[]
A

e

2s Universidad
18 Zaragoza

1542

-

Trabajo Fin de Grado

Calculo optimizado de puntos intermedios en
la planificacién de rutas.

Optimized waypoints computation for path
planning

Autor
Isabel Carrizo Ruiz

Director/es

Eduardo Montijano Mufioz
Cristian Mahulea

Escuela de Ingenieria y Arquitectura
2021

Repositorio de la Universidad de Zaragoza - Zaguan http://zaguan.unizar.es

Resumen

Los robots moviles tienen muchas aplicaciones, una de ella siendo la de transportar
objetos dentro de una fabrica, almacén o entorno industrial desde una posiciéon inicial
hasta una posicion final. Existen muchos caminos para llegar a un destino fijado, sin
embargo, en muchos casos el camino de mayor interés es el de menor distancia recorrida,
ya que permite reducir el tiempo de ejecucion, asi como el coste de produccion. Este
Trabajo Final de Grado (TFG) se centra en el problema de planificacion de trayectorias
de un robot moévil con el objetivo de obtener trayectorias més cortas para que el robot
alcance el destino final.

Se parte de un mapa de un entorno de trabajo dividido en regiones (o celdas), al cual
se le aplica un algoritmo de planificacién de trayectorias para obtener la secuencia de
regiones mas corta para llegar al destino. Esta particion se abstrae en un grafo, donde
los nodos modelan las regiones de dicho entorno. Aplicando el algoritmo Dijkstra para
la planificaciéon de trayectorias, se calcula, el camino mas corto desde un nodo inicial al
resto de los nodos del grafo. Este camino en realidad devuelve una secuencia de regiones
que el robot tiene que seguir para alcanzar el destino final. Sin embargo, para obtener
la trayectoria exacta para el robot, se debe especificar los puntos intermedios por cuales
tiene que pasar el robot, en particular, para dos regiones adyacentes se debe saber el punto
exacto de cruce entre las celdas. Este TFG consiste en la implementaciéon y evaluacion
de dos algoritmos para calcular estos puntos intermedios. El primer algoritmo que se ha
implementado esté basado en el calculo de los puntos medios del segmento que tienen en
comun dos regiones, y el segundo algoritmo se basa en el calculo del punto de interseccion
entre el segmento comun y la recta que une los centros de las dos celdas por las que tiene
que pasar.

Estos algoritmos calculan los puntos de la trayectoria que el robot ha de seguir para
llegar a una posicién final sin colisionar con ningin obstaculo. Una vez implementados, es
necesario evaluarlos y compararlos. El algoritmo que calcula la trayectoria que recorre una
menor distancia es el que debe ser usado para que el calculo de los puntos sea optimizado.

Abstract

Mobile robots have many applications, one of them being to transport objects within
a factory, warehouse or industrial environment from an initial position to a final position.
There are many routes to reach a fixed destination, however, in many cases the route
of greatest interest is the one with the shortest distance travelled, since it reduces the
execution time, as well as the production cost. This Final Degree Project (TFG) focuses
on the problem of planning the trajectories of a mobile robot with the aim of obtaining
shorter paths for the robot to reach the final destination.

The starting point is a map of a work environment divided into regions (or cells), to
which a trajectory planning algorithm is applied to obtain the shortest sequence of regions
to reach the destination. This partition is abstracted into a graph, where the nodes model
the regions of said environment. Applying the Dijkstra algorithm for trajectory planning,
the shortest path from an initial node to the rest of the nodes of the graph is calculated.
This path actually returns a sequence of regions that the robot has to follow to reach the
final destination. However, to obtain the exact path for the robot, the intermediate points
through which the robot has to pass must be specified, in particular, for two adjacent
regions the exact crossing point between the cells must be known. This TFG consists
of the implementation and evaluation of two algorithms to calculate these intermediate
points. The first algorithm that has been implemented is based on the calculation of the
midpoints of the segment that two regions have in common, and the second algorithm is
based on the calculation of the point of intersection between the common segment and
the line that joins the centers of the two cells it has to pass through.

These algorithms calculate the points of the trajectory that the robot has to follow to
reach a final position without colliding with any obstacle. Once implemented, they need
to be evaluated and compared. The algorithm that calculates the path that travels the
shortest distance is the one that must be used so that the calculation of the points is
optimized.

IT

Indice general

[Abstract]

ﬁndice generall

Indice de figuras|

[[ndice de tables|

T [icaanl

[1.1. Motivacion y Contextol

(1.2. Objetivos|

[1.3. Alcance del proyecto|

[2.1. Particion de regiones|o

[2.2. Algoritmos de Planificacion de trayectorias|

[2.3. Funcionamiento del algoritmo| 0.

[3. Planificaciéon de bajo nivell

I1T

11

II1

VI

12

[3.1. Metodologial
[3.1.1. Parte 1: Creacion del grafo
[3.1.2. Parte 2: Aplicacion Algoritmo Dijkstral

[3.1.3. Parte 3: Implementacion de Algoritmos de calculo de trayectorias| .

[4. Evaluacion y comparacion|

[4.1. Obtencion de resultados para diferentes mapas|

[4.1.1. Primer mapal

[4.1.2. Segundo mapal.

[4.1.3. Tercer mapal

[4.2. Comparacion de los algoritmos|.

(5. Conclusiones|

[A._Anexos|

[A.1. Resultados obtenidos al aplicar los algoritmos en tres mapas diferentes|

[A.2. Codigo implementado para la realizacion del trabajo|

[A.3. ROS: Robotic Operating System|.

1IA.4. Niveles de ROS| o o o s

IV

20

20

22

23

25

26

29

31

32

42

Indice de figuras

[L.1. Generacion de trayectorias para un robot movil [If|. 3
[2.1. Descomposicion trapezoidal 2[] L. 7
[2.2. Descomposicion triangular [2[] oL 7
[2.3. Descomposicion rectangular [2]] 7
[2.4. Grafo dirigido y etiquetado.| L. 8
[2.5. Pseudocddigo del algoritmo Dijkstra [3]] 10
[3.1. Esquema del proceso a seguir para alcanzar el objetivo del trabajo.| 12

[3.2. Clase y estructura definidas para crear el grato a partir de la descomposicion

de celdas) 14
[3.3. Dos trayectorias obtenidas dependiendo del peso de las aristas.|. 15
[3.4. Ejemplo de un mapa dividido en ocho celdas|. 16
[3.5. Clase Adyacente|. 17

[3.6. Calculo trayectoria de un robot mediante puntos medios del segmento comun.| 18

[3.7. Calculo trayectoria de un robot mediante la unién de los puntos centrales.| 19

[4.1. Mapa original 20x17.| 22
[4.2. Mapa original 22x22.] 24
[4.3. Mapa original 10x7.[. 25
[4.4. Comparacion de distancias medias calculadas por los dos algoritmos.| . . . 27

VI

5.

Comparacion de la media de los tiempos de ejecucion de los dos algoritmos.| 28

[A.1. Grafo computacional de ROS.| 36
[A.2. Grafico computacional ROS de 2 nodos que se comunican entre si.| 37
[A.3. Robot industrial Kuka [4].| 0L 39
[A.4. Robot quirargico Da Vinci |4].|. o oo oL 39
[A.5. Robot movil disenado por Weston Robot y Agile X 4[| 40

VII

Indice de tablas

[4.1. Resultados tras la aplicacion de los algoritmos al primer ejemplo.] 22
[4.2. Resultados del calculo de la distancia recorrida y el tiempo de ejecucion |
[para el primer mapa.| 23
[4.3. Resultados del calculo de la media de la distancia recorrida y el tiempo de |
| ejecucion para el primer mapa.|. 23
[4.4. Resultados tras la aplicacion de los algoritmos al segundo ejemplo.|. 24
[4.5. Resultados del calculo de la distancia recorrida y el tiempo de ejecucion |
| para el segundo mapa.| 25
[4.6. Resultados del calculo de la media de la distancia recorrida v el tiempo de |
[ejecucion para el secundo mapa.| L 25
[4.7. Resultados tras la aplicacion de los algoritmos al tercer ejemplo. 26
[4.8. Resultados del calculo de la media de la distancia recorrida y el tiempo de |
| ejecucion para el segundo mapa.| 26
[A.1. Resultados del calculo de la distancia recorrida y el tiempo de ejecucion |
| para 20 caminos diferentes del primer mapa.| L. 32
[A.2. Resultados del calculo de la distancia recorrida y el tiempo de ejecucion |
[para 20 caminos diferentes del segundo mapa.| 33
[A.3. Resultados del calculo de la distancia recorrida y el tiempo de ejecuciéon |
| para 20 caminos diferentes del tercer mapa.f. 34

Capitulo 1

Introduccion

En este capitulo se presenta una introduccion al trabajo realizado donde se detallan
la motivacion, el contexto en el que se lleva a cabo y los objetivos. También se detalla la
metodologia que se ha seguido y los requisitos que se han tenido que cumplir.

1.1. Motivacién y Contexto

Los robots moéviles tienen muchas aplicaciones, una de ellas siendo la de transportar
cargas desde un estado inicial a un estado final moviéndose por un entorno de trabajo. El
mundo real esté lleno de entornos con obstéaculos y, es necesario que los robots disenados
sean capaces de generar trayectorias que garanticen su seguridad, la de los productos que
transportan y la de todo aquello que les rodea. Este es el proposito de este Trabajo Final
de Grado, la implementacion de algoritmos que calculen una trayectoria en un entorno de
trabajo, de manera que el robot no colisione con ningtn obstaculo y llegue a su posiciéon
final de la forma maés sencilla y segura posible.

Para poder llevar a cabo la planificaciéon de trayectorias, se hace uso de algoritmos
ya implementados, como puede ser el algoritmo Dijkstra. Estos algoritmos parten de un
mapa dividido en regiones, conocidas también como celdas, y calculan a partir de una
region inicial el camino més corto para alcanzar un destino final. Sin embargo, con la
aplicacion de este algoritmo, inicamente se obtiene la secuencia de regiones por la que
debe circular el robot para llegar a la posicion final sin colisionar con ningin obstéculo.
Para obtener la trayectoria completa del autémata es necesario conocer los puntos exactos
por los que pasara el robot de una celda a otra, conocidos como puntos intermedios de la
trayectoria o waypoints. Esto se consigue con la implementacion de algoritmos de calculo
optimizado de trayectorias, que tienen como funcién encontrar los puntos intermedios de
la ruta mas corta para ir de un estado inicial a un estado final. Este es el objetivo del

Trabajo de fin de Grado.

9
4
4
4

srrsErrsTIENEEESNYERSCSFESTRESE R LR R

e e e Liegac

LR R R

LE A A R AR TR E SRR L SN Y

LEE R TR R ET R RN RN

(R T R N TR TR

' lessasasus
.

-
*
*
i
L
»
*
-
¥
w
"
-
-
»
i
"
-
Ll
Ld
i
-
-
L]
i
-
¥
]

LR R ERREERNEEZTHEEN]

&
N T Y TR TR ssmmEEw

Figura 1.1: Generacion de trayectorias para un robot movil [1]

En la Figura se ha generado la trayectoria desde el punto salida hasta el punto
llegada para un robot movil. Los puntos blancos representan obstaculos que el robot
debe de esquivar para alcanzar su posicion final. Las lineas rojas representan todas las
posibles trayectorias que podria seguir el autémata. Se puede comprobar que hay diferentes
caminos para llegar al destino final, sin embargo, el camino més corto es el verde.

1.2. Objetivos

El objetivo del trabajo propuesto es, a partir de un entorno dividido en celdas, realizar
el calculo optimizado de los puntos intermedios de la trayectoria que tiene que seguir un
robot para llegar a una posicion final.

Mediante la aplicacion del algoritmo Dijkstra, se obtiene la secuencia de regiones que
siguen el camino mas corto para que el robot cumpla con la especificacion. El objetivo
del trabajo propuesto se consigue con la implementacion y evaluacion de dos algoritmos
que usan diferentes métodos para calcular los puntos de cruce entre las regiones. Estos
algoritmos se evaltian y comparan utilizando el entorno de simulacion de ROS (Robotic
Operating System).

1.3. Alcance del proyecto

Como se ha mencionado en la seccién 1.2, el punto de partida del proyecto es un
entorno dividido en celdas. A continuacion se muestran las diferentes etapas a seguir en

la implementacion de los algoritmos.

Requisitos previos: Para la realizacion del trabajo, se necesita el aprendizaje del manejo
de ROS y del lenguaje de programacion C++. Aunque durante la carrera de Ingenieria
de Tecnologias Industriales se trabaja en una o dos asignaturas con dicho lenguaje de
programacion, el conocimiento necesario para realizar este trabajo es mucho mas complejo
y mas amplio, requiriendo un mayor aprendizaje. A su vez, se necesita una formaciéon
previa sobre el manejo de ROS debido al desconocimiento total del programa.

Lectura del fichero de texto: El primer paso es leer la informacion del mapa dividido
en regiones y almacenarla para después poder utilizarla. Esta informacion viene dada en
un fichero de texto.

Obtencion de una secuencia de regiones: Con el uso del algoritmo Dijkstra, o algoritmo
de caminos minimos, se obtiene una secuencia de regiones por las que tiene que cruzar el
robot para seguir el camino mas corto.

Desarrollo de los algoritmos de cdlculo de puntos intermedios: A partir de la secuencia
de regiones, se implementan dos algoritmos en c+-+ que calculan los puntos medios de
cruce entre las regiones que debera seguir el robot para llegar a una posicion final. Estos
algoritmos siguen diferentes métodos para realizar el calculo.

Fvaluacion y comparacion: Una vez implementados los algoritmos, se comprueba su
correcto funcionamiento con la informaciéon de tres mapas diferentes. Se comparan entre
ellos para evaluar cuéal es el algoritmo que calcula el camino de menor distancia.

1.4. Estructura de la memoria

A continuacion se muestra la estructura de la memoria del trabajo a realizar.

Capitulo 1, Introduccion: Se explica el objetivo del proyecto a realizar y la motivacion
para llevarlo a cabo, también se detalla el proceso que ha sido necesario seguir para
completarlo.

Capitulo 2, Planificacion de alto nivel: En este capitulo se comenta el punto de partida
del Trabajo Final de Grado y se explican algunos de los algoritmos de planificacién de
trayectorias que actualmente existen.

Capitulo 3, Planificacion de bajo nivel: Se explica el funcionamiento completo del
algoritmo Dijkstra y se detalla todo el proceso de creacion del cédigo del programa,
desde la lectura del fichero de texto hasta la creacion de los dos algoritmos de calculo de
puntos intermedios.

Capitulo 4, Evaluacion y comparacion: En este capitulo se comprueba el funciona-

4

miento de los dos algoritmos implementados mediante tres ejemplos diferentes. Los dos
algoritmos se comparan entre si para poder observar las ventajas de un algoritmo frente
al otro.

Capitulo 5, Conclusiones: Este es el ultimo capitulo de la memoria, se hace un pequeno
resumen del proceso a seguir para la creaciéon del programa. Se comenta también el cum-
plimiento, o no, del objetivo del trabajo propuesto y por ultimo se hace una evaluacion
global de los algoritmos.

Capitulo 2

Planificacion de alto nivel

El objetivo de este Trabajo Final de Grado es la implementacion de dos algoritmos que
calculan de forma optimizada los puntos de una trayectoria. Actualmente, estos algoritmos
no existen en ninguna libreria de ROS (Robotic Operating System). ROS es un software
utilizado para trabajar con robots moéviles que se ha usado para compilar y ejecutar los
dos algoritmos implementados.

2.1. Particiéon de regiones

El punto de partida de este trabajo es un mapa de un entorno dividido en regiones.
Para llevar a cabo la particion del mapa existen varios métodos aplicados a diferentes
dominios; en la robdtica moévil esta particion se conoce como descomposicion de celdas,
donde cada region en la que se divide el mapa del entorno se denomina celda.

La idea principal de la descomposiciéon de celdas es dividir el entorno en regiones
con la misma forma (triangular, rectangular, etc.). Estas regiones cubren todo el espacio
donde no hay obstéculos y donde el robot puede moverse libremente. En la robética
movil las técnicas de descomposicion de celdas estan usadas para solucionar problemas
de navegacion de los robots en determinados entornos, donde una posicién final debe ser
alcanzada sin colisionar con los objetos que se puede encontrar en dicho entorno [2].

Uno de los métodos mas conocidos es la descomposicion trapezoidal, también existen
otros diferentes como la descomposicion triangular o rectangular. Estas técnicas se di-
ferencian entre si en la forma de sus regiones. La descomposicion rectangular divide en
regiones todo el mapa, de esta manera, algunas celdas quedan ocupadas por obstaculos y

no pueden formar parte de la trayectoria final [2]. En las figuras , y se pueden
observar los tres métodos de descomposicion nombrados.

Figura 2.3: Descomposicion rectangular |2].

Este Trabajo Final de Grado comienza, por lo tanto, con un mapa dividido en regiones
cuya informacién se recoge en modelos de representacion finita, como puede ser un grafo
o una red de Petri. En este proyecto se trabaja con el modelo de grafo. Un grafo es una
composicion de objetos que se denominan nodos, donde se almacena informacién sobre
el entorno. Dicha informacion es usada para procesar o conocer un fin especifico. Estos
nodos estdn unidos entre si mediante aristas.

Dentro de los grafos més comunes se encuentra el grafo dirigido. Este tipo de grafo se
caracteriza porque las aristas que unen dos nodos tienen una direccionalidad clara. A su
vez, si dichas aristas incorporan datos, el grafo se denomina etiquetado, y los datos son
conocidos como el peso de cada arista. Este tipo de grafo es el mas utilizado en el mundo
informatico.

En la Figura [2.4] se puede observar un ejemplo de grafo de tres nodos dirigido, ya
que todas sus aristas apuntan hacia una direccién, y etiquetado porque todas sus aristas
poseen un peso. Toda la informaciéon de la particion de regiones del mapa del entorno se

® - ()
10

©)

Grafo &.

Figura 2.4: Grafo dirigido y etiquetado.

recoge en un grafo dirigido y etiquetado al que se le aplica un algoritmo de planificacion
de trayectorias para obtener una secuencia de regiones desde una celda inicial hasta una
celda final.

2.2. Algoritmos de Planificacién de trayectorias

La funciéon de los algoritmos de planificacion de trayectorias consiste en llevar un
cuerpo, en este caso un autémata, desde una posiciéon inicial hasta otra final siguiendo el
camino mas corto, dentro del entorno de trabajo, sin colisionar con ningtn obstaculo [5].
En la actualidad existen varios algoritmos diferentes que calculan estas trayectorias. A
continuacion se van a explicar brevemente.

En primer lugar, el algoritmo A* se caracteriza por realizar una busqueda de trayec-
torias completa y 6ptima. Consiste en encontrar un camino entre un nodo origen y un
nodo destino, siendo el camino el de menor costo. Una de sus ventajas es que orienta
la bisqueda de la mejor ruta teniendo en cuenta la posicion del objetivo final, de esta
manera, se evita visitar nodos innecesarios y, por lo tanto, supone un ahorro considerable
del tiempo de ejecucion. Sin embargo, entre sus desventajas esta que el algoritmo funciona
estimando la distancia al nodo final, por lo que no siempre la solucién encontrada es la
mejor, todo depende de la calidad de la estimacion [6].

En segundo lugar, el algoritmo D* es un método de planificacion de trayectorias que
calcula el camino minimo para ir desde un punto actual a un punto objetivo, cuando
se desconoce total o parcialmente el entorno por el que se mueve el robot. Para crear

la trayectoria, primero realiza una suposiciéon de la zona que desconoce y en base a esa
suposicion calcula la ruta para alcanzar el objetivo final. El autémata comienza su camino
y conforme va encontrado informacion lo recalcula si es necesario [5].

En tercer lugar, el algoritmo RRT (Rapidly-exploring Random Tree) calcula un camino
continuo conectando una configuracion inicial y una configuracion final teniendo en cuenta
los obstaculos y las restricciones. Cada configuracion determina la posicion y orientacion
del robot en un espacio bidimensional o tridimensional. El funcionamiento del algoritmo
consiste en, a partir de una configuracion inicial, ir explorando las demés configuraciones
y determinar dénde se debe colocar la siguiente para que el robot pueda acceder a ella sin
colisionar con ningun obstéculo [7].

Estos son soélo tres algoritmos de planificacion de trayectorias de la gran variedad que
existe en la actualidad, sin embargo, en el calculo de la trayectoria del robot de este
Trabajo Final de Grado se ha empleado el algoritmo Dijkstra.

El algoritmo Dijkstra, también conocido como algoritmo de caminos minimos, consiste
en calcular la trayectoria mas corta desde un nodo origen al resto de los nodos del grafo
teniendo en cuenta el peso de las aristas. El peso de las aristas corresponde a un coste,
que puede ser distancia, energia, etc. Fue descrito por primera vez en 1959 por Edsger
Dijkstra. Este algoritmo evalta, desde un nodo inicial, el coste invertido en desplazarse
a cada uno de sus nodos adyacentes y se desplaza al de menor coste acumulado; desde
este nuevo nodo se repite el proceso. Cuando ha pasado por todos los nodos del grafo, se
detiene y se obtiene la secuencia de regiones. El algoritmo devuelve el camino de coste
minimo para ir de un nodo inicial a otro final. Se ha de tener cuidado porque este método
tiene una unica limitacién y es que no funciona en grafos cuyas aristas tienen un valor
negativo [0]. A continuacion se detalla el funcionamiento del algoritmo.

2.3. Funcionamiento del algoritmo

Partiendo de un grafo dirigido ponderado de N nodos no aislados, un vector D de N
tamano guardara al final del algoritmo las distancias desde un nodo inicial z, al resto de
los nodos. Los pasos que se siguen son los siguientes:

1. Se inicializan todas las distancias en D con un valor infinito dado que no se conocen
desde el principio, excepto la del nodo inicial, que tiene que ser 0 porque la
distancia de x a x es nula.

2. Se llama a al nodo actual.

3. Se recorren todos los nodos adyacentes de a, excepto los que tienen un obstaculo,
debido a que esos nodos no forman parte de ninguna trayectoria. Los nodos sin
obstaculos se llamaran wvs.

4. Se calcula para el nodo actual la distancia tentativa hasta todos sus nodos adyacentes
mediante la siguiente férmula:

Dy(v;) = D, + d(v;, a) (2.1)

La distancia tentativa del nodo vi es la distancia que actualmente tiene en el vector
D més la distancia desde el nodo actual a al nodo vi. Si la distancia tentativa
calculada es menor que la distancia actual en el vector, se actualiza ese dato, ya que
se busca el camino mas corto.

d,(v;) < Dyi— > Dyi = d,(v;) (2.2)

5. Se marca como completo el nodo actual en el que estamos, a.

6. Se toma como proximo nodo actual el de menor valor en D y se vuelve al paso 3
mientras que sigan existiendo nodos sin obstéculos.

Una vez se recorran todos los nodos sin obstaculos, el algoritmo se dara por finalizado
y el vector D estara completamente lleno. En la Figura se muestra el pseudocodigo
del algoritmo Dijkstra.

DIJKSTRA (Grafe G, nodo_fuente s)
para u € V[G] hacer
distancia[u] = INFINITO
padre[u] = MULL
visto[u] false
distancia[s] a
adicionar (cola, (s, distancia[s]))
mientras que cola no es vacia hacer
u = extraer_minimo({cola)
visto[u] = true
para todos v € adyacencia[u] hacer
51 - wvisto[v]
si distancia[v] » distancial[w] + peso (w, v) hacer
distancia[v] = distancia[u] + peso (u, v)
padre[v] = u
adicionar(cela, (v, distancia[v]))

Figura 2.5: Pseudocodigo del algoritmo Dijkstra [3].

Para la aplicacion de numerosas funciones o algoritmos se hace uso de librerias. Una
libreria es un conjunto de archivos que contiene funciones ya implementadas y que se usa
para facilitar la programacion. El algoritmo Dijkstra viene integrado en la libreria Boost y
se denomina Dijkstra’s Shortest Path. Boost estd compuesta por una serie de documentos
enfocados cada uno a un campo especifico, en este caso se ha hecho uso de The Boost
Graph Library (BGL), que contiene varios algoritmos y estructuras para trabajar con
grafos [§].

10

En la aplicacion del algoritmo Dijkstra de Boost hay dos vectores de gran importancia,
distance map (d) y predecessor map (p). Para cada nodo u, se calculan las distancias hacia
todos sus nodos adyacentes, y la distancia mas corta encontrada se almacena en el vector
d[u]. Por otro lado, el vector p es el encargado de almacenar para cada nodo u en V,
siendo V' el vector que contiene todos los nodos del grafo, el nodo predecesor de cada u.
plu] contiene el nodo que va antes de u en la secuencia de regiones final. El algoritmo
devuelve ambos vectores, d y p, que permiten conocer para cada nodo u la distancia mas
corta hacia sus adyacentes y su nodo predecesor [§]. Existe ademas una cola de prioridad,
@, en la que se encuentran los nodos por orden de prioridad en funcién de sus distancias.

11

Capitulo 3

Planificacién de bajo nivel

En el capitulo anterior se ha explicado el funcionamiento del algoritmo de planificaciéon
de trayectorias Dijkstra y, en este capitulo se detalla como, a partir de la secuencia de
regiones obtenida por dicho algoritmo, se calculan los puntos de la trayectoria del un
robot.

Creacion del grafo

¥

Aplicacion algoritmo Dijkstra

T
Implementacion de dos
algoritmos de calculo de punto
de la trayectoria

e .

Algoritmo de unidn de puntos

Algoritmo de puntos medios
centrales

Figura 3.1: Esquema del proceso a seguir para alcanzar el objetivo del trabajo.

En la Figura |3.1] se muestra un esquema del proceso a seguir. El proceso comienza
con la creacion de un grafo a partir de la informaciéon leida de un fichero de texto, cada
celda en la que esta dividido el mapa es un nodo del grafo. Una vez creado el grafo, se
aplica el algoritmo Dijkstra para obtener una secuencia de regiones que tiene que seguir
el robot para ir de una posicién inicial a una posicién final, de manera que, el camino sea
el més corto posible. A partir de la secuencia de regiones, se implementan dos algoritmos
que calculan de manera optimizada los puntos exactos de cruce entre las regiones para

12

alcanzar la posicion final. El primer algoritmo se basa en el célculo de los puntos medios
del segmento que tienen en comin dos celdas, mientras que el segundo algoritmo se basa
en la interseccion entre el segmento comun y la recta que une los dos centros.

A continuacion se detalla la metodologia a seguir para alcanzar el objetivo del trabajo.
El codigo implementado para la realizacion de este trabajo se encuentra en una carpeta
cuyo enlace esta en el Anexo A.2.

3.1. Metodologia

El desarrollo del trabajo se puede separar en tres partes fundamentales; la primera
parte es la creacion del grafo a partir de la informacién de un mapa dividido en celdas,
la segunda parte es la aplicacion del algoritmo de busqueda de trayectorias (Algoritmo
Dijkstra) para obtener la secuencia de regiones, y la tercera parte es la implementacion
de dos algoritmos que calculan los puntos de cruce entre regiones que forman parte de la
secuencia obtenida.

3.1.1. Parte 1: Creacion del grafo

La primera parte que se ha desarrollado ha sido la creaciéon del grafo a partir de
informacion que se recibe en un fichero de texto. El fichero de texto tiene una estructura
determinada que hara posible el entendimiento de la informaciéon. La primera linea del
fichero muestra un encabezado donde se indica qué parametro se esta leyendo en cada
momento. La segunda linea del fichero de texto indica el nimero de celdas totales que tiene
el entorno, es decir, el niimero de nodos del grafo. A partir de la tercera linea, se muestra
en cada una la informacion de un nodo diferente de la manera que ha sido descrita, hasta
llegar al final del fichero. Los datos de cada linea del fichero se muestran de la siguiente
forma:

Celda; ocupado; nimero vértices; lista de z; lista y; nimero adyacentes; ady(Puntos en
comun):(primer punto)...(ultimo punto);

A continuacion se detalla qué es cada elemento.

Celda: Indica el nimero de celda que se esta leyendo, es decir, el nodo del grafo.

Ocupado: Es un 0 si la celda esta libre de obstaculos y un 1 si tiene un obstéculo.

Numero vértices: Indica el nimero de vértices que posee la celda.

Lista de x y lista de y: Son dos vectores en los que estan almacenadas las coordenadas
x e y de cada punto. Estan almacenadas en el mismo orden, es decir el primer valor

13

de la lista de x y de la lista de y serian las coordenadas de un punto en concreto.

= Numero de adyacentes: Es el nimero de celdas adyacentes que tiene cada una. Esta
informacion es necesaria debido a que el robot tinicamente podra pasar de una celda
a otra si estas dos son adyacentes.

» ady(Puntos en comin): 'Ady’ es el nimero de la celda adyacente, y entre paréntesis
se especifica los dos puntos que unen el segmento que tienen en comun las dos celdas.

» (primer punto)...(ultimo punto): En el formato que se muestra arriba aparecen re-
presentados todos los puntos de unioén.

Cada linea del fichero es leida y almacenada en una variable de tipo struct. Un struct, o
estructura, se define como un tipo de dato compuesto que permite almacenar un conjunto
de datos de diferente tipo, estos datos pueden ser nimeros enteros, caracteres, vectores,
otras estructuras, etc [9]. Cada nodo del grafo es una estructura y estan almacenadas en
una clase, class. Una clase es un nuevo tipo de dato que suele ser usado para crear objetos
y que crea una consistencia logica que establece una relacion entre sus miembros; cuando
se declara una variable clase se estd creando un objeto [9).

class Grafof
public:

struct nodo{
int celda;
int occupado;
int num_vertices;
int num_x;
int num_y;
int num_adyacentes;
float x[le@a];
float y[1eea];
vector<Adyacentes ady;

i

float CalculeCentroCelda(node a, float *wcentro, float *ycentrao);

float CalcularPeso(nodc o, nodo d, float *peso);

float PuntoMedio(neodo o, node d, float *xmedic, float *ymedio);

float PuntosInterseccionRectas(node o, nodo d, float *winterseccion, float *yinterseccion);

}i

Figura 3.2: Clase y estructura definidas para crear el grafo a partir de la descomposiciéon
de celdas.

En la Figura se puede observar la clase Grafo definida para este programa. Dentro
de la clase se define una estructura denominada nodo que recoge la informaciéon de cada
nodo del grafo en sus diferentes variables. Ademas la clase Grafo permite almacenar
funciones. Estas funciones tienen como parametros de entrada datos pertenecientes a la
clase.

14

Leida y almacenada toda la informacién obtenida en el fichero de texto, se realiza el
proceso real de creacion del objeto grafo. En este proceso se crean las aristas uniendo de
dos en dos las celdas que son adyacentes.

Para crear las aristas se hace uso de una funcién perteneciente a la libreria Boost
enfocada en los grafos. La funciéon es pair <int, int>, y se encarga de establecer parejas
de celdas creando una arista para unirlas. Para que esta funciéon se pueda aplicar entre
dos celdas se tienen que cumplir dos requisitos muy importantes; el primero es que tienen
que ser celdas adyacentes entre ellas, se tiene que comprobar si la celda con la que se va
a emparejar pertenece al vector de adyacentes y, de este modo, el robot puede pasar de
una a otra. El segundo requisito es que ninguna de las dos celdas tiene que estar ocupada,
es decir, las dos tienen que estar libres de obstaculos para que el robot pueda circular
por ellas. Para saber si una celda esta libre se debe comprobar que en la variable ocupado
tiene un 0. En caso de que una de las dos celdas esté ocupada, o incluso las dos, se ignoran
y se siguen creando parejas con otras celdas adyacentes.

Conforme se van creando las parejas entre celdas adyacentes, se calcula el peso de las
aristas. El peso de una arista se ha definido como la distancia métrica entre el centro de
la celda de origen y el centro de la celda de destino, aplicando la funcion:

peso =/ (Ya — Yo)? + (x4 — ,)? (3.1)
siendo el subindice d, la celda de destino, y el subindice o, la celda de origen.

Para llevar a cabo el calculo del peso se crea una funciéon llamada CalcularPeso(nodo
0, nodo d, float *peso) que toma como entrada dos structs de nodos adyacentes y devuelve
como salida el peso calculado como se indica en la ecuaciéon 3.2.

Es importante tener en cuenta que el peso asignado a cada arista es muy determinante a
la hora de calcular trayectorias. En este Trabajo de Fin de Grado, el peso ha sido calculado
como la distancia métrica entre los centros de dos celdas adyacentes, sin embargo, también
se puede calcular de muchas otras maneras. Un ejemplo seria calcular el peso como la
distancia entre el punto de entrada a una celda y el punto de salida de dicha celda; estos
puntos pueden ser los puntos medios de los segmentos que unen dos regiones adyacentes.

£
] z . v . i ERT " " " | 0

Figura 3.3: Dos trayectorias obtenidas dependiendo del peso de las aristas.

15

En la Figura[3.3]se puede observar como cambia la trayectoria de un robot dependiendo
del peso asignado a cada arista. En la figura de la izquierda el peso esta calculado como la
distancia métrica entre los centros de dos celdas, y en la figura de la derecha estéa calculado
como la distancia entre el punto de entrada a una celda y el punto de salida de la misma.

Construido el grafo, se pasa a la siguiente parte de la programacion, la aplicaciéon del
algoritmo Dijkstra.

3.1.2. Parte 2: Aplicacion Algoritmo Dijkstra

Para explicar la aplicacion del algoritmo Dijkstra, se toma como ejemplo el mapa de
la Figura [3.4] un mapa dividido en ocho celdas de las cuales dos estan ocupadas por un
obstéaculo.

c2
) -
c3

=

Figura 3.4: Ejemplo de un mapa dividido en ocho celdas.

Este algoritmo tiene, como pardmetros de entrada, el objeto grafo, construido previa-
mente con la funcién pair <int, int>, la cual crea aristas entre nodos adyacentes. También
tiene como entrada el nodo de origen ,s, desde el cual se calcula la trayectoria mas corta.
Otros parametros de entrada son el vector de los pesos de las aristas ,w, y el vector con
todos los nodos del grafo ,nodes. Como parametros de salida se obtiene el mapa de pre-
decesores, un vector que guarda el nodo predecesor de menor distancia de cada nodo del
grafo. También como salida se obtiene el mapa de distancias, un vector que almacena la
distancia mas corta para llegar a cada nodo.

Se ha de tener en cuenta que el algoritmo Dijkstra calcula el camino méas corto que,
desde un nodo origen, pasa por todos los nodos del grafo. Sin embargo, el objetivo de este
proyecto es que el autémata se desplace a una posicion final, en este caso, el tltimo nodo
del grafo. Para simplificar la programacion, se ha creado un vector denominado secuencia,
que almacena las celdas, o nodos, por las que tiene que pasar el robot para alcanzar la
celda final que, en el ejemplo de la Figura[3.4] es la celda 8.

En este ejemplo, aplicando la funcién del algoritmo Dijkstra, siendo el punto inicial la

16

celda 1 y, el punto final la celda 8, la secuencia de regiones obtenida para que el robot
siga el camino més corto posible es cl, ¢2, ¢3 y ¢8. Una vez obtenido el camino, se tienen
que calcular los puntos de cruce entre estas regiones.

3.1.3. Parte 3: Implementaciéon de Algoritmos de calculo de tra-
yectorias

El problema a resolver en esta parte se encuentra en seleccionar el punto exacto que
tiene que atravesar el autémata para cruzar de una celda a otra. Estos puntos se de-
nominan puntos intermedios (waypoints). A continuacion se explican los dos algoritmos
desarrollados.

Algoritmo de calculo de puntos medios

El primer algoritmo implementado consiste en calcular el punto medio del segmento
comun entre las dos celdas por las que pasa el robot. Esta opcién es la més popular para
el calculo de los puntos de una trayectoria.

En la implementacion de este algoritmo no hay una gran complejidad debido a que los
puntos son hallados de manera muy simple y usando tnicamente la particion de celdas
del entorno en el que se esta trabajando. Para llevar a cabo la implementacion se parte de
la informacién leida del fichero de texto y almacenada en la variable struct nodo. Como se
puede apreciar en la Figura [3.2] esta estructura cuenta con un vector de clase Adyacente,
definida como se muestra en la Figura [3.5

class Adyacente{
public:
i int numerc;
int puntosInterseccion;
float puntos_x[1le8a];
float puntos_y[leee];

i
Figura 3.5: Clase Adyacente

Esta clase ha sido creada para almacenar los datos del segmento que tienen en comin
dos celdas. En la variable numero se guarda el numero de la celda adyacente que se estéa
leyendo, la variable puntosinterseccion indica cuantos puntos tienen en comun las dos
celdas, y por ultimo las variables puntos z y puntos y guardan las coordenadas x e y de
los puntos en comin respectivamente.

17

En la Figura se puede observar un ejemplo de los puntos por los que pasaria el
robot para ir desde la celda 1 hasta la celda 8. Suponiendo que la secuencia de regiones
es cl, 2, c3 y 8, los puntos marcados en rojo son los puntos medios del segmento comun
entre dos regiones por las que tiene que cruzar el automata.

@ c2 ®

Figura 3.6: Calculo trayectoria de un robot mediante puntos medios del segmento comn.

Algoritmo de unién de puntos centrales

Este algoritmo se basa en calcular la trayectoria a partir de la unién de dos rectas,
que son el segmento de uniéon entre las dos celdas adyacentes y la recta que une los dos
centros de ambas celdas. El punto de interseccién de esas rectas es el punto por el que
pasa el robot para cruzar de una region a otra. Para realizar el célculo de ambas rectas,
se utiliza la ecuacion de la recta que pasa por dos puntos.

Y=Y+ m(x—x,) (3.2)
siendo m la pendiente de la recta
To — I

En la Figura se puede observar un ejemplo de célculo de los puntos de interseccion
entre las dos rectas. Suponiendo la misma secuencia de regiones que en el apartado anterior
cl, 2, c3 y ¢8, las rectas rojas representan las rectas de unién de los centros de las dos
celdas adyacentes, y los puntos negros, los puntos por los que el robot debe cruzar de una
region a otra.

En la implementacion de este algoritmo se ha encontrado una dificultad. La pendiente
de la recta que pasa por dos puntos cuyas coordenadas x son iguales, no se puede calcular.
En estos casos, siendo x1 la coordenada de ambos puntos, la recta que une esos dos puntos
es x = zl.

18

’ -

Figura 3.7: Célculo trayectoria de un robot mediante la uniéon de los puntos centrales.

19

Capitulo 4

Evaluacion y comparacion

El objetivo del trabajo es la implementacion de dos algoritmos que calculen los puntos
de la trayectoria de un robot de manera que, el calculo sea optimizado, es decir, el robot
recorra la menor distancia posible para llegar a un punto final sin colisionar con ningtn
obstéaculo. Los dos algoritmos que han sido implementados para llevar a cabo este calculo
han sido explicados en la seccion 3.2.3 y son el algoritmo de calculo de puntos medios y
el algoritmo de unién de puntos centrales.

En este capitulo se hace una evaluacién del funcionamiento de estos dos algoritmos,
asi como una comparaciéon entre ambos. Para poder evaluarlos y compararlos, se han
empleado dos métricas. La primera métrica es la distancia total recorrida, que mide en
metros la longitud total que recorre el robot y, la segunda métrica es el tiempo de ejecucion,
que mide en segundos el tiempo que tarda el ordenador en ejecutar cada algoritmo.

4.1. Obtencioén de resultados para diferentes mapas

El proceso de obtencién de los resultados comienza con un mapa que ha sido previa-
mente dividido en celdas, al cual se le aplica el algoritmo de planificacién de trayectorias
para encontrar el camino de menor recorrido que ha de seguir el robot para llegar a un
destino.

La informacion de cada celda obtenida en la descomposicion viene dada en un fichero de
texto, en el formato que ha sido explicado en la seccion 3.2.1. A partir de esta informacion,
se procede a la creacion del grafo mediante la funcion pair <int, int> de la libreria Boost,
que se encarga de crear aristas entre las celdas adyacentes. Se ha de comprobar que las
celdas que se van uniendo mediante aristas no estan ocupadas por un obstaculo, debido
a que entonces el autémata no puede cruzar por ellas. A cada arista se le asigna un peso
mediante la formula de la ecuacion B.11

20

Al grafo creado a partir de la descomposicion, se le aplica el algoritmo de planificacion
de trayectorias, el algoritmo Dijkstra, mediante el cual se obtiene la secuencia de regiones
por las que tiene que pasar el robot para alcanzar la posicion final. A partir de esta
secuencia de regiones, para obtener los puntos exactos de la trayectoria del robot, se
aplican los dos algoritmos que han sido implementados. Estos algoritmos calculan los
puntos de la trayectoria del robot, de manera que el calculo es optimizado.

Para la aplicacion del primer algoritmo se llama a la funcion:
PuntoMedio(nodo o, nodo d, float *rmedio, float *ymedio).

Esta funcion tiene como parametros de entrada el nodo de origen y nodo de destino.
El nodo de origen es la celda en la que esta posicionado el robot, mientras que el nodo de
destino es la celda a la que tiene que cruzar para seguir su trayectoria. Por otro lado, esta
funcién devuelve como parametros de salida dos variables de tipo float que representan
las coordenadas x e y del punto de cruce entre las dos celdas. La variable de tipo float es
una variable numérica que admite parte decimal.

Para la aplicacion del segundo algoritmo se llama a la siguiente funcion:
PuntosInterseccionRectas(nodo o, nodo d, float *xinterseccion, float *yinterseccion).

Esta funcion tiene como parametros de entrada, al igual que la funcion del algoritmo
de puntos medios, la celda de origen y la celda de destino. Como parametros de salida se
obtienen dos variables de tipo float que representan las coordenadas del punto de cruce
entre regiones. Este punto es calculado como la intersecciéon entre el segmento comun
de las dos celdas y la recta que une los centros de ambas. Esta interseccién se calcula
siguiendo la formula de la ecuacion [3.2]

Los resultados han sido obtenidos al ejecutar los dos algoritmos en ROS (Robotic
Operating System), un software para trabajar con robots. Se han usado tres mapas con
diferentes caracteristicas, a partir de los cuales se han calculado las trayectorias. Para cada
mapa se obtienen dos trayectorias, una con cada algoritmo implementado. Para realizar el
calculo de la distancia media y el tiempo de ejecucién medio se han calculado 20 caminos
diferentes. A continuacién se muestran los resultados obtenidos.

Se denomina algoritmo 1 al algoritmo de puntos medios, que calcula el punto medio
del segmento que tienen en comin dos celdas adyacentes y, algoritmo 2 al algoritmo de
uniéon de puntos centrales, que calcula la interseccion entre el segmento en comin y la
recta que une los dos centros de las celdas.

21

4.1.1. Primer mapa

Para este primer ejemplo se toma como punto de partida el mapa de la Figura [£.]
un mapa de dimensiones 20x17. Este mapa se caracteriza por tener pocos obstéaculos,
de manera que el robot tiene mas facilidad para moverse sin colisionar con ninguno. El
resultado tras la descomposicion de celdas es un mapa dividido en 40 celdas, de las cuales
4 estan ocupadas por un obsticulo. Las celdas ocupadas no pueden formar parte de la

trayectoria final del robot.

Figura 4.1: Mapa original 20x17.

Tras la aplicacion del algoritmo Dijkstra, se ha obtenido la secuencia de regiones su-
poniendo que el punto inicial es el centro de la primera celda, y el punto final es el centro
de la ultima celda, en este caso la celda 40. Teniendo en cuenta que el eje de coordenadas
estd situado en la esquina inferior izquierda, los resultados obtenidos tras aplicar ambos

algoritmos son los mostrados en la tabla

Resultados de los dos algoritmos

Punto

Algoritmo 1

Algoritmo 2

19 punto
29 punto
3° punto
4° punto
52 punto
6° punto

(8,7)
(9, 8.5)
(11, 8.5)
(13, 9)
(13, 11)
(14, 12.5)

(6.95, 7)
(9, 8.5)
(11, 8.5)
(13, 9)
(13, 11)
(14, 12.875)

Tabla 4.1: Resultados tras la aplicacion de los algoritmos al primer ejemplo.

22

Los puntos calculados por ambos algoritmos son bastante similares, sin embargo, se
pueden apreciar algunas diferencias que hacen que las distancias recorridas sean diferentes.
En la tabla [4.2] se muestran los resultados tras calcular la distancia total recorrida por el
robot para ir desde la celda 1 hasta la tltima celda y el tiempo de ejecucién de los dos
algoritmos.

Algoritmo 1 | Algoritmo 2
Distancia total recorrida (m) | 9.67 10.73
Tiempo de ejecucion (s) 0.01 0.01

Tabla 4.2: Resultados del célculo de la distancia recorrida y el tiempo de ejecuciéon para
el primer mapa.

Sin embargo, para poder hacer afirmaciones sobre qué algoritmo de los dos es mejor
usar en cada caso, se han aplicado estos dos algoritmos a 20 trayectorias, con posiciones
iniciales diferentes. En la tabla del Anexo 1 se muestran los resultados obtenidos
al calcular las distancias recorridas por el robot, en metros, y el tiempo que tarda el
ordenador en ejecutar los dos algoritmos, en segundos, para 20 caminos diferentes. En la
tabla se han calculado las medias de estos parametros.

Distancia(m) | Distancia(m) | Tiempo(s) | Tiempo(s)
Algoritmo 1 | Algoritmo 2 | Algoritmo 1 | Algoritmo 2
Media | 10,47 10,75 0,00385 0,00425

Tabla 4.3: Resultados del célculo de la media de la distancia recorrida y el tiempo de
ejecucion para el primer mapa.

4.1.2. Segundo mapa

Para este segundo ejemplo se usa el mapa de la Figura [4.2] Este mapa, de dimensio-
nes 22x22, es mas grande que el mapa de la Figura [£.1] Se caracteriza por poseer una
cantidad considerable de obstaculos que van a dificultar la trayectoria del robot. Tras la
descomposicion de celdas el mapa queda dividido en 130 regiones, de las cuales 42 estan
ocupadas por un obstéaculo.

23

Figura 4.2: Mapa original 22x22.

Siendo el punto inicial la primera region, es decir, la celda ntiimero 1, y el punto final
la celda ntmero 130, los resultados obtenidos tras aplicar el algoritmo de puntos medios
y el algoritmo de union de puntos centrales son los mostrados en la tabla [4.4]

Resultados de los dos algoritmos
Punto Algoritmo 1 | Algoritmo 2
192 punto (4, 2) (4, 2)
2° punto (5, 2) (5, 2)
32 punto (7, 2) (7, 2)
42 punto (8, 2) (8, 2)
52 punto | (10, 2.25) (10, 2)
6° punto (12, 3.5) (12, 3.16)
79 punto (13, 4) (13, 3.5)
82 punto (13, 5) (13,5)
9° punto (13, 7) (13, 6.5)
10° punto (14, 10) (14, 10)
11° punto (15, 12) (15, 11.75)
12° punto | (16, 12) (16, 12)
13° punto (18, 12) (18, 12)
142 punto (19, 12) (19 12)
152 punto (20, 15) (20, 15)
16° punto | (20, 18) (20, 18)

24

Tabla 4.4: Resultados tras la aplicacion de los algoritmos al segundo ejemplo.

Como se puede observar en los resultados, Los puntos calculados por ambos algoritmos
son practicamente iguales, tnicamente diferenciandose en la coordenada x del primer
punto de cruce. Por ello, la distancia recorrida varia muy poco al aplicar un algoritmo u
otro, como se muestra en la tabla [4.5]

Algoritmo 1 | Algoritmo 2
Distancia total recorrida (m) | 28.18 28.13
Tiempo de ejecucion (s) 0.031 0.032

Tabla 4.5: Resultados del célculo de la distancia recorrida y el tiempo de ejecuciéon para
el segundo mapa.

Para poder comparar ambos algoritmos, se procede a seguir el mismo proceso que para
el mapa anterior y se calculan 20 caminos con puntos de inicio distintos. Los resultados
de estos célculos se muestran en la tabla del Anexo 1. Para decidir qué algoritmo es
mejor aplicar en este segundo mapa, en la tabla se han hecho los célculos de la media
de la distancia recorrida por el robot en los caminos calculados y la media del tiempo de
ejecucion de cada algoritmo.

Distancia(m) | Distancia(m) | Tiempo(s) | Tiempo(s)
Algoritmo 1 | Algoritmo 2 | Algoritmo 1 | Algoritmo 2
Media | 16,94 16,89 0,0268 0,0279

Tabla 4.6: Resultados del célculo de la media de la distancia recorrida y el tiempo de
ejecucion para el segundo mapa.

4.1.3. Tercer mapa

Para este ejemplo se parte del mapa de la Figura Este mapa es mas pequeno que
los anteriores, de dimensiones 10x7, y no posee muchos obstaculos pero al ser un mapa
pequeno, abarcan gran parte del espacio.

Figura 4.3: Mapa original 10x7.

25

Se han calculado los puntos de la trayectoria de un robot, siendo la posicién inicial
la celda 1 y, la posiciéon final, la dltima celda. Los resultados obtenidos tras aplicar el
algoritmo de puntos medios y el algoritmo de uniéon de puntos centrales son los mostrados
en la tabla 4.7

Resultados de los dos algoritmos
Punto | Algoritmo 1 | Algoritmo 2

192 punto (1, 0) (1, 0)
29 punto (4, 0) (4, 0)
3° punto (5.5, 0) (5.5, 0)
4° punto (5.5, 1) (5.5, 1)
59 punto (6, 2) (6, 2)
62 punto (8, 2) (8, 2)
79 punto (17, 14) (17, 14)

Tabla 4.7: Resultados tras la aplicacion de los algoritmos al tercer ejemplo.

Como se puede observar en los resultados, la trayectoria del autémata obtenida por
ambos algoritmos es exactamente la misma. Al ser un mapa pequeno en el que los obs-
taculos ocupan gran parte del espacio, ambos algoritmos obtienen caminos muy parecidos,
o iguales en este caso. La distancia recorrida por el robot para ir desde la primera celda
hasta la ultima, es la misma calculada por los dos algoritmos. Sin embargo, para poder
saber cuél de los dos calcula un mejor camino en la mayor parte de los casos, se han
calculado 20 caminos con puntos de inicio o puntos de fin diferentes. Los resultados se
muestran en la tabla del Anexo 1. En la tabla 4.8 se pueden observar los resultados al
calcular la distancia media y el tiempo de ejecuciéon medio de 20 trayectorias diferentes.

Distancia(m) | Distancia(m) | Tiempo(s) | Tiempo(s)
Algoritmo 1 | Algoritmo 2 | Algoritmo 1 | Algoritmo 2
Media | 6,30 6,37 0,0016 0,00205

Tabla 4.8: Resultados del célculo de la media de la distancia recorrida y el tiempo de
ejecucion para el segundo mapa.

4.2. Comparacion de los algoritmos

Tras haber evaluado los dos algoritmos en los tres mapas mostrados, se puede observar
que, tanto el algoritmo de calculo de puntos medios como el algoritmo de uniéon de puntos
centrales calculan puntos bastante similares. No hay un gran cambio de la trayectoria
al usar un algoritmo u otro, sin embargo, aunque la diferencia sea pequena, si que hay

26

un cambio en las distancias calculadas por cada algoritmo. En la Figura [4.4] se pueden
observar las distancias medias de 20 trayectorias distintas calculadas por cada algoritmo
para los tres mapas. El algoritmo 1 es el algoritmo de puntos medios, y el algoritmo 2 el
de unién de puntos centrales.

1o

15
13
]
7
: I

Primer mapa Segundo mapa Tercer maga

Distanc ia media recorrida [m)

mAlzoritmo 1w Algoritmoz

Figura 4.4: Comparacion de distancias medias calculadas por los dos algoritmos.

Se puede observar que, para el primer mapa, el algoritmo que calcula una menor
distancia es el algoritmo 1, sin embargo, para el segundo mapa, aunque la diferencia es
muy pequena, es el algoritmo 2 el que calcula la menor distancia. Con estos resultados
se puede sacar la conclusion de que para mapas grandes con pocos obstaculos, como el
de la Figura el algoritmo que calcula la menor distancia es el de célculo de puntos
medios. Sin embargo, para mapas grandes que tienen muchos obstéculos, como el de la
Figura[d.2] el algoritmo que calcula la menor distancia es el de uniéon de puntos centrales.
Estas deferencias se pueden basar en el resultado de la descomposicion de celdas, ya que
para mapas con pocos obstaculos se generan un menor nimero de regiones que tienen
mayores dimensiones, pero para mapas con un gran nimero de obstaculos se generan
més celdas y con dimensiones méas pequenas. Al calcular las trayectorias para un nimero
menor de celdas de mayores dimensiones el algoritmo de puntos medios calcula una menor
distancia que cuando se trata de celdas con menores dimensiones.

En el caso del tercer mapa, las distancias calculadas por un algoritmo u otro varian
muy poco. No obstante, se puede apreciar una ligera diferencia que hace que el algoritmo
que calcule la menor distancia sea el algoritmo de puntos medios.

En cuanto al tiempo de ejecucion de ambos algoritmos, se puede observar en la Figu-
ra una comparacion de los tiempos medios que tarda el ordenador en ejecutar cada

27

algoritmo para los tres mapas evaluados.

0,03
0,025
0,0z
0,015

0,01

T mpo de ejec widn [s)

0,005

. AR -

Primer mapa Segundo mapa Tercer mapa

mAlzoritrmo 1 m Algoritmoz

Figura 4.5: Comparaciéon de la media de los tiempos de ejecucion de los dos algoritmos.

Se puede observar que en los tres casos, el tiempo que tarda el ordenador en ejecutar
el algoritmo 1 es inferior al tiempo que tarda en ejecutar el algoritmo 2. Esto puede ser
porque el algoritmo 1, que es el que calcula los puntos medios del segmento comun de
dos celdas adyacentes, es méas sencillo de implementar que el algoritmo 2. El algoritmo 1
tunicamente calcula el punto medio de un segmento, mientras que el algoritmo 2 calcula
dos rectas y, la interseccion de ambas.

28

Capitulo 5

Conclusiones

Planificar una trayectoria de forma 6ptima consiste en calcular el camino més corto
desde un punto inicial hasta un destino. Para realizar este calculo existen diversos algo-
ritmos ya implementados, entre ellos el algoritmo Dijkstra. Este algoritmo proporciona,
a partir de un mapa dividido en celdas, la secuencia de regiones méas corta para alcanzar
una posicion final. Sin embargo, para calcular los puntos exactos que forman la trayectoria
de un robot, se necesitan implementar otros algoritmos.

El objetivo de este proyecto es la implementacion de dos algoritmos que calculan de
forma optimizada los puntos intermedios de una trayectoria que ha de seguir un autoé-
mata sin colisionar con ningtin obstaculo. Para conseguir el objetivo, se han creado dos
algoritmos que calculan de manera diferente los puntos de la trayectoria de un robot, el
primer algoritmo calcula los puntos medios del segmento que tienen en comun dos celdas
adyacentes, mientras que el segundo calcula la interseccion entre la recta que une los cen-
tros de las dos celdas y el segmento comtun de ambas. La eleccion del algoritmo que se
debe usar en cada caso se basa en la distancia total recorrida por el robot. Si la distancia
recorrida es menor, el tiempo que tarda el robot en llegar al destino final se reduce y,
por lo tanto, el coste del proyecto es menor. Tras haber comprobado en el capitulo 4 su
correcto funcionamiento, se puede afirmar que el objetivo ha sido alcanzado.

Al evaluar y comparar los dos algoritmos para diferentes mapas se obtienen las siguien-
tes conclusiones:

= Para mapas grandes y con pocos obstaculos, el algoritmo que calcula una menor
distancia es el de célculo de puntos medios. Para mapas grandes y con muchos
obstéaculos, ocurre lo contrario, el algoritmo que calcula una menor distancia es
el de unién de puntos centrales. Esta diferencia puede ser debida al resultado de
la descomposicion de celdas, ya que, cuando el mapa posee muchos obstaculos, se
generan un gran niamero de celdas de pequenas dimensiones, sin embargo, cuando
el mapa presenta pocos obstaculos, se generan un menor nimero de celdas y son de

29

dimensiones mas grandes. Para mapas pequenos, se ha comprobado que el algoritmo
que calcula una menor distancia es el algoritmo de puntos medios. Sin embargo, en
todos los casos, las trayectorias calculadas por ambos algoritmos son muy similares.

= El tiempo que tarda el ordenador en ejecutar cada algoritmo es bastante parecido, sin
embargo, para todos los casos evaluados el tiempo de ejecucion es inferior al aplicar
el algoritmo de calculo de puntos medios. Esto se debe a que su implementacion
es mas sencilla ya que solo calcula el punto medio del segmento comiin entre dos
celdas, mientras que el algoritmo de uniéon de puntos centrales calcula dos rectas y
la interseccién de ambas.

Se ha de tener en cuenta que los algoritmos se han aplicado tnicamente sobre tres
mapas. Para sacar conclusiones mas precisas se necesitaria probarlos sobre una cantidad
considerable de mapas con diferentes caracteristicas. También hay que resaltar que las
distancias medias han sido calculadas en base a 20 trayectorias distintas en cada mapa,
no obstante, si se quisiese hacer un anélisis completo, se deberian calcular las distancias
para todas las trayectorias posibles.

En este Trabajo Final de Grado se han creado tinicamente dos algoritmos de calculo
de puntos intermedios, sin embargo, usando diferentes métodos para realizar el calculo, se
pueden implementar otros algoritmos distintos que puedan reducir méas la distancia total
recorrida. Han sido creados para su posterior integracion en ROS (Robotic Operating
System), un software para trabajar con robots que actualmente no cuenta con ningun
algoritmo capaz de calcular estos puntos.

30

31

Apéndice A

Anexos

A.1. Resultados obtenidos al aplicar los algoritmos en
tres mapas diferentes

o Distancia (m) | Distancia(m) | Tiempo(s Tiempo(s
Celda inicial Algoritm(g 1) Algoritmf) 2) Algorilt)m(o)1 Algorilgm(o)2
1 9,66 10,72 0,003 0,003
3 13,9 13,8 0,005 0,005
5 7,86 8,18 0,003 0,004
2 4 4,13 0,003 0,003
4 11,9 11,76 0,009 0,009
6 11,36 11,74 0,003 0,003
7 10,36 10,68 0,004 0,005
9 124 12,26 0,003 0,004
11 16,46 16,47 0,003 0,004
13 13,41 13,26 0,003 0,004
15 14,41 14,26 0,005 0,005
17 16,41 16,46 0,003 0,004
18 15,41 15,26 0,007 0,007
20 16,41 16,76 0,003 0,004
23 17,82 17,88 0,004 0,004
25 5,86 6,18 0,003 0,003
26 3,8 5,62 0,003 0,003
28 1,8 3,52 0,003 0,004
33 3,04 3 0,004 0,004
36 3,16 3,09 0,003 0,003

Tabla A.1: Resultados del calculo de la distancia recorrida y el tiempo de ejecucién para
20 caminos diferentes del primer mapa.

32

Celda | Distancia(m) | Distancia(m) | Tiempo(s) | Tiempo(s)
inicial | Algoritmo 1 | Algoritmo 2 | Algoritmo 1 | Algoritmo 2

1 28,17 28,11 0,039 0,04
3 25,17 25,11 0,022 0,022
11 24,17 24,12 0,025 0,025
17 21,74 92,07 0,023 0,023
21 22.65 23,07 0,026 0,027
25 21,56 21,48 0,023 0,023
30 21,56 21,48 0,028 0,028
35 22,23 22,12 0,038 0,039
42 19,18 18,6 0,027 0,027
54 14,56 14,48 0,026 0,027
63 11,16 11,66 0,025 0,025
68 11,54 11,54 0,025 0,025
74 18,56 18,57 0,022 0,027
76 17,94 18 0,028 0,028
84 15,34 15,16 0,027 0,027
95 15,95 154 0,028 0,028
101 13,56 12,98 0,022 0,023
110 7.26 7.24 0,025 0,025
117 3 3,2 0,034 0,034
126 3,9 3,502 0,023 0,031

Tabla A.2: Resultados del calculo de la distancia recorrida y el tiempo de ejecucion para
20 caminos diferentes del segundo mapa.

33

Distancia(m) | Distancia(m) | Tiempo(s) | Tiempo(s)
Algoritmo 1 | Algoritmo 2 | Algoritmo 1 | Algoritmo 2
8,62 8,62 0,001 0,002
5,62 5,62 0,002 0,002
9,12 9,24 0,002 0,002
411 3.74 0,002 0,002
55 5.5 0,002 0,002
3,11 2,8 0,002 0,002
4,52 4,23 0,002 0,003
11,11 11,5 0,002 0,002
12,23 12,45 0,001 0,002
13,23 13.6 0,001 0,002

2 2 0,002 0,002
111 A1 0,001 0,002
4,61 4,97 0,002 0,002
3,12 3,1 0,001 0,002
7,61 7,97 0,001 0,002
9,11 9,52 0,002 0,002
2,12 2.13 0,002 0,002

1 1,054 0,002 0,002
13.23 13.73 0,001 0,002

2 1,625 0,001 0,002

Tabla A.3: Resultados del calculo de la distancia recorrida y el tiempo de ejecucion para
20 caminos diferentes del tercer mapa.

A.2. Codigo implementado para la realizacién del tra-
bajo

El codigo implementado en este trabajo se encuentra en la siguiente carpeta. En ella
se encuentran los ficheros de texto de los tres mapas evaluados.

https://drive.google.com/drive /u/0/folders/ InuWnPRX-Ve2wj3CNSzKTeGY JUAIEZezj

A.3. ROS: Robotic Operating System

En la actualidad existen muchos frameworks o lenguajes de programacion especificos
para robots. Algunos son especificos de un robot concreto y otros, sin embargo, son ge-

34

nerales. Este proyecto se ha llevado a cabo con uno de los frameworks més importantes,
ROS (Robotic Operation System) [10].

“El Sistema Operativo de Robot (ROS) es un marco flexible para escribir software
de robot. Es una coleccion de herramientas, bibliotecas y convenciones que tienen como
objetivo simplificar la tarea de crear un comportamiento robdtico complejo y robusto en
una amplia variedad de plataformas robdticas.” [11].

Esta definicion, que se encuentra en la péagina oficial de ROS, quiere decir que este
sistema operativo esta dotado de librerias y herramientas que hacen que el trabajo con
el robot sean més sencillo. Por ejemplo, tiene librerias que acceden a los sensores del
robot, facilitando mucho la programacion. Existen librerias generales para cualquier tipo
de robots y otras que solo sirven para unos robots especificos. Ademas, en ROS se pueden
incorporar otras librerias que previamente no estan instaladas, de manera que se pueda
trabajar con mas herramientas [I0]. En este proyecto se hace uso de la libreria Boost,
que previamente no esté instalada en el sistema operativo.

Una de las principales ventajas que tiene ROS es que, ademas de ser muy tutil para
trabajar con robots reales, es capaz de ejecutar los programas a través de simuladores
[10]. Este trabajo se ha llevado a acabo sin el uso de robots reales, inicamente simulando
los programas en el frameworks.

ROS fue desarrollado en 2007 por el Laboratorio de Inteligencia Artificial de Stanford
para dar soporte a su proyecto de robot con inteligencia artificial. ROS no es un sistema
operativo, sin embargo, tiene todos los servicios estdndar que un sistema operativo puede
tener como por ejemplo, el control de dispositivos de bajo nivel, el paso de mensajes
entre procesos y el mantenimiento de paquetes. Esta basado en grafos cuyos nodos son
los responsables de recibir y mandar mensajes de diferentes sensores y actuadores. La
libreria esta disenada principalmente para un sistema UNIX(Ubuntu- Linux-) [I2]. Para
la elaboracion del trabajo, como no se disponia de Linux, se ha trabajado desde una
méquina virtual en la cual esta instalado Ubuntu.

A.4. Niveles de ROS

ROS esté dividido en tres niveles diferenciados: el nivel de sistema de archivos, el nivel
de computacion grafica y el nivel de la comunidad.

A.4.1. Grafo computacional de ROS

El grafo de computacion es el nivel mas importante dentro de la arquitectura de ROS.

35

Registration Registration

| ROS Master -
']
|
— v s
- ™ l'.-‘IessagES P - -\[-..1egsages . .
(ROS .~ ROS " [ROS
"-.\ Node1 ’..-' '..\ Node?2 _.'l l'-._ Node3)
Messages

Figura A.1: Grafo computacional de ROS.

En la Figura 2.1. se puede ver como es el modelo del grafo computacional con los
diferentes elementos que lo componen.

ROS Nodes: Los nodos son procesos en los que se realizan los célculos, en cada uno de
ellos se realiza una sola tarea. Son escritos con uso de bibliotecas como roscpp o rospy.

ROS Master: El master rastrea las direcciones IP de cada nodo, sin él los nodos no se
podrian encontrar e intercambiar informacién entre ambos.

ROS Topics: Estos permiten que el nodo publicador y el nodo subscriptor intercambien
informacion a través de mensajes. Cada topico es capaz de comunicar un tipo de dato
especifico, por lo que, es importante que el mensaje intercambiado sea también de este
tipo.

Para entender bien el funcionamiento de ROS, en la Figura[A.2]2.2 se detalla el proceso
de intercambio de informacién entre dos nodos.

En esta figura se puede observar que para que dos nodos intercambien informaciéon
entre si, diferentes elementos son necesarios. En primer lugar, los Topics sirven para
que los mensajes puedan viajar de un nodo a otro y en segundo lugar los servicios, que
son aquellos encargados del transporte bidireccional, es decir, estan definidos por dos
estructuras de mensajes, uno para la solicitud y otro para la respuesta. De esta forma
los nodos pueden comunicarse entre si, un nodo proveedor ofrece un servicio y un nodo
cliente lo utiliza enviando una solicitud y esperando una respuesta [13].

El Master es el encargado de que el intercambio de datos entre los nodos pueda llevarse
a cabo. En él encontramos el servidor de pardmetros, almacena los datos por claves. Y
por tltimo tendriamos las Bolsas (Bags) que sirven para guardar y reproducir mensajes

de ROS.

36

ROS Computational Level

Topics
e ey

Service

| nodet el N

Master

'

Parameter Server

Bags

Figura A.2: Grafico computacional ROS de 2 nodos que se comunican entre si.

A.4.2. Sistema de archivos

El sistema de archivos es lo que engloba los archivos necesarios para el correcto funcio-
namiento del software. Como elementos méas importantes se pueden identificar los paque-
tes, que son la unidad basica de organizacion. Un paquete contiene toda la informacion
necesaria para que el programa se pueda ejecutar, contiene, principalmente, la informaciéon
de los nodos, bibliotecas, etc [13].

En este proyecto, se han creado dos paquetes diferentes, dentro del espacio de trabajo.
Un paquete llamado grafo, que es el que contiene la informaciéon del nodo y es el paquete
que se tiene que ejecutar para el desarrollo del programa. Y, otro paquete, llamado gra-
folibrary, que es aquel que contiene la biblioteca con las funciones que han sido creadas
para que funcione correctamente el programa.

El sistema de archivos esta compuesto también por un manifiesto, que es un fichero
con informacion sobre un determinado paquete, como por ejemplo, su nombre, la version,
la descripcion, etc.

ROS provee una serie de librerias y herramientas para que los encargados del software
puedan desarrollar aplicaciones para robots. Algunas de las librerfas mas populares son
roscpp y rospy. Roscpp es la mas utilizada de ROS y es una implementacion en c+-+
que sirve para interactuar rapidamente con servicios y pardmetros,y rospy que tiene la
misma funcion que roscpp pero usa lenguaje Python [13]. Sin embargo, en este trabajo se
ha agregado a ROS la libreria Boost que cuenta con una serie de funciones dedicadas a
grafos, que es con lo que se esta trabajando.

37

A.5. la robdtica movil

La robédtica es una técnica que aplica la tecnologia al diseno y la construccion de
aparatos, llamados robots, que realizan trabajos u oeraciones en sustituciéon de personas
normalmente en ambitos industriales [4]. Actualmente la robotica movil se considera un
area de tecnologia avanzada; es un campo de investigaciéon que se estd desarrollando
continuamente pero que ain queda mucho por investigar.Los productos de la robética
moévil se basan en aplicaciones de programacion, inteligencia artificial y sirven de base
para grandes avances de la industria [14].

Ademés el miedo del ser humano a ser reemplazado en su totalidad por los robots ha
ido desapareciendo con el tiempo. Esto es debido al gran impacto tecnolégico, social vy,
sobre todo, econémico que han tenido los robots en la sociedad.

A.6. Los robots

Un robot es una maquina que es capaz de realizar tareas complejas, tomar decisiones y,
actuar consecuentemente. Se llama robot moévil, cuando es capaz de desplazarse en cual-
quier ambiente dado. Este tipo de robots estan provistos de patas, ruedas u orugas, como
se puede apreciar en la Figura 2.1 que les facilitan el poder desplazarse de acuerdo a su
programacion. Estos son empleados, sobre todo, en el transporte de mercancias en cadenas
de producciéon y almacenes. Estos robots son también muy ttiles en la investigacion de
lugares de dificil acceso, como por ejemplo en la exploraciéon espacial y las investigaciones
submarinas [4].

A.6.1. Clasificacion de los robots

En general, se ha considerado que existen tres grandes tipos de robots: Los robots
industriales, los médicos y los méviles.

Los robots industriales: Este tipo de robots son los més usados en tareas de alcance eco-
némico. Estan formados por una estructura mecénica articulada que se mueve de acuerdo
a su programacion. Estos son capaces de mover cargas pesadas a elevadas velocidades y
con una gran exactitud [4].

Los robots médicos: Estos robots tienen diferentes aplicaciones, algunos son usados
para rehabilitacion, como proétesis inteligente. Estos se diferencian del resto porque tienen
la forma de la extremidad correspondiente. En este tipo de robot, las senales provienen de
senales nerviosas o musculares. Dentro de este conjunto entran también aquellos robots
desarrollados para ayudar en las intervenciones quirtrgicas de gran precision o de alta

38

Figura A.3: Robot industrial Kuka [4].

complejidad. Un ejemplo de robot quirtrgico es el de la Figura 4.2, llamado robot Da
Vinci y es el instrumento quirirgico mas sofisticado que existe. Es capaz de obedecer al
cirujano, a la vez que opera con una mayor precision y destreza que un ser humano y
ademés, proporciona una clara vision de la anatomia del paciente [4].

@..- { " 3

Figura A.4: Robot quirargico Da Vinci [4].

Los robots mouiles: Este tipo de robots son capaces de desplazarse en cualquier me-
dio, estan dotados de una plataforma mecénica que les permite, de manera automatica,
moverse en un determinado espacio de trabajo. Son usados normalmente para transpor-
tar cargas de un punto inicial a un estado final. Este proyecto consiste, como ya ha sido
mencionado, en la implementacion de algoritmos para calcular la trayectoria de un robot.
El robot usado es de tipo movil, ya que, se desplaza de forma automatica. Las tareas de
este tipo de robot suelen ser muy diferentes pero, normalmente, estan usados en aquellas
que son peligrosas para el ser humano, por ejemplo, en la manipulaciéon de materiales
explosivos, el mantenimiento de reactores nucleares, etc [4].

39

Estos robots son auténomos, no sélo porque son capaces de desplazarse sin intervencion
del ser humano, sino también porque estan dotados de capacidades para percibir, planificar
y actuar de forma auténoma, ya que muchas veces el robot se desenvuelve en entornos
desconocidos. En este proyecto, en el entorno se encuentran una serie de obstaculos que
el robot tiene que ser capaz de identificar y evitar.

Figura A.5: Robot movil diseniado por Weston Robot y Agile X [4].

En la Figura 4.3, se muestra el robot moévil disenado por Weston Robot y Agile X.
Este robot ha sido creado en Singapur para la desinfeccion de lugares para combatir el
COVID-19.

A.7. El funcionamiento del robot

Dos de las caracteristicas més importantes de los robots son la versatilidad y la au-
toadaptabilidad. La versatilidad es la capacidad que tiene el robot de realizar tareas
diferentes o, de realizar una tarea de varias maneras distintas. La autoadaptabilidad es la
propiedad que permite que el robot se mueva hasta alcanzar el objetivo final a pesar de
los obstaculos que se puede encontrar en el camino. Para ello, estd dotados de sensores
que les hacen capaces de conocer el entorno en el que se mueven [4].

Un robot estd compuesto por cuatro sistemas importantes relacionados entre si; el
sistema mecanico, sensorial y de control. El mecénico es aquel que permite que el robot
se mueva, el sensorial es aquel que le permite el conocimiento del entorno en el que esta
trabajando, es decir, la identificacién de obstaculos para poder evitarlos. El sistema de
control es el cerebro del robot, en él se procesa la informaciéon obtenida del entorno y es
el que manda la orden para actuar; este sistema esta dotado de algoritmos de control [4].

Este trabajo se centra en el sistema de control, es decir, dotar al robot con algoritmos
de control para que sea capaz de seguir una trayectoria para alcanzar una posiciéon final.

40

A.7.1. Autonomia de los robots

El objetivo de la roboética moévil es, claramente, conseguir la autonomia de dichos
sistemas para que sean capaces de ejecutar una tarea determinada sin la necesidad de
la intervenciéon humana. Para conseguir dicha autonomia, los robots han de ser capaces
de orientarse y elegir la ruta adecuada para desplazarse sin colisionar con obstaculos que
pueden encontrarse en el medio. Ademas, hay veces que el evadir los obstaculos no es el
linico requisito, sino que encontrar la ruta mas corta que emplee el menor tiempo posible,
es también un requisito [4].

La navegacion de los robots se puede dividir en tres grandes problemas, uno de ellos
es el de la localizacion, es decir, conocer en todo momento dénde se encuentra el robot,
cuales son sus coordenadas respecto a un sistema de referencia. El segundo problema
es la planificacion de tareas, esto consiste en decidir en qué orden se van a realizar las
distintas tareas, es donde més alto nivel de razonamiento se quiere y suele estar basado en
inteligencia artificial. Finalmente, el ultimo problema es la planificaciéon del movimiento,
que es donde entran los algoritmos de céalculo de trayectorias para planear el camino a
seguir hasta alcanzar un punto final [I4].

41

Bibliografia

1]

2l

3]

4]

[5]

(6]

17l

8]

19]

[10]

[11]

[12]

A. Yandtn and N. Sotomayor, “Planeaciéon y seguimiento de trayectorias para un
robot movil.”

C. Mahulea, M. Kloetzer, and R. Gonzalez, Path Planning of Cooperative Mobile
Robots Using Discrete Event Models, 1st ed. IEEE Press Series on Systems Science
and Engineering, Wiley., 2020.

P. Frana and T. Misa, “An interview with edsger w. dijkstra,” Communications of
the ACM, vol. 53, no. 8, pp. 41-47, 2010.

M. R. Tapia Garcia and J. M. Dr. Lopez Hernandez, “Robética mévil,” Rewvista de
divulgacion cientifica, vol. 3, no. 2, pp. 2526-2530, 2017.

A. Munoz Cueva, “Generacion global de trayectorias para robots moviles, basada en
curvas betaspline,” Proyecto de fin de grado, Universidad de Sevilla, 2014.

F. Prieto Rodriguez, “Métodos de generacion de trayectorias,” Proyecto de fin de
grado, Universidad de Sevilla, 2017.

F. Gomez Bravo, A. Ollero, D. Lopez, F. Cuesta, M. del Toro, P. Gil, and F. Real,
“Rrt-d : Planificacion distribuida de caminos basada en la informacion de una red de
sensores wireless.”

“Boost : dijkstra shortest paths.” [Online|. Available: https://www.boost.org/doc/
libs/1_53 0/libs/graph/doc/dijkstra_shortest paths.html

M. Pena Basurto and J. M. Cela Espin, Introduccion a la programacion en C, 1st ed.
EDICIONS UPC, 2000.

R. Marras. (27 de Agosto de 2014) Frameworks para robots (i):
Ros. [Online|. Available: |https://jjromeromarras.wordpress.com,/2014/08/27/
frameworks-para-robots-i-ros/

About ros. [Online|. Available: https://www.ros.org/about-ros/

D. Ortego Delgado. (2017) Qué es ros. [Online]. Available: https://openwebinars.
net/blog/que-es-ros/

42

https://www.boost.org/doc/libs/1_53_0/libs/graph/doc/dijkstra_shortest_paths.html
https://www.boost.org/doc/libs/1_53_0/libs/graph/doc/dijkstra_shortest_paths.html
https://jjromeromarras.wordpress.com/2014/08/27/frameworks-para-robots-i-ros/
https://jjromeromarras.wordpress.com/2014/08/27/frameworks-para-robots-i-ros/
https://www.ros.org/about-ros/
https://openwebinars.net/blog/que-es-ros/
https://openwebinars.net/blog/que-es-ros/

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” 2009.

[14] G. Bermudez, “Robots moviles. teoria, aplicaciones y experiencias,” in Tecnura 10,
2002, pp. 6-17.

43

	Resumen
	Abstract
	Índice general
	Índice de figuras
	Índice de tables
	Introducción
	Motivación y Contexto
	Objetivos
	Alcance del proyecto
	Estructura de la memoria

	Planificación de alto nivel
	Partición de regiones
	Algoritmos de Planificación de trayectorias
	Funcionamiento del algoritmo

	Planificación de bajo nivel
	Metodología
	Parte 1: Creación del grafo
	Parte 2: Aplicación Algoritmo Dijkstra
	Parte 3: Implementación de Algoritmos de cálculo de trayectorias

	Evaluación y comparación
	Obtención de resultados para diferentes mapas
	Primer mapa
	Segundo mapa
	Tercer mapa

	Comparación de los algoritmos

	Conclusiones
	Anexos
	Resultados obtenidos al aplicar los algoritmos en tres mapas diferentes
	Código implementado para la realización del trabajo
	ROS: Robotic Operating System
	Niveles de ROS
	Grafo computacional de ROS
	Sistema de archivos

	la robótica móvil
	Los robots
	Clasificación de los robots

	El funcionamiento del robot
	Autonomía de los robots

	Bibliografía

