
Trabajo Fin de Grado

Herramienta de población automática de ontoloǵıas
con fuentes públicas externas

Autor

Luis Garćıa Garcés

Directoras

Paula Peña Larena

Raquel Trillo Lado

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2021

1

2

AGRADECIMIENTOS

Quisiera comenzar este apartado dando gracias a mis tutores. Gracias a Raquel Trillo,

Paula Peña y Rafael del Hoyo por guiarme durante el desarrollo de este proyecto,

resolver mis dudas, aguantar las decenas de correos que enviaba cada semana y en

especial por dedicar su tiempo de vacaciones en ayudarme a completar este trabajo y

corregirlo. A su vez también me gustaŕıa agradecer al Instituto Tecnológico de Aragón

la oportunidad haber hecho prácticas en sus instalaciones durante el verano. Espero

sinceramente haber estado a la altura y que se sientan satisfechos de haber trabajado

conmigo y el fruto de ese trabajo. También me gustaŕıa dedicárselo a mis padres porque

siempre han créıdo en mi, me han ayudado en todo lo posible, apoyado siempre y me

han dado toda su paciencia. Con este trabajo se cierra una etapa de mi vida muy

importante, durante estos últimos años me he réıdo, he disfrutado, he aprendido, me he

quejado, he sido presa de la ansiedad y me ha dolido la espalda una barbaridad, porque

considero que el ritmo de trabajo de algunos cursos no es muy sano... Me gustaŕıa darle

las gracias a todas las personas que han estado a mi lado durante esta etapa, una vez

más gracias a mis padres por estar siempre ah́ı. Gracias a mis compañeros de carrera

por acompañarme durante esta etapa y haber hecho piña para afrontarla, echaré de

menos los d́ıas en los que nos juntábamos todos a comer y como nos ayudábamos en

épocas de exámenes. Gracias a mis amigos por ayudarme a desconectar y sacar siempre

un hueco para escaparnos. Gracias a mi familia por estar siempre ah́ı y quererme tal

y como soy. En definitiva muchas gracias a las personas que han estado ah́ı durante

estos últimos años.

3

4

RESUMEN

Actualmente hay multitud de fuentes de datos libres y heterogéneas de las que se

pueden obtener datos para un propósito espećıfico. Integrar estos datos en general

puede resultar costosos ya que cada fuente sigue su propio esquema. Es por tanto

necesario llevar a cabo un proceso de integración sistemático que cree un esquema que

aporte una visión global enriquecida y consistente de los diferentes componentes. Es

aqúı donde las ontoloǵıas juegan un papel clave debido a su esquema y a la capacidad

de establecer nuevas relaciones. Una ontoloǵıa es una definición formal que representa

un conocimiento, mediante un esquema cuyos conceptos, propiedades y relaciones

constituyen la especificación formal de un área de conocimiento. En el presente trabajo

se va desarrollar una herramienta cuyo propósito es extraer conjuntos de datos de

fuentes públicas y poblar automáticamente una ontoloǵıa. Para su desarrollo se ha

utilizado el framework de Python Flask integrado con una base de datos orientada a

grafos, en este caso Neo4j. Aunque la extracción de los conjuntos de datos depende

exclusivamente de la fuente de datos, la extracción se lleva cabo mediante el uso de la

API que exponen las fuentes. Tras el proceso de extracción se ha utilizado la libreŕıa

rdflib que permite crear grafos RDF.

Los grafos RDF se importan en Neo4j mediante el uso del plugin Neosemantic, que

permite trabajar con tripletas RDF. Estas tripletas se crearán acorde a los conceptos

y propiedades propios del modelo de información IDS.

Este proyecto se enmarca en el trabajo realizado en el área de Biga data y sistemas

cognitivos del Instituto Tecnológico de Aragón, desde la cual se se estableció como

requisito del trabajo el uso de la ontoloǵıa desarrollada por IDSA2 y que la herramienta

permitiese la visualización de los conjuntos de datos integrados y la interacción del

usuario con estos a través de una interfaz web. Para alcanzar el objetivo se ha utilizado

Jquery y Bootstrap para desarrollar una interfaz rápida y simple. Finalmente se

ha utilizado procesamiento del lenguaje natural para enriquecer las búsquedas que los

usuarios realicen a Neo4j mediante el uso de la libreŕıa TXTAI para Python.

2https://internationaldataspaces.org/

5

ABSTRACT

Currently, there are a multitude of free and heterogeneous data sources from which

data can be obtained for a specific purpose. Generally, the integration of this data can

be costly since each source follows its own scheme. Therefore, it is needed to perform

a systematic integration process in order to provide a global schema that provides

more information. This is where ontologies play a key role due to their schema and the

ability to establish new relationships. An ontology is a formal definition that represents

knowledge, through a scheme whose concepts, properties and relationships constitute

the formal specification of an area of knowledge. In the present work, a tool whose main

purpose is the extraction of data sets from public sources and automatically populate

an ontology is presented. Python Flask framework integrated with a graph-oriented

database, in this case Neo4j, have been the tools selected to development this project.

Although the extraction of the datasets depends exclusively on the public data source,

the extraction is carried out using the API that the sources expose. Rdflib have been

used right after the extraction. It is a Python library which allows user to create RDF

graphs and export them. Because of the used of the Neosemantic plugin, which allows

working with RDF triples, RDF graphs are imported into Neo4j. These triples will be

created according to the concepts and properties of the IDS information model. The

ontology developed by IDSA has been imposed by the coordinators of this project

belonging to the Technological Institute of Aragon, due to the fact that this project

is framed within the lines of the Institute. The tool has to allow the visualization

of the data sets and user interaction through a web interface. For this, Jquery and

Bootstrap have been used to develop a fast and simple interface. Finally, natural

language processing has been used to enrich the searches made to Neo4j through the

use of the TXTAI library for Python.

6

Índice

1. Introducción 11

1.1. Contexto y Motivación . 11

1.2. Objetivos . 11

1.3. Estructura de la memoria . 12

2. Visión general tecnológica 13

2.1. Tecnoloǵıas de la Web semántica . 13

2.1.1. RDF . 13

2.1.2. OWL . 14

2.2. Bases de datos . 14

2.2.1. Bases de datos SQL . 15

2.2.2. Base de datos NOSQL . 15

2.2.3. Bases de datos orientadas a grafos 15

2.2.4. Modelo de base de datos elegida 16

2.2.5. Base de datos elegida . 16

2.3. Procesamiento de lenguaje natural e indexación 17

2.3.1. Procesamiento de lenguaje natural 17

2.3.2. Indexación . 17

2.3.3. Libreŕıa TXTAI . 17

2.3.4. Justificación uso de TXTAI . 18

2.4. Concepto de Ontoloǵıa . 18

2.4.1. Componentes . 18

2.4.2. Ventajas . 19

2.4.3. Dificultades . 19

2.4.4. Selección del modelo de información IDS 20

3. Herramienta de población automática de ontoloǵıas con fuentes

públicas externas 21

3.1. Análisis . 21

3.1.1. Requisitos del proyecto . 21

7

3.1.2. Casos de uso . 22

3.2. Arquitectura . 24

3.2.1. Diagrama alto nivel . 24

3.2.2. Modelo entidad-relación . 25

3.3. Mapa de navegación . 26

4. Prototipo del sistema y Validación 29

4.1. Backend . 29

4.1.1. Extracción de conjuntos de datos 29

4.1.2. Población automática de la ontoloǵıa 31

4.1.3. Índices de búsqueda . 33

4.1.4. Búsqueda local de conjuntos de datos 34

4.1.5. Conjuntos de datos recurrentes 35

4.2. Frontend . 35

5. Conclusiones y Ĺıneas de Trabajo Futuro 37

5.1. Resultados . 37

5.1.1. Búsqueda en repositorios online 37

5.1.2. Búsqueda por palabra clave . 41

5.2. Dificultades y problemas encontrados 41

5.3. Metodoloǵıa de desarrollo . 42

5.4. Conclusiones . 43

5.5. Planificación del proyecto . 43

5.6. Ĺıneas de Trabajo Futuro . 43

Anexos 52

A. Anexo 1 55

A.1. Ejemplo conjunto de datos en repositorio online 55

A.2. Ejemplo tráfico red en repositorio online 56

A.3. Estado del arte tecnoloǵıas bases de datos 57

A.3.1. TerminusDB . 57

A.3.2. ArangoDB . 57

A.3.3. Neo4j . 58

A.4. Conceptos procesamiento lenguaje natural 58

A.4.1. Word Embeddings . 58

A.4.2. Word2Vec . 58

A.4.3. GloVe . 59

8

A.4.4. Transformers . 59

A.5. Tecnoloǵıas desarrollo frontend . 60

A.5.1. Bootstrap . 60

A.5.2. JQuery . 61

A.5.3. Google Fonts . 61

A.5.4. Fontawesome . 61

A.6. Vocabulario utilizado . 61

A.6.1. Web Ontology Language . 61

A.6.2. Resource Description Framework 61

A.6.3. Dublin Core . 62

A.6.4. Modelo de Información IDS . 62

B. Anexo 2 65

B.1. Explicación requisitos funcionales . 65

B.2. Explicación requisitos no funcionales 66

B.3. Modelo de datos orientado a grafos . 67

B.4. Prototipado interfaces . 67

B.4.1. Pantalla de búsqueda avanzada 67

B.4.2. Pantalla principal . 68

B.4.3. Pantalla de visualización de un conjunto de datos 68

B.4.4. Pantalla de información . 69

C. Anexo 3 71

C.1. Diagrama de paquetes Frontend . 71

C.2. Interfaces . 71

C.2.1. Página inicial . 71

C.2.2. Búsqueda Avanzada . 73

C.2.3. Resultado búsqueda por publicador 73

C.2.4. Resultado búsqueda por palabra clave 74

C.2.5. Conjuntos de datos recurrentes 75

C.2.6. Página información del uso de la herramienta 76

C.2.7. Resultado de la búsqueda . 79

C.3. Diagramas de clase Backend . 82

D. Anexo 4 85

D.1. Repositorios públicos . 85

D.1.1. data.europa.eu . 85

D.1.2. data.gov.au . 85

9

D.2. Conjunto de datos para validación . 85

D.3. Conjunto de datos validación con clave 86

D.4. Palabras clave ejemplo búsqueda . 87

D.5. Resultado búsqueda avanzada . 88

D.6. Resultado búsqueda por clave . 89

D.7. Control de esfuerzo . 90

E. Anexo 5 95

E.1. Extracción de información mediante web crawling y web scraping . . . 95

E.1.1. Web crawling . 95

E.1.2. Web scraping . 95

E.1.3. Tecnoloǵıa crawler analizada . 96

E.1.4. Inconvenientes uso de crawler 96

E.1.5. Solución alternativa . 97

E.2. Estado del arte tecnoloǵıas web scraping y crawling 98

E.2.1. Apache Nutch . 98

E.2.2. Stormcrawler . 99

E.2.3. crawler4j . 99

E.2.4. Scrapy . 100

E.2.5. Beautiful Soup . 100

E.2.6. Requisitos del proyecto para crawlers 100

F. Anexo 6 103

F.1. Glosario siglas y abreviaturas . 103

Lista de Figuras 107

Lista de Tablas 109

10

Caṕıtulo 1

Introducción

Existen multitud de fuentes de datos libres y heterogéneas de las que se pueden

obtener datos para un propósito espećıfico, pero en general resulta costoso integrarlos

ya que previamente se requiere localizarlos, limpiarlos y homogeneizarlos. El problema a

resolver en este proyecto consiste en la estructuración de la información de repositorios

públicos de datos heterogéneos de forma automática gracias al uso de ontoloǵıas. Una

ontoloǵıa es un mecanismo de representación en forma de esquema conceptual con sus

propios conceptos y vocabulario que permiten la estructuración y representación de un

conocimiento (ver Sección 2.4 para más detalles). Durante el desarrollo de este proyecto

se se analiza cómo es posible la integración de forma sistemática de los conjuntos de

datos pertenecientes a repositorios diferentes gracias al uso de ontoloǵıas.

1.1. Contexto y Motivación

Este trabajo de final de grado se enmarca dentro de las ĺıneas del Instituto

Tecnológico de Aragón, también conocido como ITAINNOVA3. Se trata de

un proyecto propuesto por el departamento de Big Data y Sistemas Cognitivos,

departamento en el actual he estado haciendo prácticas desde junio de 2021 hasta

el d́ıa de hoy (31/08/2021). Código disponible en https://github.com/luisgg98/

TFG-ITA-EINA.

1.2. Objetivos

El objetivo del proyecto es el desarrollo de una herramienta que permita la

extracción de información de fuentes públicas para poblar automáticamente una

ontoloǵıa. Para ello, además de capturar datos y adaptarlos creando las relaciones

semánticas necesarias, se deberá mantener la trazabilidad de las operaciones realizadas

3https://www.itainnova.es/

11

https://github.com/luisgg98/TFG-ITA-EINA
https://github.com/luisgg98/TFG-ITA-EINA

sobre estos y su origen, con el objetivo de fomentar y garantizar una mayor calidad de

los datos. Adicionalmente, se requiere que la herramienta permita la visualización de

los resultados poblados en la ontoloǵıa. En resumen, la herramienta ha de poder extraer

los datos de los repositorios, estandarizar su información acorde con la ontoloǵıa, poblar

la ontoloǵıa y visualizar su contenido. Los requisitos que han de cumplir se detallan en

la Subsección 3.1.1.

1.3. Estructura de la memoria

En el Caṕıtulo 2 se explican los conceptos y las tecnoloǵıas necesarios para la

correcta comprensión y el correcto desarrollo de este proyecto.

En el Caṕıtulo 3 se analizan los requisitos que ha de cumplir el proyecto, se muestran

los diagramas acordes al diseño de la herramienta y los primeros prototipos de su

interfaz.

El Caṕıtulo 4 describe cómo se ha llevado a cabo la implementación de las

tecnoloǵıas explicadas anteriormente para cumplir los requisitos y objetivos del

proyecto propuestos.

El Caṕıtulo 5 resume las conclusiones a las que se ha llegado tras haber completado

este trabajo y también contiene los resultados.

Con el fin de facilitar la lectura de esta memoria la información complementaria

de cada caṕıtulo ha sido incluida en cincos anexos, que son accesibles desde el texto

principal. Al final de esta memoria se encuentra un glosario en el que se explican los

términos y siglas utilizadas en Apéndice F.

12

Caṕıtulo 2

Visión general tecnológica

En este caṕıtulo se llevará a cabo una explicación de los conceptos y tecnoloǵıas

necesarios para el correcto entendimiento de este proyecto.

2.1. Tecnoloǵıas de la Web semántica

Antes de comenzar es necesario aclarar el significados de dos tecnoloǵıas, RDF y

OWL, propios de la web semántica. La Web semántica supone un cambio de filosof́ıa y

uso de la Web. Se trata de una Web en la que los agentes software pueden interactuar

de forma automática, integrar y reusar información basándose en la idea de agregar

metadatos semánticos y ontológicos a la Web [1].

2.1.1. RDF

RDF4, cuyas siglas significan Resource Description Framework establece un

modelo estándar que sirve para proporcionar información descriptiva de los recursos

disponibles en la Web, facilitando el intercambio de datos en la Web y la descripción

de las relaciones entre los diferentes recursos disponibles. Un recurso puede ser un

concepto del que obtener información [2].

El componente principal de RDF son las tripletas formadas por Sujeto, Predicado

y Objeto (ver en Figura 2.1). En las tripletas (Sujeto, Objeto, Predicado) el sujeto y

el objeto representan recursos y el predicado una propiedad.

Las tripletas se pueden representar de múltiples formas y sintaxis. En la

representación de las tripletas el sujeto puede ser una URI (Identificador de Recursos

Uniforme) o un nodo en blanco, en cambio, el objeto también puede ser un literal. El

predicado en cambio es una URI. Tanto los recursos como las propiedades se identifican

con URIs. Las URIs son identificadores únicos [3].

4http://www.w3.org/1999/02/22-rdf-syntax-ns

13

Figura 2.1: Ejemplos de tripletas RDF

2.1.2. OWL

OWL5 es el acrónimo del inglés Web Ontology Language. Es un lenguaje

declarativo usado en la web para describir ontoloǵıas. Este lenguaje de marcado permite

publicar y compartir datos a través de la descripción y definición de ontoloǵıas. OWL

se basa en RDFS, que se refiere a RDF Schema. Este último es un lenguaje basado en

RDF cuya finalidad es la de definir vocabularios para RDF. Simplificando su definición

podŕıa decirse que se trata de un lenguaje para definir metadatos para RDF. Los

metadatos se conocen como ”datos acerca de los datos” y sirven para suministrar

información sobre los datos producidos [4].

Sin embargo, OWL agrega más vocabulario para describir propiedades y clases:

entre otros, relaciones entre clases, cardinalidad, igualdad, tipificación más rica de

propiedades, caracteŕısticas de propiedades y clases enumeradas [5].

2.2. Bases de datos

En esta sección inicialmente se hará una breve introducción a las bases de datos

SQL y NOSQL. Dentro de las NOSQL se va a detallar qué son las bases de datos

orientadas a grafos. Posteriormente se justificará porqué se ha decidido utilizar en este

proyecto una base de datos orientada a grafos. Finalmente se explicará qué otras bases

de datos se han decidido utilizar en el proyecto.

5http://www.w3.org/2002/07/owl

14

2.2.1. Bases de datos SQL

Las bases de datos SQL son aquellas que utilizan el lenguaje SQL para definir su

esquema y para las operaciones de actualización, borrado y creación. Las bases de datos

SQL siguen el modelo relacional que permite la representación de datos relacionados

en tablas [6]. Los datos se almacenan como filas de tablas que han sido previamente

creadas y definidas. Estas tablas están formadas por columnas que se corresponden a

los atributos que queremos guardar de la información que estemos almacenando. Todos

los datos que se guardan han de tener los mismos atributos dentro la tabla. Las datos

de las diferentes tablas se relacionan entre śı gracias al uso de claves, uso de clave

primarias para identificar a la propia columna y el uso de claves ajenas para identificar

con qué otras instancias de la base de datos se relaciona. Los sistemas gestores de bases

de datos que sigue el modelo relacional se caracterizan garantizar la coherencia y la

disponibilidad de los datos a expensas de la tolerancia a las particiones [7].

2.2.2. Base de datos NOSQL

Las bases de datos NOSQL son todas aquellas que presentan un modelo distinto

al modelo relacional. Los sistemas gestores de bases de datos NOSQL no tienen un

esquema ŕıgido predefinido, puede haber redundancias en los datos ya sea para ofrecer

tolerancia a fallos o para evitar el uso de operaciones JOIN. Estas operaciones

son aquellas que unen el contenido de varias tablas y generan un vista a partir

de su unión. Las transacciones de bases de datos NOSQL tienden a cumplir las

propiedades BASE (Basically Available, Soft State, Eventual and Consistency) [8].

No todas las bases de datos NOSQL cumplen los mismos puntos del teorema CAP

(Consistency, Availability and Partition Tolerance) para ser escalables y distribuidas.

Aunque, generalmente priorizan más la tolerancia a particiones y la disponibilidad que

la consistencia [9].

Muchos de los SGBD (Sistema Gestor de Bases de Datos) NOSQL son proyectos

de código abierto. Dentro de las bases de datos NOSQL hay diferentes tipos: Bases

de datos documentales, bases de datos clave/valor, bases de datos multivalor, bases de

datos de Arrays, etc. (véase más en [10]) En este proyecto nos centraremos en las bases

de datos orientadas a grafos.

2.2.3. Bases de datos orientadas a grafos

Una base de datos orientada a grafos es una base de datos NOSQL cuya finalidad es

la de representar un conocimiento mediante la creación y manipulación de grafos. Estos

grafos contienen nodos y propiedades utilizados para almacenar datos y representar las

15

relaciones entre estos de forma diferente a las bases de datos relacionales [11].

2.2.4. Modelo de base de datos elegida

Finalmente, se ha decidido el uso de una base de datos orientada a grafos para

este proyecto, en lugar del uso de una base de datos relacional. En las bases de datos

orientadas a grafos se evita el uso de JOINs debido a que se almacenan las relaciones

entre distintas instancias de los datos, por lo tanto a la hora de realizar una consulta

es mucho menos costoso. Los grafos permiten un estudio más flexible de los datos y

aplicar algoritmos de grafos para detectar patrones, relaciones entre los datos impĺıcitas

o factores influyentes. En definitiva permite un análisis más eficiente y rápido que en

una base de datos relacional tradicional, ya que el propio sistema gestor facilita la

aplicación de algoritmo y evita el uso de JOINs.

Debido al almacenamiento expĺıcito de las relaciones entre grafos y que cuentan con

operaciones para navegar rápidamente entre estos, permiten una mejor representación

del conocimiento que en una base de datos relacional [12]. El objetivo de este proyecto

consiste en la población automática de una ontoloǵıa. Las ontoloǵıas definen un

vocabulario y cómo se relacionan los elementos que la componen. Al fin y al cabo

las ontoloǵıas permiten las representación de un conocimiento. Los SGBD que más

se adaptan a la idea de representar un conocimiento son los orientados a grafos. Se

ha llevado a cabo un análisis de bases de datos orientadas a grafos disponible en

Sección A.3.

2.2.5. Base de datos elegida

Finalmente, de los tres sistemas gestores orientados a grafos candidatos, explicados

en la Sección A.3, se ha elegido Neo4j. Otros ejemplos son, ArangoDB y

TerminusDB, ambos son dos proyectos que llevan mucho menos tiempo activos

en comparación con Neo4j y esto refleja que Neo4j cuenta con una comunidad más

numerosa de usuarios y que cuenta con el soporte de una empresa. Pueden encontrarse

numerosos tutoriales y recursos adicionales, como libros gratuitos (por ejemplo véase

en [13] y [14]), para aprender a manejar Neo4j. A esto se le suma su documentación, ya

que es abundante y clara tanto para el uso de la base de datos, como para el aprendizaje

de CYPHER, su lenguaje de consulta, como para su plugin Neosemantic. Cierto es

que nativamente no soporta RDF y que plantea un enfoque distinto, porque se trata

de una base de datos orientada a grafos de propiedades y no de tripletas [15], pero con

el plugin Neosemantic se solventa. Además, cuenta con una aplicación de escritorio

que permite visualizar, administrar la base de datos e instalar plugins.

16

2.3. Procesamiento de lenguaje natural e

indexación

Una vez haya sido poblada la ontoloǵıa han de poder realizarse consultas

enriquecidas semánticamente a la base de datos. Para cumplir este objetivo es necesario

el uso de una libreŕıa que permita la búsqueda semántica y creación de un ı́ndice sobre

el que realizar estas consultas. Antes de describir la tecnoloǵıa elegida y explicar porqué

ha sido seleccionada, se describirán brevemente los conceptos procesamiento de lenguaje

natural, el cual será referido como PLN, e indexación. En esta sección se hará mención

a dos técnicas de aprendizaje en procesamiento del lenguaje natural word embedding y

transfomers, las cuales se encuentran explicados en la Sección A.4.

2.3.1. Procesamiento de lenguaje natural

Es un campo de la inteligencia artificial y lingǘıstica que estudia las interacciones

entre los ordenadores y el lenguaje humano, conocido como lenguaje natural.

El procesamiento del lenguaje natural se ocupa de la aplicación de técnicas

computacionales para la comunicación entre personas y máquinas por medio del

lenguaje natural.

2.3.2. Indexación

El proceso indexación denota la formación de un ı́ndice en el que los documentos se

recogen y clasifican, generalmente utilizando palabras clave y se disponen para realizar

búsquedas posteriormente.

2.3.3. Libreŕıa TXTAI

TXTAI6 es una libreŕıa para Python que a través de herramientas de aprendizaje

automático procesa las consultas realizadas en lenguaje natural, las transforma y

permite la creación de ı́ndices sobre los que realizar consultas. Permite el uso de modelos

de PLN basados en word embeddings y Transformers, los cuales serán utilizados en

este proyecto y explicado su uso en el Caṕıtulo 4. Es capaz de generar embeddings

para modelos transformers preentrenados gracias a que utiliza el framework Sentence

Transformers7.

Además TXTAI permite la clasificación de textos, detección de emociones

y traducción de estos. Esto es posible ya que utiliza los modelos transformers

6https://github.com/neuml/txtai
7https://github.com/UKPLab/sentence-transformers

17

preentrenados proporcionados por Hugging Face8 gracias al uso de su API(Interfaz

de Programación de Aplicaciones). Esta libreŕıa se trata de un proyecto de código

abierto desarrollado por la empresa NeuML9 disponible para uso bajo los términos de

la licencia Apache License 2.0.

2.3.4. Justificación uso de TXTAI

Finalmente, esta libreŕıa se ha elegido por sus cualidades descritas anteriormente.

Permite búsqueda semántica, debido a que procesa el lenguaje natural de las consultas

y multidioma, ya que, aunque sólo procesa las consultas realizadas en inglés permite

traducir textos al inglés. De esta forma puede solventarse este escollo lingǘıstico y

trabajar con conjuntos de datos que no estén exclusivamente en inglés. Además permite

la creación y actualización de ı́ndices de forma rápida y sencilla. Se trata de una

tecnoloǵıa de rápida configuración, muy fácil y sencilla de utilizar. Se ha elegido esta

tecnoloǵıa por encima de otras herramientas que también permiten crear ı́ndices y

realizar búsquedas como ElasticSearch o Solr por las cualidades mencionadas y

porque fue planteada por los directores de este proyecto.

2.4. Concepto de Ontoloǵıa

En informática, una ontoloǵıa es un mecanismo de representación en forma de

esquema conceptual, cuya finalidad es la de constituir la especificación formal de los

conceptos en un área de conocimiento (véase en What is an Ontology? de Gruber

1992 [16]). Un esquema conceptual proporciona una descripción lógica de los datos

compartidos, lo que permite que los programas y las bases de datos interoperen.

Cada ontoloǵıa presenta su vocabulario que describe varios aspectos del dominio,

área del conocimiento, que está modelando. Junto a este vocabulario las ontoloǵıas

también describen las relaciones entre sus componentes, de esta forma proporcionan

una especificación expĺıcita que refuerza su significado. Gracias al uso de ontoloǵıas

se consigue una representación formal que mejora el intercambio de información entre

uno o varios elementos, ya que define un vocabulario común para todos los elementos

que al mismo tiempo es independiente de su naturaleza y comportamiento [17].

2.4.1. Componentes

En este apartado se indicarán brevemente los componentes que forman las

ontoloǵıas [18].

8https://huggingface.co/models
9https://neuml.com/

18

− Instancias. Denominadas también como individuos u objetivos, representan

elementos que pertenecen a un concepto dentro del dominio de acuerdo a la

estructura de la ontoloǵıa.

− Conceptos. Son los principales elementos que componen la ontoloǵıa. Dentro de

los conceptos se engloba además a las clases y entidades. Representan el tipo de

elementos a modelar.

− Roles. Los roles comprenden las relaciones, propiedades y atributos. En el caso de

las relaciones estas representan tipos de asociaciones entre conceptos del modelo,

o entre conceptos. En el caso de los atributos y propiedades representan aspectos,

propiedades o caracteŕısticas de los conceptos.

− Funciones. Las funciones en una ontoloǵıa son complejas estructuras cuya

finalidad es la calcular e obtener información de otros elementos dentro de la

ontoloǵıa.

− Axiomas. Estos elementos son restricciones, reglas o lógica correspondiente a las

definiciones de los conceptos que deben ser cumplidos en las relaciones entre los

distintos elementos de la ontoloǵıa. Las reglas y restricciones definen la estructura

de la ontoloǵıa ya que validan las nuevas entradas a la ontoloǵıa.

2.4.2. Ventajas

Las ontoloǵıas son empleadas para especificar y estandarizar vocabulario para

el intercambio de datos entre sistemas. Las ontoloǵıas proporcionan servicios

para responder consultas, publicar bases de conocimiento reutilizables y ofrecer

servicios para facilitar la interoperabilidad entre múltiples sistemas y bases de datos

heterogéneos. Además, una cualidad clave de las ontoloǵıas consiste en que son capaces

de especificar un modelo de datos que va más allá de la especificación del esquema de

una base de datos. En las ontoloǵıas escritas en OWL su esquema juega un papel muy

importante, ya que permite el enriquecimiento y la extensión de sus consultas [19].

2.4.3. Dificultades

Las herramientas que trabajan con ontoloǵıa no suelen rechazar actualizaciones

que provocan inconsistencia, simplemente muestran una señal de error [20]. También

unas de las desventajas que presentan las ontoloǵıas es la dificultad para adaptar las

bases de datos tradicionales a su esquema. Las ontoloǵıas permiten describir complejas

expresiones o relaciones entre conceptos y las bases de datos relacionales tienden a

19

la simplificación, basándose en el almacenamiento de filas en tablas y necesitando

de complejas operaciones para calcular las relaciones entre los datos. Otra dificultad

añadida, es que el uso y la adaptación del esquema de una base de datos a una ontoloǵıa

es un proceso manual y costoso.

2.4.4. Selección del modelo de información IDS

Para este proyecto se ha elegido como ontoloǵıa el modelo de información de IDSA

(International Data Spaces Association)10. Esta es una asociación cuyo propósito es el

intercambio de datos de forma segura y fiable.

El modelo de información IDS (International Data Spaces)11 se basa en una

ontoloǵıa que cumple los estándares de RDFS/OWL, que define los conceptos

fundamentales que permiten describir a los actores, sus interacciones, los recursos que

intercambian y las restricciones en un espacio de datos. Nace de la necesidad de crear

un estándar para el intercambio de datos empresariales entre socios de forma segura.

Es decir, se trata de un modelo para el intercambio de información digital en el mundo

empresarial (para más información consulte [21]).

Aunque este proyecto puede ser extensible a otras ontoloǵıas finalmente se ha elegido

la ontoloǵıa desarrollada por la IDSA. La razón de la elección de esta ontoloǵıa ha sido

por decisión de los directores de este proyecto.

10https://internationaldataspaces.org/
11https://w3id.org/idsa/core

20

Caṕıtulo 3

Herramienta de población
automática de ontoloǵıas con
fuentes públicas externas

En este caṕıtulo se detallarán los requisitos de la herramienta. A su vez se explicará

cómo se va a utilizar, mediante el uso de un diagrama de casos de uso, su arquitectura,

cómo se va a desplegar y los bocetos de la primera aproximación de la interfaz web.

3.1. Análisis

En esta sección se analizarán los requisitos que ha de cumplir la herramienta para

correcto cumplimiento de su propósito, el poblado automático de una ontoloǵıa, y se

explicarán los posibles casos de uso para los usuarios.

3.1.1. Requisitos del proyecto

Requisitos funcionales

Los requisitos funcionales son aquellos que establecen los comportamientos del

sistema y son independientes de la implementación del sistema [22]. En la Sección B.1

se incluyen los requisitos mostrados en la Tabla 3.1 con más detalle.

21

Código T́ıtulo

RF-1 Búsqueda de conjuntos de datos.
RF-2 Búsqueda por palabra clave.
RF-3 Filtrar los conjuntos de datos por publicador, páıs y categoŕıa.
RF-4 Búsqueda por categoŕıa, publicador o páıs.
RF-5 Descarga del contenido de las distribuciones.
RF-6 Gestionar apartado de conjuntos de datos recurrentes o favoritos .
RF-7 Los conjuntos de datos han de adaptarse al esquema de la ontoloǵıa.
RF-8 Permite la heterogeneidad de los repositorios de datos abiertos.
RF-9 Establece relaciones entre los conjuntos de datos que tengan propiedades en común.
RF-10 Rápida incorporación de repositorios de datos.
RF-11 Búsqueda semántica.
RF-12 Guardar las relaciones en la base de datos.

Tabla 3.1: Requisitos funcionales

Requisitos no funcionales

Los requisitos no funcionales describen las facilidades que debe de proporcionar

el sistema en cuanto a la implementación [22]. En la Sección B.2 se encuentran los

requisitos mostrados en la Tabla 3.2 detallados.

Código T́ıtulo

RNF-1 Despliegue con Docker.
RNF-2 Uso de una libreŕıa de búsqueda semántica basada en embedded.
RNF-3 Ontologia IDS.
RNF-4 Uso de GitHub.

Tabla 3.2: Requisitos no funcionales

3.1.2. Casos de uso

En este apartado se presentarán los diferentes casos de uso de esta herramienta. Un

caso de uso especifica el comportamiento o parte del sistema sin llegar a explicar cómo

implementa dicho comportamiento. Los casos de uso describen una situación de uso

del sistema interactuando con actores. Se utiliza la técnica de diagrama y descripción

de casos de uso para capturar información de cómo un sistema trabaja o de cómo se

desea que trabaje [23].

22

Figura 3.1: Diagrama de casos de uso

Podemos diferenciar dos tipos de actores. Un tipo de actor denominado

administrador y un usuario final. El administrador puede incorporar nuevos repositorios

de datos programando un script que descargue los conjuntos de datos de estos

repositorios y utilice la API de la libreŕıas para poblar la ontoloǵıa y estandarizar

estos conjuntos de datos.

El usuario puede realizar búsquedas de conjuntos datos. La búsqueda del usuario

se realizará en la base de datos local y en los repositorios de datos online. Existe la

posibilidad de que usuario quiera limitarse a buscar conjuntos de datos que pertenezcan

a una categoŕıa, a un páıs o a ambas.

El usuario puede realizar búsquedas en la base de datos local a través de un sistema

de búsqueda avanzada. Estas búsquedas pueden realizarse consultando a la base de

datos por palabras clave, devolviendo los conjuntos de datos que tengan una palabra

clave semejante, o por el t́ıtulo del conjunto de datos, devolviendo conjuntos de datos

con un t́ıtulo lo más parecido posible.

Proporcionados una categoŕıa, un páıs o un publicador por el usuario, el sistema ha

de devolver todos los conjuntos de datos que cumplan con una de estas caracteŕısticas.

El usuario puede agregar conjuntos de datos al conjunto de datos recurrentes para

acceder a estos conjuntos de datos de forma más rápida. De la misma forma el usuario

puede eliminar conjuntos de datos de los conjuntos de datos recurrentes.

23

3.2. Arquitectura

3.2.1. Diagrama alto nivel

Debido a que se persegúıa desarrollar un prototipo funcional demostrador

de la viabilidad, se ha optado por una arquitectura basada en el patrón

modelo-vista-controlador y la implementación de una aplicación monoĺıtica conectada

a una base de datos. Como se detallará más adelante en el Caṕıtulo 4 la aplicación

se desarrollará en Flask12. Los detalles se implementación se explicarán más adelante,

pero como ya se ha mencionado que es requisito el uso de la libreŕıa TXTAI se ha

añadido al esquema. Para el procesamiento del lenguaje natural, TXTAI descarga

los modelos que utiliza del repositorio de modelos HuggingFace. La aplicación se

encuentra conectada a los repositorios de datos públicos de los que descarga los

conjuntos de datos. Se conecta a la base de datos a través del uso de un protocolo

binario denominado BOLT. La base de datos se trata de Neo4j que utiliza su plugin

Neosemantic (explicado en la Subsección A.3.3). Los detalles sobre el desarrollo y

cómo se ha llegado a esta arquitectura se encuentra en el Caṕıtulo 4.

Figura 3.2: Diagrama alto nivel

Diagrama de despliegue

Como se ha mencionado anteriormente, uno de los requisitos no funcionales

relacionados con el despliegue de la herramienta es que se utilice Docker. Se utilizarán

dos contenedores, uno que albergue la aplicación Flask y un segundo que contenga la

base de datos. El contenedor que contiene la aplicación Flask necesitará importar la

imagen de Python 3.8 e instalar las libreŕıas utilizadas. Una vez se ha desplegado

quedará disponible en el puerto 5000. Con respecto al contenedor que alberga la

base de datos, será necesario para su correcto despliegue la instalación del plugin

12https://flask.palletsprojects.com/en/2.0.x/

24

Neosemantic, la importación de la imagen de Neo4j y la declaración de volúmenes

para no perder el contenido almacenado. Una vez desplegada la base de datos estará

disponible a través del uso del protocolo binario BOLT en el puerto 7687 al cuál se

conectará la aplicación Flask.

Figura 3.3: Diagrama de despliegue

3.2.2. Modelo entidad-relación

En esta sección se utilizará un modelo entidad-relación para mayor comprensión

de los datos almacenados. El modelo entidad-relación es un modelo conceptual para

facilitar la comprensión del dominio y los componentes que se tienen en cuenta, pero

no hace referencia a la implementación de algoritmos ni al almacenamiento [24].

Figura 3.4: Diagrama entidad-relación

− Dataset. Representa a los conjuntos de datos y sus atributos almacenados. Los

conjuntos de datos contarán con un t́ıtulo, una descripción, una fecha de creación,

una fecha de modificación en caso de que su repositorio de datos original lo

25

permita y una categoŕıa asociada. Cada conjunto de datos esta publicado por un

publicador.

− Publisher. El publicador de un Dataset se encuentra representado en la entidad,

que puede relacionarse con más de un Dataset.

− Representation. Utilizada para guardar el contenido de una distribución de

un conjunto de datos. Cada distribución cuenta con un t́ıtulo, un enlace a su

contenido descargable e información sobre el formato de este último. Un conjunto

de datos puede tener más de una sola distribución.

− Keyword. Representa las palabras clave del conjunto de datos, es muy

importante dado que permite establecer relaciones impĺıcitas entre diferentes

datasets.

− Language. Representan el idioma en el que está disponible el conjunto de datos.

− Country. Representa el páıs al que pertenece, generalmente es el mismo que el

de su publicador.

Como ejemplo auxiliar se incluye un diagrama mostrando cómo se relacionan los

componentes de la ontoloǵıa tras haberla importando (disponible en la Figura B.1),

aunque este proceso se encuentra explicado y detallado en el Caṕıtulo 4.

3.3. Mapa de navegación

En esta sección se incluye el mapa de navegación con los bocetos de la interfaz de la

herramienta. Como puede observarse es posible acceder a la visualización del contenido

de un conjunto de datos a través de todas pantallas salvo de la página informativa. Esto

es debido a que una vez se haya completado la búsqueda se mostrarán los conjuntos

de datos resultados y clicando sobre estos resultados es posible acceder a la pantalla

que muestra su información completa. Para visualizar mejor el mapa de navegación

los bocetos de cada página junto a su explicación se encuentran especificados en la

Sección B.4.

26

Figura 3.5: Mapa de navegación

27

28

Caṕıtulo 4

Prototipo del sistema y Validación

Tras haber llevado a cabo el análisis del contexto y requisitos (ver en Caṕıtulo 3),

en este caṕıtulo se explicará cómo se ha implementado la aplicación y qué tecnoloǵıas

se han utilizado para cumplir los requisitos propuestos y alcanzar el objetivo de este

proyecto.

4.1. Backend

En esta sección se detallará cómo se ha implementado la lógica de la aplicación.

Se ha elegido Flask como tecnoloǵıa para desarrollar esta herramienta. Flask es un

framework para desarrollar aplicaciones web en Python. Seleccionado debido a su

simplicidad y a que emplea el mismo lenguaje de programación que la libreŕıa de

Python TXTAI mencionada en el Caṕıtulo 2.

Además, como base de datos se ha utilizado Neo4j, mencionada también en el

Caṕıtulo 2. Py2neo13 se trata de una libreŕıa para Python que permite establecer

una conexión a la base de datos Neo4j y ejecutar sentencias en CYPHER, lenguaje

de consultas en Neo4j. Los diagramas de clases se encuentran disponibles en la

Sección C.3.

4.1.1. Extracción de conjuntos de datos

Para la extracción de los datos de las fuentes de datos de interés se han analizado

diferentes alternativas:

1. La localización y extracción de los datos de forma automática mediante

técnicas de recuperación de información basadas en web crawling (ver en

Subsección E.1.1).

13https://py2neo.org/2021.1/

29

2. La localización de fuentes de datos por parte de los administradores y el uso de

técnicas de web scraping para la extracción de datos (ver en Subsección E.1.2).

3. La localización de fuentes de datos de interés por parte de los administradores

de sistemas y el uso de APIs de dichas fuentes para la extracción de forma

semiautomática empleando un patrón adaptador.

Finalmente, tras la implementación de diversas pruebas se optó por la tercera

opción, las razones por las que se tomó esta decisión se encuentra detalladas en la

Subsección E.1.5. A su vez en Sección E.2 se encuentra el estudio de las tecnoloǵıas de

crawling y scraping analizadas para este proyecto.

Existen portales de datos abiertos que exponen APIs públicas, como por ejemplo

datos.gob.es14, o portales cuya API puede ser accedida mediante el uso de las

herramientas de desarrollador del navegador. Por lo tanto la forma de acceder a los

conjuntos de datos se ha implementado mediante peticiones get utilizando la libreŕıa

requests15.

Con el objetivo de añadir repositorios de datos lo más rápido posible se ha creado

una clase interfaz AccessScript, de la que heredarán el resto. De esta forma es posible

cumplir los requisitos RF-8 y RF-10. Las clases que hereden de esta interfaz han de

sobreescribir los métodos de su clase padre de tal forma que cumplan los siguientes

pasos:

1. Crear una url a la que solicitar los conjuntos de datos. Dado el páıs del repositorio

y su la categoŕıa de los conjuntos de datos ha de crear una url a la que solicitar

los datos necesarios.

2. Solicitar a la url creada los conjuntos de datos. Este paso ha de repetirse hasta

que no haya más conjuntos de datos disponibles.

3. Analizar el resultado obtenido, crear una instancia de la clase Dataset de la

ontoloǵıa IDS para ser utilizada por la clase CreateRDF que se encargará de

poblar la base de datos. Este paso deberá repetirse para cada uno de los conjuntos

de datos obtenidos.

4. Crear una tupla con el identificador único del conjunto de datos, su t́ıtulo más

su descripción en inglés y las palabras clave de este conjunto de datos.

5. Invocar la función encargada de actualizar los ı́ndices de búsqueda

proporcionándole como parámetros la lista de tuplas generada en el paso anterior.

14https://datos.gob.es/es/apidata
15https://docs.python-requests.org/en/master/

30

Sus clases hijas los implementará en función de lo que se necesite para extraer la

información de cada repositorio de datos. Lo que han de tener en común todas las clases

que hereden de AccessScript para agilizar la incorporación de nuevos repositorios es la

devolución de una lista de tuplas y la transformación del conjunto de datos obtenido

como respuesta en una instancia de la clase Dataset. Las tuplas que han de devolver

deben tener el siguiente formato:

Figura 4.1: Formato tupla

4.1.2. Población automática de la ontoloǵıa

En este apartado se va a detallar cómo funciona en proceso de poblado de la

ontoloǵıa una vez se ha descargado un conjunto de datos de su fuente de datos pública y

cómo se cumplen los requisitos RF-7, RF-9 y RF-12 (Tabla 3.1). En este apartado se va

a utilizar el plugin Neosemantic de Neo4j. Una de las funcionalidades por las que se ha

elegido este plugin para este proyecto es su capacidad para importar y exportar tripletas

RDF en múltiples formatos, aunque en este proyecto simplemente se ha utilizado el

formato RDF/XML. Además, y en este caso es fundamental para completar el objetivo

del proyecto, permite la importación y exportación de ontoloǵıas.

Al importar una tripleta RDF, este plugin realiza un mapeo para que se adapte

al formato de grafo en Neo4j. Los sujetos de las tripletas se mapean como nodos, las

etiquetas de los nodos se obtienen a partir de rdf:type. Cada nodo ha de tener una

URI única. Para ello al inicializar la base datos hay que establecer que todo recurso de

la base de datos ha de tener una URI identificadora única. Esto se realiza mediante la

ejecución del siguiente comando en CYPHER.

CREATE CONSTRAINT n10 s un ique u r i ON (r : Resource)
ASSERT r . u r i IS UNIQUE;

Los predicados de las tripletas son mapeados a propiedades de nodo si el objeto de

la tripleta es un dato literal. En cambio los predicados de las tripletas son mapeados

a relaciones si el objeto de la tripleta es un recurso, que en este caso acabaŕıa siendo

otro nodo[25].

Es necesario establecer la configuración antes de comenzar a utilizar con la base de

datos. Para este proyecto se ha utilizado la siguiente configuración:

− KeepLangTag:True Este atributo establece que al importar las tripletas

mantenga las etiquetas que indican el idioma.

31

− handleMultival: ARRAY Este atributo indica que si un atributo tiene varios

valores ha de tratarse como una lista, de esta forma si un atributo tiene varios

valores, estos no se sobreescriben y se conservan ambos.

Esta configuración se aplica ejecutando los siguientes comandos de CYPHER al

iniciar la herramienta:

CALL n10s . g raphcon f ig . i n i t () ;
CALL n10s . g raphcon f ig . set ({ keepLangTag : true ,
handleMult iva l : ”ARRAY” }) ;

Una vez se ha descargado el contenido de un conjunto de datos y se ha guardado

como instancia de la clase Dataset se utilizan los métodos de la clase CreateRDF.

Esta clase utiliza la libreŕıa rdflib16, se trata de una libreŕıa en Python que permite

trabajar con RDF. La API de rdflib permite la lectura y la creación de fichero RDF.

En este proyecto se ha utilizado para crear un grafo RDF por cada conjunto de datos.

Para poblar la ontoloǵıa y estandarizar los conjuntos de datos acorde al vocabulario

de esta ontoloǵıa es necesario construir el grafo RDF con tripletas que utilicen este

vocabulario. Para ello rdflib utiliza la clase Namespace, dado una URI nos permite

crear un grafo utilizando el vocabulario de dicha URI. Usando la función bind es

posible asociar un prefijo a cada URI simplificando aśı la tarea de creación del grafo.

En este proyecto es necesario el uso de los espacios de nombres OWL, RDF, CORE17

y DCTERMS18. CORE se corresponde con el vocabulario del modelo de información

IDS y DCTERMS engloba los términos de los metadatos mantenidos por la asociación

Dublin Core Metadata Initiative. Los anteriores espacios de nombres mencionados

definen, qué vocabulario se utiliza de cada uno de ellos y cómo queda mapeada la

información al importar el grafo se encuentran explicados en la Sección A.6.

Una vez se ha creado el grafo RDF con el uso de rdflib, se exporta como string

utilizando la función serialize, que permite especificar el formato siendo en este caso

pretty-xml. Una vez exportado el grafo mediante el uso de Py2neo se ejecuta la

sentencia CALL n10s.rdf.import.inline, que permite importar el grafo en la base

de datos Neo4j, adaptarlo y guardar su contenido (ver ejemplo en la Figura 4.2).

16https://rdflib.readthedocs.io/en/stable/index.html
17https://w3id.org/idsa/core/
18http://purl.org/dc/terms/

32

Figura 4.2: Ejemplo conjunto de datos en Neo4j

4.1.3. Índices de búsqueda

Una vez se ha completado el proceso de extracción de los conjuntos de datos y se

ha poblado la ontoloǵıa hay que construir un ı́ndice de búsqueda sobre el que realizar

las consultas.

El ı́ndice se genera gracias al uso de la libreŕıa TXTAI (detallada en la

Subsección 2.3.3). Para generar estos ı́ndices se utilizan tuplas, en este proyecto se

utilizan dos ı́ndices de búsqueda, un ı́ndice para buscar conjuntos de datos por su

contexto y un segundo para buscarlos por palabras clave. Las tuplas que se utilizan

siguen la misma estructura: (URI de conjuntos, contenido para indexar).

Al iniciar la aplicación se crean dos instancias de la clase Embeddings, esta clase

nos permite especificar el método de transformación de palabras en lenguaje natural

a vectores para ser procesadas y el modelo preentranado que se va a utilizar. Es

decir, si por ejemplo se quiere utilizar un modelo preentrenado transformers, hay que

proporcionarle este modelo e indicar en el atributo método que se trata de un modelo

que utiliza el método transformers.

Con el fin de poder buscar conjuntos de datos por palabras clave se ha utilizado

una instancia con el método word embedding que utiliza el modelo GloVE (ver en la

Sección A.4). De esta forma podemos generar un ı́ndice con las palabras clave y realizar

consultas que nos devuelvan los conjuntos de datos con las palabras clave más próximas

y que más relacionadas estén con la consulta. El modelo GloVE hay que descargarlo y

se encuentra en la carpeta de contenido estático del proyecto.

Existe una segunda instancia con método transformers y el modelo

sentence-transformers/bert-base-nli-mean-tokens19 para buscar conjuntos

de datos en función del contexto. El modelo transformers utilizado para este ı́ndice

se descarga del repositorio de modelos transformers Hugging Face. Esta libreŕıa

19https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens

33

utiliza modelos preentrenados de este repositorio y permite su uso para traducción,

clasificación o similitud. Gracias al uso de un ı́ndice generado por el método

transformers es posible obtener conjuntos de datos que se asemejen a la consulta

realizada en lenguaje natural.

Cada vez que se guardan nuevos conjuntos de datos en la base de datos se actualizan

o se crean los ı́ndices de búsqueda. Si los ı́ndices no exist́ıan previamente se crearán y

si ya exist́ıan estos ı́ndices se cargarán y serán actualizados. Al realizar búsqueda sobre

ı́ndices y contar con herramientas de procesamiento del lenguaje natural que ayudan a

enriquecer la consulta en la base de datos local se cumple el requisito RF-11.

4.1.4. Búsqueda local de conjuntos de datos

En esta sección se explica cómo se llevan a cabo las consultas en la base de datos

local, cumpliendo los requisitos RF-1, RF-2, RF-3 y RF-4 (ver en la Tabla 3.1). Se

producen consultas a la base de datos en dos situaciones, desde la página principal de

la aplicación y desde la página de búsqueda avanzada. Las búsquedas en los ı́ndices se

llevan a cabo utilizando la libreŕıa TXTAI y las consultas directas a la base de datos

a través de la libreŕıa Py2neo.

Figura 4.3: Búsqueda en base de datos

Cuando se realiza una consulta, primero se busca por t́ıtulo y a continuación

se consulta el ı́ndice para obtener los conjuntos de datos en función del contexto,

devolviendo ambos resultados. Cuando se búsqueda directamente en la base de datos

por t́ıtulo se tienen en cuenta todas las propiedades que ha de cumplir el conjunto de

datos para obtener el resultado. En otras palabras, si se aporta el páıs de origen, el

publicador y/o la categoŕıa, estas propiedades se añaden a la búsqueda y simplemente se

devuelven los conjuntos de datos que las cumplan todas. En cambio cuando se consulta

el ı́ndice, inicialmente no se tienen estas propiedades.

34

Al consultar el ı́ndice se obtiene una lista de URIs de conjuntos de datos.

Posteriormente se buscan en la base de datos los conjuntos de datos que tengan

estas URIs y que cumplan las propiedades seleccionadas. Una vez se han obtenido

los resultados de ambas búsquedas se comprueba que no haya ninguno repetido y se

devuelve el resultado. Si se ha proporcionado una palabra clave se paraleliza el proceso

de búsqueda. Se lanzan dos hilos de tal forma que uno se encarga de la búsqueda en el

ı́ndice de palabras clave y el segundo realiza la búsqueda por t́ıtulo y en el ı́ndice de

contexto explicado anteriormente.

4.1.5. Conjuntos de datos recurrentes

Gracias al uso de una base de datos NOSQL es posible añadir propiedades a las los

datos almacenados en Neo4j. Con tal de cumplir el requisito RF-6 cuando el usuario

interactúa a través del Frontend de la herramienta se añade la propiedad favorito al

conjunto de datos.

4.2. Frontend

En este apartado se explicará como se ha desarrollado la interfaz gráfica de esta

herramienta. Al igual que para el backend de la herramienta se ha utilizado Flask para

el Frontend. Flask es un framework de Python para desarrollo de aplicaciones web [26],

que generalmente sigue el patrón Modelo Vista Controlador, el cual será denominado

como MVC a partir de ahora. MVC es un patrón arquitectural para diseño de software

[27]. En MVC se separan los datos, la lógica de negocios y la gestión de la interfaz.

Las interfaces de esta herramienta se han desarrollado utilizando: Bootstrap,

JQuery, Google Fonts y Fontawesome. Con el fin de agilizar el proceso de desarrollo

de estructura de la interfaz web se ha utilizado Bootstrap. JQuery se ha utilizado

para ejecución de código aśıncrono. Finalmente Google Fonts, libreŕıa de fuentes

tipográficas y Fontawesome, paquete de iconos, se han utilizado para embellecer la

interfaz. Todas estas tecnoloǵıas se encuentran explicadas en la Sección A.5.

En la Sección C.2 se han adjuntado imágenes de la última versión de las interfaces

desarrolladas con las tecnoloǵıas descritas anteriormente.

35

36

Caṕıtulo 5

Conclusiones y Ĺıneas de Trabajo
Futuro

En este caṕıtulo se exponen las conclusiones a las que se ha llegado tras haber

completado con éxito este proyecto y los resultados obtenidos. Además de las

conclusiones también se expone la metodoloǵıa de trabajo, la planificación del proyecto

y los posibles trabajos futuros para la ampliación este este proyecto.

5.1. Resultados

En este apartado se mostrarán los resultados del uso de la aplicación. Para la

validación del proceso de poblado automático de la ontoloǵıa en este proyecto se han

utilizado dos repositorios de datos públicos online. Estos repositorios son European

Data Portal, principal portal de datos públicos en Europa y Data.gov.au, portal público

del gobierno australiano. Estos repositorios se explican con detalle en la Sección D.1.

5.1.1. Búsqueda en repositorios online

Durante este apartado se va a mostrar un ejemplo de población de un conjunto

de datos. Antes de poblar la base de datos, puede verificarse que se ha importado

correctamente la ontoloǵıa. Los nombres de sus componentes han quedado guardados

en Neo4j como etiquetas de nodo (ver en la Figura 5.1) que se asignarán a los nodos

de los juntos de datos una vez se haya poblado.

37

Figura 5.1: Base de datos sin poblar

En primer lugar, se poblarán todos los conjuntos de datos relacionados con coches

eléctricos en Australia. Completar este proceso requiere utilizar el buscador disponible

en la página principal y seleccionar Australia como páıs (ver en la Figura 5.2).

Figura 5.2: Búsqueda repositorio online electric car

Tras haber completado esta búsqueda la ontoloǵıa se ha poblado con éxito y ahora

puede comprobarse observando el contenido de la base de datos (ver en la Figura 5.3).

38

Figura 5.3: Base de datos poblada

Una vez poblada la base de datos y actualizados los ı́ndices de búsqueda, se buscará

el conjunto de datos extráıdo On-street Car Bay Restrictions. Como puede comprobarse

es un conjunto de datos disponible en la base de datos y que se ha guardado durante

el proceso anterior (ver en la Figura 5.4).

Figura 5.4: Conjunto de datos en base de datos

En la página de búsqueda avanzada se llevará a cabo la búsqueda de este conjunto

39

de datos mediante el uso del procesamiento del lenguaje natural. Obteniendo finalmente

el resultado deseado (ver en la Figura 5.5).

Figura 5.5: Búsqueda avanzada parking

A los conjuntos de datos extráıdos anteriormente se van a sumar nuevos conjuntos

de datos importados de European Data Portal (ver en la Sección D.2). Se comienza

buscando en la página principal de la aplicación todo lo relacionado con coches

eléctricos en España. Tras un tiempo de espera, en el que la herramienta está

descargando los conjuntos de datos, transformándolos e importándolos en Neo4j,

aparece el resultado de la búsqueda (ver en la Sección D.5).

Nos centraremos en el conjunto de datos ”Puntos Carga Veh́ıculos Eléctricos Illes

Baleares”. Si se hace clic sobre este podemos acceder a su contenido, el cual se encuentra

en la Subsección C.2.7 de esta memoria. Una vez se encuentra poblado en la base de

datos y estandarizado con el vocabulario de la ontoloǵıa es posible buscarlo desde la

página de búsqueda avanzada. Mediante el uso del procesamiento de lenguaje natural

es capaz de procesar las consultas y devolver el conjunto de datos que se buscaba.

40

Figura 5.6: Búsqueda conjunto de datos por t́ıtulo interpretado

5.1.2. Búsqueda por palabra clave

A continuación, se va mostrar cómo es posible buscar conjuntos de datos (explicados

en la Sección D.3) localmente utilizando una palabra clave. Las palabras claves que

contiene cada conjunto de datos están disponibles en la Sección D.4. Como puede

comprobarse se obtiene el resultado deseado (ver en la Sección D.6).

5.2. Dificultades y problemas encontrados

Durante el desarrollo de este proyecto se han encontrado varios problemas,

producidos por fallos a la hora de entender conceptos.

1. El primer problema fue un planteamiento erróneo de la población de la ontoloǵıa.

En lugar de instanciar nodos con las etiquetas propias al vocabulario de la

ontoloǵıa se queŕıan instanciar nodos que estuvieran relacionados con nodos con

las etiquetas propias de la ontoloǵıa. En otras palabras, en lugar de tener un nodo

con la etiqueta DataResource, tener un nodo sin etiqueta con toda la información

relacionado con un nodo vaćıo con la etiqueta DataResource.

2. El segundo problema fue la elección de los repositorios iniciales para validar

el proyecto. Inicialmente se añadieron al proyecto los repositorios Open Data

Aragón20, datos.gob.es21 y European Data Portal22. El problema es que al utilizar

estos tres repositorios se estaban repitiendo conjuntos de datos. Ya que muchos

de los conjuntos de datos que se publican en Open Data Aragón, se publican en

datos.gob.es y estos a su vez en European Data Portal.

20https://opendata.aragon.es/
21https://datos.gob.es/
22https://data.europa.eu/

41

3. Neo4j no admite Multithread [28] por lo tanto se ha tenido que usar un semáforo

antes de cada acceso para escribir en la base de datos. En un principio también

se utilizaron semáforos para escribir en los ficheros RDF que posteriormente se

importaŕıan en Neo4j, porque se utilizaba la función n10s.rdf.import.fetch

para importar ficheros. Estos últimos semáforos dejaron de utilizarse cuando pasó

a utilizarse la función n10s.rdf.import.inline.

4. Debido a no haber cursado asignaturas en las que se tratara el tema del

procesamiento de lenguaje natural y lo sencilla que es de utilizar la libreŕıa de

TXTAI, se planteó un método erróneo de búsqueda por palabra clave. Se estaba

utilizando un modelo Transformers para encontrar palabras de significado similar,

en lugar de un modelo basado en word embedding. Tras profundizar en este tema

lo suficiente, esto último se cambió.

5. Tanto data.gov.au como European Data Portal cambiaron su API durante el

desarrollo de este proyecto, dando lugar a muchos fallos incomprendidos hasta

que se descubrió que las lecturas de los JSON de repuesta a las peticiones eran

erróneas.

5.3. Metodoloǵıa de desarrollo

La metodoloǵıa de desarrollo seguida para este proyecto ha sido una metodoloǵıa

ágil. El desarrollo del proyecto ha sido iterativo, de rápido prototipado e incremental.

Se ha dividido en el cumplimiento progresivo de los requisitos. Cada semana se teńıa

una reunión con los coordinadores del proyecto, se evaluaba el trabajo realizado y se

planteaba el trabajo para la próxima semana. Durante estas reuniones se acordaba

qué requisitos se hab́ıan cumplido y cuáles deb́ıan de ser los siguientes a cumplir en el

próximo prototipo que se mostraŕıa en la siguiente reunión.

Antes de añadir un requisito era necesario buscar una tecnoloǵıa que fuera capaz

de cumplirlo, por lo tanto antes del desarrollo hab́ıa una fase previa de búsqueda y

análisis de tecnoloǵıas. Antes de cumplir cada requisito ha debido realizarse un proceso

de búsqueda, análisis y finalmente implementación. Las reuniones se han realizado de

forma presencial, en el edificio del Instituto Tecnológico de Aragón ubicado en el

Campus Ŕıo Ebro, como online a través de Google Meet23.

23https://meet.google.com/

42

5.4. Conclusiones

Con la realización del trabajo se ha aprendido a desarrollar un proyecto en un

instituto de investigación y a trabajar fuera de la universidad. La necesidad del uso de

ontoloǵıas para estandarizar y relacionar un conocimiento con estructura heterogénea.

Aprovechándose aśı al máximo este conocimiento, ya que gracias al uso de las ontoloǵıas

pueden establecerse nuevas relaciones entre datos inconexos. También se ha iniciado

en el campo del procesamiento del lenguaje natural, área no vista anteriormente en la

universidad, y se ha aprendido sus nociones básicas.

En cuanto a la dificultad de este trabajo, el mayor escollo ha sido la falta

de conocimiento previo, ya que no se hab́ıa visto antes nada sobre ontoloǵıas o

procesamiento del lenguaje natural. Esto ha significado el estudio de estos campos

y el posterior desarrollo del estado del arte, disponible en Caṕıtulo 2. En cuanto a las

herramientas manejadas, este trabajo ha servido para ampliar los conocimientos sobre

el uso de Python y sus bibliotecas.

5.5. Planificación del proyecto

Este proyecto junto a su documentación ha llevado un total de 334 horas. Se ha

recogido en una tabla el trabajo realizado cada d́ıa que se ha invertido en este proyecto.

Debido al tamaño de la tabla se ha incluido en la Sección D.7 del Anexo.

5.6. Ĺıneas de Trabajo Futuro

A continuación se detallan las posibles ĺıneas de trabajo futuro para mejorar y

expandir este proyecto:

− Aplicación del número de repositorios online a los que se accede en este proyecto.

Actualmente hay dos repositorios integrados en este proyecto, pero gracias a su

diseño es posible integrar muchos más. Como también seŕıa posible añadir más

idiomas, ya que actualmente sólo se guardan conjuntos de datos en español y en

inglés.

− Paralelización de tareas y el paso a una arquitectura de microservicios.

Actualmente toda la lógica de negocio se encuentra en una aplicación monoĺıtica.

Una mejora interesante que se podŕıa hacer es la división de las tareas en servicios

desplegados en diferentes máquinas.

− Profundizar más en los conceptos que ofrece la ontoloǵıa y añadir más relaciones a

43

las actualmente utilizadas, como también el uso de más metadatos proporcionados

por parte de los repositorios públicos.

− Mejora de su interfaz y el uso de un framework de diseño web. Actualmente se

esta utilizando Flask tanto para la lógica de la aplicación como para la interfaz.

Seŕıa interesante el uso de Angular24 o React25 para mejorar la interfaz y separar

la lógica de la aplicación de las interfaces.

24https://angular.io/
25https://es.reactjs.org/

44

References

[1] W3C. Semantic Web. 2015. url: https : / / www . w3 . org / standards /

semanticweb/.

[2] Carlos Telleŕıa Orriols Raquel Trillo Lado Ramón Hermoso Traba. Tecnoloǵıa
semántica en la Web de los datos - Grado en Ingenieŕıa en Informática e
Ingenieŕıa de Tecnoloǵıas y Servicios de Telecomunicación. 2019. url: https://
moodle.unizar.es/add/pluginfile.php/2307340/mod_resource/content/

2/2019_2020_04_LasTecnologiasDeWebDeDatosRDF_RDFSySPARQL.pdf.

[3] Digital Guide IONOS by 1 y 1. URI: ¿qué es el identificador de recursos
uniforme? 2020. url: https://www.ionos.es/digitalguide/paginas-web/
desarrollo- web/uri- identificador- de- recursos- uniformes/ (visitado
15-06-2021).

[4] Gobierno de Perú. Qué son los Metadatos. url: https://www.geoidep.gob.
pe/conoce-las-ides/metadatos/que-son-los-metadatos.

[5] W3C. OWL Web Ontology Language. 2004. url: https://www.w3.org/TR/
2004/REC-owl-features-20040210/#s1 (visitado 17-06-2021).

[6] Javier Lacasta Miguel. Bases de datos. Recuperación de Información Modelo
Relacional. Universidad de Zaragoza. 2019. url: https://moodle.unizar.

es / add / pluginfile . php / 1849642 / mod _ resource / content / 2 / 03 _

modeloRelacional.pdf.

[7] IBM Cloud Education. Teorema de CAP. 2019. url: https://www.ibm.com/es-
es/cloud/learn/cap-theorem (visitado 20-05-2021).

[8] Sergio Ilarri Artigas. Bases de datos 2. Sistemas Gestores de Bases de Datos:
NoSQL. Universidad de Zaragoza. 2020. url: https://moodle.unizar.es/add/
pluginfile.php/2518642/mod_resource/content/2/3-3-SGBGD-noSQL.pdf.

[9] Rubenfa. NoSQL: clasificación de las bases de datos según el teorema CAP. 2014.
url: https://www.genbeta.com/desarrollo/nosql-clasificacion-de-
las-bases-de-datos-segun-el-teorema-cap.

[10] Grapheverywhere. Bases de Datos NoSQL — Qué son, marcas, tipos y ventajas.
url: https://www.grapheverywhere.com/bases-de-datos-nosql-marcas-
tipos-ventajas/ (visitado 24-06-2021).

[11] Oracle España. ¿Qué es una base de datos orientada a grafos? 2021. url: https:
/ / www . oracle . com / es / big - data / what - is - graph - database/ (visitado
20-05-2021).

[12] Neo4j Inc. Why Graph Databases? 2021. url: https://neo4j.com/why-graph-
databases/ (visitado 28-07-2021).

45

https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://moodle.unizar.es/add/pluginfile.php/2307340/mod_resource/content/2/2019_2020_04_LasTecnologiasDeWebDeDatosRDF_RDFSySPARQL.pdf
https://moodle.unizar.es/add/pluginfile.php/2307340/mod_resource/content/2/2019_2020_04_LasTecnologiasDeWebDeDatosRDF_RDFSySPARQL.pdf
https://moodle.unizar.es/add/pluginfile.php/2307340/mod_resource/content/2/2019_2020_04_LasTecnologiasDeWebDeDatosRDF_RDFSySPARQL.pdf
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/uri-identificador-de-recursos-uniformes/
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/uri-identificador-de-recursos-uniformes/
https://www.geoidep.gob.pe/conoce-las-ides/metadatos/que-son-los-metadatos
https://www.geoidep.gob.pe/conoce-las-ides/metadatos/que-son-los-metadatos
https://www.w3.org/TR/2004/REC-owl-features-20040210/#s1
https://www.w3.org/TR/2004/REC-owl-features-20040210/#s1
https://moodle.unizar.es/add/pluginfile.php/1849642/mod_resource/content/2/03_modeloRelacional.pdf
https://moodle.unizar.es/add/pluginfile.php/1849642/mod_resource/content/2/03_modeloRelacional.pdf
https://moodle.unizar.es/add/pluginfile.php/1849642/mod_resource/content/2/03_modeloRelacional.pdf
https://www.ibm.com/es-es/cloud/learn/cap-theorem
https://www.ibm.com/es-es/cloud/learn/cap-theorem
https://moodle.unizar.es/add/pluginfile.php/2518642/mod_resource/content/2/3-3-SGBGD-noSQL.pdf
https://moodle.unizar.es/add/pluginfile.php/2518642/mod_resource/content/2/3-3-SGBGD-noSQL.pdf
https://www.genbeta.com/desarrollo/nosql-clasificacion-de-las-bases-de-datos-segun-el-teorema-cap
https://www.genbeta.com/desarrollo/nosql-clasificacion-de-las-bases-de-datos-segun-el-teorema-cap
https://www.grapheverywhere.com/bases-de-datos-nosql-marcas-tipos-ventajas/
https://www.grapheverywhere.com/bases-de-datos-nosql-marcas-tipos-ventajas/
https://www.oracle.com/es/big-data/what-is-graph-database/
https://www.oracle.com/es/big-data/what-is-graph-database/
https://neo4j.com/why-graph-databases/
https://neo4j.com/why-graph-databases/

[13] Amy E. Hodler Mark Needham. Graph Algorithms: Practical Examples in Apache
Spark and Neo4j. 2019. url: https://neo4j.com/lp/book-graph-algorithms/
?utm _ program = emea - prospecting & utm _ source = google & utm _ medium =

cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&

gclid=Cj0KCQjwytOEBhD5ARIsANnRjVh_wd3XiAqadZ5F5565-svnJZyCY9zwVeo-

KIwMzYFLf40tMpbX84IaAtnDEALw_wcB (visitado 23-06-2021).

[14] Jim Webber Ian Robinson. Graph Databases. 2015. url: https :

/ / neo4j . com / graph - databases - book / ?utm _ program = emea -

prospecting & utm _ source = google & utm _ medium = cpc & utm _ campaign =

emea - search - sandbox & utm _ adgroup = neo4j - sandbox & gclid =

Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_

rCyyBUz-ENUaAnXaEALw_wcB (visitado 23-06-2021).

[15] Neo4j Jesús Barrasa Field Engineer. RDF Triple Stores vs. Labeled Property
Graphs: What’s the Difference? 2016. url: https : / / neo4j . com / blog /

rdf- triple- store- vs- labeled- property- graph- difference/ (visitado
23-06-2021).

[16] Thomas Gruber. What is an Ontology? 1992. url: https://web.archive.org/
web/20100716004426/http://www-ksl.stanford.edu/kst/what-is-an-

ontology.html (visitado 20-06-2021).

[17] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.
1993. url: https : / / web . archive . org / web / 20110715104718 / http : / /

tomgruber.org/writing/ontolingua-kaj-1993.pdf.

[18] Mireya Tovar-Vidal Cecilia Reyes-Pna. Ontology: Components and Evaluation,
a Review. 2019. url: https : / / www . rcs . cic . ipn . mx / 2019 _ 148 _

3 / Ontology _ %20Components % 20and % 20Evaluation _ %20a % 20Review . pdf

(visitado 01-08-2021).

[19] Tom Gruber. Encyclopedia of Database Systems. 2007. url: https : / /

tomgruber . org / writing / ontology - definition - 2007 . htm (visitado
01-08-2021).

[20] Ian Horrocks. What Are Ontologies Good For? 2013. url: https://www.cs.ox.
ac.uk/people/ian.horrocks/Publications/download/2013/Horr13a.pdf

(visitado 01-08-2021).

[21] The International Data Spaces Information Model An Ontology for Sovereign
Exchange of Digital Content. 2020. url: http://dbis.rwth-aachen.de/cms/
publications/iswc-ids-infomodel (visitado 01-08-2021).

[22] Miguel Ángel Latre Javier Nogueras Iso José Merseguer. Ingenieŕıa del software.
Fase de Requisitos. Universidad de Zaragoza. 2019. url: https : / / moodle .

unizar.es/add/pluginfile.php/2248531/mod_resource/content/10/2a_

faseRequisitos.pdf.

[23] Miguel Ángel Latre Javier Nogueras Iso José Merseguer. Ingenieŕıa del software.
Diagrama de Casos de Uso. Universidad de Zaragoza. 2019. url: https://

moodle.unizar.es/add/pluginfile.php/2248532/mod_resource/content/

5/2b_DiagramasCasosDeUso.pdf.

46

https://neo4j.com/lp/book-graph-algorithms/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVh_wd3XiAqadZ5F5565-svnJZyCY9zwVeo-KIwMzYFLf40tMpbX84IaAtnDEALw_wcB
https://neo4j.com/lp/book-graph-algorithms/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVh_wd3XiAqadZ5F5565-svnJZyCY9zwVeo-KIwMzYFLf40tMpbX84IaAtnDEALw_wcB
https://neo4j.com/lp/book-graph-algorithms/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVh_wd3XiAqadZ5F5565-svnJZyCY9zwVeo-KIwMzYFLf40tMpbX84IaAtnDEALw_wcB
https://neo4j.com/lp/book-graph-algorithms/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVh_wd3XiAqadZ5F5565-svnJZyCY9zwVeo-KIwMzYFLf40tMpbX84IaAtnDEALw_wcB
https://neo4j.com/lp/book-graph-algorithms/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVh_wd3XiAqadZ5F5565-svnJZyCY9zwVeo-KIwMzYFLf40tMpbX84IaAtnDEALw_wcB
https://neo4j.com/graph-databases-book/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_rCyyBUz-ENUaAnXaEALw_wcB
https://neo4j.com/graph-databases-book/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_rCyyBUz-ENUaAnXaEALw_wcB
https://neo4j.com/graph-databases-book/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_rCyyBUz-ENUaAnXaEALw_wcB
https://neo4j.com/graph-databases-book/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_rCyyBUz-ENUaAnXaEALw_wcB
https://neo4j.com/graph-databases-book/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_rCyyBUz-ENUaAnXaEALw_wcB
https://neo4j.com/graph-databases-book/?utm_program=emea-prospecting&utm_source=google&utm_medium=cpc&utm_campaign=emea-search-sandbox&utm_adgroup=neo4j-sandbox&gclid=Cj0KCQjwytOEBhD5ARIsANnRjVjAC1ri7V2byoMG2Y6WnayTCtl6Ww57LwKhkdcmD1L_rCyyBUz-ENUaAnXaEALw_wcB
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://web.archive.org/web/20100716004426/http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://web.archive.org/web/20100716004426/http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://web.archive.org/web/20100716004426/http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://web.archive.org/web/20110715104718/http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
https://web.archive.org/web/20110715104718/http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
https://www.rcs.cic.ipn.mx/2019_148_3/Ontology_%20Components%20and%20Evaluation_%20a%20Review.pdf
https://www.rcs.cic.ipn.mx/2019_148_3/Ontology_%20Components%20and%20Evaluation_%20a%20Review.pdf
https://tomgruber.org/writing/ontology-definition-2007.htm
https://tomgruber.org/writing/ontology-definition-2007.htm
https://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2013/Horr13a.pdf
https://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2013/Horr13a.pdf
http://dbis.rwth-aachen.de/cms/publications/iswc-ids-infomodel
http://dbis.rwth-aachen.de/cms/publications/iswc-ids-infomodel
https://moodle.unizar.es/add/pluginfile.php/2248531/mod_resource/content/10/2a_faseRequisitos.pdf
https://moodle.unizar.es/add/pluginfile.php/2248531/mod_resource/content/10/2a_faseRequisitos.pdf
https://moodle.unizar.es/add/pluginfile.php/2248531/mod_resource/content/10/2a_faseRequisitos.pdf
https://moodle.unizar.es/add/pluginfile.php/2248532/mod_resource/content/5/2b_DiagramasCasosDeUso.pdf
https://moodle.unizar.es/add/pluginfile.php/2248532/mod_resource/content/5/2b_DiagramasCasosDeUso.pdf
https://moodle.unizar.es/add/pluginfile.php/2248532/mod_resource/content/5/2b_DiagramasCasosDeUso.pdf

[24] Javier Lacasta Miguel. DISEÑO CONCEPTUAL DE BASES DE DATOS. 2019.
url: https : / / moodle . unizar . es / add / pluginfile . php / 1849638 / mod _

resource/content/5/02_modeloE-R_basico.pdf.

[25] Jesús Barrasa. Importing RDF data into Neo4j. 2016. url: https://jbarrasa.
com/2016/06/07/importing-rdf-data-into-neo4j/ (visitado 15-06-2021).

[26] José Domingo Muñoz. ¿Qué es Flask? 2017. url: https://openwebinars.net/
blog/que-es-flask/ (visitado 12-08-2021).

[27] Carlos Telleŕıa Orriols Raquel Trillo Lado Ramón Hermoso Traba. Patrón MVC
- Grado en Ingenieŕıa en Informática e Ingenieŕıa de Tecnoloǵıas y Servicios de
Telecomunicación. 2019. url: https://moodle.unizar.es/add/pluginfile.
php/2408605/mod_resource/content/1/PatronMVC.pdf.

[28] Neo4j graph operations in a multithreaded environment. 2013. url: https://
stackoverflow.com/questions/12701185/neo4j-graph-operations-in-a-

multithreaded-environment (visitado 13-05-2021).

[29] Lewis John McGibbney. Welcome to the Apache Nutch Wiki. 2021. url:
https : / / cwiki . apache . org / confluence / display / NUTCH / Home # Home -

GeneralInformation/ (visitado 25-02-2021).

[30] Apache Foundation. Apache Nutch News. 2021. url: http://nutch.apache.
org/ (visitado 25-02-2021).

[31] Sebastian Nagel. Web Crawling with Apache Nutch. 2014. url: https://www.
slideshare . net / sebastian _ nagel / aceu2014 - snagelwebcrawlingnutch/

(visitado 26-02-2021).

[32] Tony’s Programming Stuff. Apache Nutch 2.0 Tutorial (with Elasticsearch). 2019.
url: https://youtu.be/AvyBiGuBc64.

[33] The free encyclopedia Wikipedia. Apache Nutch. 2021. url: https : / / en .

wikipedia.org/wiki/Apache_Nutch (visitado 25-02-2021).

[34] DigitalPebble Ltd. A collection of resources for building low-latency, scalable web
crawlers on Apache Storm. 2021. url: http://stormcrawler.net/ (visitado
28-02-2021).

[35] Wikipedia. StormCrawler. 2020. url: https : / / en . wikipedia . org / wiki /

StormCrawler (visitado 28-02-2021).

[36] Apache Software Foundation. Why use Apache Storm? 2019. url: http : / /

storm.apache.org/ (visitado 28-02-2021).

[37] Julien Nioche. StormCrawler 1.16 + Elasticsearch 7.5.0. 2020. url: https://
youtu.be/8kpJLPdhvLw (visitado 28-02-2021).

[38] DigitalPebble Ltd. StormCrawler 2.0. 2020. url: https : / / github . com /

DigitalPebble/storm-crawler/releases/tag/2.0 (visitado 28-02-2021).

[39] Yasser Ganjisaffar. Crawler4j Issues. 2020. url: https://github.com/yasserg/
crawler4j/issues (visitado 28-02-2021).

[40] Yasser Ganjisaffar. Open Source Web Crawler for Java. 2020. url: https://
github.com/yasserg/crawler4j#quickstart (visitado 28-02-2021).

47

https://moodle.unizar.es/add/pluginfile.php/1849638/mod_resource/content/5/02_modeloE-R_basico.pdf
https://moodle.unizar.es/add/pluginfile.php/1849638/mod_resource/content/5/02_modeloE-R_basico.pdf
https://jbarrasa.com/2016/06/07/importing-rdf-data-into-neo4j/
https://jbarrasa.com/2016/06/07/importing-rdf-data-into-neo4j/
https://openwebinars.net/blog/que-es-flask/
https://openwebinars.net/blog/que-es-flask/
https://moodle.unizar.es/add/pluginfile.php/2408605/mod_resource/content/1/PatronMVC.pdf
https://moodle.unizar.es/add/pluginfile.php/2408605/mod_resource/content/1/PatronMVC.pdf
https://stackoverflow.com/questions/12701185/neo4j-graph-operations-in-a-multithreaded-environment
https://stackoverflow.com/questions/12701185/neo4j-graph-operations-in-a-multithreaded-environment
https://stackoverflow.com/questions/12701185/neo4j-graph-operations-in-a-multithreaded-environment
https://cwiki.apache.org/confluence/display/NUTCH/Home#Home-GeneralInformation/
https://cwiki.apache.org/confluence/display/NUTCH/Home#Home-GeneralInformation/
http://nutch.apache.org/
http://nutch.apache.org/
https://www.slideshare.net/sebastian_nagel/aceu2014-snagelwebcrawlingnutch/
https://www.slideshare.net/sebastian_nagel/aceu2014-snagelwebcrawlingnutch/
https://youtu.be/AvyBiGuBc64
https://en.wikipedia.org/wiki/Apache_Nutch
https://en.wikipedia.org/wiki/Apache_Nutch
http://stormcrawler.net/
https://en.wikipedia.org/wiki/StormCrawler
https://en.wikipedia.org/wiki/StormCrawler
http://storm.apache.org/
http://storm.apache.org/
https://youtu.be/8kpJLPdhvLw
https://youtu.be/8kpJLPdhvLw
https://github.com/DigitalPebble/storm-crawler/releases/tag/2.0
https://github.com/DigitalPebble/storm-crawler/releases/tag/2.0
https://github.com/yasserg/crawler4j/issues
https://github.com/yasserg/crawler4j/issues
https://github.com/yasserg/crawler4j#quickstart
https://github.com/yasserg/crawler4j#quickstart

[41] ScrapeHero. Best Web Crawling Tools and Frameworks in 2020. 2021. url:
https://www.scrapehero.com/best-web-crawling-tools-and-frameworks/

(visitado 28-02-2021).

[42] Amy DeGregorio. A Guide to Crawler4j. 2019. url: https://www.baeldung.
com/crawler4j (visitado 03-03-2021).

[43] Yasser Ganjisaffar. “Open Source Web Crawlers”. En: UCI Donald Bren School
of Information and Computer Sciences (2018). url: https://www.ics.uci.
edu/~djp3/classes/2009_01_02_INF141/Lectures/Discussion02.pdf.

[44] Scrapy developers. Architecture overview. 2021. url: https://docs.scrapy.
org/en/latest/topics/architecture.html (visitado 05-03-2021).

[45] Attreya Bhatt. Python Scrapy Tutorial. 2019. url: https://youtu.be/ve_

0h4Y8nuI (visitado 05-03-2021).

[46] Leonard Richardson. Beautiful Soup Documentation. 2020. url: https://www.
crummy.com/software/BeautifulSoup/bs4/doc/ (visitado 06-03-2021).

[47] Uni Python. El modelo Embeddings (Incrustaciones) de Palabras. 2021. url:
https : / / unipython . com / el - modelo - embeddings - incrustaciones - de -

palabras/ (visitado 06-07-2021).

[48] David Mezzetti. Part 7: Apply labels with zero-shot classification. 2021. url:
https://github.com/neuml/txtai/blob/master/examples/07_Apply_

labels_with_zero_shot_classification.ipynb (visitado 10-07-2021).

[49] Rabeh Ayari. Word Embedding Techniques Demystified. 2020. url: https :

/ / towardsdatascience . com / nlp - embedding - techniques - 51b7e6ec9f92

(visitado 12-07-2021).

[50] Alejandro Vaca. Transformers en Procesamiento del Lenguaje Natural. 2021. url:
https://www.iic.uam.es/innovacion/transformers-en-procesamiento-

del-lenguaje-natural (visitado 13-07-2021).

[51] Carlos Santana. La Siguiente Gran Revolución: NLP (Procesamiento del
Lenguaje Natural). 2020. url: https : / / youtu . be / cTQiN9dewIg (visitado
20-07-2021).

[52] Francesca Bitto. Graph Databases TerminusDB vs Neo4j. 2021. url: https:

//blog.terminusdb.com/graph-databases-terminusdb-vs-neo4j (visitado
22-06-2021).

[53] Wikipedia. TerminusDB. 2021. url: https : / / en . wikipedia . org / wiki /

TerminusDB (visitado 22-06-2021).

[54] Paradigma. ¡Hola! ¿Conoces ArangoDB? 2018. url: https : / / www .

paradigmadigital.com/dev/hola-conoces-arangodb/ (visitado 23-06-2021).

[55] Community driven projects for the ArangoDB database. ArangoDB Community.
2021. url: https://github.com/ArangoDB-Community/ (visitado 23-06-2021).

[56] Neo4j Inc. Neosemantics Neo4j RDF and Semantics toolkit. 2021. url: https:
//neo4j.com/labs/neosemantics/ (visitado 23-06-2021).

[57] Neo4j Inc. Getting Started with Neo4j. 2021. url: https : / / neo4j . com /

developer/get-started/ (visitado 23-06-2021).

48

https://www.scrapehero.com/best-web-crawling-tools-and-frameworks/
https://www.baeldung.com/crawler4j
https://www.baeldung.com/crawler4j
https://www.ics.uci.edu/~djp3/classes/2009_01_02_INF141/Lectures/Discussion02.pdf
https://www.ics.uci.edu/~djp3/classes/2009_01_02_INF141/Lectures/Discussion02.pdf
https://docs.scrapy.org/en/latest/topics/architecture.html
https://docs.scrapy.org/en/latest/topics/architecture.html
https://youtu.be/ve_0h4Y8nuI
https://youtu.be/ve_0h4Y8nuI
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://unipython.com/el-modelo-embeddings-incrustaciones-de-palabras/
https://unipython.com/el-modelo-embeddings-incrustaciones-de-palabras/
https://github.com/neuml/txtai/blob/master/examples/07_Apply_labels_with_zero_shot_classification.ipynb
https://github.com/neuml/txtai/blob/master/examples/07_Apply_labels_with_zero_shot_classification.ipynb
https://towardsdatascience.com/nlp-embedding-techniques-51b7e6ec9f92
https://towardsdatascience.com/nlp-embedding-techniques-51b7e6ec9f92
https://www.iic.uam.es/innovacion/transformers-en-procesamiento-del-lenguaje-natural
https://www.iic.uam.es/innovacion/transformers-en-procesamiento-del-lenguaje-natural
https://youtu.be/cTQiN9dewIg
https://blog.terminusdb.com/graph-databases-terminusdb-vs-neo4j
https://blog.terminusdb.com/graph-databases-terminusdb-vs-neo4j
https://en.wikipedia.org/wiki/TerminusDB
https://en.wikipedia.org/wiki/TerminusDB
https://www.paradigmadigital.com/dev/hola-conoces-arangodb/
https://www.paradigmadigital.com/dev/hola-conoces-arangodb/
https://github.com/ArangoDB-Community/
https://neo4j.com/labs/neosemantics/
https://neo4j.com/labs/neosemantics/
https://neo4j.com/developer/get-started/
https://neo4j.com/developer/get-started/

[58] Neo4j Inc. Using Neo4j from Python. 2021. url: https : / / neo4j . com /

developer/python/ (visitado 23-06-2021).

[59] Jorge Gracia del Ŕıo. Introducción al PLN. Tema 6 – Semántica distribucional.
Departamento de Informática e Ingenieŕıa de Sistemas Universidad de Zaragoza.
2021. url: https://moodle.unizar.es/add/pluginfile.php/3217212/mod_
resource/content/1/6_IntroPLN_202021_SemanticaDistribucional.pdf.

[60] Jorge Gracia del Rı́o. Introducción al PLN. Tema 9 – Transformers.
Departamento de Informática e Ingenieŕıa de Sistemas Universidad de Zaragoza.
2021. url: https://moodle.unizar.es/add/pluginfile.php/3234961/mod_
resource/content/1/9_IntroPLN_202021_Transformers.pdf.

[61] Raquel Trillo Lado. Semantic Techniques for Improving Keyword-based
Searching. 2012. url: https : / / www . researchgate . net / publication /

228073112 _ Semantic _ Techniques _ for _ Improving _ Keyword - based _

Searching (visitado 15-06-2021).

[62] International Data Spaces Information Model. 2021. url: https : / /

international-data-spaces-association.github.io/InformationModel/

docs/index.html.

[63] Duncan Brown. Introducing Bolt, Neo4j’s Upcoming Binary Protocol – Part 1.
2015. url: https : / / dzone . com / articles / introducing - bolt - neo4js -

upcoming-binary-protocol-p (visitado 07-08-2021).

[64] Ashish Vaswani Noam Shazeer Niki Parmar Jakob Uszkoreit Llion Jones
Aidan N Gomez Lukasz Kaiser Illia Polosukhin. Attention Is All You
Need. 2017. url: https : / / papers . nips . cc / paper / 2017 / file /

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[65] FullSemanticsNamedIndividuals. 2008. url: https://www.w3.org/2007/OWL/
wiki/FullSemanticsNamedIndividuals (visitado 17-06-2021).

[66] World Wide Web Consortium. RDF Schema 1.1. 2014. url: https://www.w3.
org/TR/2014/REC-rdf-schema-20140225/#ch_type (visitado 05-07-2021).

[67] Tomas Mikolov Kai Chen Greg Corrado Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. url: https://arxiv.org/pdf/1301.
3781.pdf.

[68] W3 Schools. jQuery Tutorial. 2021. url: https://www.w3schools.com/jquERy/
default.asp (visitado 20-06-2021).

[69] Francisco Javier Fabra Caro. Práctica 1: Diseño y desarrollo de interfaces. 2021.
url: https : / / moodle . unizar . es / add / pluginfile . php / 3174773 / mod _

resource/content/2/P1-Bootstrap.pdf.

[70] Gobierno de las Islas Baleares. Puntos Carga Veh́ıculos Eléctricos Illes Balears.
2020. url: https://data.europa.eu/data/datasets/https-catalegdades-
caib-cat-api-views-qa96-dprj?locale=es.

[71] Sea ice bio optical measurements. 2017. url: https://data.gov.au/dataset/
ds-aodn-88ae8b38-1363-407e-8860-75e4b9ecab10/details?q=sea%20ice%

20bio-optical.

49

https://neo4j.com/developer/python/
https://neo4j.com/developer/python/
https://moodle.unizar.es/add/pluginfile.php/3217212/mod_resource/content/1/6_IntroPLN_202021_SemanticaDistribucional.pdf
https://moodle.unizar.es/add/pluginfile.php/3217212/mod_resource/content/1/6_IntroPLN_202021_SemanticaDistribucional.pdf
https://moodle.unizar.es/add/pluginfile.php/3234961/mod_resource/content/1/9_IntroPLN_202021_Transformers.pdf
https://moodle.unizar.es/add/pluginfile.php/3234961/mod_resource/content/1/9_IntroPLN_202021_Transformers.pdf
https://www.researchgate.net/publication/228073112_Semantic_Techniques_for_Improving_Keyword-based_Searching
https://www.researchgate.net/publication/228073112_Semantic_Techniques_for_Improving_Keyword-based_Searching
https://www.researchgate.net/publication/228073112_Semantic_Techniques_for_Improving_Keyword-based_Searching
https://international-data-spaces-association.github.io/InformationModel/docs/index.html
https://international-data-spaces-association.github.io/InformationModel/docs/index.html
https://international-data-spaces-association.github.io/InformationModel/docs/index.html
https://dzone.com/articles/introducing-bolt-neo4js-upcoming-binary-protocol-p
https://dzone.com/articles/introducing-bolt-neo4js-upcoming-binary-protocol-p
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.w3.org/2007/OWL/wiki/FullSemanticsNamedIndividuals
https://www.w3.org/2007/OWL/wiki/FullSemanticsNamedIndividuals
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_type
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/#ch_type
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://www.w3schools.com/jquERy/default.asp
https://www.w3schools.com/jquERy/default.asp
https://moodle.unizar.es/add/pluginfile.php/3174773/mod_resource/content/2/P1-Bootstrap.pdf
https://moodle.unizar.es/add/pluginfile.php/3174773/mod_resource/content/2/P1-Bootstrap.pdf
https://data.europa.eu/data/datasets/https-catalegdades-caib-cat-api-views-qa96-dprj?locale=es
https://data.europa.eu/data/datasets/https-catalegdades-caib-cat-api-views-qa96-dprj?locale=es
https://data.gov.au/dataset/ds-aodn-88ae8b38-1363-407e-8860-75e4b9ecab10/details?q=sea%20ice%20bio-optical
https://data.gov.au/dataset/ds-aodn-88ae8b38-1363-407e-8860-75e4b9ecab10/details?q=sea%20ice%20bio-optical
https://data.gov.au/dataset/ds-aodn-88ae8b38-1363-407e-8860-75e4b9ecab10/details?q=sea%20ice%20bio-optical

[72] Marine environmental data layers for Southern Ocean species distribution
modelling. 2018. url: https://data.gov.au/dataset/ds-aodn-000239cf-
b0e2 - 440b - be3e - 1f0bea645d85 / details ? q = marine % 20environmental %

20data%20layer.

[73] SolrTutorial 2020. ¿Qué es solr? 2020. url: https://solrtutorial.es/que-
es-solr.html (visitado 23-02-2021).

[74] The Transformer - model architecture. url: https://miro.medium.com/max/
1838/1*BHzGVskWGS_3jEcYYi6miQ.png.

[75] Rafal Kuć. Solr vs. Elasticsearch: Performance Differences More. How to Decide
Which One is Best for You. 2021. url: https://sematext.com/blog/solr-
vs-elasticsearch-differences/ (visitado 23-07-2021).

[76] Developers Mozilla. JavaScript. 2021. url: https://developer.mozilla.org/
es/docs/Web/JavaScript.

[77] The free encyclopedia Wikipedia. API. 2021. url: https://en.wikipedia.org/
wiki/API.

[78] Mike Chapple. Abandoning ACID in Favor of BASE in Database Engineering.
2020. url: https://www.lifewire.com/abandoning-acid-in-favor-of-
base-1019674.

[79] The free encyclopedia Wikipedia. Bolt Network Protocol. 2021. url: https://
en.wikipedia.org/wiki/Bolt_(network_protocol).

[80] The free encyclopedia Wikipedia. NoSQL. 2021. url: https://es.wikipedia.
org/wiki/NoSQL.

[81] The free encyclopedia Wikipedia. SQL. 2021. url: https://es.wikipedia.
org/wiki/SQL.

[82] The free encyclopedia Wikipedia. Sistema de gestión de bases de datos. 2021.
url: https://es.wikipedia.org/wiki/Sistema_de_gesti%C3%B3n_de_
bases_de_datos.

[83] Neo4j Inc. Cypher Query Language. 2021. url: https://neo4j.com/developer/
cypher/.

[84] The free encyclopedia Wikipedia. Procesamiento de lenguajes naturales. 2021.
url: https://es.wikipedia.org/wiki/Procesamiento_de_lenguajes_

naturales.

[85] The free encyclopedia Wikipedia. Identificador de recursos uniforme. 2021. url:
https://es.wikipedia.org/wiki/Identificador_de_recursos_uniforme.

[86] The free encyclopedia Wikipedia. JavaScript Object Notation. 2021. url: https:
//es.wikipedia.org/wiki/JSON.

[87] The free encyclopedia Wikipedia. Docker. 2021. url: https://es.wikipedia.
org/wiki/Docker_(software).

[88] The free encyclopedia Wikipedia. Apache Hadoop. 2021. url: https://es.

wikipedia.org/wiki/Apache_Hadoop.

[89] Mozilla e individual contributors. HTML: Lenguaje de etiquetas de hipertexto.
2021. url: https://developer.mozilla.org/es/docs/Web/HTML.

50

https://data.gov.au/dataset/ds-aodn-000239cf-b0e2-440b-be3e-1f0bea645d85/details?q=marine%20environmental%20data%20layer
https://data.gov.au/dataset/ds-aodn-000239cf-b0e2-440b-be3e-1f0bea645d85/details?q=marine%20environmental%20data%20layer
https://data.gov.au/dataset/ds-aodn-000239cf-b0e2-440b-be3e-1f0bea645d85/details?q=marine%20environmental%20data%20layer
https://solrtutorial.es/que-es-solr.html
https://solrtutorial.es/que-es-solr.html
https://miro.medium.com/max/1838/1*BHzGVskWGS_3jEcYYi6miQ.png
https://miro.medium.com/max/1838/1*BHzGVskWGS_3jEcYYi6miQ.png
https://sematext.com/blog/solr-vs-elasticsearch-differences/
https://sematext.com/blog/solr-vs-elasticsearch-differences/
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/API
https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674
https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674
https://en.wikipedia.org/wiki/Bolt_(network_protocol)
https://en.wikipedia.org/wiki/Bolt_(network_protocol)
https://es.wikipedia.org/wiki/NoSQL
https://es.wikipedia.org/wiki/NoSQL
https://es.wikipedia.org/wiki/SQL
https://es.wikipedia.org/wiki/SQL
https://es.wikipedia.org/wiki/Sistema_de_gesti%C3%B3n_de_bases_de_datos
https://es.wikipedia.org/wiki/Sistema_de_gesti%C3%B3n_de_bases_de_datos
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://es.wikipedia.org/wiki/Procesamiento_de_lenguajes_naturales
https://es.wikipedia.org/wiki/Procesamiento_de_lenguajes_naturales
https://es.wikipedia.org/wiki/Identificador_de_recursos_uniforme
https://es.wikipedia.org/wiki/JSON
https://es.wikipedia.org/wiki/JSON
https://es.wikipedia.org/wiki/Docker_(software)
https://es.wikipedia.org/wiki/Docker_(software)
https://es.wikipedia.org/wiki/Apache_Hadoop
https://es.wikipedia.org/wiki/Apache_Hadoop
https://developer.mozilla.org/es/docs/Web/HTML

[90] Mozilla e individual contributors. HTTP. 2021. url: https : / / developer .

mozilla.org/es/docs/Web/HTTP.

[91] Mozilla e individual contributors. JavaScript. 2021. url: https://developer.
mozilla.org/es/docs/Web/JavaScript.

[92] Ivan de Souza. XML ¿qué es y para qué sirve este lenguaje de marcado? 2019.
url: https://rockcontent.com/es/blog/que-es-xml/.

51

https://developer.mozilla.org/es/docs/Web/HTTP
https://developer.mozilla.org/es/docs/Web/HTTP
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
https://rockcontent.com/es/blog/que-es-xml/

52

Anexos

53

Anexos A

Anexo 1

A.1. Ejemplo conjunto de datos en repositorio

online

Figura A.1: Captura de pantalla Data Europa

55

Figura A.2: Ejemplo conjunto de datos en Data Europa parte 1

Figura A.3: Ejemplo conjunto de datos en Data Europa parte 2

A.2. Ejemplo tráfico red en repositorio online

Figura A.4: Tráfico red Data Europa

56

Figura A.5: Tráfico red Open Data Aragón

A.3. Estado del arte tecnoloǵıas bases de datos

A continuación se llevará a cabo una breve introducción a las bases de datos

orientadas a grafos de código abierto y la explicación de la elección para este proyecto.

A.3.1. TerminusDB

TerminusDB26 es una base de datos noSQL, orientada a grafos, que utiliza su

propio lenguaje de consulta WOQL (Web Object Query Language) que a su vez

permite escribir consultas directamente en JavaScript, Python o JSON [52]. A su vez,

también cuenta con un driver en Python. Es un proyecto de código abierto, cuya licencia

es Apache License 2.0, diseñado para construir grafos de forma colaborativa con

un control de versiones similar a Git. Permite guardar documentos y ficheros RDF.

TerminusDB utiliza el lenguaje OWL con modificaciones para el diseño de su

esquema [53].

A.3.2. ArangoDB

ArangoDB27 se trata de una base de datos orientada a grafos. Cuenta con varios

drivers en Python desarrollados por su comunidad [55]. Permite flexibilidad en el

modelo de datos, los datos pueden almacenarse como pares de clave-valor, documentos

o grafos, por lo que no es exclusivamente un base de datos orientada a grafos. Cuenta

con su propio lenguaje para las consultas llamado AQL (ArangoDB Query Language).

ArangoDB es un proyecto de código abierto bajo licencia Apache License 2.0 que

cuenta con interfaz web y soporta multithread. Al tratarse de una base de datos noSQL

26https://terminusdb.com/
27https://www.arangodb.com/

57

prioriza la consistencia de la información frente a la disponibilidad y la tolerancia a

particiones [54].

A.3.3. Neo4j

Neo4j28 es un sistema gestor de bases de datos orientado a grafo desarrollado

por la empresa Neo4j, Inc29 . Es un proyecto de código abierto con licencia GPLv3.

Soporta transacciones que cumplen las propiedades ACID (Atomicidad, Consistencia,

Aislamiento y Durabilidad). Neo4j está desarrollado en Java, tiene su propio lenguaje de

consulta denominado CYPHER. Pueden ejecutarse consultas en CYPHER desde otros

programas a través del uso del protocolo HTTP o mediante el protocolo binario bolt

[63]. Hay disponibles varios drivers en Python explicados en la documentación oficial

[58]. Neo4j tiene un comunidad muy amplia y buena documentación [57]. Nativamente

no soporta RDF, pero cuenta con un plugin llamado Neosemantics30 desarrollado por

el equipo de Neo4j que permite importar ficheros RDF y trabajar con los vocabularios

asociados a RDF [56].

A.4. Conceptos procesamiento lenguaje natural

A.4.1. Word Embeddings

Word embedding es el nombre de un conjunto de lenguajes de modelado y técnicas de

aprendizaje en procesamiento del lenguaje natural. Las word embeddings, o en español

palabras incrustadas, se tratan de representaciones de vectoriales de palabras. El texto

plano ha de ser transformado para ser utilizado y procesado en una red neuronal, es

necesaria una representación numérica. Esta representación numérica queda plasmada

en un vector que representa a cada palabra del vocabulario perteneciente al texto

de lenguaje natural que se va a procesar. Las caracteŕısticas semánticas o diferentes

significados de cada palabra se extraen de forma expĺıcita ya que a palabras similares les

corresponden vectores similares, es decir, cercanos en el espacio [59]. Los dos modelos de

word embeddings tratados en este proyecto son Word2Vec y GloVe, que serán explicados

a continuación.

A.4.2. Word2Vec

Word2vec [67] se trata de un modelo predictivo desarrollado por Tomas Mikolov en

Google en 2013. Utiliza word embeddings no contextuales, ya que el contexto se extrae

28https://github.com/neo4j/neo4j
29https://neo4j.com/
30https://neo4j.com/labs/neosemantics/

58

de forma expĺıcita en función de qué palabras se encuentran cerca.

Uno de los inconvenientes del uso de word embeddings con one-hot-encoding y

representar las palabras con vectores es el hecho de que depende del tamaño del

vocabulario los vectores y la matriz de ocurrencia que finalmente se genera pueden

ser de dimensiones demasiado grandes.

Word2vec genera un espacio vectorial multidimensional de 300 dimensiones

solventando el problema de tener vectores de dimensiones excesivamente grandes, ya

que estos son computacionalmente ineficientes [59].

En Word2Vec se entrena una red neuronal con dos modelos de aprendizaje

diferentes CBOW model, Continous Bag of Words model o Modelo de bolsa de palabras

continuada, y skip-gram model o modelo de programa continuo de salto.

EL modelo de CBOW se utiliza para predecir palabras en base a un contexto, por el

contrario el modelo skip-gram se utiliza para predecir el contexto en base a un palabra

proporcionada en [49].

A.4.3. GloVe

GloVe31 se trata de un proyecto de código abierto desarrollado en 2014 por la

Universidad de Stanford. Es un algoritmo de representación de palabras basado en

Word2Vec. GloVe combina las estad́ısticas globales con el aprendizaje local basado en

el contexto en Word2Vec [47]. GloVe construye una matriz expĺıcita co-ocurrencia de

palabras usando estad́ısticas a través de todo el corpus del texto.

A.4.4. Transformers

En el año 2017 trabajadores de Google en colaboración con la universidad de

Toronto publican un paper en el que proponen la arquitectura de Transformer [64].

Este modelo presentaba como principal innovación el uso de capas de atención (ver en

la Figura A.6).

31https://nlp.stanford.edu/projects/glove/

59

Figura A.6: Modelo arquitectural Transformer[74]

Estas capas de atención codifican cada palabra de una frase en función del resto de

la secuencia, de esta forma es posible codificar el contexto en un vector que representa

a dicha palabra. El modelo Transformers introduce el contexto en la representación

matemática. Utiliza embeddings contextuales, ya que cada palabra cuenta con una

representación diferente para cada uno de sus significados [50].

El uso de modelos basados en Transformers ha producido una revolución en el

campo del procesamiento del lenguaje natural ya que es más preciso a la hora de

encontrar el contexto y predecir la próxima palabra [51].

Es un modelo que permite ahorra tiempo de entrenamiento. Esto es posible porque

un Transformers entrenado como modelo del lenguaje, es posible adaptarlo para que

realice otras tareas añadiéndole capas a la arquitectura [60].

A.5. Tecnoloǵıas desarrollo frontend

A.5.1. Bootstrap

Bootstrap32 es una biblioteca de código abierto que proporciona herramientas

para desarrollo web responsive con HTML, CSS y JavaScript. Proporciona clases CSS

y componentes predefinidos [69].

32https://getbootstrap.com/

60

A.5.2. JQuery

JQuery33 es un biblioteca de JavaScript que permite la ejecución de peticiones

aśıncronas [68]. En este proyecto se ha utilizado JQuery para actualizar la interfaz sin

tener que cambiar de página y mostrar los resultados de las búsquedas de conjuntos

de datos tanto en los repositorios online como en la base de datos local.

A.5.3. Google Fonts

Google Fonts34 es un directorio interactivo que proporciona fuentes tipográficas.

Para este proyecto se han importado Lora y Open Sans.

A.5.4. Fontawesome

Fontawesome35 se trata de un paquete que proporciona una gran variedad de

iconos para desarrollo web.En este proyecto se ha utilizado para añadir una señal de

error cuando no se encuentra conjuntos de datos.

A.6. Vocabulario utilizado

En esta sección se explicarán el vocabulario que se ha utilizado para construir los

grafos RDF que se importarán a la base de datos gracias al uso del plugin Neosemantic

para Neo4j.

A.6.1. Web Ontology Language

OWL (Web Ontology Language), se encuentra explicado en Subsección 2.1.2. De

todo el vocabulario disponible perteneciente a OWL simplemente se ha utilizado la

etiqueta owl:NamedIndividual. Esta etiqueta se utiliza para declarar cada una de

las instancias de las clases de la ontoloǵıa [65].

A.6.2. Resource Description Framework

RDF, explicado en Subsección 2.1.1, ha sido necesario el uso del vocabulario

asociado a RDF para la construcción de las tripletas. La etiqueta rdf:about permite

asociar URIs para ser utilizadas como sujeto en las tripletas RDF. En este caso es

utilizada para darle una URI a cada instancia de la ontoloǵıa que después será utilizada

como identificador único de cada una de estas instancias en la base de datos.

33https://jquery.com
34https://fonts.google.com/
35https://fontawesome.com/

61

rdf:type es una etiqueta utilizada para especificar que un recurso pertenece una

determinada clase. Este caso se ha utilizado para diferenciar a qué clase pertenece

la instancia a poblar en la ontoloǵıa. rdf:resource es una etiqueta utilizada para

establecer la URI objeto de las tripletas RDF [66]. Véase este cómo utilizar estas

dos últimas etiquetas en Listing A.1. En este ejemplo se declara que la instancia

owl:NamedIndividual con URI https://w3id.org/idsa/core#ISOPODS se trata de

una clase cuya URI es https://w3id.org/idsa/core/keyword.

Listing A.1: Ejemplo uso rdf:about

<owl:NamedIndividual rd f : about=” h t t p s : //w3id . org / id sa / core#ISOPODS”>
<core:name>i s opods</ core:name>
<r d f : t y p e r d f : r e s o u r c e=” h t t p s : //w3id . org / id sa / core /keyword”/>

</ owl:NamedIndividual>

A.6.3. Dublin Core

Dublin Core es un modelo de metadatos desarrollado por la organización Dublin

Core Metadata Initiative36. De estos metadatos simplemente se ha utilizado la etiqueta

dct:Location para indicar a qué páıs pertenece cada conjunto de datos.

A.6.4. Modelo de Información IDS

Se trata del vocabulario perteneciente al modelo de información propuesto por

la International Data Space Assocation explicado en Subsección 2.4.4. Se han

utilizado tanto clases como propiedades. Las clases utilizadas de este vocabulario son:

DataResource, License, Representation, Language y Resource.

− DataResource es la clase que identifica a los conjuntos de datos.

− Representation identifica a las distintas distribuciones de los conjuntos de

datos, ya que estas distribuciones son diferentes representaciones del conjunto

de datos en distintos formatos.

− License es la clase que identifica a las licencias, en este proyecto cada licencia

esta asociada a una distribución.

− Language es la clase que identifica a los idiomas. En este proyecto se usa para

identificar si un conjunto de datos esta en inglés, en español o en ambos idiomas.

− Resource, se trata de la clase que comprende al resto de generales recursos que

forman parte de la ontoloǵıa, aquellos a los que no son instancia de una clase en

concreto.
36https://dublincore.org/

62

https://w3id.org/idsa/core#ISOPODS
https://w3id.org/idsa/core/keyword

A continuación se indicarán las propiedades que se han utilizado. En un primer

momento se mencionarán aquellas que Neosemantic ha interpretado como relaciones

entre grafos y posteriormente aquellas que ha interpretado como propiedades de

los grafos. Aquellas que han quedado guardadas como relaciones son: keyword,

representation, language y publisher.

− Keyword. La relación keyword indica que un instancia de clase Resource es una

palabra clave perteneciente a un conjunto de datos.

− Publisher. La relación publisher establece quién ha sido el publicador de un

conjunto de datos.

− Representation. Esta relación vincula a un conjunto de datos con sus diferentes

distribuciones

− Language. La relación language establece en qué idioma o idiomas esta

disponible un conjunto de datos

Las relaciones keyword y publisher anteriormente mencionadas relacionan una

instancia de la clase DataResource y una , o varias en el caso de keyword, instancias

de la clase Resource porque esta ontoloǵıa no cuenta con clases keyword o Publisher

que representen espećıficamente una palabra clave o al publicador del conjunto de

datos. Aquellas que son propiedades de los nodos son: name, title, source, accessURL,

description, modified, creationDate y contentType.

− Title. Utilizado para los t́ıtulos de las licencias, conjuntos de datos y sus

distribuciones.

− Name. Indica el nombre el publicador y de las palabras clave.

− AccessURL. Utilizado para indicar cuál es la web del publicador.

− Source. Etiqueta las urls asociadas a las distintas distribuciones, de estas urls

es de donde se puede obtener el contenido de los conjuntos de datos.

− ContentType. Indica el formato de la distribución.

− Description. Utilizado para etiquetas las descripciones de los conjuntos de datos.

− Modified. Utilizado para guardar la fecha de última actualización de un conjunto

de datos.

− CreationDate. Utilizada para guardar la fecha de la creación de un conjunto de

datos.

63

64

Anexos B

Anexo 2

B.1. Explicación requisitos funcionales

A continuación se describen estos requisitos detalladamente.

− RF-1. Dada una consulta por parte del usuario la herramienta ha de devolver

los conjuntos de datos que más se asemejen.

− RF-2. Dada una palabra clave ha de devolver los conjuntos de datos que

contengan esa palabra clave o semejantes.

− RF-3. A las búsquedas de los requisitos RF-1 y RF-2 han de poder añadirse un

filtro por publicador, páıs y categoŕıa. De esta forma se descartan los conjuntos

de datos que no pertenezcan a la categoŕıa, páıs o publicador.

− RF-4. Dada una categoŕıa, publicador o páıs han de obtenerse todos los conjuntos

de datos almacenados que cuenten con una de estas propiedades.

− RF-5. Los enlaces del contenido de las distribuciones han de estar disponibles

para poder acceder a ellos y descargar su contenido.

− RF-6. Los conjuntos de datos a los que se acceda con más frecuencia han de poder

ser marcados para acceder más rápidamente a ellos. Han de poder desmarcarse

y marcarse los conjuntos de datos en cualquier momento.

− RF-7. Cuando se descarguen los conjuntos de datos el contenido de sus metadatos

ha de adaptarse al vocabulario propio de la ontoloǵıa. De esta forma se ha de

contar con un proceso de estandarización de los conjuntos de datos al poblar la

ontoloǵıa en esta herramienta.

− RF-8. La herramienta no puede estar restringida por uno o varios repositorios

de datos, ha de poder ser extensible a más repositorios.

65

− RF-9. Aquellos conjuntos de datos que compartan propiedades en común han de

estar relacionados en la base de datos.

− RF-10. Incorporar un nuevo repositorio público de datos no ha de alterar el resto

del funcionamiento de la aplicación y ha de ser una tarea rápida y sencilla.

− RF-11. Las consultas han de estar enriquecidas mediante el uso de procesamiento

de lenguaje natural.

− RF-12. La base de datos ha de poder guardar las relacione y ha de contar con

operaciones para poder navegar entre ellas.

B.2. Explicación requisitos no funcionales

− RNF-1. Ha de utilizarse Docker37 para desplegar la herramienta. Es necesario

el uso de Docker para este proyecto debido a su portabilidad, compatibilidad y

rápido despliegue.

− RNF-2. Uso de una libreŕıa de búsqueda semántica basada en embedded para

el procesado de las consultas y creación de los ı́ndices para las búsquedas.

− RNF-3. La ontoloǵıa ha ser poblada en este proyecto ha de ser la ontoloǵıa

de International Data Spaces Association. Ontoloǵıa impuesta por los

directores de este proyecto.

− RNF-4. El código de este proyecto ha de almacenarse en un repositorio de

GitHub para su revisión durante su desarrollo.

37https://www.docker.com/

66

B.3. Modelo de datos orientado a grafos

Figura B.1: Diagrama modelo de datos

B.4. Prototipado interfaces

En esta sección se incluirán imágenes de los bocetos iniciales de la interfaz de

la herramienta. Los bocetos que se han incluido se corresponden a las pantallas

de búsqueda avanzada, principal, conjunto de datos recurrentes, información y

visualización de un conjunto de datos.

B.4.1. Pantalla de búsqueda avanzada

En esta pantalla podrá consultarse a la base de datos local filtrando por páıs,

categoŕıa y publicador. Las consultas podrán hacerse por t́ıtulo, palabra clave o

ambas. Se mostrarán los resultados debajo, de cada resultado se mostrará su t́ıtulo

y descripción.

Figura B.2: Pantalla búsqueda avanzada

67

B.4.2. Pantalla principal

En la página principal se encontrará la barra de búsqueda que permite descargar

los conjuntos de datos de los repositorios online públicos. Se podrá seleccionar un páıs

y una categoŕıa. De los resultados se mostrará su t́ıtulo y descripción.

Figura B.3: Pantalla principal

B.4.3. Pantalla de visualización de un conjunto de datos

En esta pantalla se visualizará el contenido de un conjunto de datos. Se mostrará su

t́ıtulo, en caso de tener un segundo t́ıtulo se mostrará como subt́ıtulo, su descripción,

su publicador, sus palabras clave y sus distribuciones. De sus distribuciones se mostrará

la información asociada a la distribución, t́ıtulo, enlace y formado, junto a la licencia

de cada distribución.

Figura B.4: Pantalla conjunto de datos parte 2

Figura B.5: Pantalla conjunto de datos parte 1

68

B.4.4. Pantalla de información

Esta última pantalla contiene ha de contener una breve gúıa en la que se explique

al usuario cómo interactuar con la herramienta.

Figura B.6: Pantalla de información sobre la herramienta

69

70

Anexos C

Anexo 3

C.1. Diagrama de paquetes Frontend

Figura C.1: Diagrama de paquetes Frontend

C.2. Interfaces

A continuación se muestra el resultado final de la interfaz de la aplicación.

C.2.1. Página inicial

Esta es la interfaz de la página principal de la herramienta. Desde este página es

desde donde se realiza la extracción de nuevos conjuntos de datos pertenecientes a los

repositorios online conectados a esta herramienta. A la búsqueda pueden añadirse los

filtros de búsqueda por páıs y por categoŕıa. Se muestran los resultados, tanto de una

búsqueda local como de una búsqueda en los repositorios.

71

Figura C.2: Pantalla inicial

Figura C.3: Página inicial antes de buscar

72

Figura C.4: Página inicial cuando falla la búsqueda local

C.2.2. Búsqueda Avanzada

Interfaz de la búsqueda avanzada. En esta pantalla se realiza búsquedas de conjuntos

de datos en la base de datos local. Pueden buscarse los conjuntos de datos por t́ıtulo y

por palabra de clase. Las búsquedas pueden filtrarse por páıs, categoŕıa y publicador.

Figura C.5: Búsqueda Avanzada

C.2.3. Resultado búsqueda por publicador

Interfaz que muestra los conjuntos de datos cuyo publicador es el mismo.

73

Figura C.6: Elección de publicador

Figura C.7: Conjunto de datos que comparten publicador

C.2.4. Resultado búsqueda por palabra clave

Interfaz que muestra los conjuntos de datos que tienen la palabra clave ocean

chemistry.

74

Figura C.8: Resultado palabra clave ocean chemistry

Figura C.9: Resultado palabra clave parking

C.2.5. Conjuntos de datos recurrentes

Interfaz en la que se muestran los conjuntos de datos que han sido marcados como

conjuntos de datos recurrentes.

75

Figura C.10: Conjuntos de datos recurrentes

C.2.6. Página información del uso de la herramienta

En esa interfaz se explica cómo utilizar la herramienta.

Figura C.11: T́ıtulo de la página tutorial

76

Figura C.12: Explicación página principal, búsqueda local

Figura C.13: Explicación página principal, búsqueda repositorios online

77

Figura C.14: Explicación búsqueda avanzada

Figura C.15: Explicación datos recurrentes, parte 1

78

Figura C.16: Explicación datos recurrentes, parte 2

C.2.7. Resultado de la búsqueda

En este apartado se muestra la interfaz que contiene la información de un conjunto

de datos.

Figura C.17: Conjunto de datos resultado parte 1

79

Figura C.18: Conjunto de datos resultado parte 2

Figura C.19: Conjunto de datos resultado parte 3

80

Figura C.20: Conjunto de datos resultado parte 4

Figura C.21: Conjunto de datos resultado parte 5

81

Figura C.22: Conjunto de datos resultado parte 6

Figura C.23: Conjunto de datos en base local Neo4j

C.3. Diagramas de clase Backend

82

F
ig

u
ra

C
.2

4:
D

ia
gr

am
a

d
e

cl
as

es

83

F
igu

ra
C

.25:
D

iagram
a

d
e

p
aq

u
etes

y
clases

m
ás

d
etallad

o

84

Anexos D

Anexo 4

D.1. Repositorios públicos

D.1.1. data.europa.eu

Data.europa.eu38 se trata de el portal de datos público donde las instituciones

europeas publican sus conjuntos de datos públicos. Es uno de los principales portales

de datos de Europa y esta es una de las razones por las que se ha seleccionado. Su

información esta disponible en múltiples idiomas, en este proyecto se han guardado los

conjuntos de datos que estuvieran en español y en inglés. En el caso de haber conjuntos

de datos exclusivamente en español ha sido necesario traducirlos al inglés para poder

utilizar la biblioteca de procesamiento de lenguaje natural TXTAI, ya que esta no

procesa el español.

D.1.2. data.gov.au

Data.gov.au39 se trata del portal público de conjuntos de datos del gobierno

australiano. Se ha elegido este repositorio porque proporciona conjuntos de datos en

inglés y por rápida incorporación a la aplicación debido a su similitud con el portal

europeo de datos. El único inconveniente de este portal es que se quiere el uso de la

biblioteca TXTAI para analizar el contenido del conjunto de datos y poder clasificarlo

en una categoŕıa, ya que no tienen ninguna categoŕıa asociada.

D.2. Conjunto de datos para validación

El junto de datos utilizado en la Subsección 5.1.1 se encuentra disponible en

el siguiente enlace [70], aporta información sobre los puntos de carga de veh́ıculos

eléctricos en Islas las Baleares.

38https://data.europa.eu/es
39https://data.gov.au/

85

Figura D.1: Conjunto de datos elegido como ejemplo

D.3. Conjunto de datos validación con clave

Los datos de prueba para la validación de la búsqueda por clave (Subsección 5.1.2) se

han utilizado dos conjuntos de datos disponibles en data.gov.au de temática relacionada

con el océano. Estos conjuntos de datos se encuentran disponibles en [71] y en [72].

Figura D.2: Conjuntos de datos a buscar

86

D.4. Palabras clave ejemplo búsqueda

Palabras clave conjunto de datos

chlorophyll
polar
amd

ocean chemistry
models

earth science
environmental layers

pigments
oceans
ceos

density
water temperature
ocean temperature

continent
southern ocean

geographic region
salinity
ocean

marine environment monitoring
computer , computer

au
antarctica, antarctica

carbon

Tabla D.1: Palabras clave Marine Environmental Data Layer

87

Palabras clave conjunto de datos

polar
hplc
ceos
crc
ace

biological classification
high-performance liquid chromatograph

spectroradiometers
au

cryosphere
sea ice , sea ice

microalgae
ice cores
fast ice

geographic region
earth science

amd
oceans

ice algae
field investigation

bio-optics
plants

Tabla D.2: Palabras clave Sea ice bio-optical measurements

D.5. Resultado búsqueda avanzada

Figura D.3: Resultados búsqueda electric car en España, parte 1

88

Figura D.4: Resultados búsqueda electric car en España, parte 2

D.6. Resultado búsqueda por clave

Figura D.5: Búsqueda por palabra clave, parte 1

Figura D.6: Búsqueda por palabra clave, parte 2

89

D.7. Control de esfuerzo

Fecha Descripción Horas

08/02/2021 Búsqueda y aprendizaje
de información sobre
OWL

4

10/02/2021 Completar documentación
para beca en el ITA

1

11/02/2021 Estudio apuntes
recuperación información

4

17/02/2021 Estudiar tesis
proporcionada por tutora
(véase en [])

2

18/02/2021 Ver tutoriales sobre OWL 1
19/02/2021 Reunión con

coordinadores
1

20/02/2021 Búsqueda y aprendizaje
de información sobre
DCAT

4

25/02/2021 Búsqueda tecnoloǵıas
crawling

5

26/02/2021 Reunión con
coordinadores

1

06/03/2021 Organizar documentación
y comparar crawlers

6

11/03/2021 Leer documentación de
Scrapy

4

12/03/2021 Reunión con
coordinadores

1

14/03/2021 Configurar crawler de
Scrapy

4

18/03/2021 Crear repositorio,
instalar plugins scrapy:
Scrapy-Selenium,
Scrapy-Splash

4

19/03/2021 Reunión con
coordinadores

1

22/03/2021 Crear scripts en Python
para acceder a Aragon
Opden Data

4

23/03/2021 Encontrar la forma de
representar JavaScript en
el sitio web

4

04/04/2021 Instalación de Splash para
hacer clic en los botones
que aparecen en el sitio
web del portal europeo de
datos abiertos

4

04/05/2021 Intentar reducir el tiempo
de Splash clicando botones

4

90

09/05/2021 Reunión con
coordinadores

1

14/04/2021 Termniar los Scrips para
acceder a Data Europa y
Aragon Open Data

4

19/04/2021 Crear scripts para acceder
a datos.gob.es

3

20/04/2021 Limpiar código, corregir
errores y fusionar clases de
conjuntos de datos

4

21/04/2021 Reescribir código 3
22/04/2021 Crear y actualizar

documentación en
Overleaf

4

29/04/2021 Escribir documentación en
Overleaf

4

30/04/2021 Reunión con
coordinadores

1

04/05/2021 Comparar bases de datos
orientadas a grafos

5

05/05/2021 Leer documentación e
instalar Neo4j

4

06/05/2021 Leer documentación sobre
Neosemantic y Neo4j

3

18/05/2021 Instalar y configurar
Neo4j

3

20/05/2021 Leer documentación sobre
la ontoloǵıa

2

28/05/2021 Reunión con
coordinadores

1

31/05/2021 Poblar la base de datos
utilizando fichero RDF

6

01/06/2021 Reunión con
coordinadores

2

02/06/2021 Script para poblar datos
de Aragon Open data

3

03/06/2021 Script para poblar datos
de datos.gob.es

3

04/06/2021 Arreglar error script
European Portal

3

05/06/2021 Tutoriales Flask y Django 2
06/06/2021 Arreglar bugs en la

configuración Flask
4

07/06/2021 Buscar bibliotecas para
RDF, Neo4j y Flask

4

08/06/2021 Avanzar con la
implementación de RDF
y Neo4j

4

91

09/06/2021 Importar de forma
automática los datasets,
solucionar problemas

4

10/06/2021 Avanzar con la
estandarización e
importación de datasets

7

11/06/2021 Reunión con
coordinadores

2

12/06/2021 Actualizar proyecto a
Django y solucionar
errores con las keyword

4

13/06/2021 Deshacer y volver al uso de
Flask

4

17/06/2021 Testear búsquedas con
TXTAI

4

18/06/2021 Actualizar requisitos, leer
documentación TXTAI

4

20/06/2021 Intentar solucionar errores
de la búsqueda semántica

5

21/06/2021 Tests para búsqueda
semánticas, usar
bibliotecas para
traducción

5

22/06/2021 Agregar Flask con Jquery,
ajax y bootstrap

3

23/06/2021 Avanzar con el desarrollo
de la interfaz

4

25/06/2021 Reunión con
coordinadores

2

26/06/2021 Avanzar con el desarrollo
de la interfaz

4

28/06/2021 Diseñar interfaz con
bootstrap, prepara
mockups

3

29/06/2021 Comenzar a integrar
backend con la interfaz

4

30/06/2021 Avanzar con la integración
de backend y frontend

4

06/07/2021 Reunión tutores e
implementar búsqueda
semántica

4

07/07/2021 Implementar búsqueda
semántica

4

08/07/2021 Integrar interfaz con
búsqueda semántica

4

09/07/2021 Duplicar búsqueda, en
local y en repositorios

4

17/07/2021 Mejorar interfaz 3
18/07/2021 Terminar primera

versión funcional de
la herramienta

5

92

19/07/2021 Desplegar en docker,
solucionando sus errores

11

20/07/2021 Mejorar interfaz y
solucionar fallos

5

21/07/2021 Arreglar fallos y terminar
segunda versión

4

22/07/2021 Estudiar búsqueda
semántica

4

23/07/2021 Estudiar procesado de
lenguaje Natural, word
embedding

4

24/07/2021 Estudiar y entender
Transformers

6

25/07/2021 Traducir memoria de
inglés a español

4

26/07/2021 Caṕıtulo 2, estado del
ARTE, crawlers

4

27/07/2021 Caṕıtulo 2, estado del
ARTE,bases de datos

5

28/07/2021 Caṕıtulo 2, estado del
ARTE, TXTAI

3

31/07/2021 Memoria Ontoloǵıa IDS 2
01/08/2021 Apartado Información en

la herramienta, desarrollo
web

4

05/08/2021 Modelo de datos, caṕıtulo
4 de la memoria

4

06/08/2021 Caṕıtulo 4 de la memoria,
diagramas

5

07/08/2021 Terminar caṕıtulo 4 de la
memoria

3

09/08/2021 Documentar código y
modificar script

3

12/08/2021 Comenzar apartado 5 de la
memoria

4

13/08/2021 Avanzar apartado 5 de la
memoria

3

14/08/2021 Tomar capturas de
pantalla para la memoria

3

15/08/2021 Pruebas de despliegue
con Docker para revisar
cambios

4

18/08/2021 Apartado de Introducción
y casi todas las
conclusiones

4

23/08/2021 Correcciones de la
memoria

2

24/08/2021 Terminar correcciones de
la memoria

2

25/08/2021 Resumen y
agradecimientos

2

93

26/08/2021 Solucionar error detectado
con datos de data.gov.au

4

27/08/2021 Adaptar memoria tras
haber solucionado el error

4

28/08/2021 Ajustar imágenes y
solucionar error de
formato

8

29/08/2021 Arreglar fallo despliegue
en Docker

1

Tabla D.3: Control de esfuerzo

94

Anexos E

Anexo 5

E.1. Extracción de información mediante web

crawling y web scraping

Inicialmente se analizó la posibilidad de desarrollar un crawler, con el propósito

de extraer los datos de los repositorios, y con ello diversas tecnoloǵıas relacionadas,

aunque finalmente fue descartado.

En esta sección se explicará brevemente qué son los procesos de crawling y scraping.

A continuación se concretará qué tecnoloǵıa decidió utilizarse antes de declinar la idea

de utilizar un crawler y se justificarán los motivos de esto. Finalmente se detallará cómo

se resuelve el problema de la extracción de datos sin el uso de crawler. En Sección E.2

se adjunta un estudio de tecnoloǵıas de web crawling y web scraping.

E.1.1. Web crawling

Web crawling es un proceso por el cual un programa, generalmente conocido como

araña o crawler, inspecciona y navega a través de páginas web. Cuando un crawler

accede a una página web explora su contenido, lo descargará y sigue los enlaces que

esta contiene para continuar con el proceso.

E.1.2. Web scraping

Web scraping es un proceso de análisis de datos estructurados extráıdos de una

página web para transformarlos en datos no estructurados. Generalmente la tarea de

scraping es llevada a cabo por un programa que se encarga de analizar y parsear código

HTML del que extraer información y la estructura para procesarla o almacenarla en

una base de datos.

95

E.1.3. Tecnoloǵıa crawler analizada

Las caracteŕısticas y requisitos que ha de cumplir la tecnoloǵıa elegida para este

proyecto se encuentran detallados en la Subsección E.2.6. La tecnoloǵıa elegida ha

sido Scrapy junto con el plugin Splash-Scrapy40 ya que para acceder a los conjuntos

de datos proporcionados por los repositorios de datos públicos es necesario cargar

y renderizar JavaScript, lenguaje de programación interpretado muy popular para

desarrollo web [76].

Splash-Scrapy es un plugin desarrollado por la comunidad que permite acoplar a

Scrapy el servicio Splash que permite procesar el contenido JavaScript de la Web.

Aunque a pesar de configurar y desplegar un crawler funcional capaz de descargar el

HTML de los repositorios de datos públicos tuvo que descartarse la idea del uso de un

crawler. El motivo por el cual no se ha utilizado ninguna tecnoloǵıa crawler se explica

a continuación.

E.1.4. Inconvenientes uso de crawler

Un primer inconveniente identificado fue que eran necesarios 5 segundos para

cargar la página principal, debido a que teńıa que renderizar su código JavaScript.

A esta espera deb́ıa de añadirse el tiempo de carga de cada página dedicada a cada

conjunto de datos. Asimismo, hab́ıa que añadirle el tiempo que se tarda en emular el

comportamiento de un usuario para pulsar los botones o el simplemente emular hacer

clic para cargar la página del conjunto de datos.

El segundo inconveniente encontrado era la cantidad de botones que son necesarios

para acceder al contenido de los conjuntos de datos. Las distintas representaciones de

los conjuntos de datos y la información del publicador cuentan cada una con un botón

que desvela el contenido. En la siguiente imagen se toma como ejemplo el European

Data Portal41 donde observamos la cantidad de botones que hay para acceder a las

diferentes distribuciones de un conjunto de datos (ver ejemplo en la Figura A.1).

Otro inconveniente asociado a los botones era la falta de identificadores únicos

que diferenciaran a cada uno de los botones. No hay forma de diferenciar a los

botones que pertenecen a una misma clase (ver en ejemplo en la Figura A.2). A

continuación, se muestra a modo de ejemplo un conjunto de datos alemán con dos

botones pertenecientes a distribuciones diferentes de un mismo conjunto de datos.

40https://github.com/scrapy-plugins/scrapy-splash
41https://data.europa.eu/es

96

Estos dos botones pertenecen a la misma clase, pero carecen de un identificador

único que los diferencie, de tal forma que no se controla a qué botón se esta haciendo

clic exactamente. Además, cada conjunto de datos tiene un número indefinido de

distribuciones con dos botones cada una.

Debido a todos estos inconvenientes, la cantidad de tiempo que es necesario para

extraer un sólo conjunto de datos incrementó excesivamente, haciendo muy lento el

proceso de extracción ya que el objetivo del proyecto requiere la extracción de cientos

e incluso miles de conjuntos de datos. No sólo el tiempo de renderizado y de pulsado

de los botones era un problema, sino que también el hecho de no poder identificar

individualmente cada uno de los botones. Debido a todos estos inconvenientes fue

necesario pensar en otra forma de acceder y extraer los conjuntos de datos.

E.1.5. Solución alternativa

Utilizando las herramientas de desarrollador del navegador Mozilla Firefox es

posible observar qué peticiones está llevando a cabo el portal web. En el apartado de

Red es posible visualizar el tráfico que genera esta plataforma y localizar la petición

que esta extrayendo la información que necesitamos (ver ejemplo en la Figura A.4).

Puede observarse que en una petición la aplicación web solicita los conjuntos de

datos junto a su información para incrustarla en la página de resultado. La respuesta

a la petición devuelve en formato JSON los conjuntos de datos encontrados. Esta es

una petición que puede realizarse desde un dominio que no sea el de European Data

Portal ya que no está protegida, en la cabecera de la petición no hay ningún atributo

que restrinja su respuesta. Esto es algo común a los repositorios de datos públicos,

como puede observarse esto mismo sucede en Aragón Open Data42 (ver ejemplo en

Figura A.5).

La descarga de estos ficheros JSON toma mucho menos tiempo que renderizar

la página del conjunto de datos y no acarrea ninguno de los problemas explicados

anteriormente. Debido a esto finalmente se ha optado por solicitar los conjuntos de

datos a través de peticiones HTTP (Protocolo de Transferencia de Hipertexto). No es

una solución universal, en el caso de que el portal no disponga de una API, pública o

no, de la que extraer la información habrá que utilizar tecnoloǵıas crawler para obtener

los datos.

42https://opendata.aragon.es/

97

E.2. Estado del arte tecnoloǵıas web scraping y

crawling

El objetivo de este apartado es realizar una breve introducción a estas tecnoloǵıas

y compararlas para ver cuál es la que me mejor se adapta al proyecto. Esta sección

toma como referencia la comparación de tecnoloǵıas de crawling realizada en el portal

web Scrape Hero (véase en [41]).

E.2.1. Apache Nutch

Apache Nutch43, se trata un crawler web desarrollado por Apache Software

Foundation. Este es un proyecto de código abierto con licencia Apache License 2.0.

No es una biblioteca ni un framework para desarrollo de crawler sino un programa

en si mismo quer permite acceder y parsear miles de URLs. Actualmente pueden

encontrarse dos versiones de Apache Nutch, estas son Nutch 1.x y Nutch 2.x.

Nutch 1.x cuenta actualmente con soporte técnico ya que se trata de un proyecto

activo y su última actualización fue lanzada el 24 de junio de 2021. Por el contrario

Nutch 2.x es un proyecto inactivo, al tratarse de un proyecto inactivo [29] esta

versión será obviada y a partir de ahora nos referiremos a Nutch 1.x simplemente

como Nutch.

Nutch se encuentra completamente desarrollado en Java y presenta una

arquitectura modular que permite a los usuarios crear plugins y addons para conectar

este crawler con otras plataformas o proyectos [31]. Puede escalar dinámicamente

debido a que depende de la estructura de datos de Hadoop y hace uso del framework

distribuido de Hadoop. Este crawler es comúnmente utilizado para construir ı́ndices

de búsqueda y puede implementarse sobre estos ı́ndices que genera si se combina con

proyectos abiertos como ElastiscSearch [32] o Apache Solr.

Pros Contras

Arquitectura modular, muy personalizable No aporta web scraping
Escalable dinámicamente con Hadoop No es ideal para latencias bajas

Búsqueda utilizando ElasticSearch Dı́ficil de configurar
Procesa y parsea miles de URLs Tiene una gran curva de aprendizaje

Comunidad activa Herramienta muy pesada
Operaciones pueden llevar mucho tiempo

Tabla E.1: Cualidades de Apache Nutch

43http://nutch.apache.org/

98

E.2.2. Stormcrawler

Stormcrawler44 ofrece una colección de herramienta y recursos de código abierto

para realizar web crawling en Apache Storm 45. Apache Storm es un sistema de

computación distribuido de código abierto desarrollado por la Fundación Apache.

Permite a sus usuarios crear web crawlers para latencias bajas en sistemas distribuidos.

Su licencia de código abierto es Apache License 2.0 y esta principalmente escrito en

Java [34].

Stormcrawler puede conectarse a otros proyectos de la Fundación Apache, de

esta forma por ejemplo puede añadirsele un motor de búsqueda si se conecta con

ElasticSearch [37] o Apache Solr, anteriormente mencionados. Este crawler esta

recomendado para proyectos a gran escala. Actualmente se encuentra activo y con

soporte siendo publicada su última versión el 20 de julio de 2020 [38].

Pros Contras

Apropiado para proyecto a gran escala Gran curva de aprendizaje
Búsqueda implementada con ElasticSearch No hay mucha documentación

Bueno para latencias bajas Dif́ıcil de configurar
Procesa y parsea miles de URLs

Fácil de ampliar

Tabla E.2: Cualidades de Stormcrawler

E.2.3. crawler4j

crawler4j46 se trata de un crawler de código abierto para Java. crawler4j

proporciona una API para configurar y crear crawlers para Java [42]. Permite realizar

web scraping aunque han de añadirse bibliotecas espećıficas de scraping como Jsoup.

Permite multi-threading para escalar, aunque sólo trabaja sobre una sola máquina. Se

trata de un proyecto activo aunque su última actualización fue publicada en 2018 y su

última issue cerrada en GitHub fue en octubre de 2020 [39].

Pros Contras

Fácil de configurar No hay mucha documentación
Fácil de complementar y extender Comunidad inactiva

Apropiado para grandes y pequeños projecto No web scraping nativo

Procesa y parsea miles de URLs Última actualización en 2018

44http://storm.apache.org/
45https://storm.apache.org/
46https://github.com/yasserg/crawler4j

99

E.2.4. Scrapy

Scrapy47 es un framework que permite realizar web scraping y web crawling en

Python. Proporciona una API que permite crear rápida y eficientemente crawlers

sencillos para extraer y procesar datos de páginas web. No escala dinámicamente y

cuenta con una compleja arquitectura [44], aunque es ideal para pequeños proyectos

ya que su configuración es simple y rápida. Cuenta con mucha documentación oficial y

v́ıdeos explicativos en Youtube debido a que tiene un amplia comunidad activa [45].

Scrapy cuenta con muchos plugins creados por su comunidad que permiten

conectar Scrapy con otros servicios como ElasticSearch o Splash 48, el cual se

trata ser un servicio para renderizar Javascript ya que nativamente Scrapy no puede

procesarlo.

Pros Cons

Fácil de configurar y utilizar No procesa JavaScript nativamente
Amplia comunidad de desarrolladores No esta pensado para sistemas distribuidos
Documentación cuantiosa y detallada No puede escalar dinámicamente

Comunidad activa
Muchos plugins desarrollados por su comunidad

E.2.5. Beautiful Soup

Beautiful Soup49 es una biblioteca para web scraping en Python. Se utilizada

para extraer datos de ficheros HTML o XML. Depende del uso de otros tecnoloǵıas

para obtener los fichero HTML por lo tanto no puede considerarse una tecnoloǵıa de

crawling, ya que exclusivamente esta pensada para hacer scraping (véase en [46]).

Pros Contras

Buena biblioteca para scraping No es una tecnoloǵıa para crawling
Comunidad activa

E.2.6. Requisitos del proyecto para crawlers

El contenido explicado en este apartado se simplifica visualizado en Tabla ??. El

principal objetivo del crawler en este proyecto es el de acceder y extraer conjuntos

de datos de portales públicos de datos abiertos. Debido a esto tecnoloǵıas apropiadas

47https://docs.scrapy.org/en/latest/
48https://splash.readthedocs.io/en/stable/
49https://www.crummy.com/software/BeautifulSoup/

100

para proyecto a gran escala que pueda procesar miles de URLs e indexarlas no serán

necesarias.

No va a desplegarse en un sistema distribuido, va a funcionar en una sola máquina por lo

tanto no es un requisito que pueda escalar dinámicamente o que funcione sobre sistemas

distribuidos. Se necesita una tecnoloǵıa que permite una descarga y un procesado

rápido de los conjuntos de datos extráıdos. Además dadas las caracteŕısticas de los

portales públicos de datos es necesario que la tecnoloǵıa permita renderizar JavaScript

y multi-threading para dividir la carga de trabajo y agilizar el proceso de extracción y

procesado de datos.

Requisitos

Renderizar JavaScript
Compatible con web semántica

Procesar y extraer conjuntos de datos
Multi-thread

Rápida descarga de ficheros
Web scraping

101

102

Anexos F

Anexo 6

F.1. Glosario siglas y abreviaturas

1. API. Application Programming Interface o en español Interfaz de Programación

de Aplicaciones. Conjunto de subrutinas, funciones y métodos que ofrece cierta

biblioteca para ser utilizada por otro software como una capa de abstracción [77].

2. BASE. Basically Available, Soft State and Eventual Consistency o en español

Disponibilidad Básica, Estado Débil y Consistencia Eventual [78].

− Basically Available. Las bases de datos priorizarán la disponibilidad de

sus datos aunque no sean consistentes.

− Soft State La base de datos no se encargará de gestionar la consistencia de

los datos.

− Eventual Consistency No atómicamente, pero llegará el momento en el

que los datos almacenados llegarán a un estado de consistencia.

3. BOLT. Este es un protocolo de red orientado a la conexión que se utiliza para

la comunicación cliente-servidor en aplicaciones de bases de datos [79].

4. Teorema CAP. Consistency, Availability and Partition Tolerance o en español

Consistencia, Disponibilidad y Tolerancia a Particiones. También conocida como

Conjetura de Brewer, afirma que en sistemas distribuidos es imposible

garantizar que se cumplan las propiedades de disponibilidad, consistencia y

tolerancia a particiones de forma simultánea. Un sistema no puede asegurar más

de dos de estas tres caracteŕısticas simultáneamente [9].

− Consistency Cualquier lectura recibe como respuesta la escritura más

reciente o un error.

103

− Availability Las peticiones reciben respuestas no errónea, es decir hay

datos disponibles aunque no se garantiza sus consistencia.

− Partition Tolerance. El sistema sigue en funcionamiento aunque varios de

sus nodos hayan sido desconectados o hayan sufrido percances.

5. RDF. Resource Description Framework o en español Marco de Descripción de

Recursos. Modelo estándar que sirve para proporcionar información descriptiva

de los recursos disponibles en la Web, facilitando el intercambio de datos en la

Web y la descripción de las relaciones entre los diferentes recursos disponibles

(ver más en Subsección 2.1.1).

6. OWL. Web Ontology Language. Es un lenguaje declarativo usado en la web para

describir ontoloǵıas (ver más en Subsección 2.1.2).

7. RDFS. Se refiere a RDF Schema. Este último es un lenguaje basado en RDF

cuya finalidad es la de definir vocabularios para RDF.

8. NOSQL. Not Only SQL o No SQL. Se refiere a una amplia clase de sistemas de

gestión de bases de datos que difieren del modelo de sistema de gestión de bases

de datos relacionales [80].

9. SQL. Structured Query Language o en español Lenguaje de Consulta

Estructurada. Es un lenguaje de dominio espećıfico utilizado en programación,

diseñado para administrar, y recuperar información de sistemas de gestión de

bases de datos relacionales [81].

10. SGBD. Sistema Gestor de Bases de Datos. Software que permite el

almacenamiento, modificación y extracción de los datos almacenados en una base

de datos [82].

11. CYPHER. Cypher es el lenguaje de consulta de grafos de Neo4j que permite a

los usuarios almacenar y retirar datos de la base de datos orientada a grafos [83].

12. IDSA International Data Spaces Association o en español Asociación

Internacional de Espacios de Datos. Asociación cuyo propósito es el intercambio

de datos de forma segura y fiable (ver en Subsección 2.4.4).

13. PLN. Procesamiento del Lenguaje Natural. Campo de las ciencias de la

computación, de la inteligencia artificial y de la lingǘıstica que estudia las

interacciones entre las computadoras y el lenguaje humano [84].

104

14. URI Identificador de Recursos Uniforme. Cadena de caracteres que identifica los

recursos de una red de forma uńıvoca [85].

15. JSON JavaScript Object Notation o en español Notación de Objeto de

JavaScript. Formato de texto sencillo para el intercambio de datos [86].

16. Docker50 Proyecto de código abierto que automatiza el despliegue de aplicaciones

dentro de contenedores de software, proporcionando una capa adicional de

abstracción y automatización de virtualización de aplicaciones en múltiples

sistemas operativos [87].

17. Hadoop51. Entorno de trabajo para software, bajo licencia libre, para programar

aplicaciones distribuidas que manejen grandes volúmenes de datos [88].

18. Apache Lucene52. Motor de búsqueda de alto rendimiento y escalable, y tiene

multitud de funcionalidades orientadas a la búsqueda.

19. Apache Solr53. Motor de búsqueda de código abierto escritos en Java y basado

en la libreŕıa de Java Lucene desarrollado por la Fundación Apache Software.

20. Elasticsearch54. Motor de búsqueda de código abierto escritos en Java y basado

en la libreŕıa de Java Lucene desarrollado por Shay Banon.

21. HTML. HyperText Markup Language o en español Lenguaje de Marcas de

Hipertexto. Lenguaje de marcado que define el significado y la estructura del

contenido web [89].

22. HTTP. Hypertext Transfer Protocol o en español Protocolo de Transferencia de

Hipertexto. Protocolo de la capa de aplicación para la transmisión de documentos

hipermedia, como HTML [90].

23. Python. Python55 es un lenguaje de programación interpretado cuya filosof́ıa

hace hincapié en la legibilidad de su código.

24. JavaScript. Lenguaje de programación ligero, interpretado o de secuencias de

comandos que te permite implementar funciones complejas en páginas web [91].

50https://www.docker.com/
51https://hadoop.apache.org/
52https://lucene.apache.org/core/
53https://solr.apache.org/
54https://www.elastic.co/es/
55https://www.python.org/

105

25. Flask. Flask es un framework minimalista escrito en Python que permite crear

aplicaciones web rápidamente y con un mı́nimo número de ĺıneas de código.

26. XML. Extensible Markup Language o en español Lenguaje de Marcado

Extensible. Es un lenguaje de marcado que define un conjunto de reglas para

la codificación de documentos [92].

106

Lista de Figuras

2.1. Ejemplos de tripletas RDF . 14

3.1. Diagrama de casos de uso . 23

3.2. Diagrama alto nivel . 24

3.3. Diagrama de despliegue . 25

3.4. Diagrama entidad-relación . 25

3.5. Mapa de navegación . 27

4.1. Formato tupla . 31

4.2. Ejemplo conjunto de datos en Neo4j . 33

4.3. Búsqueda en base de datos . 34

5.1. Base de datos sin poblar . 38

5.2. Búsqueda repositorio online electric car 38

5.3. Base de datos poblada . 39

5.4. Conjunto de datos en base de datos . 39

5.5. Búsqueda avanzada parking . 40

5.6. Búsqueda conjunto de datos por t́ıtulo interpretado 41

A.1. Captura de pantalla Data Europa . 55

A.2. Ejemplo conjunto de datos en Data Europa parte 1 56

A.3. Ejemplo conjunto de datos en Data Europa parte 2 56

A.4. Tráfico red Data Europa . 56

A.5. Tráfico red Open Data Aragón . 57

A.6. Modelo arquitectural Transformer[74] 60

B.1. Diagrama modelo de datos . 67

B.2. Pantalla búsqueda avanzada . 67

B.3. Pantalla principal . 68

B.4. Pantalla conjunto de datos parte 2 . 68

B.5. Pantalla conjunto de datos parte 1 . 68

107

B.6. Pantalla de información sobre la herramienta 69

C.1. Diagrama de paquetes Frontend . 71

C.2. Pantalla inicial . 72

C.3. Página inicial antes de buscar . 72

C.4. Página inicial cuando falla la búsqueda local 73

C.5. Búsqueda Avanzada . 73

C.6. Elección de publicador . 74

C.7. Conjunto de datos que comparten publicador 74

C.8. Resultado palabra clave ocean chemistry 75

C.9. Resultado palabra clave parking . 75

C.10.Conjuntos de datos recurrentes . 76

C.11.T́ıtulo de la página tutorial . 76

C.12.Explicación página principal, búsqueda local 77

C.13.Explicación página principal, búsqueda repositorios online 77

C.14.Explicación búsqueda avanzada . 78

C.15.Explicación datos recurrentes, parte 1 78

C.16.Explicación datos recurrentes, parte 2 79

C.17.Conjunto de datos resultado parte 1 . 79

C.18.Conjunto de datos resultado parte 2 . 80

C.19.Conjunto de datos resultado parte 3 . 80

C.20.Conjunto de datos resultado parte 4 . 81

C.21.Conjunto de datos resultado parte 5 . 81

C.22.Conjunto de datos resultado parte 6 . 82

C.23.Conjunto de datos en base local Neo4j 82

C.24.Diagrama de clases . 83

C.25.Diagrama de paquetes y clases más detallado 84

D.1. Conjunto de datos elegido como ejemplo 86

D.2. Conjuntos de datos a buscar . 86

D.3. Resultados búsqueda electric car en España, parte 1 88

D.4. Resultados búsqueda electric car en España, parte 2 89

D.5. Búsqueda por palabra clave, parte 1 . 89

D.6. Búsqueda por palabra clave, parte 2 . 89

108

Lista de Tablas

3.1. Requisitos funcionales . 22

3.2. Requisitos no funcionales . 22

D.1. Palabras clave Marine Environmental Data Layer 87

D.2. Palabras clave Sea ice bio-optical measurements 88

D.3. Control de esfuerzo . 94

E.1. Cualidades de Apache Nutch . 98

E.2. Cualidades de Stormcrawler . 99

109

	Introducción
	Contexto y Motivación
	Objetivos
	Estructura de la memoria

	Visión general tecnológica
	Tecnologías de la Web semántica
	RDF
	OWL

	Bases de datos
	Bases de datos SQL
	Base de datos NOSQL
	Bases de datos orientadas a grafos
	Modelo de base de datos elegida
	Base de datos elegida

	Procesamiento de lenguaje natural e indexación
	Procesamiento de lenguaje natural
	Indexación
	Librería TXTAI
	Justificación uso de TXTAI

	Concepto de Ontología
	Componentes
	Ventajas
	Dificultades
	Selección del modelo de información IDS

	Herramienta de población automática de ontologías con fuentes públicas externas
	Análisis
	Requisitos del proyecto
	Casos de uso

	Arquitectura
	Diagrama alto nivel
	Modelo entidad-relación

	Mapa de navegación

	Prototipo del sistema y Validación
	Backend
	Extracción de conjuntos de datos
	Población automática de la ontología
	Índices de búsqueda
	Búsqueda local de conjuntos de datos
	Conjuntos de datos recurrentes

	Frontend

	Conclusiones y Líneas de Trabajo Futuro
	Resultados
	Búsqueda en repositorios online
	Búsqueda por palabra clave

	Dificultades y problemas encontrados
	Metodología de desarrollo
	Conclusiones
	Planificación del proyecto
	Líneas de Trabajo Futuro

	Anexos
	Anexo 1
	Ejemplo conjunto de datos en repositorio online
	Ejemplo tráfico red en repositorio online
	Estado del arte tecnologías bases de datos
	TerminusDB
	ArangoDB
	Neo4j

	Conceptos procesamiento lenguaje natural
	Word Embeddings
	Word2Vec
	GloVe
	Transformers

	Tecnologías desarrollo frontend
	Bootstrap
	JQuery
	Google Fonts
	Fontawesome

	Vocabulario utilizado
	Web Ontology Language
	Resource Description Framework
	Dublin Core
	Modelo de Información IDS

	Anexo 2
	Explicación requisitos funcionales
	Explicación requisitos no funcionales
	Modelo de datos orientado a grafos
	Prototipado interfaces
	Pantalla de búsqueda avanzada
	Pantalla principal
	Pantalla de visualización de un conjunto de datos
	Pantalla de información

	Anexo 3
	Diagrama de paquetes Frontend
	Interfaces
	Página inicial
	Búsqueda Avanzada
	Resultado búsqueda por publicador
	Resultado búsqueda por palabra clave
	Conjuntos de datos recurrentes
	Página información del uso de la herramienta
	Resultado de la búsqueda

	Diagramas de clase Backend

	Anexo 4
	Repositorios públicos
	data.europa.eu
	data.gov.au

	Conjunto de datos para validación
	Conjunto de datos validación con clave
	Palabras clave ejemplo búsqueda
	Resultado búsqueda avanzada
	Resultado búsqueda por clave
	Control de esfuerzo

	Anexo 5
	Extracción de información mediante web crawling y web scraping
	Web crawling
	Web scraping
	Tecnología crawler analizada
	Inconvenientes uso de crawler
	Solución alternativa

	Estado del arte tecnologías web scraping y crawling
	Apache Nutch
	Stormcrawler
	crawler4j
	Scrapy
	Beautiful Soup
	Requisitos del proyecto para crawlers

	Anexo 6
	Glosario siglas y abreviaturas

	Lista de Figuras
	Lista de Tablas

