijo de entorno a un valor 8 de amplitud, ya que se
penso6 que podiamos exigir que al menos 8 derivaciones coincidieran aproximadamente
en el instante del latido. Sin embargo, existian muchos casos en los que, por variaciones
en los instantes de deteccion del QRS entre derivaciones no bastaba con ese umbral. En
vista de esto se optd por un umbral dinamico que se adaptase a cada caso. Después de
experimentar con varios umbrales, fijos y variables, se acabd calculando el umbral como
el 60% de la amplitud del pico mayor.

Calculo de los indices globales de QRS
T T T T T T

Coincidencias de QRS
———— Umbral de decision
Deteccion QRS ()
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- Deteccion QRS (V3)

-10 - Deteccion QRS (V4)
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Deteccion QRS (V6)
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Figura 2.2.3.2: Coincidencias enlos indices de QRS y umbral de decision de indices globales.

¢ Liamamos outliers a aquellas detecciones de QRS que estin muy separadas del evento real y del resto
de anotaciones que lo identifican. Esto puede ocurrir si el delineador comete algun error o si la sefial
presenta alguna distorsion.
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Las posiciones de los maximos de los picos que superan el umbral seran también la
posicion de los QRS, la cual guardaremos en un fichero. (Figura 2.2.3.2).

2.2.4 Segunda delineaciony formacion de sefiales sintéticas

A continuacion, podemos volver a delinear todas las sefiales para encontrar los inicios y
finales de cada onda, pero en este caso le daremos al delineador las posiciones de los QRS
como entrada externa, indicandole la ruta al fichero de anotaciones globales que
acabamos de guardar.

Esto hace que el delineador se vea forzado a generar anotaciones para el mismo nimero
de latidos en todas las delineaciones, y permite delinear sefiales problematicas para las
cuales el delineador habria fallado. Esto es asi ya que en la mayoria de los casos
observados en los que Wavedet fallaba en la delineacion esto se debia a un error en la
deteccionde los QRS. El calculo de los indices globales de QRS y la posterior delineacion
con anotaciones externas permite proporcionar al delineador la posicién de los QRS,
evitando asi la mayoria de los errores.

Con estas anotaciones se procedio a generar tres sefiales sintéticas binarias que sefialasen
las posiciones de los complejos QRS, las ondas P y las ondas T. Las tres tendrian valor
nulo, salvo entre el inicio y el fin de una fase concreta del ECG, donde valdrian 1. La
primera tendria pulsos que sefialan el intervalo entre el inicioy fin de los complejos QRS,
la segunda entre inicio y fin de las ondas P, y la tercera entre inicio y fin de ondas T
(Figura2.2.4.2).

Estas sefiales sintéticas contienen caracteristicas que hemos extraido de la sefial original
de QRS y que le pueden servir a la red neuronal para relacionar las patologias con ciertos
patrones presentes en dichas sefiales. Para formarlas hicimos uso de las anotaciones que
nos indican el inicio y fin de los eventos QRS, onda P y onda T; para cada derivacion.

Ejemplo de indices de inicio y final de QRS, onda T y P (Figura2.2.4.1).

Derivacion Il (Fichero A0001.mat)
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Figura 2.2.4.1: Derivacion Il de ECGreal con las principales ondas delineadas automdticamente.

Pongamos de ejemplo la generacion de la sefial sintética que modela los inicios y finales
de los QRS. Como inicio de cada QRS se toma la anotacion de inicio de QRS menor de
entre todas las derivaciones (deteccidon mas temprana), y como final del QRS la anotacion
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de fin de QRS mayor (ultima deteccion). Para evitar outliers se fuerza a cada inicio
escogido a estar menos de 12 ms antes de al menos otros 3 inicios, y al final escogido a
estar menos de 12 ms después de al menos otros 3 finales.

Estas reglas de proteccion garantizan que no tomamos como inicio o final un valor que
se da solo en una derivacion y esta alejado del evento real (que se vera casi
simultdneamente en la mayoria de las derivaciones).

Senales sintéticas
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Figura 2.2.4.2: Seiiales sintéticas de QRS, onda Py onda T solapadas.

Generadas estas tres seflales binarias, las vamos a considerar como sefiales adicionales
que nos “aumentan” la informacion presente en el propio ECG; y ya podemos formar las
15 imagenes que serviran de entrada para nuestra red neuronal (12 para las derivaciones
y 3 para las sefiales binarias).

2.2.5 Generacion de imagenes

El concepto clave en la generacion de imagenes es que en cada fila de cada imagen
veamos una ventana temporal general concreta tomando como referencia un latido
diferente (para ello, usaremos los indices de QRS globales como puntos de referenciade
cada latido). De esta forma, en cada imagen veremos, de cada derivacion o sefial binaria,
los valores que hay en una ventana temporal comun a todas las imagenes. Cada fila de la
imagen corresponde con una ventana temporal que comienza medio segundo (250
muestras) antes de la deteccion del QRS, y termina un segundo después de la misma
deteccion (500 muestras). De esta manera, cada fila de las imagenes es una ventana
temporal de 750 muestras o 1.5 s, lo cual permite observar la onda P, el complejo QRS,
la onda T, y en general, también la onda P y complejo QRS del siguiente latido. Los
diferentes latidos quedan alineados en la imagen con respecto al indice del QRS global.
El nimero de filas de las imagenes vendra dado por el numero de latidos detectados en el
ECG, es decir el nimero de indices globales de QRS detectados.

20



Cabe destacar en este punto que, para garantizar que todas las ventanas fueran de 750
muestras, se ha tenido que excluir algunos latidos al inicio y final de algunas grabaciones.
También se valord hacer relleno con ceros en la sefial para poder tomar de manera
genérica la ventana de 750 muestras a partir de cada latido detectado. Esta ultima
implementacion se descarto, puesto que se considerd que el relleno podia ser un agente
de confusidn, al anadir muestras irreales que no aportan informacion clinicareal sobre la
sefal.

Las imagenes formadas siguiendo el procedimiento descrito sirven a la red para extraer
las caracteristicas de los ECG y asociarlas con las patologias. A simple vista es posible
ver algunas de estas caracteristicas en las imagenes. Debido a que las ventanas temporales
cubren, en general, un latido y parte del siguiente, se pueden advertir en las imagenes
caracteristicas del ECG como la variabilidad entre las sefales latido a latido, o la propia
variacion del ritmo cardiaco (en especial en la zona en la que se muestran los segundos

latidos de cada ventana).

Derivaciones y Sefiales Sinteticas fichero A0010.mat
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Figura 2.2.5.1: Imdgenes resultantes delprocesado de las 12 derivacionesy las 3 sefiales sintéticas.

2.3 Andlisis de las etiquetas

Posteriormente, se ha llevado a cabo un andlisis de las etiquetas, observando las
coincidencias entre patologias, para tratar de encontrar patrones que simplificasen la
clasificacion o etiquetas que no pudieran darse a la vez que otras. El &nimo de esto era
conformar un subconjunto del total de ficheros disponibles, de manera que la tarea de
clasificacion fuera muy sencilla inicialmente, para después aumentar la complejidad.

Para ello hicimos una comparacion cruzada en los diferentes datasets, observando cuantas
veces coincidia cada par de patologias a lo largo de todas las grabaciones. El nimero de
coincidencias de cada par de patologias en funcidn del dataset puede consultarse en el
Anexo II. Las coincidencias entre patologias a lo largo de la suma de datasets puede verse

a continuacion (Figura 2.3.1).
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Relaciones entre etiquetas (Suma de Datasets)
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Figura 2.3.1: Apariciones conjuntas de las distintas patologias a lo largo de todos los datasets.

Tras este primer andlisis no se detectd un patron suficientemente generalizado de
dependencia entre patologias, pero si se advirtié un gran namero de ejemplos de ECG en
los que la unica patologia presente era SNR (ritmo sinusal) o AF (fibrilacion auricular).

Por este motivo, como primer paso, se conformdé un subconjunto simple que contuviera
ficheros cuya tnica patologia presente fuera SNR o AF. El SNR o Ritmo Sinusal indica
que como el marcapasos natural del corazon esta actuando el Nodo Sinoauricular. Esto
corresponde al comportamiento normal del corazon por lo que esta etiqueta identificaria
a un paciente preliminarmente sano. Por otro lado, AF significa Fibrilacion Auricular,
que es una de las arritmias tratadas mads comunes entre las poblaciones europea y
norteamericana [17] [18] [19] (en especial en las de mayor edad).

Por estas razones se eligieron estas patologias para conformar un primer clasificador
binario que fuera un detector de AF. Posteriormente se introdujeron mas patologias,
haciendo un clasificador multiclase con clases excluyentes. Para esto se recogieron los
ficheros que tenian como Unica patologia alguna de las siguientes: SNR (ritmo sinusal),
AF (fibrilacion auricular), IAVB (bloqueo auriculo-ventricular de primer orden) o RBBB
(bloqueo de rama derecha). Estas patologias fueron escogidas por ser las que mas
ejemplos presentaban en ECGs con una unica patologia o etiqueta.

Finalmente, también se formé un subset con todos los ficheros de ECG que entre sus
etiquetas contuvieran alguna de las clases anteriores. Esto se hizo con el fin de entrenar
un modelo de red neuronal que reconociera la presencia de estas 4 patologias, de forma
no excluyente, pudiéndose dar una, varias de ellas o ninguna en la misma sefial.
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CAPITULO 3. DISENO DE LA RED NEURONAL Y ENTORNO DE
ENTRENAMIENTO

3.1 Construccion de un DataLoader

Como primera tarea antes de empezar con la red neuronal, se planted el disefio de un
cargador de datos que fuera capaz de leer las imagenes y etiquetas generados en Matlab
y servirselos a la red en su entrenamiento con gran rapidez.

La idea principal del dataloader es que proporcione a la red las distintas imagenes
descritas en el capitulo anterior de tamafio 10x750, es decir, 10 ventanas temporales de
cada fragmento de sefal. Debido a que hay imagenes con mas de 10 latidos (ventanas
temporales) y con menos de 10, se trata cada caso recortando 10 ventanas contiguas
partiendo de una fila aleatoria de la imagen, en el caso de ser suficientes; o replicando las
ventanas existentes hasta que podamos tomar 10 de ellas en caso contrario. En el capitulo
anterior se describen 15 imdgenes segin la derivacion y el procesado realizado para
obtenerlas. La forma més adecuada de representarlas para el uso que les vamos a dar con
redes neuronales es apilarlas en un tensor que tendra dimension 15x10x750.

Hubo que tener en consideracion que debido al gran tamafio del dataset, no era posible
cargar todos los datos en memoria, por lo que la carga se va realizando conforme la red
necesita mas datos. En un inicio se planteo realizar variaciones del nimero de ventanas
temporales a escoger, para comprobar si habia cambios en la precision de diagnostico de
ciertas patologias, pero, finalmente y por cuestion de tiempo, se decidi6 realizar los
entrenamientos con imagenes de 10x750, siendo esto un estudio preliminar y pudiéndose
explorar mas casos en futuros trabajos.

Para la programacion del cargador de datos, se cred una clase que heredaba propiedades
de la clase Dataset del paquete utils.data de la libreria Pytorch. Posteriormente también
se hizo uso de la clase DatalLoader, de la misma libreria, para gestionar la carga de datos.
Su utilizacion tiene la ventaja de que permite el uso de varios procesadores para cargar
de forma simultanealos datos y que esto no suponga un cuello de botella para el proceso
de entrenamiento, ya que si la carga no es paralela es bastante probable que la GPU tenga
muchos tiempos de espera sin actividad esperando a que se lean los datos.

El proceso de carga de un tensor, ilustrado en la Figura 3.1.1, es el siguiente: En su
creacion esta clase toma un parametro que es una listade los nombres de los ficheros que
conforman el dataset y con ello actualiza sus variables internas. Cuando se solicita un
tensor de datos se ejecuta el método  getitem () el cual toma como argumento el indice
del fichero a cargar dentro de la lista de nombres.

Tras una comprobacion de la integridad de los datos y asegurarnos de que el tensor tiene
al menos 10 ventanas temporales, el programa devuelve un tensor de tamaio 15x10x750
con las 15 imagenes apiladas que la red ya puede utilizar como entrada.
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ECG Dataloader

Inicializacion
__init__(seif, lista_ficheros)

|

Carga de Datos

__getitem__(self, index)

l

Cargo en memoria Tome un nueve valor
tensor en indice index| aleatorio para index

Separo la etiqueta del
tensor de imagenes

NO

¢Es el tensor correcto?

si

Concateno las
ventanas temporales
originales al tensor

& Tiene el tensor 10 ventanas
temporales o mas?

si

Devuelvo 10 ventanas
contiguas empezando en
un indice aleatorio, junto
con la etiqueta

. Tiene el tensor justo 10 ventantas
temporales?

si

Devuelvo todo el tensor
desde el indice 0 hasta el
final, junto con la etigueta

Figura 3.1.1: Diagrama de flujo del cargador de datos.
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3.2 Disefio de un modelo sencillo de red

Debido a que nuestros datos de entrada a la red son iméagenes se decidi6 disefar una red
de arquitectura convolucional. Tradicionalmente, esta ha sido la estructura més usada
para trabajar con imagenes, siendo en un inicio muy comun separar las imagenes en tres
canales de color: RGB; que después se apilaban para servir de entrada a la red.

En nuestro caso son 15 los canales que contienen la informacion del ECG, como hemos
visto en el capitulo anterior. Por lo tanto, presentaremos como entrada a la red las 15
imagenes apiladas. Como las imagenes obtenidas del ECG mediante el proceso de
enventanado son de dimension 10x750, el dato de entrada a la red tendra como
dimensiones (15x10x750).

En una red convolucional las imagenes de entrada irdn atravesando varias capas en las
cuales se realizaran convoluciones 2D. Estas convoluciones se realizardn entre las
imagenes de entrada y un filtro 2D propio por cada canal de entrada y salida. Como
ejemplo observamos en la Figura 3.2.1 la sefial a la entrada de la primera capa
convolucional, que tiene 32 canales de salida, esto implica que la capa convolucional
tiene como parametros 32x15 filtros distintos. La sefal a la salida de esta primera capa
tendrd como dimension (32x10x750), es decir 32 imagenes apiladas del tamafio inicial.
Para favorecer la generalizacion y reducir el nimero de operaciones es habitual tras la
convolucion realizar diezmados de la imagen, que permiten reducir sus dimensiones,
después de los cuales se aplica la funcion de activacion antes de la siguiente capa.

Los parametros de estas capas convolucionales, tales como los valores del filtro, sesgos,
etc.; se iran optimizando durante el entrenamiento de manera que estas capas se
especialicen en extraer las caracteristicas que identifican a las imagenes.

Filtro

750

Figura 3.2.1: Proceso de convolucion con filtro al atravesar capa convolucional.

Posteriormente estas caracteristicas extraidas de las imagenes de entrada suelen pasar por
otros tipos de capas que realizan la tarea de clasificacion. En nuestro caso este papel lo
haran capas lineales, traduciendo esas caracteristicas de las imagenes en un vector de
probabilidades a posteriori que nos indican lo “segura” que esta la red de la presencia de
las posibles patologias. Podemos ajustar diversos parametros de todas estas operaciones
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como las dimensiones del filtro 2D, los tamanos de kernel de la convolucion, o el nivel
de diezmado de la imagen que queremos. Todo esto da lugar a multitud de redes y
configuraciones distintas. Estudiaremos algunas tendencias en los resultados como
consecuencia de estas decisiones de disefio en la parte experimental.

En la Figura 3.2.2 podemos ver estos pasos en un ejemplo de disefio concreto. El paso de
las capas convolucionales a las lineales requiere una reduccion de las dimensiones
espaciales de las imagenes para favorecer que el sistema realice una clasificacion global
independientemente de donde se den lugar los eventos dentro de la sefial. Este paso puede
realizarse de distintas formas. En este trabajo se ha optado por una de las mas extendidas
que consiste en aplicar una reduccion de tipo promedio en la dimension que nos interesa
reducir, es decir la dimension temporal (Average Pooling), de forma que la salida de la
ultima capa convolucional que consiste en 128 imagenes de 5x12 (128x5x12) reduce su
dimension temporal mediante un promedio, 5, siendo ahora de dimension (128x12).

Aunque pueda parecer que se han perdido detalles la tarea de la red al optimizar sus
parametros sera codificar en las dimensiones restantes la informacion relevante para
clasificar el ejemplo independientemente de la posicion temporal de los detalles que
diferencian a la imagen de otras. Posteriormente, se obtienen los datos en forma
unidimensional reagrupando la informacion de esta “imagen” en un vector, mediante una
operacion matriz a vector (en el modulo de programacion se conoce la funcion como
reshape. Es decir, pasamos de dimension (128x12) a un vector de dimension (1x1536), al
que posteriormente se aplican un par de capas de red convencional (como un MLP,
Multilayer Perceptron) con una no linealidad entre ambas.

Si la tarea se puede definir como clases excluyentes el objetivo es que la red acabe dando
como resultado una estimacion de la probabilidad a posteriori de cada clase dada la
entrada. Esto se hace gracias a una capa final de tipo softmax que obliga a que las salidas
sumen | y sean positivas. En el caso del ejemplo de la figura este nimero de clases es 4.
Si las clases no son excluyentes entre si, sino que son varias decisiones binarias
independientes la salida no se hace pasar por una sofmatx sino que se suele aplicar una
funcion logistica o sigmoide para obtener cada una de las decisiones de forma
independiente.

X[15,10,750]

[22, 10, 188]

Extraccién de

- -
caracferisticas

[64, 10, 47]

[128, 5, 12]

Average
Pooling

Reshape
[1. 1536]

Giasificacion [1.512]
RelLU

output [1, 4]

Figura 3.2.2: Diagrama de flujoy capas del modelo basede la red.
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La funcién de activacion escogida para toda la red ha sido de tipo ReLU (Recified Linear
Unit) que actua sobre los valores negativos de la sefial, poniéndolos a 0, mientras que los
valores positivos conservan su magnitud.

Por otro lado, como criterio de optimizacion se utilizaron dos tipos de funciones de coste
en funcion del tipo de tarea. Si la tarea es una clasificacion con clases excluyentes y el
objetivo es obtener una probabilidad a posteriori que sume 1, usando una operacion de
tipo softmax, el criterio de entrenamiento usado suele ser la funcion de CrosEntropia.

La CrosEntropia es una medida, surgida del campo de la Teoria de la Informacion, que
cuantifica la diferencia entre distribuciones de probabilidad dado un conjunto de eventos
o variables aleatorias. La distribucion objetivo es normalmente una probabilidad 1 en la
clase etiquetada y cero en resto, por lo tanto, para disminuir la distancia entre
distribuciones la salida de la red debe maximizar la probabilidad de la clase objetivo y
disminuir las del resto. La Ecuacion 3.2.1 corresponde con la expresion de la
CrosEntropia, siendo p(x) la distribucion objetivoy q(x) la salida de la red.

H(p,q) = = ) p(olog q()

Ecuacion 3.2.1: Expresion de la crosentropia entre la distribucion objetivo p(x) y la salida de la red

q(x).

En el caso de que las salidas sean varios detectores binarios independientes, entonces se
usa la funcion de CrosEntropia binaria entre las etiquetas y las salidas de la red, las cuales
tienen que ser valores entre 0 y 1, para lo cual se ha aplicado una funcién logistica o
sigmoide como se ha comentado anteriormente. Esta funcion se aplica a cada detector
binario independiente y se optimiza la suma de estos costes, lo cual se puede entender
como un entrenamiento multiobjetivo.

Posteriormente introdujimos capas de normalizacion de batch’ entre todas las capas ya
existentes. También introdujimos una capa de dropout® con probabilidad 0.5 que
usabamos tras las capas convolucionales.

Sobre el disefo basico existe la posibilidad de aplicar muchas mejoras. En concreto
aplicamos algunas que no implican grandes incrementos en los costes computacionales.
Por ejemplo, utilizar capas de normalizacioén de batch nos permite mejorar y estabilizar
la convergencia de los pesos de cada capa durante el entrenamiento. Esto sumado a la
capa de dropout, que desecha un porcentaje de los datos de entrenamiento, nos permite
evitar casos de overfitting y tener un modelo mas robusto que converjaen menos tiempo
[20].

Aplicando estas mejoras sobre el modelo basico de la Figura 3.2.2 anterior definimos el
llamado en adelante Modelo 0 (Figura 3.2.3) que sirvido como base para las demas
variaciones realizadas.

7 Las capas de normalizacion de batch son capas intermedias que adaptan la entrada de la siguiente
capa, normalizandolay reescalandola, con el fin de optimizar la velocidad y la estabilidad de la red.
8 Las capas de dropout funcionan activando y desactivando (con la probabilidad indicada, e n nuestro
caso de 0.5) neuronas aleatorias de la red durante el entrenamiento. Es una de las técnicas que se
utilizan para hacer la red mas robusta.
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X[15,10,750]
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Extraccion de [64, 10, 47]
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[128. 5, 12]

Average
Pooling [128.12]
+

Reshape

[1, 1536]

[1. 512

Clasificacion -

output [1, 4]

—

Figura 3.2.3: Diagrama de flujoy capas del Modelo 0 de la red.

3.3 Entorno de Entrenamiento

Para el entrenamiento y la evaluacion de los diferentes modelos de red que se realizaron
se contd con acceso al Cluster del grupo de investigacion Vivolab® y compuesto por 13
nodos de calculoy 4 de almacenamiento.

Toda la programacion se realizo en Python y se ejecuto y evalud dentro de dicho cluster.

9 http://vivolab.unizar.es/
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3.4 Primer entrenamiento del Modelo O

Inicialmente el modelo con el que trabajamos fue entrenado con un subset de datos muy
sencillo. Los ficheros correspondian con pacientes que podian tener una de dos
patologias: SNR o AF. Estos ficheros fueron extraidos del dataset original CPS y
contabamos con 918 ejemplos de SNR y 976 ejemplos de AF. Desde este punto nos
referiremos a este subset concreto de ficheros como Subset 1.

3.5 Segundo entrenamiento del Modelo O

En el segundo modelo quisimos aumentar la complejidad e introducir 2 patologias mas,
a fin de formar un clasificador de 4 clases excluyentes!®. Los ficheros para el
entrenamiento tendrian una Unica patologia de las 4 posibles. Las 2 patologias que
afiadimos a SNR y AF son: el Bloqueo Auriculoventricular (IAVB) y el Bloqueo de Rama
Derecha (RBBB).

Inicialmente se entren6d un modelo con ficheros solo pertenecientes al dataset de origen
CPS, por lo que teniamos el siguiente numero de ejemplos para cada clase: 918 de SNR,
976 de AF, 686 de IAVB y 1533 de RBBB; los cuales conformaban el que llamaremos
Subset 2.

SNR AF IAVB RBBB Total
Nu-mero de 918
ficheros

Tabla 3.5.1: Ficheros de entrenamiento para cada patologia en el Subset 2.

976 686 1.533 4.113

3.6 Tercer entrenamiento del Modelo 0

Lo siguiente que hicimos fue realizar un nuevo entrenamiento con muchos mas datos, ya
que los que habiamos usado eran tan solo los pertenecientes al dataset de origen CPS.

Por ello realizamos una recopilacion de ficheros con estas patologias a lo largo de todos
los datasets de Computing In Cardiology Challenge 2020. En esta ocasion reunimos todos
los ECG que entre sus patologias contuviesen alguna de las cardiopatias a clasificar. Este
ultimo subconjunto de ficheros sera referido en el resto de la memoria como Subset 3. En
la Tabla 3.6.1 se puede ver el detalle de su composicion.

" SNR AF | iavB  ReBB__
918 1.221 722 1.675

4 152 106 1

1.752 487 693 542

50 15 0 0

17.441 1.514 788 0

0 2 0 2

20.195 3.391 2.309 3.219

Tabla 3.6.1: Distribucion de los ficheros de entrenamiento que conforman el Subset 3 por patologia y
dataset.

10 Cabe destacar que las patologias escogidas no tienen por qué ser fisiologicamente excluyentes, pero el
objetivo del entrenamiento es validar la extraccion de caracteristicas realizada en la primera parte del
trabajo.
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De estamanera, con un pequefio cambio en la evaluacion se adapto la red para que pudiera
seleccionar multiples clases si estas eran detectadas de forma independiente. La idea era
trabajar con el valor de salida de la red para cada clase. Debido a que usamos la funcion
de coste basada en CrosEntropiabinaria, y salidas del modelo con la funcion sigmoide o
logistica estos valores de salida pueden interpretarse como la probabilidad a posteriori de
la clase en cuestion para cada detector binario. Partiendo de esta base fue necesario
realizar un analisis de estas probabilidades con el fin de encontrar, si es posible, un umbral
que maximizase las deteccionesy evitase los falsos positivos y negativos.

Para realizar este analisis recurrimos a la curva ROC, y utilizamos como parametro de
precision el area encerrada bajo la misma (AUC, Area Under the Curve). La curva ROC
(Receiver Operating Characteristic) es una grafica muy utilizada en el ambito de la
biomedicina para calcular el umbral mas apropiado en un test. Esta curva es una medida
de la sensibilidad y especifidad clinicas del sistema para cada posible umbral. Por ello, el
area bajo la curva ROC nos da una idea de la utilidad de nuestro test (cuanto mayor es,
mas cerca estard el mejor umbral posible de la clasificacion perfecta), y nos permite
comparar clasificadores entre si [21]. Por este motivo se utilizo la AUC para comparar
las prestaciones de diferentes variaciones de nuestro modelo.

3.7 Variaciones en el modelo

A continuacion, se planted realizar modificaciones en el modelo en cuanto a nimero de
capas, numero de canales y factor de crecimiento de canales. Tomando para cada version
del modelo los mismos datos de entrenamiento y de test se tratd de alcanzar un
compromiso entre precision en las predicciones y complejidad del modelo.

Para realizar estas pruebas se cambid el modelo de diferentes formas y se evaluaron sus
prestaciones para poder representar la AUC media obtenida frente al niimero de
parametros que conforman cada modelo.

Como dataset de entrenamiento para todos ellos se utilizo el Subset 3, dado que presenta
el mayor nimero de ejemplos y variedad de patologias.
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3.7.1 Modelo 1

En primer lugar, se probd a afadir una capa convolucional mas, llegando a una
profundidad de 256 canales, como se puede ver en la Figura 3.7.1.1. Esto pretendia
aumentar la complejidad de la fase de extraccion de caracteristicas de la red, para
comprobar si esto se traducia en una clasificacién mas precisa.

Se realizaron dos entrenamientos, tanto con stride (factor de diezmado) en esta capa
afiadida, como sin él.

x[15,10,750] x[15,10,750]
r ~
[32, 10, 188] [32,10, 188]
[64, 10, 47] [64, 10, 47]
Extraccion de Extraccion de
caracteristicas 1 caracteristicas
[128, 5, 12] [128, 5, 12]
[256, 5, 12] [256, 5, 6]
L -
Average Average
Pooling [256, 12] Pooling [256, 6]
- -
Reshape Reshape
[1, 3072) [1, 1536]
r ~
[1.512] [1.512]

Clasificacion - Ciasificacion =

Batch Norm Batch Norm

output [1, 4]

output [1, 4]

Figura 3.7.1.1: Diagramade flujo y capas del Modelo 1 tanto sin stride (izquierda), como con stride
(derecha).
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3.7.2 Modelo 2

Seguidamente, se volvio al modelo inicial y se afladi6 una capa lineal mas al final del
modelo. El objetivo con esto era reducir el nimero de canales de 512 hasta 4 de manera
mas progresiva, aportando la nueva capa un paso intermedio de 512 a 128 canales,

representado en la Figura 3.7.2.1.

Extraccion de
caracteristicas

Clasificacion

Figura 3.7.2.1: Diagramade flujo y capas del Modelo 2.

x[15,10,750]

[32, 10, 188]

[64, 10, 47]

[128.5. 12]

Average
Pooling [128, 12]
+

Reshape

[, 1526]

[1,512]

[1.128]

output [1, 4]
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3.7.3 Modelo 3

Después de esto se combinaron las dos versiones anteriores (Modelos 1y 2), y se afiadid
ademas una capa lineal mas tras las capas convolucionales, Figura 3.7.3.1. Por lo que
teniamos una capa convolucional en cuya salida habia 256 canales, una capa lineal a
continuacion, que permitia ayudar a reducir los canales progresivamente; y la capa lineal
al final comentada en el Modelo 2.

x[15,10,750]

[22, 10, 188)

[64, 10, 47]
Extraccion de

caracteristicas

[128, 5. 12]

[256, 5, 6]

Average
Pooling [256. 6]

+

Reshape

[1, 1536]

[1, 1024]

[1,512]

Clasificacion =

[1. 128]

output [1, 4]
Figura 3.7.3.1: Diagramade flujo y capas del Modelo 3.
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3.7.4 Modelo 4

A continuacion, se realizaron varias modificaciones en la dimensionalidad de las capas
del modelo inicial. Para ello se programo el modelo de manera que partiera de un namero
de canales indicado en la primera capa y fuera aumentando y reduciendo el numero de
canales en funcidn de un factor de crecimiento también aportado como parametro. Este
tipo de estrategias permiten una exploracion mas eficiente que variar libremente todos los
numeros de canales [22].

Las variaciones de dimensionalidad realizadas fueron partir de 32 canales para factores
de crecimiento 1.5 y 2.5; y posteriormente, usar estos mismos factores de crecimiento
partiendo de 16 canales, como se observa en las Figura 3.7.4.1 y 3.7.4.2.

x[15,10,750] x[15,10,750]

[16, 10, 188] [16. 10, 188]

Extraccion de (24,10, 47]

caracteristicas

Extraccion de [40, 10, 47]

caracterisiicas

- <4

136.5. 121 [100.5, 12]

ReLU

Average
[36.12) ﬂnllw

Reshaps

Average
Pooling

(100, 12)
Reshape

[1.432) [1, 1200]

Lin1

[1.410] [1,24414)

Glasificacion - Clasificacién 4

Batch Norm

output [1, 4]

output [1, 4]

Figura 3.7.4.1: Diagramade flujo y capas del Modelo 4_16 1.5 (izquierda) y Modelo4_16 2.5
(derecha).
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x{15,10,750]

32, 10, 188]
Enxiraccion de 4 148, 10,47] Extraccion de
caracteristicas caracteristicas
{72.5.12)
L
72,12
[1. 884]

[1. 820]
ReLU
GClasificacion 4 ﬁ Clasificacion
[

output [1, 4]

P

X[15,10,750)

[32, 10, 188]

80, 10, 47]

1200, 5, 12)

1200, 12

[1. 2400]

[1. 48828)

output [1, 4]

Figura 3.7.4.2: Diagramade flujo y capas del Modelo 4_32 1.5 (izquierda) y Modelo4_32 2.5

(derecha).
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CAP{TULO 4. RESULTADOS

4.1 Consideraciones iniciales

Para la realizacion de todos los entrenamientos se utilizado un optimizador basado en el
algoritmo Adam con un learning rate de 0.0001 [23]. En todos los entrenamientos se ha
reservado un porcentaje de los datos como datos de test, con los cuales estimar la
precision del modelo. Entodos los entrenamientos realizados se ha utilizado un procesado
de los datos en lotes de 32 (tamano de batch 32). En el caso de los entrenamientos
realizados con los Subsets 1 y 2, el porcentaje de datos reservados para test ha sido del
30%; mientras que en los entrenamientos con el Subset 3 (mucho mayor en nimero de
ficheros) se reservo el 20% de datos para test.

En el caso de los entrenamientos que consideraban las clases excluyentes (entrenamientos
con los Subsets 1 y 2), para la evaluacion tras cada epoch se tomaban los datos de testy
se usaba el modelo entrenado para realizar una prediccion de la patologia. La precision
resultante corresponde con el nimero de predicciones correctas respecto del total.

En el caso de los entrenamientos con el Subset 3 (en los que permitimos clases
concurrentes), utilizamos las curvas ROC y su AUC como pardmetro de precision del
modelo.

Todos los resultados y figuras obtenidos en las distintas pruebas realizadas pueden
consultarse en su totalidad en el Anexo I.

4.2 Entrenamiento del Modelo O con el Subset 1

Entrenamos durante 50 epochs con los datos del Subset 2 y obtuvimos una precision de
mas del 96% pasados unos 10 epochs de entrenamiento, y de mas del 98% hacia el final
de este. También pudimos apreciar como la tendencia del coste se mantenia descendente
entre epochs. Como el proposito de este primer modelo era actuar como verificacion del
proceso de extraccion de los datos a partir de los ECGs y depurar errores una vez se
consiguid una precision razonable se pasé a trabajar con el resto de conjuntos de datos
con mayor complejidad.

Coste por epoch Precision en test por epoch

98

0.60 9

Coste

o
w
(=]
Precision
@
£

92 4

90

Epoch Epoch

Figura 4.2.1: Evolucion del coste y la precision en test del Modelo 0 durante el entrenamiento con el
Subset 1.
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4.3 Entrenamiento del Modelo O con el Subset 2

Entrenamos el modelo durante 50 epochs con los datos del Subset 2, pudiendo observar
que teniamos una precision de mas del 90% pasados unos 10 epochs de entrenamiento.

Coste por epoch o Precision en test por epoch

Precisién
@ ®
o w

o
B
o
L
~
o

70

Epoch Epoch

Figura 4.3.1: Evolucion del coste y la precision en test durante el entrenamiento del Modelo 0 con el
Subset 2.
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4.4 Entrenamiento del Modelo 0 con el Subset 3

En este caso los datos de entrenamiento eran los del Subset 3 y no se consideraban las
clases excluyentes. Tras entrenar el modelo durante 20 epochs, se calcularon las AUCs
de cada clase y la AUC media. Los resultados obtenidos se muestran en la Figura 4.4.1,
donde ser puede ver como las cuatro clases se detectan con una alta precision. La AUC
media del modelo fue de 0.9733, teniendo el modelo entrenado un total de 927.628

parametros.
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Figura 4.4.1: Curvas ROCy AUC de las 4 patologias a clasificar por el Modelo 0.
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4.5 Entrenamiento de los Modelos 1, 2, 3y 4 con el Subset 3

Todas las variaciones del modelo base se entrenaron durante 20 epochs con los mismos
datos del Subset 3, para después ser evaluados con unos datos de test comunes a todos
los modelos.

Los resultados de AUC media obtenida respecto al nimero de parametros empleado por
cada modelo puede verse en la Figura 4.5.1. Se puede observar que en la mayoriade los
casos aumentar la complejidad del modelo no reporta mejoras en la AUC media, como
puede verse al pasar del Modelo 2 al 3.

Otro caso en el que el aumento de complejidad no reporta mejoras de precision es en los
Modelos 4 32 2.5y 4 16 2.5. En este caso, sin embargo, esto puede ser debido en parte
areduccion brusca de dimensiones que sufren los datos en la ultima capa lineal. Tampoco
reducir mucho el nimero de capas parece mejorar las prestaciones, ya que podemos ver
como en el Modelo4 16 1.5 la AUC es mas baja que la del Modelo 0, e incluso menor
que ladel Modelo4 16 2.5.

De las variaciones realizadas las tinicas dos que mejoran el modelo de partida son:
aumentar muy ligeramente el nlimero de canales (partiendo de 32 y con un factor de
crecimiento 1.5), Modelo 4 32 1.5; y afiadir una capa lineal final que permita una
reduccidon mas progresiva de los canales, Modelo 2.

En vista de que el numero de parametros es muy parecido en las dos variaciones, nos
quedariamos con la que tiene mayor AUC media en las pruebas, es decir con el Modelo
2.

Las tablas con los valores exactos de AUC, parametrosy curvas ROC puede consultarse
en el Anexo I.

AUC vs Complejidad del modelo
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Figura 4.5.1: AUC obtenida frente a numero de parametros para cada version del modelo.
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CAPITULO 5. CONCLUSIONES Y LINEAS FUTURAS

5.1 Conclusiones

Este TFG ha abarcado distintas disciplinas relacionadas con el diagnostico automatico de
patologias cardiacas. En primer lugar, se ha incidido en la fisiologia del corazon, en las
caracteristicas de la sefial ECG, y en como esta puede servir para identificar ciertas
condiciones médicas.

A continuacion, se procedid a procesar estas sefales ECG con el fin de extraer las
caracteristicas que permitian distinguir sefiales procedentes de un corazén sin patologias
de uno con alguna de las patologias con las que se trabajé. Este ambito del procesado de
seflales abarcaba todo el tratamiento de los ECG desde los ficheros originales hasta las
imagenes finales resultantes. Estas imagenes han mostrado ser una buena representacion
de las caracteristicas, ya que, como se indica en el Capitulo 4, las tasas de acierto (en el
caso de clases excluyentes) y la AUC (en el caso de no excluyentes) han resultado ser
muy altas. Esto implica que el método de procesado empleado con el ECG organiza y
dispone la informacion de una manera que después permite a la red neuronal extraer las
caracteristicas que identifican las diferentes patologias.

Finalmente, este trabajo ha realizado una aproximacion al campo de las redes neuronales,
en concreto de las redes convolucionales, para poder realizar el sistema de clasificacion
automatico de patologias. Este ultimo aspecto ha resultado ser uno de los mas costosos,
dada la falta de experiencia y la complejidad de este ambito. A pesar de esto, se ha
conseguido disefiar un modelo sencillo que cumple la funcion de clasificacion con buenos
parametros de acierto (AUC), e incluso realizar diferentes variaciones para observar los
cambios que genera la estructura de una red en su complejidad internay su desempefio.

Como resultados concretos podemos destacar que se han obtenido precisiones en la
clasificacion superiores al 90% entrenando el Modelo 0 con los Subsets 1 y 2 al considerar
las clases excluyentes; y valores de AUC media de 0.97 al entrenar dicho modelo con el
Subset 3 y clases no excluyentes.

También se han variado tanto las dimensiones de las capas del modelo inicial como el
numero de capas, dando lugar a los Modelos 1, 2, 3 y 4. Al entrenar estos modelos con el
Subset 3 hemos observado que, en la mayoria de los casos, los modelos con mayor
numero de capas y/o canales resultan tener menores valores de AUC media, y que los
unicos modelos que mejoraban las prestaciones del Modelo 0 eran el Modelo 2 y el
Modelo4 32 1.5.

Todo el proceso de realizacion de este TFG en forma de diario, asi como el codigo
empleado, puede encontrarse recopilado en el siguiente repositorio (Anexo [I):
https://github.com/755224unizar/TFG_Notes
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5.2 Lineas futuras

Durante la realizacidon de este trabajo se han ido tomando decisiones que limitaban
ligeramente la complejidad del mismo para ajustarse al alcance de un TFG. Algunas de
estas decisiones implicaron ajustes en aspectos que pueden mejorarse en un futuro.

Algunos de estos aspectos a mejorar podrian ser los siguientes:

Utilizar datos de un mayor numero de patologias. Esto nos permitiria aumentar la
capacidad de diagnostico de la red y comparar sus prestaciones con otros
participantes del Computing in Cardiology 2020, los cuales disenaron sistemas de
diagndstico para 27 patologias distintas.

Trabajar con otras arquitecturas de red neuronal que presenten ventajas de algun
tipo frente a las redes convolucionales en esta tarea de clasificacion (mayor
robustez, eficiencia, etc.) como los recientes modelos de tipo Transformer

Ademas de clasificar los ECG en uno de los posibles diagndsticos, tratar de
identificar las caracteristicas de la sefial cardiaca que han permitido realizar esos
prondsticos y generar una explicacion del proceso. Esto podria permitir descubrir
relaciones ocultas en la sefial ECG, mejorando el conocimiento de las patologias
estudiadas.

Variacion de algunos de los parametros del tratamiento de las imagenes, como el
tamafio de las ventanas temporales con las que se generan las imagenes o el
numero de ventanas temporales que procesa la red neuronal (en nuestro caso solo
se probo con 10 ventanas). De esta manera podriamos estudiar los efectos de estos
cambios en el sistema de diagnostico.
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