
Trabajo Fin de Grado

Cálculo optimizado de puntos intermedios en
la planificación de rutas.

Optimized waypoints computation for path
planning

Autor

Isabel Carrizo Ruiz

Director/es

Eduardo Montijano Muñoz
Cristian Mahulea

Escuela de Ingeniería y Arquitectura
2021

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Resumen

Los robots móviles tienen muchas aplicaciones, una de ella siendo la de transportar
objetos dentro de una fabrica, almacén o entorno industrial desde una posición inicial
hasta una posición final. Existen muchos caminos para llegar a un destino fijado, sin
embargo, en muchos casos el camino de mayor interés es el de menor distancia recorrida,
ya que permite reducir el tiempo de ejecución, así como el coste de producción. Este
Trabajo Final de Grado (TFG) se centra en el problema de planificación de trayectorias
de un robot móvil con el objetivo de obtener trayectorias más cortas para que el robot
alcance el destino final.

Se parte de un mapa de un entorno de trabajo dividido en regiones (o celdas), al cual
se le aplica un algoritmo de planificación de trayectorias para obtener la secuencia de
regiones más corta para llegar al destino. Esta partición se abstrae en un grafo, donde
los nodos modelan las regiones de dicho entorno. Aplicando el algoritmo Dijkstra para
la planificación de trayectorias, se calcula, el camino más corto desde un nodo inicial al
resto de los nodos del grafo. Este camino en realidad devuelve una secuencia de regiones
que el robot tiene que seguir para alcanzar el destino final. Sin embargo, para obtener
la trayectoria exacta para el robot, se debe especificar los puntos intermedios por cuales
tiene que pasar el robot, en particular, para dos regiones adyacentes se debe saber el punto
exacto de cruce entre las celdas. Este TFG consiste en la implementación y evaluación
de dos algoritmos para calcular estos puntos intermedios. El primer algoritmo que se ha
implementado está basado en el cálculo de los puntos medios del segmento que tienen en
común dos regiones, y el segundo algoritmo se basa en el cálculo del punto de intersección
entre el segmento común y la recta que une los centros de las dos celdas por las que tiene
que pasar.

Estos algoritmos calculan los puntos de la trayectoria que el robot ha de seguir para
llegar a una posición final sin colisionar con ningún obstáculo. Una vez implementados, es
necesario evaluarlos y compararlos. El algoritmo que calcula la trayectoria que recorre una
menor distancia es el que debe ser usado para que el cálculo de los puntos sea optimizado.

I

Abstract

Mobile robots have many applications, one of them being to transport objects within
a factory, warehouse or industrial environment from an initial position to a final position.
There are many routes to reach a fixed destination, however, in many cases the route
of greatest interest is the one with the shortest distance travelled, since it reduces the
execution time, as well as the production cost. This Final Degree Project (TFG) focuses
on the problem of planning the trajectories of a mobile robot with the aim of obtaining
shorter paths for the robot to reach the final destination.

The starting point is a map of a work environment divided into regions (or cells), to
which a trajectory planning algorithm is applied to obtain the shortest sequence of regions
to reach the destination. This partition is abstracted into a graph, where the nodes model
the regions of said environment. Applying the Dijkstra algorithm for trajectory planning,
the shortest path from an initial node to the rest of the nodes of the graph is calculated.
This path actually returns a sequence of regions that the robot has to follow to reach the
final destination. However, to obtain the exact path for the robot, the intermediate points
through which the robot has to pass must be specified, in particular, for two adjacent
regions the exact crossing point between the cells must be known. This TFG consists
of the implementation and evaluation of two algorithms to calculate these intermediate
points. The first algorithm that has been implemented is based on the calculation of the
midpoints of the segment that two regions have in common, and the second algorithm is
based on the calculation of the point of intersection between the common segment and
the line that joins the centers of the two cells it has to pass through.

These algorithms calculate the points of the trajectory that the robot has to follow to
reach a final position without colliding with any obstacle. Once implemented, they need
to be evaluated and compared. The algorithm that calculates the path that travels the
shortest distance is the one that must be used so that the calculation of the points is
optimized.

II

Índice general

Resumen I

Abstract II

Índice general III

Índice de figuras VI

Índice de tables 1

1. Introducción 2

1.1. Motivación y Contexto . 2

1.2. Objetivos . 3

1.3. Alcance del proyecto . 3

1.4. Estructura de la memoria . 4

2. Planificación de alto nivel 6

2.1. Partición de regiones . 6

2.2. Algoritmos de Planificación de trayectorias 8

2.3. Funcionamiento del algoritmo . 9

3. Planificación de bajo nivel 12

III

3.1. Metodología . 13

3.1.1. Parte 1: Creación del grafo . 13

3.1.2. Parte 2: Aplicación Algoritmo Dijkstra 16

3.1.3. Parte 3: Implementación de Algoritmos de cálculo de trayectorias . 17

4. Evaluación y comparación 20

4.1. Obtención de resultados para diferentes mapas 20

4.1.1. Primer mapa . 22

4.1.2. Segundo mapa . 23

4.1.3. Tercer mapa . 25

4.2. Comparación de los algoritmos . 26

5. Conclusiones 29

A. Anexos 31

A.1. Resultados obtenidos al aplicar los algoritmos en tres mapas diferentes . . 32

A.2. Código implementado para la realización del trabajo 34

A.3. ROS: Robotic Operating System . 34

A.4. Niveles de ROS . 35

A.4.1. Grafo computacional de ROS . 35

A.4.2. Sistema de archivos . 37

A.5. la robótica móvil . 38

A.6. Los robots . 38

A.6.1. Clasificación de los robots . 38

A.7. El funcionamiento del robot . 40

A.7.1. Autonomía de los robots . 41

IV

Bibliografía 42

V

Índice de figuras

1.1. Generación de trayectorias para un robot móvil [1] 3

2.1. Descomposición trapezoidal [2]. 7

2.2. Descomposición triangular [2]. 7

2.3. Descomposición rectangular [2]. 7

2.4. Grafo dirigido y etiquetado. 8

2.5. Pseudocódigo del algoritmo Dijkstra [3]. 10

3.1. Esquema del proceso a seguir para alcanzar el objetivo del trabajo. 12

3.2. Clase y estructura definidas para crear el grafo a partir de la descomposición
de celdas. 14

3.3. Dos trayectorias obtenidas dependiendo del peso de las aristas. 15

3.4. Ejemplo de un mapa dividido en ocho celdas. 16

3.5. Clase Adyacente . 17

3.6. Cálculo trayectoria de un robot mediante puntos medios del segmento común. 18

3.7. Cálculo trayectoria de un robot mediante la unión de los puntos centrales. 19

4.1. Mapa original 20x17. 22

4.2. Mapa original 22x22. 24

4.3. Mapa original 10x7. 25

4.4. Comparación de distancias medias calculadas por los dos algoritmos. . . . 27

VI

4.5. Comparación de la media de los tiempos de ejecución de los dos algoritmos. 28

A.1. Grafo computacional de ROS. 36

A.2. Gráfico computacional ROS de 2 nodos que se comunican entre sí. 37

A.3. Robot industrial Kuka [4]. 39

A.4. Robot quirúrgico Da Vinci [4]. 39

A.5. Robot móvil diseñado por Weston Robot y Agile X [4]. 40

VII

Índice de tablas

4.1. Resultados tras la aplicación de los algoritmos al primer ejemplo. 22

4.2. Resultados del cálculo de la distancia recorrida y el tiempo de ejecución
para el primer mapa. 23

4.3. Resultados del cálculo de la media de la distancia recorrida y el tiempo de
ejecución para el primer mapa. 23

4.4. Resultados tras la aplicación de los algoritmos al segundo ejemplo. 24

4.5. Resultados del cálculo de la distancia recorrida y el tiempo de ejecución
para el segundo mapa. 25

4.6. Resultados del cálculo de la media de la distancia recorrida y el tiempo de
ejecución para el segundo mapa. 25

4.7. Resultados tras la aplicación de los algoritmos al tercer ejemplo. 26

4.8. Resultados del cálculo de la media de la distancia recorrida y el tiempo de
ejecución para el segundo mapa. 26

A.1. Resultados del cálculo de la distancia recorrida y el tiempo de ejecución
para 20 caminos diferentes del primer mapa. 32

A.2. Resultados del cálculo de la distancia recorrida y el tiempo de ejecución
para 20 caminos diferentes del segundo mapa. 33

A.3. Resultados del cálculo de la distancia recorrida y el tiempo de ejecución
para 20 caminos diferentes del tercer mapa. 34

1

Capítulo 1

Introducción

En este capítulo se presenta una introducción al trabajo realizado donde se detallan
la motivación, el contexto en el que se lleva a cabo y los objetivos. También se detalla la
metodología que se ha seguido y los requisitos que se han tenido que cumplir.

1.1. Motivación y Contexto

Los robots móviles tienen muchas aplicaciones, una de ellas siendo la de transportar
cargas desde un estado inicial a un estado final moviéndose por un entorno de trabajo. El
mundo real está lleno de entornos con obstáculos y, es necesario que los robots diseñados
sean capaces de generar trayectorias que garanticen su seguridad, la de los productos que
transportan y la de todo aquello que les rodea. Este es el propósito de este Trabajo Final
de Grado, la implementación de algoritmos que calculen una trayectoria en un entorno de
trabajo, de manera que el robot no colisione con ningún obstáculo y llegue a su posición
final de la forma más sencilla y segura posible.

Para poder llevar a cabo la planificación de trayectorias, se hace uso de algoritmos
ya implementados, como puede ser el algoritmo Dijkstra. Estos algoritmos parten de un
mapa dividido en regiones, conocidas también como celdas, y calculan a partir de una
región inicial el camino más corto para alcanzar un destino final. Sin embargo, con la
aplicación de este algoritmo, únicamente se obtiene la secuencia de regiones por la que
debe circular el robot para llegar a la posición final sin colisionar con ningún obstáculo.
Para obtener la trayectoria completa del autómata es necesario conocer los puntos exactos
por los que pasará el robot de una celda a otra, conocidos como puntos intermedios de la
trayectoria o waypoints. Esto se consigue con la implementación de algoritmos de cálculo
optimizado de trayectorias, que tienen como función encontrar los puntos intermedios de
la ruta más corta para ir de un estado inicial a un estado final. Este es el objetivo del
Trabajo de fin de Grado.

2

Figura 1.1: Generación de trayectorias para un robot móvil [1]
.

En la Figura 1.1, se ha generado la trayectoria desde el punto salida hasta el punto
llegada para un robot móvil. Los puntos blancos representan obstáculos que el robot
debe de esquivar para alcanzar su posición final. Las líneas rojas representan todas las
posibles trayectorias que podría seguir el autómata. Se puede comprobar que hay diferentes
caminos para llegar al destino final, sin embargo, el camino más corto es el verde.

1.2. Objetivos

El objetivo del trabajo propuesto es, a partir de un entorno dividido en celdas, realizar
el cálculo optimizado de los puntos intermedios de la trayectoria que tiene que seguir un
robot para llegar a una posición final.

Mediante la aplicación del algoritmo Dijkstra, se obtiene la secuencia de regiones que
siguen el camino más corto para que el robot cumpla con la especificación. El objetivo
del trabajo propuesto se consigue con la implementación y evaluación de dos algoritmos
que usan diferentes métodos para calcular los puntos de cruce entre las regiones. Estos
algoritmos se evalúan y comparan utilizando el entorno de simulación de ROS (Robotic
Operating System).

1.3. Alcance del proyecto

Como se ha mencionado en la sección 1.2, el punto de partida del proyecto es un
entorno dividido en celdas. A continuación se muestran las diferentes etapas a seguir en

3

la implementación de los algoritmos.

Requisitos previos: Para la realización del trabajo, se necesita el aprendizaje del manejo
de ROS y del lenguaje de programación C++. Aunque durante la carrera de Ingeniería
de Tecnologías Industriales se trabaja en una o dos asignaturas con dicho lenguaje de
programación, el conocimiento necesario para realizar este trabajo es mucho más complejo
y más amplio, requiriendo un mayor aprendizaje. A su vez, se necesita una formación
previa sobre el manejo de ROS debido al desconocimiento total del programa.

Lectura del fichero de texto: El primer paso es leer la información del mapa dividido
en regiones y almacenarla para después poder utilizarla. Esta información viene dada en
un fichero de texto.

Obtención de una secuencia de regiones: Con el uso del algoritmo Dijkstra, o algoritmo
de caminos mínimos, se obtiene una secuencia de regiones por las que tiene que cruzar el
robot para seguir el camino más corto.

Desarrollo de los algoritmos de cálculo de puntos intermedios: A partir de la secuencia
de regiones, se implementan dos algoritmos en c++ que calculan los puntos medios de
cruce entre las regiones que deberá seguir el robot para llegar a una posición final. Estos
algoritmos siguen diferentes métodos para realizar el cálculo.

Evaluación y comparación: Una vez implementados los algoritmos, se comprueba su
correcto funcionamiento con la información de tres mapas diferentes. Se comparan entre
ellos para evaluar cuál es el algoritmo que calcula el camino de menor distancia.

1.4. Estructura de la memoria

A continuación se muestra la estructura de la memoria del trabajo a realizar.

Capítulo 1, Introducción: Se explica el objetivo del proyecto a realizar y la motivación
para llevarlo a cabo, también se detalla el proceso que ha sido necesario seguir para
completarlo.

Capítulo 2, Planificación de alto nivel: En este capítulo se comenta el punto de partida
del Trabajo Final de Grado y se explican algunos de los algoritmos de planificación de
trayectorias que actualmente existen.

Capítulo 3, Planificación de bajo nivel: Se explica el funcionamiento completo del
algoritmo Dijkstra y se detalla todo el proceso de creación del código del programa,
desde la lectura del fichero de texto hasta la creación de los dos algoritmos de cálculo de
puntos intermedios.

Capítulo 4, Evaluación y comparación: En este capítulo se comprueba el funciona-

4

miento de los dos algoritmos implementados mediante tres ejemplos diferentes. Los dos
algoritmos se comparan entre sí para poder observar las ventajas de un algoritmo frente
al otro.

Capítulo 5, Conclusiones: Este es el último capítulo de la memoria, se hace un pequeño
resumen del proceso a seguir para la creación del programa. Se comenta también el cum-
plimiento, o no, del objetivo del trabajo propuesto y por último se hace una evaluación
global de los algoritmos.

5

Capítulo 2

Planificación de alto nivel

El objetivo de este Trabajo Final de Grado es la implementación de dos algoritmos que
calculan de forma optimizada los puntos de una trayectoria. Actualmente, estos algoritmos
no existen en ninguna librería de ROS (Robotic Operating System). ROS es un software
utilizado para trabajar con robots móviles que se ha usado para compilar y ejecutar los
dos algoritmos implementados.

2.1. Partición de regiones

El punto de partida de este trabajo es un mapa de un entorno dividido en regiones.
Para llevar a cabo la partición del mapa existen varios métodos aplicados a diferentes
dominios; en la robótica móvil esta partición se conoce como descomposición de celdas,
donde cada región en la que se divide el mapa del entorno se denomina celda.

La idea principal de la descomposición de celdas es dividir el entorno en regiones
con la misma forma (triangular, rectangular, etc.). Estas regiones cubren todo el espacio
donde no hay obstáculos y donde el robot puede moverse libremente. En la robótica
móvil las técnicas de descomposición de celdas están usadas para solucionar problemas
de navegación de los robots en determinados entornos, donde una posición final debe ser
alcanzada sin colisionar con los objetos que se puede encontrar en dicho entorno [2].

Uno de los métodos más conocidos es la descomposición trapezoidal, también existen
otros diferentes como la descomposición triangular o rectangular. Estas técnicas se di-
ferencian entre sí en la forma de sus regiones. La descomposición rectangular divide en
regiones todo el mapa, de esta manera, algunas celdas quedan ocupadas por obstáculos y
no pueden formar parte de la trayectoria final [2]. En las figuras 2.1, 2.2 y 2.3 se pueden
observar los tres métodos de descomposición nombrados.

6

Figura 2.1: Descomposición trapezoidal [2]. Figura 2.2: Descomposición triangular [2].

Figura 2.3: Descomposición rectangular [2].

Este Trabajo Final de Grado comienza, por lo tanto, con un mapa dividido en regiones
cuya información se recoge en modelos de representación finita, como puede ser un grafo
o una red de Petri. En este proyecto se trabaja con el modelo de grafo. Un grafo es una
composición de objetos que se denominan nodos, donde se almacena información sobre
el entorno. Dicha información es usada para procesar o conocer un fin específico. Estos
nodos están unidos entre sí mediante aristas.

Dentro de los grafos más comunes se encuentra el grafo dirigido. Este tipo de grafo se
caracteriza porque las aristas que unen dos nodos tienen una direccionalidad clara. A su
vez, si dichas aristas incorporan datos, el grafo se denomina etiquetado, y los datos son
conocidos como el peso de cada arista. Este tipo de grafo es el más utilizado en el mundo
informático.

7

En la Figura 2.4 se puede observar un ejemplo de grafo de tres nodos dirigido, ya
que todas sus aristas apuntan hacia una dirección, y etiquetado porque todas sus aristas
poseen un peso. Toda la información de la partición de regiones del mapa del entorno se

Figura 2.4: Grafo dirigido y etiquetado.

recoge en un grafo dirigido y etiquetado al que se le aplica un algoritmo de planificación
de trayectorias para obtener una secuencia de regiones desde una celda inicial hasta una
celda final.

2.2. Algoritmos de Planificación de trayectorias

La función de los algoritmos de planificación de trayectorias consiste en llevar un
cuerpo, en este caso un autómata, desde una posición inicial hasta otra final siguiendo el
camino más corto, dentro del entorno de trabajo, sin colisionar con ningún obstáculo [5].
En la actualidad existen varios algoritmos diferentes que calculan estas trayectorias. A
continuación se van a explicar brevemente.

En primer lugar, el algoritmo A* se caracteriza por realizar una búsqueda de trayec-
torias completa y óptima. Consiste en encontrar un camino entre un nodo origen y un
nodo destino, siendo el camino el de menor costo. Una de sus ventajas es que orienta
la búsqueda de la mejor ruta teniendo en cuenta la posición del objetivo final, de esta
manera, se evita visitar nodos innecesarios y, por lo tanto, supone un ahorro considerable
del tiempo de ejecución. Sin embargo, entre sus desventajas está que el algoritmo funciona
estimando la distancia al nodo final, por lo que no siempre la solución encontrada es la
mejor, todo depende de la calidad de la estimación [6].

En segundo lugar, el algoritmo D* es un método de planificación de trayectorias que
calcula el camino mínimo para ir desde un punto actual a un punto objetivo, cuando
se desconoce total o parcialmente el entorno por el que se mueve el robot. Para crear

8

la trayectoria, primero realiza una suposición de la zona que desconoce y en base a esa
suposición calcula la ruta para alcanzar el objetivo final. El autómata comienza su camino
y conforme va encontrado información lo recalcula si es necesario [5].

En tercer lugar, el algoritmo RRT (Rapidly-exploring Random Tree) calcula un camino
continuo conectando una configuración inicial y una configuración final teniendo en cuenta
los obstáculos y las restricciones. Cada configuración determina la posición y orientación
del robot en un espacio bidimensional o tridimensional. El funcionamiento del algoritmo
consiste en, a partir de una configuración inicial, ir explorando las demás configuraciones
y determinar dónde se debe colocar la siguiente para que el robot pueda acceder a ella sin
colisionar con ningún obstáculo [7].

Estos son sólo tres algoritmos de planificación de trayectorias de la gran variedad que
existe en la actualidad, sin embargo, en el cálculo de la trayectoria del robot de este
Trabajo Final de Grado se ha empleado el algoritmo Dijkstra.

El algoritmo Dijkstra, también conocido como algoritmo de caminos mínimos, consiste
en calcular la trayectoria más corta desde un nodo origen al resto de los nodos del grafo
teniendo en cuenta el peso de las aristas. El peso de las aristas corresponde a un coste,
que puede ser distancia, energía, etc. Fue descrito por primera vez en 1959 por Edsger
Dijkstra. Este algoritmo evalúa, desde un nodo inicial, el coste invertido en desplazarse
a cada uno de sus nodos adyacentes y se desplaza al de menor coste acumulado; desde
este nuevo nodo se repite el proceso. Cuando ha pasado por todos los nodos del grafo, se
detiene y se obtiene la secuencia de regiones. El algoritmo devuelve el camino de coste
mínimo para ir de un nodo inicial a otro final. Se ha de tener cuidado porque este método
tiene una única limitación y es que no funciona en grafos cuyas aristas tienen un valor
negativo [6]. A continuación se detalla el funcionamiento del algoritmo.

2.3. Funcionamiento del algoritmo

Partiendo de un grafo dirigido ponderado de N nodos no aislados, un vector D de N
tamaño guardará al final del algoritmo las distancias desde un nodo inicial x, al resto de
los nodos. Los pasos que se siguen son los siguientes:

1. Se inicializan todas las distancias en D con un valor infinito dado que no se conocen
desde el principio, excepto la del nodo inicial, x que tiene que ser 0 porque la
distancia de x a x es nula.

2. Se llama a al nodo actual.

3. Se recorren todos los nodos adyacentes de a, excepto los que tienen un obstáculo,
debido a que esos nodos no forman parte de ninguna trayectoria. Los nodos sin
obstáculos se llamarán vi.

9

4. Se calcula para el nodo actual la distancia tentativa hasta todos sus nodos adyacentes
mediante la siguiente fórmula:

Dt(vi) = Dx + d(vi, a) (2.1)

La distancia tentativa del nodo vi es la distancia que actualmente tiene en el vector
D más la distancia desde el nodo actual a al nodo vi. Si la distancia tentativa
calculada es menor que la distancia actual en el vector, se actualiza ese dato, ya que
se busca el camino más corto.

dt(vi) < Dvi− > Dvi = dt(vi) (2.2)

5. Se marca como completo el nodo actual en el que estamos, a.

6. Se toma como próximo nodo actual el de menor valor en D y se vuelve al paso 3
mientras que sigan existiendo nodos sin obstáculos.

Una vez se recorran todos los nodos sin obstáculos, el algoritmo se dará por finalizado
y el vector D estará completamente lleno. En la Figura 2.5 se muestra el pseudocódigo
del algoritmo Dijkstra.

Figura 2.5: Pseudocódigo del algoritmo Dijkstra [3].

Para la aplicación de numerosas funciones o algoritmos se hace uso de librerías. Una
librería es un conjunto de archivos que contiene funciones ya implementadas y que se usa
para facilitar la programación. El algoritmo Dijkstra viene integrado en la librería Boost y
se denomina Dijkstra’s Shortest Path. Boost está compuesta por una serie de documentos
enfocados cada uno a un campo específico, en este caso se ha hecho uso de The Boost
Graph Library (BGL), que contiene varios algoritmos y estructuras para trabajar con
grafos [8].

10

En la aplicación del algoritmo Dijkstra de Boost hay dos vectores de gran importancia,
distance map (d) y predecessor map (p). Para cada nodo u, se calculan las distancias hacia
todos sus nodos adyacentes, y la distancia más corta encontrada se almacena en el vector
d[u]. Por otro lado, el vector p es el encargado de almacenar para cada nodo u en V ,
siendo V el vector que contiene todos los nodos del grafo, el nodo predecesor de cada u.
p[u] contiene el nodo que va antes de u en la secuencia de regiones final. El algoritmo
devuelve ambos vectores, d y p, que permiten conocer para cada nodo u la distancia más
corta hacia sus adyacentes y su nodo predecesor [8]. Existe además una cola de prioridad,
Q, en la que se encuentran los nodos por orden de prioridad en función de sus distancias.

11

Capítulo 3

Planificación de bajo nivel

En el capítulo anterior se ha explicado el funcionamiento del algoritmo de planificación
de trayectorias Dijkstra y, en este capítulo se detalla cómo, a partir de la secuencia de
regiones obtenida por dicho algoritmo, se calculan los puntos de la trayectoria del un
robot.

Figura 3.1: Esquema del proceso a seguir para alcanzar el objetivo del trabajo.

En la Figura 3.1 se muestra un esquema del proceso a seguir. El proceso comienza
con la creación de un grafo a partir de la información leída de un fichero de texto, cada
celda en la que está dividido el mapa es un nodo del grafo. Una vez creado el grafo, se
aplica el algoritmo Dijkstra para obtener una secuencia de regiones que tiene que seguir
el robot para ir de una posición inicial a una posición final, de manera que, el camino sea
el más corto posible. A partir de la secuencia de regiones, se implementan dos algoritmos
que calculan de manera optimizada los puntos exactos de cruce entre las regiones para

12

alcanzar la posición final. El primer algoritmo se basa en el cálculo de los puntos medios
del segmento que tienen en común dos celdas, mientras que el segundo algoritmo se basa
en la intersección entre el segmento común y la recta que une los dos centros.

A continuación se detalla la metodología a seguir para alcanzar el objetivo del trabajo.
El código implementado para la realización de este trabajo se encuentra en una carpeta
cuyo enlace está en el Anexo A.2.

3.1. Metodología

El desarrollo del trabajo se puede separar en tres partes fundamentales; la primera
parte es la creación del grafo a partir de la información de un mapa dividido en celdas,
la segunda parte es la aplicación del algoritmo de búsqueda de trayectorias (Algoritmo
Dijkstra) para obtener la secuencia de regiones, y la tercera parte es la implementación
de dos algoritmos que calculan los puntos de cruce entre regiones que forman parte de la
secuencia obtenida.

3.1.1. Parte 1: Creación del grafo

La primera parte que se ha desarrollado ha sido la creación del grafo a partir de
información que se recibe en un fichero de texto. El fichero de texto tiene una estructura
determinada que hará posible el entendimiento de la información. La primera línea del
fichero muestra un encabezado donde se indica qué parámetro se está leyendo en cada
momento. La segunda línea del fichero de texto indica el número de celdas totales que tiene
el entorno, es decir, el número de nodos del grafo. A partir de la tercera línea, se muestra
en cada una la información de un nodo diferente de la manera que ha sido descrita, hasta
llegar al final del fichero. Los datos de cada línea del fichero se muestran de la siguiente
forma:

Celda; ocupado; número vértices; lista de x; lista y; número adyacentes; ady(Puntos en
común):(primer punto)...(último punto);

A continuación se detalla qué es cada elemento.

Celda: Indica el número de celda que se está leyendo, es decir, el nodo del grafo.

Ocupado: Es un 0 si la celda está libre de obstáculos y un 1 si tiene un obstáculo.

Número vértices: Indica el número de vértices que posee la celda.

Lista de x y lista de y: Son dos vectores en los que están almacenadas las coordenadas
x e y de cada punto. Están almacenadas en el mismo orden, es decir el primer valor

13

de la lista de x y de la lista de y serían las coordenadas de un punto en concreto.

Número de adyacentes: Es el número de celdas adyacentes que tiene cada una. Esta
información es necesaria debido a que el robot únicamente podrá pasar de una celda
a otra si estas dos son adyacentes.

ady(Puntos en común): ’Ady’ es el número de la celda adyacente, y entre paréntesis
se especifica los dos puntos que unen el segmento que tienen en común las dos celdas.

(primer punto)...(último punto): En el formato que se muestra arriba aparecen re-
presentados todos los puntos de unión.

Cada línea del fichero es leída y almacenada en una variable de tipo struct. Un struct, o
estructura, se define como un tipo de dato compuesto que permite almacenar un conjunto
de datos de diferente tipo, estos datos pueden ser números enteros, caracteres, vectores,
otras estructuras, etc [9]. Cada nodo del grafo es una estructura y están almacenadas en
una clase, class. Una clase es un nuevo tipo de dato que suele ser usado para crear objetos
y que crea una consistencia lógica que establece una relación entre sus miembros; cuando
se declara una variable clase se está creando un objeto [9].

Figura 3.2: Clase y estructura definidas para crear el grafo a partir de la descomposición
de celdas.

En la Figura 3.2 se puede observar la clase Grafo definida para este programa. Dentro
de la clase se define una estructura denominada nodo que recoge la información de cada
nodo del grafo en sus diferentes variables. Además la clase Grafo permite almacenar
funciones. Estas funciones tienen como parámetros de entrada datos pertenecientes a la
clase.

14

Leída y almacenada toda la información obtenida en el fichero de texto, se realiza el
proceso real de creación del objeto grafo. En este proceso se crean las aristas uniendo de
dos en dos las celdas que son adyacentes.

Para crear las aristas se hace uso de una función perteneciente a la librería Boost
enfocada en los grafos. La función es pair <int, int>, y se encarga de establecer parejas
de celdas creando una arista para unirlas. Para que esta función se pueda aplicar entre
dos celdas se tienen que cumplir dos requisitos muy importantes; el primero es que tienen
que ser celdas adyacentes entre ellas, se tiene que comprobar si la celda con la que se va
a emparejar pertenece al vector de adyacentes y, de este modo, el robot puede pasar de
una a otra. El segundo requisito es que ninguna de las dos celdas tiene que estar ocupada,
es decir, las dos tienen que estar libres de obstáculos para que el robot pueda circular
por ellas. Para saber si una celda está libre se debe comprobar que en la variable ocupado
tiene un 0. En caso de que una de las dos celdas esté ocupada, o incluso las dos, se ignoran
y se siguen creando parejas con otras celdas adyacentes.

Conforme se van creando las parejas entre celdas adyacentes, se calcula el peso de las
aristas. El peso de una arista se ha definido como la distancia métrica entre el centro de
la celda de origen y el centro de la celda de destino, aplicando la función:

peso =
√

(yd − yo)2 + (xd − xo)2 (3.1)

siendo el subíndice d, la celda de destino, y el subíndice o, la celda de origen.

Para llevar a cabo el cálculo del peso se crea una función llamada CalcularPeso(nodo
o, nodo d, float *peso) que toma como entrada dos structs de nodos adyacentes y devuelve
como salida el peso calculado como se indica en la ecuación 3.2.

Es importante tener en cuenta que el peso asignado a cada arista es muy determinante a
la hora de calcular trayectorias. En este Trabajo de Fin de Grado, el peso ha sido calculado
como la distancia métrica entre los centros de dos celdas adyacentes, sin embargo, también
se puede calcular de muchas otras maneras. Un ejemplo sería calcular el peso como la
distancia entre el punto de entrada a una celda y el punto de salida de dicha celda; estos
puntos pueden ser los puntos medios de los segmentos que unen dos regiones adyacentes.

Figura 3.3: Dos trayectorias obtenidas dependiendo del peso de las aristas.

15

En la Figura 3.3 se puede observar como cambia la trayectoria de un robot dependiendo
del peso asignado a cada arista. En la figura de la izquierda el peso está calculado como la
distancia métrica entre los centros de dos celdas, y en la figura de la derecha está calculado
como la distancia entre el punto de entrada a una celda y el punto de salida de la misma.

Construido el grafo, se pasa a la siguiente parte de la programación, la aplicación del
algoritmo Dijkstra.

3.1.2. Parte 2: Aplicación Algoritmo Dijkstra

Para explicar la aplicación del algoritmo Dijkstra, se toma como ejemplo el mapa de
la Figura 3.4, un mapa dividido en ocho celdas de las cuales dos están ocupadas por un
obstáculo.

Figura 3.4: Ejemplo de un mapa dividido en ocho celdas.

Este algoritmo tiene, como parámetros de entrada, el objeto grafo, construido previa-
mente con la función pair <int, int>, la cual crea aristas entre nodos adyacentes. También
tiene como entrada el nodo de origen ,s, desde el cual se calcula la trayectoria más corta.
Otros parámetros de entrada son el vector de los pesos de las aristas ,w, y el vector con
todos los nodos del grafo ,nodes. Como parámetros de salida se obtiene el mapa de pre-
decesores, un vector que guarda el nodo predecesor de menor distancia de cada nodo del
grafo. También como salida se obtiene el mapa de distancias, un vector que almacena la
distancia más corta para llegar a cada nodo.

Se ha de tener en cuenta que el algoritmo Dijkstra calcula el camino más corto que,
desde un nodo origen, pasa por todos los nodos del grafo. Sin embargo, el objetivo de este
proyecto es que el autómata se desplace a una posición final, en este caso, el último nodo
del grafo. Para simplificar la programación, se ha creado un vector denominado secuencia,
que almacena las celdas, o nodos, por las que tiene que pasar el robot para alcanzar la
celda final que, en el ejemplo de la Figura 3.4 es la celda 8.

En este ejemplo, aplicando la función del algoritmo Dijkstra, siendo el punto inicial la

16

celda 1 y, el punto final la celda 8, la secuencia de regiones obtenida para que el robot
siga el camino más corto posible es c1, c2, c3 y c8. Una vez obtenido el camino, se tienen
que calcular los puntos de cruce entre estas regiones.

3.1.3. Parte 3: Implementación de Algoritmos de cálculo de tra-
yectorias

El problema a resolver en esta parte se encuentra en seleccionar el punto exacto que
tiene que atravesar el autómata para cruzar de una celda a otra. Estos puntos se de-
nominan puntos intermedios (waypoints). A continuación se explican los dos algoritmos
desarrollados.

Algoritmo de cálculo de puntos medios

El primer algoritmo implementado consiste en calcular el punto medio del segmento
común entre las dos celdas por las que pasa el robot. Esta opción es la más popular para
el cálculo de los puntos de una trayectoria.

En la implementación de este algoritmo no hay una gran complejidad debido a que los
puntos son hallados de manera muy simple y usando únicamente la partición de celdas
del entorno en el que se está trabajando. Para llevar a cabo la implementación se parte de
la información leída del fichero de texto y almacenada en la variable struct nodo. Como se
puede apreciar en la Figura 3.2, esta estructura cuenta con un vector de clase Adyacente,
definida como se muestra en la Figura 3.5.

Figura 3.5: Clase Adyacente

Esta clase ha sido creada para almacenar los datos del segmento que tienen en común
dos celdas. En la variable numero se guarda el número de la celda adyacente que se está
leyendo, la variable puntosInterseccion indica cuántos puntos tienen en común las dos
celdas, y por último las variables puntos x y puntos y guardan las coordenadas x e y de
los puntos en común respectivamente.

17

En la Figura 3.6 se puede observar un ejemplo de los puntos por los que pasaría el
robot para ir desde la celda 1 hasta la celda 8. Suponiendo que la secuencia de regiones
es c1, c2, c3 y c8, los puntos marcados en rojo son los puntos medios del segmento común
entre dos regiones por las que tiene que cruzar el autómata.

Figura 3.6: Cálculo trayectoria de un robot mediante puntos medios del segmento común.

Algoritmo de unión de puntos centrales

Este algoritmo se basa en calcular la trayectoria a partir de la unión de dos rectas,
que son el segmento de unión entre las dos celdas adyacentes y la recta que une los dos
centros de ambas celdas. El punto de intersección de esas rectas es el punto por el que
pasa el robot para cruzar de una región a otra. Para realizar el cálculo de ambas rectas,
se utiliza la ecuación de la recta que pasa por dos puntos.

y = yo +m(x− xo) (3.2)

siendo m la pendiente de la recta
m =

y2 − y1
x2 − x1

(3.3)

En la Figura 3.7 se puede observar un ejemplo de cálculo de los puntos de intersección
entre las dos rectas. Suponiendo la misma secuencia de regiones que en el apartado anterior
c1, c2, c3 y c8, las rectas rojas representan las rectas de unión de los centros de las dos
celdas adyacentes, y los puntos negros, los puntos por los que el robot debe cruzar de una
región a otra.

En la implementación de este algoritmo se ha encontrado una dificultad. La pendiente
de la recta que pasa por dos puntos cuyas coordenadas x son iguales, no se puede calcular.
En estos casos, siendo x1 la coordenada de ambos puntos, la recta que une esos dos puntos
es x = x1.

18

Figura 3.7: Cálculo trayectoria de un robot mediante la unión de los puntos centrales.

19

Capítulo 4

Evaluación y comparación

El objetivo del trabajo es la implementación de dos algoritmos que calculen los puntos
de la trayectoria de un robot de manera que, el cálculo sea optimizado, es decir, el robot
recorra la menor distancia posible para llegar a un punto final sin colisionar con ningún
obstáculo. Los dos algoritmos que han sido implementados para llevar a cabo este cálculo
han sido explicados en la sección 3.2.3 y son el algoritmo de cálculo de puntos medios y
el algoritmo de unión de puntos centrales.

En este capítulo se hace una evaluación del funcionamiento de estos dos algoritmos,
así como una comparación entre ambos. Para poder evaluarlos y compararlos, se han
empleado dos métricas. La primera métrica es la distancia total recorrida, que mide en
metros la longitud total que recorre el robot y, la segunda métrica es el tiempo de ejecución,
que mide en segundos el tiempo que tarda el ordenador en ejecutar cada algoritmo.

4.1. Obtención de resultados para diferentes mapas

El proceso de obtención de los resultados comienza con un mapa que ha sido previa-
mente dividido en celdas, al cual se le aplica el algoritmo de planificación de trayectorias
para encontrar el camino de menor recorrido que ha de seguir el robot para llegar a un
destino.

La información de cada celda obtenida en la descomposición viene dada en un fichero de
texto, en el formato que ha sido explicado en la sección 3.2.1. A partir de esta información,
se procede a la creación del grafo mediante la función pair <int, int> de la librería Boost,
que se encarga de crear aristas entre las celdas adyacentes. Se ha de comprobar que las
celdas que se van uniendo mediante aristas no están ocupadas por un obstáculo, debido
a que entonces el autómata no puede cruzar por ellas. A cada arista se le asigna un peso
mediante la fórmula de la ecuación 3.1.

20

Al grafo creado a partir de la descomposición, se le aplica el algoritmo de planificación
de trayectorias, el algoritmo Dijkstra, mediante el cual se obtiene la secuencia de regiones
por las que tiene que pasar el robot para alcanzar la posición final. A partir de esta
secuencia de regiones, para obtener los puntos exactos de la trayectoria del robot, se
aplican los dos algoritmos que han sido implementados. Estos algoritmos calculan los
puntos de la trayectoria del robot, de manera que el cálculo es optimizado.

Para la aplicación del primer algoritmo se llama a la función:

PuntoMedio(nodo o, nodo d, float *xmedio, float *ymedio).

Esta función tiene como parámetros de entrada el nodo de origen y nodo de destino.
El nodo de origen es la celda en la que está posicionado el robot, mientras que el nodo de
destino es la celda a la que tiene que cruzar para seguir su trayectoria. Por otro lado, esta
función devuelve como parámetros de salida dos variables de tipo float que representan
las coordenadas x e y del punto de cruce entre las dos celdas. La variable de tipo float es
una variable numérica que admite parte decimal.

Para la aplicación del segundo algoritmo se llama a la siguiente función:

PuntosInterseccionRectas(nodo o, nodo d, float *xinterseccion, float *yinterseccion).

Esta función tiene como parámetros de entrada, al igual que la función del algoritmo
de puntos medios, la celda de origen y la celda de destino. Como parámetros de salida se
obtienen dos variables de tipo float que representan las coordenadas del punto de cruce
entre regiones. Este punto es calculado como la intersección entre el segmento común
de las dos celdas y la recta que une los centros de ambas. Esta intersección se calcula
siguiendo la fórmula de la ecuación 3.2.

Los resultados han sido obtenidos al ejecutar los dos algoritmos en ROS (Robotic
Operating System), un software para trabajar con robots. Se han usado tres mapas con
diferentes características, a partir de los cuales se han calculado las trayectorias. Para cada
mapa se obtienen dos trayectorias, una con cada algoritmo implementado. Para realizar el
cálculo de la distancia media y el tiempo de ejecución medio se han calculado 20 caminos
diferentes. A continuación se muestran los resultados obtenidos.

Se denomina algoritmo 1 al algoritmo de puntos medios, que calcula el punto medio
del segmento que tienen en común dos celdas adyacentes y, algoritmo 2 al algoritmo de
unión de puntos centrales, que calcula la intersección entre el segmento en común y la
recta que une los dos centros de las celdas.

21

4.1.1. Primer mapa

Para este primer ejemplo se toma como punto de partida el mapa de la Figura 4.1,
un mapa de dimensiones 20x17. Este mapa se caracteriza por tener pocos obstáculos,
de manera que el robot tiene más facilidad para moverse sin colisionar con ninguno. El
resultado tras la descomposición de celdas es un mapa dividido en 40 celdas, de las cuales
4 están ocupadas por un obstáculo. Las celdas ocupadas no pueden formar parte de la
trayectoria final del robot.

Figura 4.1: Mapa original 20x17.

Tras la aplicación del algoritmo Dijkstra, se ha obtenido la secuencia de regiones su-
poniendo que el punto inicial es el centro de la primera celda, y el punto final es el centro
de la última celda, en este caso la celda 40. Teniendo en cuenta que el eje de coordenadas
está situado en la esquina inferior izquierda, los resultados obtenidos tras aplicar ambos
algoritmos son los mostrados en la tabla 4.1.

Resultados de los dos algoritmos
Punto Algoritmo 1 Algoritmo 2

1º punto (8, 7) (6.95, 7)
2º punto (9, 8.5) (9, 8.5)
3º punto (11, 8.5) (11, 8.5)
4º punto (13, 9) (13, 9)
5º punto (13, 11) (13, 11)
6º punto (14, 12.5) (14, 12.875)

Tabla 4.1: Resultados tras la aplicación de los algoritmos al primer ejemplo.

22

Los puntos calculados por ambos algoritmos son bastante similares, sin embargo, se
pueden apreciar algunas diferencias que hacen que las distancias recorridas sean diferentes.
En la tabla 4.2 se muestran los resultados tras calcular la distancia total recorrida por el
robot para ir desde la celda 1 hasta la última celda y el tiempo de ejecución de los dos
algoritmos.

Algoritmo 1 Algoritmo 2
Distancia total recorrida (m) 9.67 10.73
Tiempo de ejecución (s) 0.01 0.01

Tabla 4.2: Resultados del cálculo de la distancia recorrida y el tiempo de ejecución para
el primer mapa.

Sin embargo, para poder hacer afirmaciones sobre qué algoritmo de los dos es mejor
usar en cada caso, se han aplicado estos dos algoritmos a 20 trayectorias, con posiciones
iniciales diferentes. En la tabla A.1 del Anexo 1 se muestran los resultados obtenidos
al calcular las distancias recorridas por el robot, en metros, y el tiempo que tarda el
ordenador en ejecutar los dos algoritmos, en segundos, para 20 caminos diferentes. En la
tabla 4.3 se han calculado las medias de estos parámetros.

Distancia(m)
Algoritmo 1

Distancia(m)
Algoritmo 2

Tiempo(s)
Algoritmo 1

Tiempo(s)
Algoritmo 2

Media 10,47 10,75 0,00385 0,00425

Tabla 4.3: Resultados del cálculo de la media de la distancia recorrida y el tiempo de
ejecución para el primer mapa.

4.1.2. Segundo mapa

Para este segundo ejemplo se usa el mapa de la Figura 4.2. Este mapa, de dimensio-
nes 22x22, es más grande que el mapa de la Figura 4.1. Se caracteriza por poseer una
cantidad considerable de obstáculos que van a dificultar la trayectoria del robot. Tras la
descomposición de celdas el mapa queda dividido en 130 regiones, de las cuales 42 están
ocupadas por un obstáculo.

23

Figura 4.2: Mapa original 22x22.

Siendo el punto inicial la primera región, es decir, la celda número 1, y el punto final
la celda número 130, los resultados obtenidos tras aplicar el algoritmo de puntos medios
y el algoritmo de unión de puntos centrales son los mostrados en la tabla 4.4.

Resultados de los dos algoritmos
Punto Algoritmo 1 Algoritmo 2

1º punto (4, 2) (4, 2)
2º punto (5, 2) (5, 2)
3º punto (7, 2) (7, 2)
4º punto (8, 2) (8, 2)
5º punto (10, 2.25) (10, 2)
6º punto (12, 3.5) (12, 3.16)
7º punto (13, 4) (13, 3.5)
8º punto (13, 5) (13,5)
9º punto (13, 7) (13, 6.5)
10º punto (14, 10) (14, 10)
11º punto (15, 12) (15, 11.75)
12º punto (16, 12) (16, 12)
13º punto (18, 12) (18, 12)
14º punto (19, 12) (19, 12)
15º punto (20, 15) (20, 15)
16º punto (20, 18) (20, 18)

Tabla 4.4: Resultados tras la aplicación de los algoritmos al segundo ejemplo.

24

Como se puede observar en los resultados, Los puntos calculados por ambos algoritmos
son prácticamente iguales, únicamente diferenciándose en la coordenada x del primer
punto de cruce. Por ello, la distancia recorrida varía muy poco al aplicar un algoritmo u
otro, como se muestra en la tabla 4.5.

Algoritmo 1 Algoritmo 2
Distancia total recorrida (m) 28.18 28.13
Tiempo de ejecución (s) 0.031 0.032

Tabla 4.5: Resultados del cálculo de la distancia recorrida y el tiempo de ejecución para
el segundo mapa.

Para poder comparar ambos algoritmos, se procede a seguir el mismo proceso que para
el mapa anterior y se calculan 20 caminos con puntos de inicio distintos. Los resultados
de estos cálculos se muestran en la tabla A.2 del Anexo 1. Para decidir qué algoritmo es
mejor aplicar en este segundo mapa, en la tabla 4.6 se han hecho los cálculos de la media
de la distancia recorrida por el robot en los caminos calculados y la media del tiempo de
ejecución de cada algoritmo.

Distancia(m)
Algoritmo 1

Distancia(m)
Algoritmo 2

Tiempo(s)
Algoritmo 1

Tiempo(s)
Algoritmo 2

Media 16,94 16,89 0,0268 0,0279

Tabla 4.6: Resultados del cálculo de la media de la distancia recorrida y el tiempo de
ejecución para el segundo mapa.

4.1.3. Tercer mapa

Para este ejemplo se parte del mapa de la Figura 4.3. Este mapa es más pequeño que
los anteriores, de dimensiones 10x7, y no posee muchos obstáculos pero al ser un mapa
pequeño, abarcan gran parte del espacio.

Figura 4.3: Mapa original 10x7.

25

Se han calculado los puntos de la trayectoria de un robot, siendo la posición inicial
la celda 1 y, la posición final, la última celda. Los resultados obtenidos tras aplicar el
algoritmo de puntos medios y el algoritmo de unión de puntos centrales son los mostrados
en la tabla 4.7.

Resultados de los dos algoritmos
Punto Algoritmo 1 Algoritmo 2

1º punto (1, 0) (1, 0)
2º punto (4, 0) (4, 0)
3º punto (5.5, 0) (5.5, 0)
4º punto (5.5, 1) (5.5, 1)
5º punto (6, 2) (6, 2)
6º punto (8, 2) (8, 2)
7º punto (17, 14) (17, 14)

Tabla 4.7: Resultados tras la aplicación de los algoritmos al tercer ejemplo.

Como se puede observar en los resultados, la trayectoria del autómata obtenida por
ambos algoritmos es exactamente la misma. Al ser un mapa pequeño en el que los obs-
táculos ocupan gran parte del espacio, ambos algoritmos obtienen caminos muy parecidos,
o iguales en este caso. La distancia recorrida por el robot para ir desde la primera celda
hasta la última, es la misma calculada por los dos algoritmos. Sin embargo, para poder
saber cuál de los dos calcula un mejor camino en la mayor parte de los casos, se han
calculado 20 caminos con puntos de inicio o puntos de fin diferentes. Los resultados se
muestran en la tabla A.3 del Anexo 1. En la tabla 4.8 se pueden observar los resultados al
calcular la distancia media y el tiempo de ejecución medio de 20 trayectorias diferentes.

Distancia(m)
Algoritmo 1

Distancia(m)
Algoritmo 2

Tiempo(s)
Algoritmo 1

Tiempo(s)
Algoritmo 2

Media 6,30 6,37 0,0016 0,00205

Tabla 4.8: Resultados del cálculo de la media de la distancia recorrida y el tiempo de
ejecución para el segundo mapa.

4.2. Comparación de los algoritmos

Tras haber evaluado los dos algoritmos en los tres mapas mostrados, se puede observar
que, tanto el algoritmo de cálculo de puntos medios como el algoritmo de unión de puntos
centrales calculan puntos bastante similares. No hay un gran cambio de la trayectoria
al usar un algoritmo u otro, sin embargo, aunque la diferencia sea pequeña, si que hay

26

un cambio en las distancias calculadas por cada algoritmo. En la Figura 4.4 se pueden
observar las distancias medias de 20 trayectorias distintas calculadas por cada algoritmo
para los tres mapas. El algoritmo 1 es el algoritmo de puntos medios, y el algoritmo 2 el
de unión de puntos centrales.

Figura 4.4: Comparación de distancias medias calculadas por los dos algoritmos.

Se puede observar que, para el primer mapa, el algoritmo que calcula una menor
distancia es el algoritmo 1, sin embargo, para el segundo mapa, aunque la diferencia es
muy pequeña, es el algoritmo 2 el que calcula la menor distancia. Con estos resultados
se puede sacar la conclusión de que para mapas grandes con pocos obstáculos, como el
de la Figura 4.1, el algoritmo que calcula la menor distancia es el de cálculo de puntos
medios. Sin embargo, para mapas grandes que tienen muchos obstáculos, como el de la
Figura 4.2, el algoritmo que calcula la menor distancia es el de unión de puntos centrales.
Estas deferencias se pueden basar en el resultado de la descomposición de celdas, ya que
para mapas con pocos obstáculos se generan un menor número de regiones que tienen
mayores dimensiones, pero para mapas con un gran número de obstáculos se generan
más celdas y con dimensiones más pequeñas. Al calcular las trayectorias para un número
menor de celdas de mayores dimensiones el algoritmo de puntos medios calcula una menor
distancia que cuando se trata de celdas con menores dimensiones.

En el caso del tercer mapa, las distancias calculadas por un algoritmo u otro varían
muy poco. No obstante, se puede apreciar una ligera diferencia que hace que el algoritmo
que calcule la menor distancia sea el algoritmo de puntos medios.

En cuanto al tiempo de ejecución de ambos algoritmos, se puede observar en la Figu-
ra 4.5 una comparación de los tiempos medios que tarda el ordenador en ejecutar cada

27

algoritmo para los tres mapas evaluados.

Figura 4.5: Comparación de la media de los tiempos de ejecución de los dos algoritmos.

Se puede observar que en los tres casos, el tiempo que tarda el ordenador en ejecutar
el algoritmo 1 es inferior al tiempo que tarda en ejecutar el algoritmo 2. Esto puede ser
porque el algoritmo 1, que es el que calcula los puntos medios del segmento común de
dos celdas adyacentes, es más sencillo de implementar que el algoritmo 2. El algoritmo 1
únicamente calcula el punto medio de un segmento, mientras que el algoritmo 2 calcula
dos rectas y, la intersección de ambas.

28

Capítulo 5

Conclusiones

Planificar una trayectoria de forma óptima consiste en calcular el camino más corto
desde un punto inicial hasta un destino. Para realizar este cálculo existen diversos algo-
ritmos ya implementados, entre ellos el algoritmo Dijkstra. Este algoritmo proporciona,
a partir de un mapa dividido en celdas, la secuencia de regiones más corta para alcanzar
una posición final. Sin embargo, para calcular los puntos exactos que forman la trayectoria
de un robot, se necesitan implementar otros algoritmos.

El objetivo de este proyecto es la implementación de dos algoritmos que calculan de
forma optimizada los puntos intermedios de una trayectoria que ha de seguir un autó-
mata sin colisionar con ningún obstáculo. Para conseguir el objetivo, se han creado dos
algoritmos que calculan de manera diferente los puntos de la trayectoria de un robot, el
primer algoritmo calcula los puntos medios del segmento que tienen en común dos celdas
adyacentes, mientras que el segundo calcula la intersección entre la recta que une los cen-
tros de las dos celdas y el segmento común de ambas. La elección del algoritmo que se
debe usar en cada caso se basa en la distancia total recorrida por el robot. Si la distancia
recorrida es menor, el tiempo que tarda el robot en llegar al destino final se reduce y,
por lo tanto, el coste del proyecto es menor. Tras haber comprobado en el capítulo 4 su
correcto funcionamiento, se puede afirmar que el objetivo ha sido alcanzado.

Al evaluar y comparar los dos algoritmos para diferentes mapas se obtienen las siguien-
tes conclusiones:

Para mapas grandes y con pocos obstáculos, el algoritmo que calcula una menor
distancia es el de cálculo de puntos medios. Para mapas grandes y con muchos
obstáculos, ocurre lo contrario, el algoritmo que calcula una menor distancia es
el de unión de puntos centrales. Esta diferencia puede ser debida al resultado de
la descomposición de celdas, ya que, cuando el mapa posee muchos obstáculos, se
generan un gran número de celdas de pequeñas dimensiones, sin embargo, cuando
el mapa presenta pocos obstáculos, se generan un menor número de celdas y son de

29

dimensiones más grandes. Para mapas pequeños, se ha comprobado que el algoritmo
que calcula una menor distancia es el algoritmo de puntos medios. Sin embargo, en
todos los casos, las trayectorias calculadas por ambos algoritmos son muy similares.

El tiempo que tarda el ordenador en ejecutar cada algoritmo es bastante parecido, sin
embargo, para todos los casos evaluados el tiempo de ejecución es inferior al aplicar
el algoritmo de cálculo de puntos medios. Esto se debe a que su implementación
es más sencilla ya que sólo calcula el punto medio del segmento común entre dos
celdas, mientras que el algoritmo de unión de puntos centrales calcula dos rectas y
la intersección de ambas.

Se ha de tener en cuenta que los algoritmos se han aplicado únicamente sobre tres
mapas. Para sacar conclusiones más precisas se necesitaría probarlos sobre una cantidad
considerable de mapas con diferentes características. También hay que resaltar que las
distancias medias han sido calculadas en base a 20 trayectorias distintas en cada mapa,
no obstante, si se quisiese hacer un análisis completo, se deberían calcular las distancias
para todas las trayectorias posibles.

En este Trabajo Final de Grado se han creado únicamente dos algoritmos de cálculo
de puntos intermedios, sin embargo, usando diferentes métodos para realizar el cálculo, se
pueden implementar otros algoritmos distintos que puedan reducir más la distancia total
recorrida. Han sido creados para su posterior integración en ROS (Robotic Operating
System), un software para trabajar con robots que actualmente no cuenta con ningún
algoritmo capaz de calcular estos puntos.

30

31

Apéndice A

Anexos

A.1. Resultados obtenidos al aplicar los algoritmos en
tres mapas diferentes

Celda inicial Distancia (m)
Algoritmo 1

Distancia(m)
Algoritmo 2

Tiempo(s)
Algoritmo 1

Tiempo(s)
Algoritmo 2

1 9,66 10,72 0,003 0,003
3 13,9 13,8 0,005 0,005
5 7,86 8,18 0,003 0,004
2 4 4,13 0,003 0,003
4 11,9 11,76 0,009 0,009
6 11,36 11,74 0,003 0,003
7 10,36 10,68 0,004 0,005
9 12,4 12,26 0,003 0,004
11 16,46 16,47 0,003 0,004
13 13,41 13,26 0,003 0,004
15 14,41 14,26 0,005 0,005
17 16,41 16,46 0,003 0,004
18 15,41 15,26 0,007 0,007
20 16,41 16,76 0,003 0,004
23 17,82 17,88 0,004 0,004
25 5,86 6,18 0,003 0,003
26 3,8 5,62 0,003 0,003
28 1,8 3,52 0,003 0,004
33 3,04 3 0,004 0,004
36 3,16 3,09 0,003 0,003

Tabla A.1: Resultados del cálculo de la distancia recorrida y el tiempo de ejecución para
20 caminos diferentes del primer mapa.

32

Celda
inicial

Distancia(m)
Algoritmo 1

Distancia(m)
Algoritmo 2

Tiempo(s)
Algoritmo 1

Tiempo(s)
Algoritmo 2

1 28,17 28,11 0,039 0,04
5 25,17 25,11 0,022 0,022
11 24,17 24,12 0,025 0,025
17 21,74 22,07 0,023 0,023
21 22,65 23,07 0,026 0,027
25 21,56 21,48 0,023 0,023
30 21,56 21,48 0,028 0,028
35 22,23 22,12 0,038 0,039
42 19,18 18,6 0,027 0,027
54 14,56 14,48 0,026 0,027
63 11,16 11,66 0,025 0,025
68 11,54 11,54 0,025 0,025
74 18,56 18,57 0,022 0,027
76 17,94 18 0,028 0,028
84 15,34 15,16 0,027 0,027
95 15,95 15,4 0,028 0,028
101 13,56 12,98 0,022 0,023
110 7,26 7,24 0,025 0,025
117 3 3,2 0,034 0,034
126 3,5 3,502 0,023 0,031

Tabla A.2: Resultados del cálculo de la distancia recorrida y el tiempo de ejecución para
20 caminos diferentes del segundo mapa.

33

Distancia(m)
Algoritmo 1

Distancia(m)
Algoritmo 2

Tiempo(s)
Algoritmo 1

Tiempo(s)
Algoritmo 2

8,62 8,62 0,001 0,002
5,62 5,62 0,002 0,002
9,12 9,24 0,002 0,002
4,11 3,74 0,002 0,002
5,5 5,5 0,002 0,002
3,11 2,8 0,002 0,002
4,52 4,23 0,002 0,003
11,11 11,5 0,002 0,002
12,23 12,45 0,001 0,002
13,23 13,6 0,001 0,002
2 2 0,002 0,002

4,11 4,1 0,001 0,002
4,61 4,97 0,002 0,002
3,12 3,1 0,001 0,002
7,61 7,97 0,001 0,002
9,11 9,52 0,002 0,002
2,12 2,13 0,002 0,002
1 1,054 0,002 0,002

13,23 13,73 0,001 0,002
2 1,625 0,001 0,002

Tabla A.3: Resultados del cálculo de la distancia recorrida y el tiempo de ejecución para
20 caminos diferentes del tercer mapa.

A.2. Código implementado para la realización del tra-
bajo

El código implementado en este trabajo se encuentra en la siguiente carpeta. En ella
se encuentran los ficheros de texto de los tres mapas evaluados.

https://drive.google.com/drive/u/0/folders/1nuWnPRX-Ve2wj3CNSzKTeGYJUAiEZezj

A.3. ROS: Robotic Operating System

En la actualidad existen muchos frameworks o lenguajes de programación específicos
para robots. Algunos son específicos de un robot concreto y otros, sin embargo, son ge-

34

nerales. Este proyecto se ha llevado a cabo con uno de los frameworks más importantes,
ROS (Robotic Operation System) [10].

“El Sistema Operativo de Robot (ROS) es un marco flexible para escribir software
de robot. Es una colección de herramientas, bibliotecas y convenciones que tienen como
objetivo simplificar la tarea de crear un comportamiento robótico complejo y robusto en
una amplia variedad de plataformas robóticas.” [11].

Esta definición, que se encuentra en la página oficial de ROS, quiere decir que este
sistema operativo está dotado de librerías y herramientas que hacen que el trabajo con
el robot sean más sencillo. Por ejemplo, tiene librerías que acceden a los sensores del
robot, facilitando mucho la programación. Existen librerías generales para cualquier tipo
de robots y otras que solo sirven para unos robots específicos. Además, en ROS se pueden
incorporar otras librerías que previamente no están instaladas, de manera que se pueda
trabajar con mas herramientas [10]. En este proyecto se hace uso de la librería Boost,
que previamente no está instalada en el sistema operativo.

Una de las principales ventajas que tiene ROS es que, además de ser muy útil para
trabajar con robots reales, es capaz de ejecutar los programas a través de simuladores
[10]. Este trabajo se ha llevado a acabo sin el uso de robots reales, únicamente simulando
los programas en el frameworks.

ROS fue desarrollado en 2007 por el Laboratorio de Inteligencia Artificial de Stanford
para dar soporte a su proyecto de robot con inteligencia artificial. ROS no es un sistema
operativo, sin embargo, tiene todos los servicios estándar que un sistema operativo puede
tener como por ejemplo, el control de dispositivos de bajo nivel, el paso de mensajes
entre procesos y el mantenimiento de paquetes. Está basado en grafos cuyos nodos son
los responsables de recibir y mandar mensajes de diferentes sensores y actuadores. La
librería está diseñada principalmente para un sistema UNIX(Ubuntu- Linux-) [12]. Para
la elaboración del trabajo, como no se disponía de Linux, se ha trabajado desde una
máquina virtual en la cual está instalado Ubuntu.

A.4. Niveles de ROS

ROS está dividido en tres niveles diferenciados: el nivel de sistema de archivos, el nivel
de computación gráfica y el nivel de la comunidad.

A.4.1. Grafo computacional de ROS

El grafo de computación es el nivel más importante dentro de la arquitectura de ROS.

35

Figura A.1: Grafo computacional de ROS.

En la Figura 2.1. se puede ver como es el modelo del grafo computacional con los
diferentes elementos que lo componen.

ROS Nodes: Los nodos son procesos en los que se realizan los cálculos, en cada uno de
ellos se realiza una sola tarea. Son escritos con uso de bibliotecas como roscpp o rospy.

ROS Master: El master rastrea las direcciones IP de cada nodo, sin él los nodos no se
podrían encontrar e intercambiar información entre ambos.

ROS Topics: Estos permiten que el nodo publicador y el nodo subscriptor intercambien
información a través de mensajes. Cada tópico es capaz de comunicar un tipo de dato
específico, por lo que, es importante que el mensaje intercambiado sea también de este
tipo.

Para entender bien el funcionamiento de ROS, en la Figura A.2 2.2 se detalla el proceso
de intercambio de información entre dos nodos.

En esta figura se puede observar que para que dos nodos intercambien información
entre sí, diferentes elementos son necesarios. En primer lugar, los Topics sirven para
que los mensajes puedan viajar de un nodo a otro y en segundo lugar los servicios, que
son aquellos encargados del transporte bidireccional, es decir, están definidos por dos
estructuras de mensajes, uno para la solicitud y otro para la respuesta. De esta forma
los nodos pueden comunicarse entre sí, un nodo proveedor ofrece un servicio y un nodo
cliente lo utiliza enviando una solicitud y esperando una respuesta [13].

El Máster es el encargado de que el intercambio de datos entre los nodos pueda llevarse
a cabo. En él encontramos el servidor de parámetros, almacena los datos por claves. Y
por último tendríamos las Bolsas (Bags) que sirven para guardar y reproducir mensajes
de ROS.

36

Figura A.2: Gráfico computacional ROS de 2 nodos que se comunican entre sí.

A.4.2. Sistema de archivos

El sistema de archivos es lo que engloba los archivos necesarios para el correcto funcio-
namiento del software. Como elementos más importantes se pueden identificar los paque-
tes, que son la unidad básica de organización. Un paquete contiene toda la información
necesaria para que el programa se pueda ejecutar, contiene, principalmente, la información
de los nodos, bibliotecas, etc [13].

En este proyecto, se han creado dos paquetes diferentes, dentro del espacio de trabajo.
Un paquete llamado grafo, que es el que contiene la información del nodo y es el paquete
que se tiene que ejecutar para el desarrollo del programa. Y, otro paquete, llamado gra-
folibrary, que es aquel que contiene la biblioteca con las funciones que han sido creadas
para que funcione correctamente el programa.

El sistema de archivos está compuesto también por un manifiesto, que es un fichero
con información sobre un determinado paquete, como por ejemplo, su nombre, la versión,
la descripción, etc.

ROS provee una serie de librerías y herramientas para que los encargados del software
puedan desarrollar aplicaciones para robots. Algunas de las librerías más populares son
roscpp y rospy. Roscpp es la más utilizada de ROS y es una implementación en c++
que sirve para interactuar rápidamente con servicios y parámetros,y rospy que tiene la
misma función que roscpp pero usa lenguaje Python [13]. Sin embargo, en este trabajo se
ha agregado a ROS la librería Boost que cuenta con una serie de funciones dedicadas a
grafos, que es con lo que se está trabajando.

37

A.5. la robótica móvil

La robótica es una técnica que aplica la tecnología al diseño y la construcción de
aparatos, llamados robots, que realizan trabajos u oeraciones en sustitución de personas
normalmente en ámbitos industriales [4]. Actualmente la robótica móvil se considera un
área de tecnología avanzada; es un campo de investigación que se está desarrollando
continuamente pero que aún queda mucho por investigar.Los productos de la robótica
móvil se basan en aplicaciones de programación, inteligencia artificial y sirven de base
para grandes avances de la industria [14].

Además el miedo del ser humano a ser reemplazado en su totalidad por los robots ha
ido desapareciendo con el tiempo. Esto es debido al gran impacto tecnológico, social y,
sobre todo, económico que han tenido los robots en la sociedad.

A.6. Los robots

Un robot es una máquina que es capaz de realizar tareas complejas, tomar decisiones y,
actuar consecuentemente. Se llama robot móvil, cuando es capaz de desplazarse en cual-
quier ambiente dado. Este tipo de robots están provistos de patas, ruedas u orugas, como
se puede apreciar en la Figura 2.1 que les facilitan el poder desplazarse de acuerdo a su
programación. Estos son empleados, sobre todo, en el transporte de mercancías en cadenas
de producción y almacenes. Estos robots son también muy útiles en la investigación de
lugares de difícil acceso, como por ejemplo en la exploración espacial y las investigaciones
submarinas [4].

A.6.1. Clasificación de los robots

En general, se ha considerado que existen tres grandes tipos de robots: Los robots
industriales, los médicos y los móviles.

Los robots industriales: Este tipo de robots son los más usados en tareas de alcance eco-
nómico. Están formados por una estructura mecánica articulada que se mueve de acuerdo
a su programación. Estos son capaces de mover cargas pesadas a elevadas velocidades y
con una gran exactitud [4].

Los robots médicos: Estos robots tienen diferentes aplicaciones, algunos son usados
para rehabilitación, como prótesis inteligente. Estos se diferencian del resto porque tienen
la forma de la extremidad correspondiente. En este tipo de robot, las señales provienen de
señales nerviosas o musculares. Dentro de este conjunto entran también aquellos robots
desarrollados para ayudar en las intervenciones quirúrgicas de gran precisión o de alta

38

Figura A.3: Robot industrial Kuka [4].

complejidad. Un ejemplo de robot quirúrgico es el de la Figura 4.2, llamado robot Da
Vinci y es el instrumento quirúrgico más sofisticado que existe. Es capaz de obedecer al
cirujano, a la vez que opera con una mayor precisión y destreza que un ser humano y
además, proporciona una clara visión de la anatomía del paciente [4].

Figura A.4: Robot quirúrgico Da Vinci [4].

Los robots móviles: Este tipo de robots son capaces de desplazarse en cualquier me-
dio, están dotados de una plataforma mecánica que les permite, de manera automática,
moverse en un determinado espacio de trabajo. Son usados normalmente para transpor-
tar cargas de un punto inicial a un estado final. Este proyecto consiste, como ya ha sido
mencionado, en la implementación de algoritmos para calcular la trayectoria de un robot.
El robot usado es de tipo móvil, ya que, se desplaza de forma automática. Las tareas de
este tipo de robot suelen ser muy diferentes pero, normalmente, están usados en aquellas
que son peligrosas para el ser humano, por ejemplo, en la manipulación de materiales
explosivos, el mantenimiento de reactores nucleares, etc [4].

39

Estos robots son autónomos, no sólo porque son capaces de desplazarse sin intervención
del ser humano, sino también porque están dotados de capacidades para percibir, planificar
y actuar de forma autónoma, ya que muchas veces el robot se desenvuelve en entornos
desconocidos. En este proyecto, en el entorno se encuentran una serie de obstáculos que
el robot tiene que ser capaz de identificar y evitar.

Figura A.5: Robot móvil diseñado por Weston Robot y Agile X [4].

En la Figura 4.3, se muestra el robot móvil diseñado por Weston Robot y Agile X.
Este robot ha sido creado en Singapur para la desinfección de lugares para combatir el
COVID-19.

A.7. El funcionamiento del robot

Dos de las características más importantes de los robots son la versatilidad y la au-
toadaptabilidad. La versatilidad es la capacidad que tiene el robot de realizar tareas
diferentes o, de realizar una tarea de varias maneras distintas. La autoadaptabilidad es la
propiedad que permite que el robot se mueva hasta alcanzar el objetivo final a pesar de
los obstáculos que se puede encontrar en el camino. Para ello, está dotados de sensores
que les hacen capaces de conocer el entorno en el que se mueven [4].

Un robot está compuesto por cuatro sistemas importantes relacionados entre sí; el
sistema mecánico, sensorial y de control. El mecánico es aquel que permite que el robot
se mueva, el sensorial es aquel que le permite el conocimiento del entorno en el que está
trabajando, es decir, la identificación de obstáculos para poder evitarlos. El sistema de
control es el cerebro del robot, en él se procesa la información obtenida del entorno y es
el que manda la orden para actuar; este sistema está dotado de algoritmos de control [4].

Este trabajo se centra en el sistema de control, es decir, dotar al robot con algoritmos
de control para que sea capaz de seguir una trayectoria para alcanzar una posición final.

40

A.7.1. Autonomía de los robots

El objetivo de la robótica móvil es, claramente, conseguir la autonomía de dichos
sistemas para que sean capaces de ejecutar una tarea determinada sin la necesidad de
la intervención humana. Para conseguir dicha autonomía, los robots han de ser capaces
de orientarse y elegir la ruta adecuada para desplazarse sin colisionar con obstáculos que
pueden encontrarse en el medio. Además, hay veces que el evadir los obstáculos no es el
único requisito, sino que encontrar la ruta más corta que emplee el menor tiempo posible,
es también un requisito [4].

La navegación de los robots se puede dividir en tres grandes problemas, uno de ellos
es el de la localización, es decir, conocer en todo momento dónde se encuentra el robot,
cuales son sus coordenadas respecto a un sistema de referencia. El segundo problema
es la planificación de tareas, esto consiste en decidir en qué orden se van a realizar las
distintas tareas, es dónde más alto nivel de razonamiento se quiere y suele estar basado en
inteligencia artificial. Finalmente, el último problema es la planificación del movimiento,
que es donde entran los algoritmos de cálculo de trayectorias para planear el camino a
seguir hasta alcanzar un punto final [14].

41

Bibliografía

[1] A. Yandún and N. Sotomayor, “Planeación y seguimiento de trayectorias para un
robot móvil.”

[2] C. Mahulea, M. Kloetzer, and R. González, Path Planning of Cooperative Mobile
Robots Using Discrete Event Models, 1st ed. IEEE Press Series on Systems Science
and Engineering, Wiley., 2020.

[3] P. Frana and T. Misa, “An interview with edsger w. dijkstra,” Communications of
the ACM, vol. 53, no. 8, pp. 41–47, 2010.

[4] M. R. Tapia García and J. M. Dr. López Hernández, “Robótica móvil,” Revista de
divulgación científica, vol. 3, no. 2, pp. 2526–2530, 2017.

[5] A. Muñoz Cueva, “Generación global de trayectorias para robots móviles, basada en
curvas betaspline,” Proyecto de fin de grado, Universidad de Sevilla, 2014.

[6] F. Prieto Rodríguez, “Métodos de generación de trayectorias,” Proyecto de fin de
grado, Universidad de Sevilla, 2017.

[7] F. Gómez Bravo, A. Ollero, D. López, F. Cuesta, M. del Toro, P. Gil, and F. Real,
“Rrt-d : Planificación distribuida de caminos basada en la información de una red de
sensores wireless.”

[8] “Boost : dijkstra shortest paths.” [Online]. Available: https://www.boost.org/doc/
libs/1_53_0/libs/graph/doc/dijkstra_shortest_paths.html

[9] M. Peña Basurto and J. M. Cela Espín, Introducción a la programación en C, 1st ed.
EDICIONS UPC, 2000.

[10] R. Marras. (27 de Agosto de 2014) Frameworks para robots (i):
Ros. [Online]. Available: https://jjromeromarras.wordpress.com/2014/08/27/
frameworks-para-robots-i-ros/

[11] About ros. [Online]. Available: https://www.ros.org/about-ros/

[12] D. Ortego Delgado. (2017) Qué es ros. [Online]. Available: https://openwebinars.
net/blog/que-es-ros/

42

https://www.boost.org/doc/libs/1_53_0/libs/graph/doc/dijkstra_shortest_paths.html
https://www.boost.org/doc/libs/1_53_0/libs/graph/doc/dijkstra_shortest_paths.html
https://jjromeromarras.wordpress.com/2014/08/27/frameworks-para-robots-i-ros/
https://jjromeromarras.wordpress.com/2014/08/27/frameworks-para-robots-i-ros/
https://www.ros.org/about-ros/
https://openwebinars.net/blog/que-es-ros/
https://openwebinars.net/blog/que-es-ros/

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” 2009.

[14] G. Bermúdez, “Robots móviles. teoría, aplicaciones y experiencias,” in Tecnura 10,
2002, pp. 6–17.

43

	Resumen
	Abstract
	Índice general
	Índice de figuras
	Índice de tables
	Introducción
	Motivación y Contexto
	Objetivos
	Alcance del proyecto
	Estructura de la memoria

	Planificación de alto nivel
	Partición de regiones
	Algoritmos de Planificación de trayectorias
	Funcionamiento del algoritmo

	Planificación de bajo nivel
	Metodología
	Parte 1: Creación del grafo
	Parte 2: Aplicación Algoritmo Dijkstra
	Parte 3: Implementación de Algoritmos de cálculo de trayectorias

	Evaluación y comparación
	Obtención de resultados para diferentes mapas
	Primer mapa
	Segundo mapa
	Tercer mapa

	Comparación de los algoritmos

	Conclusiones
	Anexos
	Resultados obtenidos al aplicar los algoritmos en tres mapas diferentes
	Código implementado para la realización del trabajo
	ROS: Robotic Operating System
	Niveles de ROS
	Grafo computacional de ROS
	Sistema de archivos

	la robótica móvil
	Los robots
	Clasificación de los robots

	El funcionamiento del robot
	Autonomía de los robots

	Bibliografía

