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Abstract 

A considerable proportion of the damaging sinkholes worldwide correspond to human-induced 

subsidence events related to groundwater withdrawal and the associated water-table decline (e.g. aquifer 

overexploitation, dewatering for mining). Buoyancy loss in pre-existing cavity roofs is generally 

claimed to be the main underlying physical mechanism. It has been also postulated that rapid water-table 

drawdowns may create a vacuum effect in the subsurface and contribute to enhance sinkhole activity in 

karstic terrains with a low effective porosity cover. Our laboratory physical model explores the role 

played by vacuum pressure induced water-table drops with different magnitudes and rates on sinkhole 

development, simulating an invariable mantled karst comprising cavernous bedrock and a low-

permeability cover. The multiple tests performed include real-time monitoring of the water level 

drawdown (magnitude, duration, rate), the negative air pressures in the bedrock cavity and the cover, 

and several features of the subsidence phenomena (deformation style, size, magnitude, rate). The main 

findings derived from the test results include: (1) Vacuum pressure may trigger the development of 
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cover collapse sinkholes in areas with low-permeability covers. (2) Different water-table decline 

patterns (magnitude, duration, rate) may result in different subsidence styles or rheological behaviours: 

sagging versus collapse. (3) Ground fissuring, frequently related to extension at the margin of sagging 

depressions, may cancel or significantly diminish the vacuum effect. (4) An overall direct relationship 

between the water-table decline rate and the subsidence rate. Some possible strategies are proposed to 

ameliorate the adverse effect of the negative air pressure on sinkhole hazard, which most probably has a 

local impact restricted by the concurrence of rapid water drawdowns and low-permeability covers. 

 

Keywords: Human-induced sinkhole, Water-table decline, Internal air pressure, Subsidence 

mechanisms, Subsidence rates
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1 Introduction 

A significant proportion of the damage related to subsidence activity in karst areas is ascribed to the 

development of sinkholes induced by various anthropogenic activities. For instance, in China, where the 

impact of sinkholes has increased dramatically in recent times, around 75% of the damaging subsidence 

events are classified as human-induced (Lei et al., 2015). Water table decline related to groundwater 

withdrawal carried out for various purposes (e.g., water supply, dewatering for mining) is one of the 

main factors involved in the development of human-induced sinkholes in carbonate and evaporite karst 

regions (e.g., Waltham et al. 2005; Gutiérrez, 2016; Parise, 2019). Since the seminal work published by 

Newton (1984), most authors explain the increase in sinkhole hazard associated with groundwater level 

drops to buoyancy loss in the sediments situated above cavities that change from phreatic to vadose 

conditions (e.g., Lamoreaux and Newton, 1986; Dogan and Yilmaz, 2011; Khanlari et al., 2012; Taheri 

et al., 2015; Linares et al., 2016; Youssef et al., 2016, 2020; Ali and Choi, 2020). Other physical effects 

that may contribute to favor ground instability in areas affected by cones of depressions related to water 

pumping include (Newton, 1984; Gutiérrez et al. 2014): (1) increased hydraulic gradient and accelerated 

groundwater flow towards the center of the cones depression, which enhance both internal erosion 

processes and dissolution; (2) the replacement of sluggish lateral flow in a saturated zone, by downward 

flow percolation in the non-saturated zone, which may accelerate internal erosion processes; (3) repeated 

oscillations of the water table produce multiple changes in the water content of the sediments, 

contributing to reduce their mechanical strength.  

When the water table declines, the effective porosity occupied by water (e.g., intergranular pores, 

discontinuities, dissolution voids) is concomitantly replaced by air that mainly permeates from the 

atmosphere. However, if the water level drop occurs with rapidity and the rate at which the air flows into 
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the new vadose zone is not high enough to counterbalance the creation of water-free porosity, negative 

air pressures may occur. The associated vacuum effect is expected to: (1) decrease porosity and cause 

sediment compaction; and (2) reduce the stability condition of cavities located in the cover and the 

bedrock, eventually leading to their subsidence (sagging and/or collapse).  This vacuum effect has been 

postulated by a number of authors on the basis of theoretical grounds (Chan, 1988; Chen, 1988; Xu and 

Zhao, 1988; Waltham, 1989; Guoliang et al., 1990; Chen and Xiang, 1991; Zhou, 1997; Li and Zhou, 

1999; Jiang et al., 2015). Some of these authors indicate that the maximum negative pressure is expected 

to occur at the beginning of the dewatering process, and that the adverse effect on the stability of 

cavities seems to be especially significant when the water table drops below the cover-bedrock interface. 

However, to our best knowledge, the causal relationship between the vacuum effect and the 

development of sinkholes has not been documented with actual quantitative data. 

In mantled karst settings, the hydro-mechanical properties of the cover and its thickness play a 

crucial role on the susceptibility of the ground to sinkhole development, the impact of the water level 

declines and the style of the subsidence phenomena (Tharp, 1999; Yang and Drumm, 2002; Brinkmann 

et al., 2008; Song et al., 2012; Nam et al., 2020; Romanov et al., 2020). The latter factor, which largely 

determines the damaging potential of the sinkholes (severity), is frequently neglected. Cohesionless soils 

are easily affected by internal erosion (i.e., raveling). Cohesive soils may display a continuous 

rheological spectrum, from pure brittle deformation (collapse) to ductile deformation (sagging), and 

these two mechanisms may operate concomitantly and sequentially (Argentieri, 2015; Sevil et al., 2017; 

Gutiérrez et al., 2018). 

The development of sinkholes above cavities can be modeled applying analytical techniques and 

through physical laboratory models. Augarde et al. (2003) provides a review on the different types of 

mathematical approaches applied to model the stability of cavities with various geometries and under 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

5 

 

different geotechnical conditions (e.g., Tharp, 1999; Keqiang et al., 2004). Published works dealing with 

physical models are rather scarce and none of them explores the impact of negative air pressures induced 

by rapid water-table drops. Craig (1990) and Abdulla and Gooding (1996) analyzed the stability of soils 

over cylindrical cavities through centrifuge modelling, in which overburden weight can be gradually 

modified by changing the speed of the centrifuge. Lei et al. (2002) briefly present a laboratory model 

developed in the Institute of Karst Geology of China to assess critical hydro-mechanical conditions for 

the development of new collapse sinkholes. Poppe et al. (2015) applied computed X-ray 

microtomography to image subsurface deformation features and monitor subsidence associated with the 

development of collapse sinkholes in a thick and high-cohesion overburden over cylindrical voids. In 

this work, we present the results of a physical analog of a cavernous bedrock overlain by a low-

permeability cover that allows exploring through real-time monitoring the relationships among (1) 

variables related to the water-level drawdown (magnitude, duration, rate); (2) vacuum pressure in the 

cover and the bedrock cavity; and (3) features of the ground subsidence (deformation style, areal extent, 

magnitude, rate). 

2 Experimental installation 

The experimental physical analog simulates a covered karst setting in which a low-permeability 

unconsolidated cover is underlain by cavernous karst bedrock with an opening (e.g., conduit, grike) in 

the rockhead. The hole connects with a large cavity that has unlimited capacity to hold material derived 

from the cover by collapse and/or internal erosion processes. The experiment explores the impact of 

water table declines with different magnitudes and rates, as well as the associated negative air pressures 

(vacuum or suction effect) on the development of cover-collapse sinkholes. The karst system is 

reproduced within a geological simulation box 200 cm long, 50 cm wide and 28 cm high (Fig. 1). The 
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cover consists of two layers with constant thickness. The 2 cm thick upper layer is a low-permeability 

sandy clay, and the 10 cm thick lower layer is made up of higher permeability clayey sand. These layers 

were prepared for each experiment using the same material and following the same protocol. According 

to Darcy seepage tests, the hydraulic conductivity of the lower layer (1.25×10
-2

 cm/s) is one order of 

magnitude higher than that of the upper layer (1.22×10
-3

 cm/s). The main physical properties of the 

cover layers, including grain-size composition, density, initial moisture content, porosity, hydraulic 

conductivity, cohesion and angle of friction (clayey sand layer) are indicated in Table 1. The rockhead 

that supports the cover is simulated by a flat and horizontally lying plexiglass plate 1 cm thick. A 

circular hole 15 cm in diameter located in the plate functions as the opening that connects the cover with 

the underlying cavity. The position of the center of the hole has a transversal offset of around 7 cm with 

respect to the geometrical center of the plate. The cavity is simulated in the experiment with a cistern-

like space 52 cm high, 191 cm long and 42 cm wide situated below the plexiglass plate. The bottom of 

the simulation box (i.e., base of the cavity) is considered as the elevation datum (Z=0) for the 

experiments. 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

7 

 

 

 
   

Figure 1. Illustrations of the experimental physical analog. (a) Photograph of the geological simulation box. (b) Sketch 

of the physical model showing the different components. (c) Idealized representation of the mantled karst setting 

simulated in the experiments, consisting of an unconsolidated cover with an upper low-permeability clayey seal and 

karst bedrock hosting a large cavity with an opening at the rockhead. See additional explanations in the text. 

 

The position and vertical variations of the water table are controlled by two overflow systems that 

follow the communicating vessels concept. They are installed on both sides of the box and can be 

displaced vertically with rotatable cranks. The overflow systems are connected via several tubes with: (1) 

a lower water tank (two tubes); (2) the bottom of the karst cavity. The initial incorporation of water into 

the system is carried out by pumping water from the lower tank and slowly introducing it into the cavity 

from below, until the water table reaches the level mandated by the overflow device. The water table 

declines are simulated by lowering the overflow devices up to the desired position, and subsequently 

allowing the water to drain from the bottom of the cavity towards the lower water tank via the overflow 

system by opening the corresponding penstocks. The water table drops can be accelerated by opening a 

drainage pipe situated in the center of the bottom of the cavity (i.e., cistern). Eight U-shaped tubes 

installed on the side wall of the experimental box measure internal air pressures, seven of them in the 

(
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upper part of the cavity and another one in the sandy layer, above the water table. Air pressures are 

measured with millimetric ruler attached to each U-shaped tube (error margin 0.5 mm). 

A fixed laser distanciometer situated above the experimental box is used to measure topographic 

profiles along the central transverse axis of the experimental box (vertical error margin 0.01 mm). The 

measuring line covers the area underlain by the hole in the plexiglass plate, which is offset laterally 7 cm 

(i.e., maximum deformation does not occur in the center). These measurements are used to ensure the 

horizontal geometry of the top of the cover at the beginning of the experiments, and to monitor vertical 

displacements related to sinkhole development. 

All the experiments start with a stable water table situated at Z=60 cm within the lower sandy unit of 

the cover (7 cm above the rockhead). The two overflow systems are set at Z=60 cm with the lifting 

systems. Subsequently, the box is slowly supplied with water at a constant rate from the lower water 

tank using the pump and through the two tubes situated at the bottom of the cavity. The water level rises 

slowly and eventually permeates into the sandy cover through the hole in the rockhead until it reaches 

the desired level. This water level remains stable for several hours before each water-table-decline test is 

performed. At this stage, the vadose zone includes the upper 3 cm of the sandy layer and the 2 cm thick 

clayey unit. This upper low-permeability sealing unit prevents effective incorporation of air from above 

into the interstitial spaces of the cover and the cavity when the water table is dropped at sufficiently high 

rate, creating negative air pressure (vacuum effect). Obviously, the upper sandy clay unit it is not a 

perfect seal. Air can flow into the expanding vadose zone of the cover through the soil and along the 

unsealed boundary between the layer and the wall of the experimental box, with a total length of 466 cm. 

The air that flows into the cavity when the water table drops below the rockhead has to circulate through 

the two layers of the cover and converge laterally towards the hole, which functions as a constriction for 

the flow. At the beginning of the experiments the air pressure in the vadose zone equals the external 
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atmospheric pressure. In each experiment, the magnitude of the water level drops is controlled by the 

position of the overflow devices, and their rate can be accelerated by opening the drainage pipe and 

controlling its outflow rate. The decline of the water level is performed in two steps with variable 

magnitudes and rates: (1) firstly, the water level descends several centimeters (d1=6-8 cm) up to a 

position situated at or close to the rockhead; (2) secondly, the water level drops again various 

magnitudes (d2=6-47 cm) to different levels within the cavity. Details on the selected water-level-

decline tests are provided in Table 2.  

 
Grain-size 

composition 

Density 

(g/cm3) 

Initial 

moisture 

content (%) 

Porosity 
Hydraulic 

conductivity (cm/s) 

Volume weight 

(kN/m3) 

Friction 

angle (o) 

Cohesion 

(kPa) 

Upper 

clayey layer 

60% clay, 

40% sand 
2.15 10 0.176 1.22×10-3 21.5 / / 

Lower 

sandy layer 

20% clay, 

80% sand 
1.82 8 0.364 1.25×10-2 18.2 33.4 2.68 

 

 

 

Table 1 Main physical properties of the cover layers. Hydraulic conductivity and volume weight were measured by the 

Darcy’s Law test and the Wax seal test, respectively. The angle of friction and cohesion of the clayey sand layer were 

obtained from direct shear tests on four samples. 

 

Test 

number 

Water-level drop 

(cm) 

Duration of water-level 

drop (s) 

Velocities of water level 

drop (cm/min) 

 

Subsidence style 

Max. 

subsidence 

(mm) 

d1 d2 dT T1 T2 TT V1 V2 VA   

1 6 6 12 1352 1068 2420 0.27 0.34 0.30 No subsidence 0 

2 6 7 13 181 1901 2082 1.99 0.22 0.37 

Sagging 

0.65 

3 7 7 14 144 878 1022 2.92 0.48 0.82 0.80 

4 6.5 7 13.5 130 720 850 3.00 0.58 0.95 1.50 

5 6.5 47 53.5 2106 539 2699 0.18 5.23 1.19 Prolonged sagging with 

cracking and collapse 

16.42 

6 8 47 55 1740 109 1849 0.28 25.87 1.78 18.06 

7 6.5 12 18.5 57 718 775 6.84 1.00 1.43 Short sagging and early 11.95+ collapse 
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8 7 9 16 182 275 457 2.31 1.96 2.10 collapse 6.80+ collapse 

 

Table 2 Details of the eight selected water-level-decline tests comprising two drops (d1 and d2) with variable durations 

(T1, T2). The tests are ordered according to the overall average velocity of the water level drops (VA), from lower to higher. 

VA is obtained dividing the total water-level drop (dT) by the total duration of water-level drop (TT=T1+T2). 

3 Results 

A total of 13 water-level-decline tests were carried. In this work, for brevity, we present the results 

of the eight most representative ones. They can be grouped into four categories according to the surface 

deformation pattern and subsidence style, which are related to the magnitude and rate of the water-level 

drops: (1) Type I: No subsidence; (2) Type II: Sagging; (3) Type III: Prolonged sagging with cracking 

and collapse; and (4) Type IV: Short sagging and collapse subsidence. 

 

3.1 Type I. No subsidence (Test 1) 

In test 1, the water level was dropped 6 cm in each stage (d1=d2=6 cm) and at slow rates (0.27 and 

0.34 cm/min) (Table 2). The recorded negative air pressures, like in the rest of the tests, were higher in 

the cavity than in the vadose zone of the cover. Air inflow rate in the cavity is lower than in the upper 

part of the sand layer since the air has to circulate along longer distances and across more flow-

obstructing-constricting elements (e.g., the full thickness of the cover layers and the hole in the 

rockhead). As soon as the water level started declining, the negative pressures in both the vadose zone 

and the cavity increased abruptly and reached a peak (0.53 and 1.36 kPa) in a very short time span (24-

37 s) (Fig. 2). Then, the negative pressures decreased gradually to reach steady values (0.4 and 1.05 

kPa), showing that the effect of the progressive water level decline on air pressure was counterbalanced 

by air inflow. No surface deformation was recorded in this test, indicating that: (1) the drop of the water 

table below the rockhead did not produce any significant volume reduction in the cover (i.e., 
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consolidation); and (2) the induced stress conditions created by the moderate and slow water table drops 

were not sufficient to exceed the mechanical threshold values that control the stability of the cover 

above the hole in the rockhead. 

 

Figure 2. Data from test 1. The upper graph shows the negative air pressure recorded in the cavity and in the upper part 

of the sandy layer in the course of the water-level decline stages 1 and 2, labelled as (1) and (2). The lower graph shows 

the topographic profiles recorded at different times (two in stage 1 and two in stage 2), indicating no subsidence. The 

serrated pattern is related to the error margin of the measurements and the imperfect planar geometry of the ground 

surface. 

 

3.2 Type II. Sagging (Tests 2, 3, 4) 

In tests 2, 3 and 4, the magnitude of the water level drop was 6-7 cm in each stage, similarly to test 

1. However, the water table declined at high rates during the first stage of each test; 1.99, 2.92 and 3.00 

cm/min in tests 2, 3 and 4, respectively (Table 2). The negative air pressures displayed a similar pattern 

to that of test 1: (1) initial rapid rise up to peak values (peak pressures at cavity 1.64, 1.79, 1.74 kPa); (2) 

progressive decline during stages 1 and 2; and (3) steady state conditions during approximately the 

second half of stage 2. The cumulative vertical deformation profiles record subtle sagging above the 15 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

12 

 

cm-diameter hole affecting an area around 25-30 cm across. This indicates that deformation widens 

upwards above the hole with a variable angle of draw of around 26-37° (Fig. 3). The deformation 

profiles show a rather symmetric pattern and the last profiles indicate limited maximum subsidence 

values of 0.65, 0.8 and 1.5 mm for tests 2, 3 and 4, respectively. Note that the position of the hole has 

some lateral offset with respect to the geometrical center of the experimental box (i.e., maximum 

displacement does not coincide with 0 distance). No evidence of cracking was observed in the surface of 

the cover. Displacement data from test 4 seem to indicate marginal flexural bulging (uplift) in one of the 

margins of the subsidence depression. Moreover, the basal part of the cover material situated just above 

the hole did not experience any collapse, as observed through the glass wall of the experimental box. 

Subsidence rates have been computed for various time periods considering the vertical 

displacement at the point of maximum subsidence (Fig. 3). These rates reach the highest values during 

the first water-level-drop stages (5.54x10
-3

, 37.8 x10
-3

, 13.23 x10
-3

 mm/s in tests 2, 3 and 4, 

respectively), when the decline rates were highest (Fig. 4). The subsidence rates decreased during the 

second decline stages, characterized by slower water table drops. The average subsidence rates in tests 2, 

3 and 4 at the point of maximum displacement considering the full temporal length of the experiment 

were 6.74x10
-4

, 1.33x10
-3

 and 3.56x10
-3

 mm/s, respectively. Overall, these tests indicate that there is a 

direct relationship between the water table decline rate and the subsidence magnitude and rate. Test 4 

shows some deviation from this general relationship, since peak negative pressure values in the cavity 

and subsidence rates were lower than in test 3, despite water-level decline rate was slightly higher in test 

4. This deviation is probably related to non-identical geological settings simulated at each experiment. 
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Figure 3. Data from tests 2, 3 and 4 characterized by sagging subsidence. The upper graphs show the negative air 

pressures recorded in the cavity and in the upper part of the sandy layer during the water-level decline stages 1 and 2. 

The lower graphs show the topographic profiles recorded at different times showing sagging subsidence and probably 

marginal bulging in test 4. The sequence of photographs corresponds to images taken at different times of test 3. They 

show the lack of fissure development during the experiment. Jo
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Figure 4. Subsidence rates computed for various time periods considering the vertical displacement at the 

point of maximum subsidence. Points are located at the end of each time lapse. Upper graphs show data 

from tests 1 to 4, and lower graph data from tests 5 to 8. Arrows point to boundary between stage 1 and 

2. 

 

3.3 Type III. Prolonged sagging with cracking and collapse (Tests 5, 6) 

In tests 5 and 6, the water table declines in the first stage were similar to those of the previous tests 

(6.5 and 8 cm), whereas the second stages were characterized by major drops of 47 cm. The velocities of 

the water table drop in the first stages were low (0.18 and 0.28 cm/min) and much higher than in the 

previous tests in the second decline stages (5.23 and 25.87 cm/min) (Table 2). Hence these experiments 

are characterized by large and rapid water table declines in the second stage. At the beginning of the first 

stage, despite the limited magnitude and rate of the water table drop, a well-defined subcircular crack 

11-12 cm in diameter developed on the ground surface. In test 5 negative air pressure in the cavity 

shows an initial short-lasting peak (1.38 kPa). No or limited negative pressure built up occurred in the 
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cavity at the beginning of test 6. This can be attributed to the early development of surface fissuring just 

above the hole that expedites air inflow and negative air pressure compensation. Nonetheless, negative 

air pressure shows very short and abrupt peaks in the stage 1 of test 6, and in stage 2 of both tests. These 

vacuum-effect events indicate episodes of inefficient air flow into the cover and the cavity, probably due 

to temporary closure of the fissures associated with the ongoing deformation process. The cumulative 

vertical displacement profiles of test 5 show a broad and slightly asymmetric deformation zone 35 cm 

across dominated by sagging. In stage 2, inner concentric fissures were recorded at the surface and 

subsidence significantly accelerated in this central part of the subsidence zone. At around 2700 s, once 

the maximum subsidence had reached 16.42 mm (average subsidence rate 0,0061 mm/s) (Fig. 5), a 

collapse nested in the inner zone of the subsidence depressions occurred. In test 6 ground deformation 

was spatially more restricted (11 cm across). In stage 2 subsidence accelerated and was accompanied by 

the development of new concentric cracks associated with the negative pressure peak (Fig. 4). At around 

3120 s, once the maximum subsidence had reach 18.06 mm (average subsidence rate 0,0058 mm/s), a 

rapid collapse formed. In both tests, subsidence rate shows accelerations associated with the larger and 

more rapid water table drops of stage 2.  
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Figure 5. Data from Tests 5 and 6 characterized by prolonged sagging with cracking and collapse. The upper graphs 

show the negative air pressures recorded in the cavity and in the upper part of the sandy layer during the water-level 

decline stages 1 and 2. The lower graphs show the topographic profiles recorded at different times before the 

development of the final collapse. The sequence of photographs corresponds to images taken at different times of Test 

6. 

3.4 Type IV. Short sagging and early collapse (Test 7, 8) 

In tests 7 and 8 the magnitudes of the water table declines were low to moderate in the first stage 

(6.5 and 7 cm) and in the second stage (12 and 9 cm). The water level was dropped at high rates in both 

stages, especially in the first stage of test 7 (6.84 cm/min) (Table 2). At the beginning of both tests, a 

rapid rise in the negative air pressure was recorded in both the cavity and the vadose zone of the cover. 

Peak values were reached much faster in test 7, in which the velocity of the water table decline was 
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much higher (6.84 cm/min versus 2.31 cm/min). Subsequently, negative pressures fell slightly and 

remained at high values both in the cavity (ca. 0.8 kPa) and in the cover (Fig. 6). Immediately after the 

start of the tests the ground surface was affected by rapid sagging in a subcircular area 24-26 cm in 

diameter. Subsidence rates peaked in the first stage, reaching 187.7×10
-3

 and 107.6×10
-3

 mm/s in tests 7 

and 8, respectively (Fig. 4). In stage 2 sagging continued but at a very low rate, despite the rapid water 

table decline. The fact that no fissures formed on the ground surface explains the sustained high negative 

pore pressures. These discontinuities provide pathways for the air to flow into the cover and the cavity 

and contribute to compensate the suction effect of the water table decline. Eventually, nested collapse 

sinkholes 3 and 4.5 cm across with overhanging edges formed in the center of the sagging depressions, 

accompanied by an abrupt fall-to-zero in the negative air pressures (Fig. 6). The average subsidence 

rates in tests 7 and 8 at the point of maximum displacement considering the time span of experiment 

before the collapse were 12.45 x10
-3

 and 11.34 x10
-3

 mm/s, respectively. 
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Figure. 6 Data from tests 5 and 6 characterized by prolonged sagging with cracking and collapse. The upper graphs 

show the negative air pressures recorded in the cavity and in the upper part of the sandy layer during the water-level 

decline stages 1 and 2. The lower graphs show the topographic profiles recorded at different times before the 

development of the final collapse. The sequence of photographs corresponds to images taken at different times of test 8. 

 

4 Discussion 

The multiple tests carried out with the physical model that simulates sinkhole development in a 

low-permeability cover underlain by cavernous bedrock includes real-time monitoring of the water level 

drawdown (magnitude, duration, rate), the negative air pressure in the bedrock cavity and the cover, and 

several features of the subsidence process (deformation style, size, magnitude, rate). These data illustrate 

that rapid water table declines and the resulting high negative air pressures may induce subsidence in 

settings with a low permeability cover. Although, the characteristics of the cover are essentially 

invariable, there are complex inter-relationships between the magnitude and rate of the water-level 

decline, the resulting negative air pressures, and several features of the ground subsidence. The 

deformation style and subsidence rates are largely dependent on water-level decline rates. Moreover, the 

subsidence mechanisms and the rheology of the cover, notably the formation of fissures that function as 

permeability features, have a significant impact on both negative air pressure and the final collapse event. 

 

4.1 Vacuum pressure and surface fissuring 

The majority of the tests show that vacuum pressure reaches the maximum value almost 

instantaneously after the onset of the water level decline, due to initial lag in the air replenishment 

process (e.g. Figs. 2 and 3). Negative air pressures are lower in the cover than in the cavity, since air has 

to circulate along a longer path and through a higher number of obstructing and constricting elements. 
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Subsequently, vacuum pressures drop and tend to stabilize, indicating some balance between the 

continuing water-level drawdown and the rate of air inflow (e.g., Figs. 2 and 3). Capillary tension in the 

clayey sand layer most probably has a very limited mechanical effect, due to its sand-dominated texture, 

and the fact that the water level decline is accompanied by a downward air flow within the cover layer, 

that tends to replenish the drained porosity. The situation changes abruptly when throughgoing cracks 

and fissures develop in the cover. These permeability features speed up the air inflow. The vacuum 

pressure drops to null or residual values in the cover, but may remain relatively high in the deeper cavity 

(Fig. 5). As a result, the suction effect still operates at the base of the cover (i.e., cavity roof) and the 

subsidence process continues. After the initiation of surface fissuring, negative pressures in the cover 

and the cavity may experience sharp and short-lasting peaks (Fig. 5). These discrete events of lower air 

inflow may be attributed to the temporary closure of fissures, which develop coevally with the sagging 

of the cover.  

 

4.2 Stability threshold and subsidence style 

In test 1, characterized by reduced and slow water-level drops, no subsidence occurred, despite 

negative pressures were recorded in both the cavity and the cover (Fig. 2). This fact has two implications: 

(1) the buoyancy loss related to the water table drop in our experiments is insufficient to induce 

subsidence; (2) vacuum pressure needs to surpass a threshold value for subsidence to initiate. In tests 2 

and 6, the cover sagged despite water-level decline rates and negative pressures were similar or slightly 

lower than those of test 1 (Figs. 3, 5). This suggests that the threshold values may slightly change due to 

the non-perfectly equal conditions for the different tests. 

 

The different tests reveal that the deformation style of the cover and its temporal evolution is 

influenced by the magnitude and especially the rate of the water-level drops. However, the number of 
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tests performed is probably insufficient to fully understand these complex relationships. In tests 2, 3 and 

4, characterized by reduced but rapid water-level drops in stage 1 (1.99-3.00 cm/min), subsidence is 

characterized by very slow sagging with limited magnitude and without the development of ground 

fissures (Figs. 3, 4, 7). The water-level drawdown in this case was rapid, but not long enough to produce 

significant subsidence. The resulting sagging depression was significantly larger than the underlying 

hole in the rockhead, indicating a widening-upward ductile deformation zone with an angle of draw 

within the range of 25-40°. Tests 5 and 6 were characterized by large and rapid water level declines in 

stage 2. In these tests, despite the reduced magnitude and rate of the drawdown in stage 1, subsidence 

was initiated by sagging of the cover and the development of marginal cracks. The peripheral fissures 

may be attributed to radial extension in the margin of the subsidence bowl that counterbalances the 

centripetal contraction that experiences the cover due to passive bending (e.g., Gutiérrez et al., 2012; 

Carbonel et al., 2014). As subsidence evolved and the water-level decline rate increased in stage 2, inner 

concentric cracks developed, subsidence accelerated in the central zone, and eventually a nested collapse 

formed. The fissure pattern together with observations of the experiments indicate that in these tests, 

fissuring and collapse faulting was controlled by inward dipping to subvertical failure planes (Fig. 5). 

Subsidence in these tests displayed a clear episodic pattern, with discrete displacement events correlative 

to negative pressure peaks (Figs. 5, 7). Subsidence in tests 7 and 8, with rapid water-level declines in 

both stages, was characterized by rapid sagging subsidence affecting an area larger than that of the 

underlying hole in the rockhead. Passive bending of the cover was not accompanied by surface fissuring, 

and hence sustained negative pressures were recorded (Fig. 6). The high stress and strain conditions 

gave way after a relatively short time span to the development of a small nested collapse sinkhole in the 

center of the subsidence bowl. The observation of the hole in the experiments, with clear overhanging 

edges, indicates that they were controlled by outward dipping failure planes, similar to those reported by 
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Poppe et al. (Poppe, 2015) in their physical experiments. In all the cases, collapses occur when the water 

table lies below the rockhead and the cover is no longer supported by buoyancy. This indicates that 

collapse subsidence is favored by both the vacuum effect and buoyancy loss.  

 

4.3 Water-level decline rate and subsidence rate 

Monitoring data suggest that water-level decline magnitude does not play a significant role on the 

subsidence process. In contrast, as expected, there is a clear direct relation between the water-level 

decline rate and the subsidence rate. The latter parameter refers to vertical displacement rate at the point 

of maximum subsidence in the center of the sinkhole before the final collapse. Figure 4 shows that the 

subsidence rates computed for specific time periods reach the highest values during the stages with 

fastest water-level drawdowns. Figure 7 illustrates that average subsidence rates are higher in the stages 

with quicker water declines; for instance, stage 2 in tests 5 and 6. The plots of figure 8 show the general 

dependency between the average subsidence rates and the average water-level decline rates computed 

for each test. Test 7 plots as an outlier, probably due to anomalous assymmetric subsidence in the initial 

part of the test (see profiles in Fig. 6). Being the rest of the factors constant, the more rapid the water 

table drop, the higher the vacuum pressure and consequently the higher the deformation rate. This 

general relationship may be influenced by other factors in our experiments, such as changes in the 

permeability of the cover (e.g. fissuring), antecedence or mechanical disturbance of the cover in a 

previous stage (e.g. strain softening), or non-identical conditions in the different experiments. 

 

Obviously, the results of the laboratory experiments cannot be directly transferred to real natural 

sinkholes. Although there is considerable geometrical, mechanical and hydrodynamic similarity, there is 

a large scale deviation. Moreover, the laboratory physical models do not incorporate the common highly 

heterogeneous nature of mantled karst settings. Cover deposits can have a complex composition and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

22 

 

architecture, the rockhead typically has a pinnacled, not planar geometry, and the openings and 

permeability features at the cover-bedrock interface can be highly diverse in geometry (e.g., elongated 

grikes versus subcircular pipes) and distribution (isolated versus clustered). Despite the upscaling 

limitations from physical laboratory experiments to natural systems, the results of the investigation 

indicate that negative air pressures induced by rapid water table drawdowns may trigger or accelerate 

sinkholes. However, this is most probably a secondary and local factor compared to buoyancy loss due 

to the following reasons: (1) the build-up of vacuum pressures require the concurrence of both rapid 

water level declines and a low permeability cover, whereas buoyancy loss operates regardless of the 

nature of the cover and the speed of the drawdown; (2) in areas affected by groundwater withdrawal and 

the formation of cones of depressions, negative air pressures may only operate in the vicinity of the 

pumping points, where the water level decline is more severe and rapid. Our experiments, in agreement 

with the experience reported in previous works, suggest that the probability for subsidence to be initiated 

depend significantly on three factors: (1) The exceedance of a threshold value for the negative air 

pressure, which tends to peak at the beginning of the water-level drop episodes. This threshold value is 

governed by the mechanical and hydrological properties of the cover and may vary significantly 

depending on local factors (e.g., size and geometry of cavities). (2) The decline of the water level below 

the cover-bedrock interface. At this stage buoyancy loss in the cover reaches its maximum value and 

downward vadose flow can easily undermine its base by collapse and internal erosion processes. (3) The 

velocity of the water drawdown, which determines the magnitude of the vacuum effect. 

 

Although most probably negative pressure related to groundwater withdrawal has a local effect on 

the stability of cover sediments in karst terrains, special care should be paid when water pumping is 

carried out in the vicinity of vulnerable structures (e.g., high-speed railways). According to the factors 

mentioned above, some possible alternatives for ameliorating its impact may include reducing the water 
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level decline rates, preventing water level drops below the rockhead, and start the water pumping 

process in a progressive way, checking for the possible occurrence of instability signs (e.g., 

fissuring,sagging). 

 

The effect of vacuum pressure on sinkhole development remains as a poorly explored topic. It 

would be desirable to develop additional physical experimental models incorporating other factors, such 

as covers with variable permeability and thickness or holes with other geometries (elongated grikes). 

The vacuum effect could be also investigated by means of coupled mechanical-hydrological computer 

simulations. Of special interest would be to monitor natural karst settings with impervious clayey covers 

in which water pumping could be accompanied by negative pressures.  
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Figure 7. Plot showing cumulative displacement versus time for the different tests. 
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Figure 8. Plots showing the dependence between average water-level decline rate and average 

subsidence rate for the different tests. Values correspond to the whole test (stage 1 and 2) before the 

formation of a collapse. The plot on the right excludes test 7, characterised by an anomalous 

assymmetric subsidence in the initial part of the test (see profiles in Fig. 6). 

5 Conclusions 

The tests performed with a laboratory-scale physical model demonstrate that vacuum pressure 

induced by rapid water-table declines may trigger the development of sinkholes in a mantled karst 

setting comprising a cavernous bedrock overlain by a low-permeability cover. Real-time monitoring of 

the water level drawdown (magnitude, duration, rate), the negative air pressure in the bedrock cavity and 

the cover, and several features of the subsidence process (deformation style, size, magnitude, rate) 

revealed the following relationships between the vacuum pressure and the subsidence phenomenon: 
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- The critical stress threshold required for the initiation of subsidence in the cover may be 

exceeded by the combined effect of buoyancy loss and negative air pressure, in situations in 

which buoyancy loss alone would be insufficient to induce ground instability.  

- Different subsidence styles may arise in the same cover depending on the patterns of the water-

table decline (magnitude, duration, rate) and the associated vacuum pressures. In the tests 

performed in this work three main types of cover behavior were observed: sagging, sagging 

with fissuring and collapse, and sagging interrupted by early collapse. This variability can be 

attributed to some dependency between the water-table decline rates and the rheology of the 

cover, and to the critical effect of the development of fissures, which function as permeability 

features causing sharp changes in the negative air pressure values.  

- There is a direct relationship between the water-level decline rates and the subsidence rate, 

especially when the sealing effect of the low-permeability cover is not disturbed by the 

development of throwgoing pathways for the air inflow (e.g., fissures). 

 

The vacuum effect induced by water table drawdown most probably has a secondary local effect as 

a sinkhole trigger, compared to buoyancy loss. It requires the concurrence of low-permeability covers 

and rapid water level declines that may only occur close to pumping sites where cones of depressions 

reach the greatest depths. However, it may cause significant detrimental effects, especially at critical 

structures located in the vicinity of pumping sites. The results of these experiments provided the 

technical basis for proposing some possible alternatives for ameliorating its impact.  
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Figure 1. Illustrations of the experimental physical analog. (a) Photograph of the geological simulation box. (b) Sketch 

of the physical model showing the different components. (c) Idealized representation of the mantled karst setting 

simulated in the experiments, consisting of an unconsolidated cover with an upper low-permeability clayey seal and 

karst bedrock hosting a large cavity with an opening at the rockhead. See additional explanations in the text. 
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Figure 2. Data from test 1. The upper graph shows the negative air pressure recorded in the cavity and in the upper part 

of the sandy layer in the course of the water-level decline stages 1 and 2, labelled as (1) and (2). The lower graph shows 

the topographic profiles recorded at different times (two in stage 1 and two in stage 2), indicating no subsidence. The 

serrated pattern is related to the error margin of the measurements and the imperfect planar geometry of the ground 

surface. 
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Figure 3. Data from tests 2, 3 and 4 characterized by sagging subsidence. The upper graphs show the negative air 

pressures recorded in the cavity and in the upper part of the sandy layer during the water-level decline stages 1 and 2. 

The lower graphs show the topographic profiles recorded at different times showing sagging subsidence and probably 

marginal bulging in test 4. The sequence of photographs corresponds to images taken at different times of test 3. They 

show the lack of fissure development during the experiment. 
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Figure 4. Subsidence rates computed for various time periods considering the vertical displacement at 

the point of maximum subsidence. Points are located at the end of each time lapse. Upper graphs show 

data from tests 1 to 4, and lower graph data from tests 5 to 8. Arrows point to boundary between stage 1 

and 2. 
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Figure 5. Data from Tests 5 and 6 characterized by prolonged sagging with cracking and collapse. The upper graphs 

show the negative air pressures recorded in the cavity and in the upper part of the sandy layer during the water-level 

decline stages 1 and 2. The lower graphs show the topographic profiles recorded at different times before the 

development of the final collapse. The sequence of photographs corresponds to images taken at different times of Test 

6. 
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Figure. 6 Data from tests 5 and 6 characterized by prolonged sagging with cracking and collapse. The upper graphs 

show the negative air pressures recorded in the cavity and in the upper part of the sandy layer during the water-level 

decline stages 1 and 2. The lower graphs show the topographic profiles recorded at different times before the 

development of the final collapse. The sequence of photographs corresponds to images taken at different times of test 8. 
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Figure 7. Plot showing cumulative displacement versus time for the different tests. 
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Figure 8. Plots showing the dependence between average water-level decline rate and average 

subsidence rate for the different tests. Values correspond to the whole test (stage 1 and 2) before the 

formation of a collapse. The plot on the right excludes test 7, characterised by an anomalous 

assymmetric subsidence in the initial part of the test (see profiles in Fig. 6). 
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Highlights 

 Vacuum pressure triggers collapse sinkholes in karstic areas with    low-permeability covers. 

 Different water-table decline patterns result in different cover subsidence styles. 

 Ground fissuring may diminish the vacuum effect.  

 Vacuum suction and subsidence show a positive correlation with rapid water level drawdowns 

and low-permeability covers. 
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