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This paper proposes a novel methodology to detect Granger causality on average
in vector autoregressive settings using feedforward neural networks. The approach
accommodates unknown dependence structures between elements of high-dimensional
multivariate time series with weak and strong persistence. To do this, we propose a
two-stage procedure: first, we maximize the transfer of information between input and
output variables in the network in order to obtain an optimal number of nodes in the
intermediate hidden layers. Second, we apply a novel sparse double group lasso penalty
function in order to identify the variables that have the predictive ability and, hence,
indicate that Granger causality is present in the others. The penalty function inducing
sparsity is applied to the weights that characterize the nodes of the neural network.
We show the correct identification of these weights so as to increase sample sizes.
We apply this method to the recently created Tobalaba network of renewable energy
companies and show the increase in connectivity between companies after the creation
of the network using Granger causality measures to map the connections.
© 2020 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
a

1. Introduction

The concept of causality introduced by Wiener (1956)
and Granger (1969) constitutes a basic notion for ana-
lyzing dynamic relationships between time series. When
studying this type of statistical causality, predictability is
the central issue, and is of great importance to economists,
policymakers, and investors. A broad definition of Granger
causality is based on detecting whether a variable or
a group of variables helps to reduce the mean square
forecast error of a univariate or multivariate prediction;
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see Geweke (1982, 1984), Dufour and Taamouti (2010),
nd, more recently, Song and Taamouti (2018) in a high-

dimensional setting.
A natural parametric model to detect the presence of

predictive ability in a multivariate setting is the fam-
ily of Vector Autoregressive (VAR) models introduced by
Sims (1980) in a seminal paper. The choice of this para-
metric approach has two inherent problems: the occur-
rence of overparametrization in large dimensions, and the
incorrect specification of the relationship between the
variables in the linear VAR model if the true data gen-
erating process that determines the interactions between
the variables is nonlinear or, more generally, unknown.
The different procedures suggested by the literature to
overcome the ‘‘profligate parametrization’’ that can affect
high-dimensional VARs are classified as dimensionality
reduction and sparsity induction via convex regularizers.
sality detection in high-dimensional systems using feedforward neural
ijforecast.2020.10.004.
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In the first group, the literature tries to solve the over-
parametrization that may affect VARs by reducing the di-
mensionality of vector time series models such as canon-
ical correlation analysis (Box & Tiao, 1977), factor models
(Peña & Box, 1987), Bayesian models (e.g., Bańbura et al.,
2010; Koop, 2013), principal component analysis (Stock
& Watson, 2002), and generalized dynamic factor models
(Forni et al., 2000), among many other statistical tech-
niques. The main limitation of these approaches lies in
the loss of interpretability due to the transformations
involved in most of the methods that make impossi-
ble to track the Granger causal interactions between the
‘‘original’’ multivariate time series (Géron, 2017).

Recently, statistical and machine learning literature
has instead focused on imposing sparsity in the esti-
mated model coefficients through the use of convex loss
functions such as the least absolute shrinkage and selec-
tor operator (hereafter referred to as Lasso; Tibshirani,
1996). The primitive version of this approach reduces the
dimension of the problem by deleting individual regres-
sors. More sophisticated versions such as the group lasso
penalty (Yuan & Lin, 2006) reduce the dimension of the
problem by jointly deleting groups of variables. None of
these approaches, however, explicitly consider the struc-
ture of the dependence in multivariate time series pro-
cesses; in particular, these methods do not consider the
pivotal role that the correct specification of the order of
the VARs plays in detecting Granger causal interactions.
To overcome this limitation and accommodate penalty
functions that explicitly consider the appropriate number
of lags in the system, Nicholson et al. (2014) suggest a Hi-
erarchical Group Lasso approach that allows not only for
automatic variable selection but also for automatic lag se-
lection. Another noteworthy example of Granger causality
discovery in high-dimensional linear VARs is the paper
by Skripnikov and Michailidis (2019), where the authors
propose a generalized sparse fused lasso optimization
criterion for jointly estimating multivariate VARs. The
novel lasso-based optimization procedure developed by
these authors not only enables the introduction of spar-
sity but also encourages similarities between transition
matrices, ultimately allowing for both joint estimation
and Granger causality detection in multiple VARs. The
current literature has proposed robust procedures for the
estimation of Granger causality in high-dimensional lin-
ear VARs through sparsity induction via convex regular-
izers; however, the identification of correct inferential
procedures based on Granger causality testing is still not
fully untangled.2 A first step towards correct inferential
procedures is proposed by Hecq et al. (2019) and ex-
tends the post-double selection approach of Belloni et al.
(2014) to Granger causality testing in linear sparse high-
dimensional VARs.3 This procedure enables the retention

2 Wilms et al. (2016) propose a bootstrap-based Granger causality
test which ignores the uncertainty regarding the selection step and
thus does not account for post-selection issues.
3 Another important example that can be found in the literature

is the research conducted by Song and Taamouti (2019). The authors
ropose correct inferential procedures for Granger causality testing in
igh-dimensional systems modelled by factor models as opposed to
igh-dimensional VARs.
2

f the correct size after the variable selection of the lasso
nd is shown to perform well in different data generating
rocesses.
The presence of nonlinearities in the dynamic relation-

hip between the variables is another problem that has
ot yet properly been studied in the analysis of Granger
ausality. Taamouti et al. (2014) propose nonparametric
estimation and inference for conditional density-based
Granger causality measures that quantify linear and non-
linear Granger causalities. These authors transform the
Granger causality measures in terms of copula densities.
More recently, Song and Taamouti (2018) propose model-
ree measures for Granger causality in the mean between
andom variables. Unlike the existing measures, these
ethods are able to detect and quantify nonlinear causal
ffects. The new measures are based on nonparamet-
ic regressions and are consistently estimated by replac-
ng the unknown mean square forecast errors with their
onparametric kernel estimates.
Granger causality is a prediction problem. A powerful

ethodology for prediction in regression models and,
ore specifically, forecasting multivariate time series is
eural networks. Empirical research shows that Artifi-
ial Neural Networks are characterized by high accuracy
hen used to forecast nonlinear multivariate time series
Chakraborty et al., 1992; Kaastra & Boyd, 1996).4 More
enerally, deep learning methods based on training large
eural networks have proven very successful in many
igh-dimensional problems such as pattern recognition,
iomedical diagnosis, and others; see Schmidhuber (2015)
nd LeCun et al. (2015) for overviews of the topic. Athey
nd Imbens (2019) provide a recent literature review of
pplications and contributions to and from economics and
conometrics.
The main impediment for neural network models to

e considered as a standard tool for time series analysis
s the lack of interpretation. This is due to the fact that the
ffects of inputs are difficult to quantify precisely due to
he tangled web of interacting nodes between and across
idden layers. There is, however, some recent progress
n this area. In particular, Scardapane et al. (2017) pro-
ose a methodology that adds interpretability to neural
etwork structures by imposing a mapping between the
‘original’’ variables and the nodes of the first hidden
ayer of the neural network. An ‘‘original’’ variable in a
odel is considered irrelevant if the corresponding nodes

hat carry information from the variable to the neural
etwork are pruned. Pruning nodes in the first layer of
he neural network is equivalent to deleting variables
rom a regression model. Tank et al. (2018) were the first
uthors to apply this strategy to the specific time series
roblem of detecting Granger causality. These authors use
hierarchical group lasso penalty function (see Yuan &
in, 2006) on the weights of the neural network, but their
ork is lacking in terms of the impact of the architecture
f the network on Granger causality discovery.
The aim of the current paper is to propose a method-

logy based on neural networks to detect mean Granger

4 Universal Approximation Theorem by Cybenko (1989) analyzed by
Hornik (1991).
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causality for vectors of variables in which the dynamic de-
pendence structure is unknown and can take very general
forms that accommodate, in turn, linear and nonlinear
VAR models with a potentially high-dimensional number
of variables and lags. In contrast to most of the literature
on neural networks, we add interpretability to the neural
network by applying Scardapane et al.’s strategy (2017)
to a time series setting. More specifically, we construct a
neural network with an input layer given by the vector
of regressors and an output layer given by the vector of
dependent variables. The magnitude of the weights as-
sociated to the nodes in the first layer determines the
presence of Granger causality between the input and out-
put variables. More formally, the interpretability of the
network is given by the existence of a mapping between
the regressors and the nodes in the first hidden layer. A
particular input variable will be relevant for predicting an
output variable if there are connections from the corre-
sponding input node to any node in the first hidden layer.
The Granger causality of a variable involves checking the
connections between all possible lags and all possible
nodes in the first hidden layer such that a variable will not
Granger cause another variable if there are no connections
leaving from any of the input variables to any of the
nodes in the first hidden layer. In contrast, the number
of nodes in the intermediate hidden layers is not directly
related to the definition and interpretation of Granger
causality. The relevant intermediate nodes are obtained
by optimizing the flow of information from the input
variables to the output variables in the neural network,
maximizing the mutual information transfer/minimizing
information loss. More formally, we show that the optimal
choice of the number of nodes in the intermediate hidden
layers improves model selection and reduces type I and II
errors in the Granger causality detection methods.

Our method allows for a large number of variables
and lags. In this setting, the number of input nodes can
be very large, rendering standard estimation and model
selection methods unfeasible. We instead propose a novel
sparse double group lasso penalty function that allows
for the estimation of the weights that characterize the
transfer of information through the neural network and
model selection: Granger causality and lag selection. Our
double group lasso penalty function considers all possible
lags of a specific regressor and all possible nodes of the
first hidden layer connecting to such a regressor as a first
group. The second group considers separately all possible
nodes of the first hidden layer that connect to a specific
lag of a specific regressor. This is the proposed approach
for detecting the optimal number of lags of a given input
variable influencing each output variable.

Our sparse double group lasso penalty function ex-
tends the penalty functions proposed in Simon et al.
(2013) for multivariate regression models and Scarda-
pane et al. (2017) for neural networks. Both hierarchical
and sparse group lasso procedures for detecting Granger
causality allow specifying a different number of lags across
variables in the vector. However, in contrast to the hier-
archical group lasso, our novel objective function imposes
a lower penalty function on the parameters of the model
at the same time as guaranteeing model selection con-
sistency. By doing so, we make sure we exclude those
3

variables without the ability to predict the response vari-
ables without excluding important interactions between
the variables once a group is not deleted; that is, once a
variable is shown to cause another Granger variable.

To the best of our knowledge, this, together with Tank
et al. (2018), is the first study that considers Granger
causality in a very general setting - an unknown de-
pendence structure between the variables - using neu-
ral networks. Our method differentiates from the Tank
et al. (2018) study in two main ways. First, we pro-
pose an optimal network structure obtained from ap-
plying Montgomery and Eledath’s algorithm (1995), and,
second, we consider a different lasso penalty function that
operates differently from the hierarchical group lasso;
that is, in each hidden layer we only use those nodes
that carry information from the input layer to the output
layer, removing unnecessary nodes. The optimality of the
neural network has a direct effect on the properties of
our Granger causality procedure. In particular, we reduce
the type I error, interpreted in this context as spurious
Granger causality. An excessive number of nodes can lead
to lasso-type penalty functions that spuriously identify
non-existing interactions among the input nodes.

The paper also discusses results on parameter identi-
fication and model selection consistency as the sample
size increases. We derive the conditions that determine
the inclusion or non-inclusion of a parameter or group of
parameters in the model. Our conditions for model selec-
tion coincide with those found in the literature on model
selection consistency when the number of variables and
the number of lags are fixed; in particular, we obtain λ =

o(1/T ) with T being the sample size (see Fan & Li, 2001).
evertheless, our procedure also achieves model selection
onsistency when the number of lags k increases with
he sample size. In order to guarantee this, we impose

= o
(

1
√
kT T

)
, with kT being the number of lags of the

input variables.
In Appendix A, we report a comprehensive Monte-

Carlo simulation exercise that shows the performance of
our methodology in the detection of Granger causality.
First, we assess the type I and type II errors in our de-
tection procedure in finite samples and compare it with a
method that does not optimize the structure of the neural
network. Second, we compare the performance of our
proposed sparse double group lasso against the hierarchi-
cal group lasso. Both sets of results provide clear evidence
of the outstanding performance of our methodology for
detecting Granger causality in terms of the probability of
type I and type II errors. These results hold for short-
and long-range dependence and for linear and nonlinear
VAR specifications. We also show the consistency of our
approach for model selection for increasing sample sizes.

The suggested methodology is then applied to detect
the interconnections between energy companies trading
in the recently created Tobalaba network. The Tobalaba
network is a test-net provided by the Energy Web Foun-
dation (2018) that connects renewable energy companies
via a blockchain platform. More specifically, we exploit
recent work on social and financial networks that identi-
fies the presence of connections in a network through the

presence of Granger causality between their nodes; see
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Billio et al. (2012) and Hecq et al. (2019). In our setting, we
ropose our two-stage neural network approach for de-
ecting Granger causal relationships between the financial
eturns of the energy companies trading in the Tobalaba
etwork.
The World Bank Group (2018) argues that the de-

entralization, disintermediation, increase in information
ymmetry, and cost reduction via smart contracts will
llow smaller participants to enter the market, increas-
ng the number of bilateral transactions and ultimately
iversifying the market structure. The objective of our
pplication is to corroborate the World Bank Group’s hy-
otheses by gauging the interconnectivity between en-
rgy firms before and after the introduction of Tobalaba.
o do this, we construct two Granger causal networks
before and after the introduction of Tobalaba) and apply
he proposed algorithm to each vertex. The empirical
tudy reveals an increase in the number of connections
mong the members of the Tobalaba network after the
ntroduction of the blockchain platform. We explore the
mplications of our methodology for forecasting purposes.
o do this, we implement the Diebold–Mariano (1995)
redictive ability test and find overwhelming empirical
vidence supporting the outperformance of our approach
n terms of the predictive ability compared to VAR models
f different dimensions.
The rest of the paper is organized as follows:

ection 2 presents the structure of the neural network and
ormulates the Granger causality detection procedure in
his setting. Section 3 discusses the estimation and model
election using a two-stage procedure based on a novel
parse double group lasso penalty function. Section 4
discusses parameter identification and model selection
consistency when the number of lags is fixed, as well as
when it increases with the sample size. In Section 5, we
apply our novel procedure for detecting Granger causality
to the financial returns of the set of renewable energy
firms trading in the recently created Tobalaba network.
Section 6 concludes the paper. Following this, Appendix A
resents a Monte-Carlo simulation exercise that provides
mpirical evidence in finite samples of the performance
f our method in detecting Granger causality and model
election consistency for increasing sample sizes. Finally,
ppendix B provides a formal parametric definition of
ranger causality in a fully connected neural network
ramework.

. Granger causality in neural networks

Let {xt ∈ Rp
}
T
t=1 denote a p-dimensional vector time

eries of length T . Our goal is to study Granger causality
n mean. For this, the relevant loss function is the mean
quare forecast error. The vector of random variables xt
volves according to the following dynamics, which are
efined componentwise. Thus, for each xit :

it = gi(xt−1, . . . , xt−k) + ϵit , for i = 1, . . . , p, (1)

here gi(·) is a function that captures the dependence
tructure between the dependent variable xit and the lags
f the vector xt . The quantity ϵit is a martingale difference

equence satisfying E[ϵit | ℑt−1] = 0, with ℑt−1 denoting h

4

he sigma-algebra containing all the information available
o the individual at the time t . We further assume that
he sigma-algebra ℑt−1 can be approximated by the finite
et Xt−1, with Xt−1 = [xt−1...xt−k] being a matrix of
imension (p × k) that contains the relevant information
et. Then, ℑt−1 ≡ Xt−1 such that E[xit | ℑt−1] = gi(Xt−1).
n addition, it is also implicit that k = ki as we inves-
igate the possibility of using different lags for different
omponents.
There are different approaches to modelling the func-

ion gi(Xt−1) for i = 1, . . . , p. This paper builds on the
ecent literature on introducing techniques for adding
nterpretability to neural networks and proposes a feed-
orward neural network to model each function gi(·) sep-
rately. Each feedforward neural network has N hidden
ayers, and the vector hn denotes the values of the hidden
ayers obtained from zn hidden nodes in the nth hid-
en layer. We use gi(Xt−1;

iW, z) to denote the function
i(Xt−1). By doing so, we incorporate, as additional ar-
uments of the function, the matrix iW, which contains
ll the weights with the information carried through the
odes in the hidden layers for predicting the output vari-
ble xit ; and the vector z = (z1, . . . , zN )⊤, which contains
he number of nodes in each hidden layer.

In this framework, we propose i = 1, . . . , p different
eural networks to measure the relationship between
ach variable xit and the matrix of the input variables
t−1. Furthermore, each submatrix iW1 contains the
eights associated with the nodes in the first hidden

ayer. These weights connect the vector of input variables
o the first hidden layer with z1 nodes. Let us focus on the
utput variable xit . In this case, the matrix of the weights
elevant for gauging Granger causality and characterizing
he first hidden layer is:

iW1

z1×kp)
=

⎡⎣ iw
1(1)
11 ... iw

1(k)
11

iw
1(1)
1p ... iw

1(k)
1p

... ... ... ... ...
iw

1(1)
z11 ... iw

1(k)
z11

iw
1(1)
z1p ... iw

1(k)
z1p

⎤⎦ .

For the intermediate hidden layers, the matrices iWn,
ith n = 2, . . . ,N , are constructed similarly; however,

n this case, the connections are between a layer of zn−1
odes and a layer of zn nodes such that the dimensions
f the matrix iWn need to be adapted. In what follows,
e drop the superscript i and denote the matrix with the
eights of the neural network as W = [W1

; . . . ;WN
].

The information in a neural network flows across lay-
rs by means of activation functions θ . Let x̃t−1 be a vector
f dimension kp × 1 that stacks all the elements of the
atrix Xt−1 from the input variables. For a given bias
arameter b1 ∈ Rz1 and the activation vector-valued
unction θ(·) : Rz1 → Rz1 , the values at the first hidden
ayer h1 ∈ Rz1 are:

1 = θ
(
W1̃xt−1 + b1

)
= θ

⎛⎝ ...∑p
j=1
∑k

l=1 w
1(l)
zj xj,t−l + b1z

...

⎞⎠ . (2)

The values of the activation functions at the interme-
iate hidden layers, hn ∈ Rzn , are given by:( n )

n = θ W hn−1 + bn , n = 2 . . .N, (3)
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where bn ∈ Rzn ,hn−1 ∈ Rzn−1 and henceWn
∈ Rzn×Rzn−1

is the matrix of the weights in the hidden layer n with zn
rows and zn−1 columns. Since the vector-valued activation
unction θ(·) proceeds element-wise, we denote by θz(·) :

→ R with z = 1, . . . , zn each of its components that
orresponds to each node in the hidden layer n. Therefore,
he one-period-ahead forecast of the time series xit is:

i(Xt−1;W, z) = ω⊤

O hN + bO, (4)

here bO is a constant, ωO ∈ RzN is the vector of weights
onnecting the last hidden layer N to the output node, and
N ∈ RzN is the vector of values at the last hidden layer,
hich can be expressed in terms of the input data as:

N = θ
(
WN ...θ

(
W1̃xt−1 + b1

)
... + bN

)
, (5)

here WN
∈ RzN × RzN−1 and θ(·) : RzN → RzN . Hence,

i(Xt−1;W, z)

= ω⊤

O θ

⎛⎝WN ...θ

⎛⎝ ...∑p
j=1
∑k

l=1 w
1(l)
zj xj,t−l + b1z

...

⎞⎠ · · · + bN

⎞⎠
+ bO. (6)

Eq. (6) expresses the function gi(·) in terms of a vector-
alued activation function θ(·) applied to a linear
ombination of the input nodes. This equation adds inter-
retability to the neural network through the connections
etween the input variables and the nodes in the first
idden layer. A variable xjt does not Granger-cause the
ariable xit if all the weights connecting all the lags of xjt
n the model and all the nodes in the first hidden layer are
ero. Appendix B provides a formal parametric definition
f Granger causality in a fully connected neural network
ramework. The null hypothesis of no Granger causality of
 l

5

jt to xit is:

0 : w
1(1)
1j = · · · = w

1(k)
1j = · · · w

1(1)
z1j

= · · · = w
1(k)
z1j

= 0,

(7)

nd the alternative is:

A : some w
1(l)
nj ̸= 0, for n = 1, . . . , z1 and l = 1, . . . , k.

(8)

Fig. 1 provides a visual representation of the intuition
ehind the test for Granger causality based on feedfor-
ard neural networks for a multivariate time series with
ne hidden layer. If the group lasso penalty penalizes the
eights highlighted in red to zero, the variable x1t does
ot Granger cause series xit . Thus, Granger causality is
nferred from the sparsity introduced in the first layer by
he group lasso penalty.

. Estimation and model selection

We propose a methodology to detect Granger causality
sing a neural network for each element of the vector xt .
ur procedure is performed in two stages. For a given
ample, we first obtain the optimal number of nodes in
he feedforward neural network by minimizing the infor-
ation loss across layers. We focus on the first hidden

ayer z1 given that in the second stage we plug in the
ptimal quantity z1 in a lasso-type function, penalizing
he weights of the neural network. Minimization of the
orresponding regularization problem has two objectives.
irst, it uncovers the input variables that are relevant for
orecasting the output variables (Granger causality) and,
econd, it allows us to establish the optimal number of

ags affecting the mean square forecast error.



H. Calvo-Pardo, T. Mancini and J. Olmo International Journal of Forecasting xxx (xxxx) xxx

o
S
a
1
l
n
i
t
(
t
Z
e
t
a
i
t
t
c

t
n
t
l
t
g

3

c
m
l
n
t
s

p
a
L
r
T
c

(
t
c
d
W

a

Our approach differentiates from the recent literature
n interpretable neural networks (see Hastie et al. (2005),
cardapane et al. (2017), or Tank et al. (2018)) in two main
spects. First, in our case, concretely, as per Algorithm
, we choose the optimal number of nodes in all hidden
ayers that minimize the information loss through the
eural network deep architecture. This has been done
n the literature by maximizing the mutual information
ransfer between input and output nodes (see Schreiber
2000)) or, similarly, by minimizing the loss of informa-
ion through the neural network (see De Veciana and
akhor (1992), Montgomery and Eledath (1995), Reed
t al. (1995), or more recently, Urban (2017)). In order
o fully exploit these theories and construct an optimal
rchitecture for the neural network that minimizes the
nformation loss, we need to introduce uncertainty into
he neural network. This is done by injecting noise into
he model. In this case the optimal neural network is
onstructed through noise jittering.
Second, we propose a regularization function that ex-

ends the mean square error loss function for fitting a
eural network by penalizing the weights associated with
he nodes in the first hidden layer. In contrast to the
iterature, we propose a double group lasso regularization
hat penalizes Granger causal relations separately across
roups and lag selection within groups.

.1. Stage 1: Choosing the optimal neural network

In the first stage, we optimize the neural network by
hoosing a number of nodes per hidden layer that maxi-
izes the transfer of information/minimizes information

oss. To do this, we follow the above literature and inject
oise into the neural network. In what follows, we adapt
hese methods to our setting. Our base loss function is the
ample mean square error, which is defined as:

1
T

∥xit − gi(Xt−1;W, z)∥2
2 . (9)

In order to be able to apply the different information
criteria above, we introduce noise into the system by
constructing noisy replicas of our sample, as in De Veciana
and Zakhor (1992), Montgomery and Eledath (1995), Reed
et al. (1995), or Urban (2017). This approach can be inter-
reted as a procedure to regularize the neural network
pplied to a population and not only to a given sample.
et x∗

jt = xjt + vjt , with vjt an iid realization of a N (0, σ 2
v )

andom variable, and let X∗
t be the corresponding matrix.

he objective function (9) applied to these iid random
opies of the original observations becomes:

1
T

T∑
t=1

(
xit − gi(X∗

t−1;W, z)
)2

. (10)

In what follows, we decompose the mean square error
10) into two components: a first component given by
he mean square error of the original data, and a second
omponent given by introducing noise into the model. To
o this, we consider first the case of a single hidden layer

= W1. Let the objective function be g
(
X∗

;W, z
)

=
i t−1

6

ω⊤

O h
∗

1 + bO with:

h∗

1 = θ

⎛⎝ ...∑p
j=1
∑k

l=1 w
1(l)
zj xj,t−l + b1z +

∑p
j=1
∑k

l=1 w
1(l)
zj vj,t−l

...

⎞⎠ .

(11)

For simplicity, we work with the activation function
element-wise, such that gi

(
X∗

t−1;W, z
)

=
∑z1

z=1 ωOzθz(∑p
j=1
∑k

l=1 w
1(l)
zj xj,t−l + b1z +

∑p
j=1
∑k

l=1 w
1(l)
zj vj,t−l

)
+bO.

Applying a Taylor expansion of the first order to each acti-
vation function θz(·) around the deterministic component∑p

j=1
∑k

l=1 w
1(l)
zj xj,t−l + b1z , we obtain:

θz

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z +

p∑
j=1

k∑
l=1

w
1(l)
zj vj,t−l

⎞⎠
≈ θz

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z

⎞⎠ (12)

+ θ̇z

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z

⎞⎠ p∑
j=1

k∑
l=1

w
1(l)
zj vj,t−l,

with θ̇z(·) the first derivative of θz(·). Note that for the
standard activation functions proposed in the related lit-
erature, the second derivative of θ (·) is close to zero along
the support of the function; therefore, a first order expan-
sion is sufficient to accurately approximate the activation
function. Then, the objective function becomes:

gi
(
X∗

t−1;W, z
)

≈ ω⊤

O h1 + bO

+

Z1∑
z=1

ωOz θ̇z

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z

⎞⎠
×

p∑
j=1

k∑
l=1

w
1(l)
zj vj,t−l,

nd the loss function (10) can be decomposed as:

1
T

T∑
t=1

(
xit − gi(X∗

t−1;W, z)
)2

+
1
T

T∑
t=1

⎛⎝ z1∑
z=1

ωOz θ̇z

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z

⎞⎠
×

p∑
j=1

k∑
l=1

w
1(l)
zj vj,t−l

⎞⎠2

−
2
T

T∑
t=1

(xit − gi(Xt−1;W, z))
z1∑
z=1

ωOz

θ̇z

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z

⎞⎠ p∑
j=1

k∑
l=1

w
1(l)
zj vj,t−l.
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Note that the elements inside the outer sum over t
re independent but not identically distributed. The ran-
omness is introduced through vt in all cases so that
he mean is zero but the variance varies for each obser-
ation depending on the value of θ̇ (·) and the weights
O. In this case, we can apply the law of large numbers
or independent but not identically distributed random
ariables, and write the preceding function as the sum
f the population mean square error and an additional
egularization component. More specifically, as T → ∞,
he previous expression converges in probability to the
ollowing population quantity:[

(xit − gi(Xt−1;W, z))2
]

+ σ 2
v

z1∑
z=1

ωOz θ̇
2
z

⎛⎝ p∑
j=1

k∑
l=1

w
1(l)
zj xj,t−l + b1z

⎞⎠
×

p∑
j=1

k∑
l=1

(
w

1(l)
zj

)2
. (13)

he variance of the innovation term, σ 2
v , can be inter-

reted as the tuning parameter of a regularization compo-
ent given by the first derivative of the activation function
nd the magnitude of the weights.
The objective of this procedure is to minimize the

oise transmitted through the neural network. This can be
one in two ways: (i) by minimizing the nodes operating
n the linear region of the activation function, and (ii) by
inimizing the weight values in the network. If a node

s operating in the saturation region then its output will
ot be affected as much by the noise. Fig. 2 illustrates the
ifferent regions. It is also clear that large weights, W,
ill also amplify the noise of the output. Also, as noted
y Montgomery and Eledath (1995), small weight values
n the first hidden layer tend to keep nodes in the linear
egion, so we may only want to minimize the outgo-
ng weights from each node. Furthermore, the choice of
he activation function is another factor to consider. The
hoice of the tanh function, defined as:

(x) =
e2x − 1
e2x + 1

, (14)

guarantees that a node operating in the middle of the
linear region has an average activation close to zero. Re-
moving a hidden node in this case does not affect the
training as much as under other activation functions.

We use these arguments and focus on the significance
of each node in each hidden layer rather than on formally
minimizing expression (13). In the second stage of our
procedure, we will formally minimize the mean square
error under Lasso regularization when a VAR structure is
considered. In this stage, we assess, indirectly, the contri-
bution of each node to the noise in the neural network
by applying a version of the pruning algorithm known
as Dynamic Node Removal, developed in Montgomery
and Eledath (1995). This method removes hidden units
as training progresses. The idea is to keep those nodes
that contribute to transmitting information and delete
those that transmit noise. The algorithm penalizes the

nodes operating in the linear region (low confidence) of f

7

θz(·) while accounting for the magnitude of the outgoing
weights of the hidden nodes. In our setting, at each Epoch
(defined as the pass that the machine learning algorithm
has completed), the objective function is:

S1z =
σ 2

v

pkT

T∑
t=1

⎛⎝κ tanh2

⎛⎝b1z +

p∑
j=1

k∑
l=1

w
1(l)
zj xjt−l

⎞⎠
+ µ

z2∑
z̃=1

(
w2

z ,̃z

)2)
, (15)

ith w2
z ,̃z denoting a vector of weights of dimension (1×

2) connecting nodes z = 1, . . . , z1 in the hidden layer
to nodes z̃ = 1, . . . , z2 in the hidden layer 2. κ and µ

re tuning parameters. The objective function is standard-
zed by dividing by the number of observations and the
umber of nodes in the input layer.
This function measures the quality of the nodes in

he neural network with regards to information transfer.
hus, if the magnitude of this function is lower than a
iven threshold χ , the hidden node is then pruned. The
hoice of the tanh activation function over other activa-
ion functions such as the ReLu, Exponential ReLu, or sig-
oidal ensures that the principle of minimum information

oss is satisfied. As we are considering a supervised neural
etwork, the minimization of the entropy must ensure
he minimization of the output error. Penalizing nodes
hat operate in the linear region of θ (.) (element-wise) is
quivalent to penalizing nodes of which the output is ap-
roximately zero and, thus, nodes that have little impact
n the final output of the feedforward neural network.
owever, as highlighted by Goodfellow et al. (2016) and
y Géron (2017), sigmoidal activation functions saturate
or high or low values of hn, incurring in the possible
roblem of increasing gradient and limiting the training
f the neural network (Glorot & Bengio, 2010).5
Unfortunately, for neural networks comprising more

han one hidden layer, minimizing the mutual informa-
ion transfer by minimizing the mean square error of
he noisy version of the data is even more challenging.
n this case, we extend the Dynamic Node Removal of
ontgomery and Eledath (1995) to higher layers:

nz =
σ 2

v

zn−1

(
κ tanh2 (bnz + Wn

zhn−1
)
+ µ

zn+1∑
z̃=1

(wn+1
z ,̃z )2

)
,

(16)

with wn+1
z ,̃z a row vector of dimension (1 × zn+1) of the

matrix Wn+1 connecting node z = 1, . . . , zn in the hidden
layer n to node z̃ = 1...zn+1 in the hidden layer n+1.6 The
lgorithm that we propose for pruning the neural network
s detailed in Algorithm 1.

5 For saturated values of θ at 0 or 1, the derivative is extremely
close to 0, leaving no gradient to propagate through the neural network
(Géron, 2017).
6 We should note that the time index is implicit in the objective

function Snz . All observations {xt }Tt=1 are used to compute the objective
unction.
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Fig. 2. Linear and Saturated Regions for a tanh Activation Function θ .
.2. Stage 2: Model selection

In this section, we adapt the sparse group lasso pro-
osed by Simon et al. (2013) to neural networks. Our
enalty function extends Simon et al. (2013) by consid-
ring a double group lasso penalty function. In our case,
he groups are defined not only by the nodes in the first
idden layer but also by the number of lags of each input
ariable.

.2.1. Sparse double group lasso penalty
The regularization component of our objective func-

ion is divided into two components. The first component
omprises groups of size kz1, with k being the number
f lags7 and z1 the number of nodes in the first hidden
ayer. This component is specific to the Granger causality
etection problem. This function penalizes, as a group,
hose weights that are associated with a specific input
ariable and all its lags. To do this, we use the Frobenius
orm that extends the L2 norm to matrices. The penalty
unction for a specific input variable takes a value of zero
f the Frobenius norm is zero:

p∑
j=1

W1
j


F

=

p∑
j=1

[ z1∑
z=1

k∑
l=1

(
w

1(l)
zj

)2]1/2

. (19)

The second component is composed of groups of size
1. This component is used for detecting the optimal num-
er of lags. This function penalizes, as a group, those
eights that are associated with a specific lag l of a
iven input variable. To do this, we use the L2 norm,
enalizing jointly all the nodes in the first hidden layer
orresponding to that lag:

p∑
j=1

k∑
l=1

W1(l)
j


2

=

p∑
j=1

k∑
l=1

[ z1∑
z=1

(
w

1(l)
zj

)2]1/2

. (20)

7 We allow for different numbers of lags across input variables x .
jt

8

Algorithm 1 Optimal neural network - pruning method.

INPUT: Vector of all input variables, Gaussian noise
v ∼ N (0, σ 2

v )
OUTPUT: Pruned Feedforward Neural Network that
maximizes the mutual information transfer.

1: procedure N hidden layer exercise
2:
3: Set χ = 0.001 (see Montgomery and Eledath,

1995)
4: For each epoch E, calculate the significance of the

function hn,z as:

S1z =
σ 2

v

pT

T∑
t=1

⎛⎝κ tanh2

⎛⎝b1z +

p∑
j=1

k∑
l=1

w
1(l)
zj xjt−l

⎞⎠
+ µ

z2∑
z̃=1

(
w2

z ,̃z

)2)
,

(17)

if the feedforward neural network contains one
hidden layer, and:

Snz =
σ 2

v

zn−1

(
κ tanh2 (bnz + Wn

zhn−1
)
+ µ

zn+1∑
z̃=1

(wn+1
z ,̃z )2

)
,

(18)

for multilayer neural networks.

5: If Snz ≤ χ for n = 1, . . . ,N , remove hnz
6: χ = χ ∗ 0.0001

7: Repeat 4 − 6 until E = Maximum Epochs

It is possible to illustrate the groupings determined by
the first component (in blue) and second component (in
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In this setting, for a given output variable xit , we pro-

pose the following regularization function:

P(W1, z1; λ, α) = λ(1 − α)
√
kz1

p∑
j=1

W1
j


F

+ λα
√
z1

p∑
j=1

k∑
l=1

w1(l)
j


2
, (21)

with z1 being the optimal number of nodes. Based on
the above penalty function, we propose the following
objective function:

min
W

{
1
2T

∥Yi − gi(Xt−1;W, z)∥2
2 + P(W1, z1; λ, α)

}
, (22)

where Yi ≡ [xi,1...xi,T ]. Expression (22) has a ’sparse
double group lasso’ penalty because it contains features of
both sparse lasso and group lasso penalty functions. The
above discussion clearly shows that both penalty terms
penalise different groups of variables differently. The sec-
ond component introduces sparsity in the first component
by adding shrinkage in each of the vectors comprising the
matrices

W1
j


F
before checking if all the parameters in

the matrices are zero.
The level of sparsity induced by the group lasso de-

pends on the level of λ; the higher the λ, the lower the
number of groups selected. The parameter α ∈ [0, 1]
is a tuning parameter that, like λ, defines the level of
sparsity induced into the system. When α = 0, the sparse
double group lasso reduces to the group lasso. It is also
possible to notice the relationship that subsists between
the adapted sparse group lasso and the hierarchical group
lasso when the number of lags is one and there is no lag
selection. In particular, imposing α = 0 suggests that no
lag selection should be performed and thus that k = 1,
implying equivalence between the objective function (22)
and the hierarchical group lasso proposed by Nicholson
et al. (2014) and Tank et al. (2018), as conveyed by the
function (28) below.

In our context, it is important to note that the dimen-
sion of the groups, when the group lasso is applied in a
feedforward neural network, is a quantity that is deter-
mined within the model. More specifically, the number of
groups in the first hidden layer is established in stage 1
through the mutual information optimization procedure.
The quantity z1 is obtained from this stage. Given the
soft thresholding of the group lasso, a higher number of
nodes will lead to a lower level of sparsity for a fixed level
of λ. In this setting, it is important to choose a suitable
number of groups in the first hidden layer. Otherwise,
a suboptimal choice z1 different from z1 introduces two
ffects. First, if z1 > z1, there are more nodes than

are required and some of them do not carry information
between the input variables and the output variables.
9

In this case, the Granger causality procedures based on
neural networks (see Tank et al. (2018)) will lead to
spurious Granger causality as a result of the activation of
more nodes than necessary, increasing the type I error. A
second effect occurs due to introducing additional terms
in the regularization component of the objective function
P(W1, z1; λ, α) given by the difference between z1 and
z1. This effect can increase the severity of the penalty
and lead to deleting weights that are indeed relevant
in forecasting the output variable xi,t . In this case, the
suboptimal choice of the number of nodes in the first
hidden layer can lead to an increase in type II errors,
spuriously rejecting that a given variable Granger-causes
another one, when in fact it does. These effects will be
analyzed in a simulation study in Appendix A.

Before introducing the algorithm for the detection of
Granger causality, we discuss the role of deeper layers in
the correct detection of Granger causality. As the group
lasso depends on the size of z1 and not on the width of
deeper architectures, it is expected that the layer-wise
widths of zN - for N > 1 - will not have an impact on the
orrect detection of Granger causality. Intuitively, when
itting a deep neural network, an increase in the number
f hidden nodes in the first hidden layer leads to an
ncrease in the assumed interactions among the different
nput nodes (and thus in the group sizes); conversely, an
ncrease in depth leads to an improvement in the fit of
he network by increasing the number of nonlinearities
aptured by the network without affecting the assumed
nteractions among input nodes. Therefore, the weights
n the first layer take care of the potential relationships
Granger Causal interactions) between the variables in the
ystem, and the weights in higher layers introduce further
lexibility into the model and improve the goodness of fit.

.2.2. Algorithm for the detection of Granger causality
In what follows, we present the algorithm that im-

lements the above methodology for the detection of
ranger causality when a feedforward neural network is
itted.

By applying Algorithm 2, this paper extends the cur-
ent literature on Granger causality discovery via neural
etworks by defining a new objective function that en-
bles not only the discovery of the Granger causal interac-
ions but also of the optimal lag length. The combination
f these two aspects should ensure low type I and type II
rrors when testing for Granger causality.8
The following subsection reviews two alternative

enalty functions recently proposed in the neural network
iterature that introduce lasso penalty functions for model
election.

8 Another important factor that could impact the interpretation
of Granger causality from a neural network relies on the correct
combination of the activation function and weight initialization. The
exploding gradient problem can reduce the efficacy of the group lasso
detection of Granger causality by limiting the training of W1 . Similarly,
if the rectified linear unit activation function is used, the ‘‘dying ReLu’’
problem could lead to spurious node selection. The impact of the
correct engineering of the feedforward neural network in terms of
the combination of the activation function and weight initialization
is beyond the scope of this article.
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Algorithm 2 Algorithm for the Detection of Granger
Causality.

INPUT: Dependent and Independent variables.
UTPUT: Predicted dependent variable, and Granger
ausal relations.

1: procedure Based on Algorithm 1
2:
3: Initialize an over-specified Deep Neural Network.

4: Definition of the Optimal ν2.
5: Divide the dataset in training and test set.
6: Given the structure of the network, cross-validate

the optimal ν2.

7: Definition Optimal Structure of the Network
8: χ = 0.001.
9: Set E = Maximum Epochs.
0: while (Epoch < E) do
1: Generate v ∼ N (0, σ 2

v )
2: Calculate node significance applying Equation

(18).
3: Remove insignificant nodes.
4: Update χ .
5: Algorithm 1 will return the pruned Neural Network

6: Granger Causality x
7: Define the number of hidden nodes and layers

from previous steps.
8: Fit the feedforward neural network with objective

function (22).

3.3. Interpretable neural networks

Advances in neural networks have enabled us to pro-
ose a feedforward neural network for the detection of
ranger causality in large systems. The main difference
rom previous models based on neural networks is the
ossibility of interpreting the intermediate steps when
aking the model predictions. To do this in a Granger
ausality setting, we interpret the connections between
he nodes in the first hidden layer and the input variables.
he interpretability of the neural network is made formal
y adapting lasso-type regularization functions to a neural
etwork setting. Rather than penalizing the parameters
f standard regression models, we propose a model that
enalizes the weights in the nodes of the first hidden layer
f the neural network. The absence of Granger causality is
nterpreted as a lack of connections between a given input
ariable and the set of nodes in the first hidden layer.
Interpretable neural networks are briefly discussed in

astie et al. (2005), in more detail in Scardapane et al.
2017), and adapted to the detection of Granger causal-
ty using a hierarchical lasso penalty function in Tank
et al. (2018). To provide a suitable background to our

above proposed regularization function, we discuss in

10
this section the regulation functions proposed in these
pioneering studies adapted to our VAR setting. In this
way, we can compare our novel objective function to the
related literature.

Scardapane et al. (2017): These authors propose the fol-
lowing penalty function:

P(λ,W) = λ

p∑
i=1

√
kz1

p∑
j=1

W1
j


F

+ λ

p∑
i=1

N∑
n=2

zn−1∑
z=1

√
zn
Wn

z


2 +

+ λ

N∑
n=1

√
zn ∥bn∥2 + λ ∥W∥1 . (23)

his penalty term ‘equally’ weights each component of
he penalty by λ > 0.9 The first component:

p∑
j=1

W1
j


F

=

p∑
j=1

[ z1∑
z=1

k∑
l=1

(
w

1(l)
zj

)2]1/2

, (24)

s identical to the first component of the penalty function
22), penalizing the coefficients of the input layer (n =

) across lags and nodes for each time series j. In our
ramework, there are two ‘groups’ of size kz1 and z1,
espectively.

The second and third components penalize the ‘adapt-
ble features’ of the neural network, {Wn, bn}

N
n=1. The

econd function penalizes the vector of all outgoing con-
ections from each node zn−1 in each hidden layer n ̸= 1
uch that:

N

n=2

zn−1∑
z=1

√
zn
Wn

z


2 =

N∑
n=2

zn−1∑
z=1

√
zn

(
zn∑
z̃=1

(
wn

z̃z

)2)1/2

,

(25)

for each time series i. Intuitively, this corresponds to the
column-wise penalization of column vectors of the matrix
Wn, n ̸= 1. The third term penalizes the biases {bn}

N+1
n=1 ,

where the N+1 ≡ O (output node) of the neural network
across layers n is:

N

n=1

√
zn ∥bn∥2 =

N∑
n=1

√
zn

(
zn∑
z=1

b2zn

)1/2

. (26)

Finally, the fourth term penalises the absolute value of the
coefficients of the matrix W = [...

[
iW1 . . . iWN

]
...] for all

ime series i, i.e:

W∥1 =

p∑
i=1

N∑
n=1

zn−1∑
z=1

p∑
j=1

k∑
l=1

⏐⏐⏐iwn(l)
zj

⏐⏐⏐ . (27)

Importantly, it is this last constraint that does not
llow Scardapane et al.’s (2017) optimization problem
o ‘decouple’ across the rows of the output variable xt

9 Scardapane et al. (2017) argue that after experimenting with
simulation results, weighting the components differently does not
make a difference.
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and to be solved ‘in parallel’; specifically, we propose a
different neural network for each of the p output variables
in the system. For given network architectures, Farrell
et al. (2018) obtain conditions for valid inference over
(W, b) in non-regularized feedforward neural networks.

Hierarchical group lasso in neural networks: Tank et al.
(2018) also base their definition of Granger causality on
the invariance of the neural network to xjt . In particular,
these authors adapt a hierarchical group lasso objective
function that had previously been proposed for high-
dimensional linear VAR models by Nicholson et al. (2014).
Tank et al. (2018) propose a hierarchical group lasso func-
tion that allows for Granger causality detection and also
for automatic lag selection. The objective function is:

min
W

1
2T

∥Yi − gi(Xt−1;W)∥2
2 + λ

p∑
j=1

k∑
l=1

∥w1(l:k)
j ∥

F
, (28)

where w1(l:k)
j = [w

1(l)
ij ...w

1(k)
ij ]. This is a hierarchical group

enalty in the sense that if w1(l:k)
ij = 0 then for all l′ >

,w1(l′:k)
ij = 0. We use gi(Xt−1;W) in (28) to differentiate

rom our multilayer perceptron function gi(Xt−1;W, z)
hat chooses the number of nodes zn strategically. In the
ierarchical group lasso setting, the quantity z is a vec-
or of nuisance parameters that is taken as given in the
ptimization problem.
Therefore, the methodology proposed by Tank et al.

2018) differs from the methodology introduced in our
aper not only in terms of the regularization considered
ut also in terms of the identification of the parame-
ers affecting Granger causality via a feedforward neural
etwork. In particular, as discussed previously, the un-
erestimation or overestimation of the number of hidden
odes in the first hidden layer due to the exogenous di-
ension of h1 can lead to an increase in either aggregate

ype I or type II errors. Also, expression (22) allows a
ag selection strategy to be performed in a similar way
o Tank et al. (2018) but with a lower level of penalty
iven by not using the hierarchical structure. For each
roup, the optimal lag will be identified by the highest
on-zero lag length l′. Lag lengths higher than l′ will have
he L2 norms equal to zero and can be considered jointly
on-significant.

. Parameter identification and model selection

The aim of this section is to assess the correct iden-
ification of the parameters characterizing the objective
unction (22) under the null hypothesis of no Granger
ausality. To do this, we explore the conditions obtained
rom our objective function that leads us to delete irrel-
vant weights (nodes and input variables). We consider
hese conditions and, in particular, the role of λ and α in
ntroducing sparsity into the regularization problem.

There are kz1p parameters in the objective function
22) indexed by w

1(l)
zj , with z = 1, . . . , z1, j = 1, . . . , p,

nd l = 1, . . . , k. These parameters constitute a group,
enoted by the matrix W1

j , of size kz1. The objective
unction is convex, implying that the solution Ŵ1 to the
j d

11
minimization problem is characterized by the first-order
conditions of the problem. These conditions are given by:
1
T

∂gi(Xt−1;W, z)
∂W1

j
(Yi − gi(Xt−1;W, z))

= λ(1 − α)
√
z1ku1 + λα

√
z1u2, (29)

where ∂gi(Xt−1;W,z)
∂W1

j
is the first derivative of the function

gi(Xt−1;W, z) with respect to the parameters in matrix

W1
j ; u1 =

Ŵ1
jŴ1
j


F

if Ŵ1
j ̸= 0, and u1 is a matrix inside a

unit ball such that ∥u1∥F ≤ 1 if Ŵ1
j = 0. The definition of

u2 is similar, but replaces the matrix W1
j with the vector

w1(l)
j and the Frobenius norm with the L2 norm.
The null hypothesis H0 of no Granger causality of xjt to

xit corresponds to W1
j = 0. The corresponding estimate

from the objective function (22) must be zero in order for
the lasso penalty to delete the parameter. The first-order
conditions with Ŵ1

j = 0 must satisfy the condition:

1
T

∂gi(Xt−1;W, z)
∂W1

j
(Yi − gi(Xt−1;W, z))


F

≤ λ(1 − α)
√
z1k + λα

√
z1. (30)

This inequality shows the contribution of λ and α to
the condition that keeps a group inactive; that is, the
condition that allows us to assume W1

j = 0, and, hence,
not rejecting the null hypothesis that the variable xjt does
not Granger cause xit .

For problems in which the number of lags k is fixed, it
is sufficient to impose λ = o(1/T ) in order for this con-
dition to be satisfied for increasing sample sizes (see Fan
and Li (2001)). In this scenario, our model selection strat-
egy is consistent; that is, it deletes those weights that do
not influence the output variables. For high-dimensional
problems in which the number of lags also grows to infin-
ity with the sample size, k = kT , we must impose a tighter
convergence of the tuning parameter λ. In our problem,
it is sufficient to have λ = o

(
1

√
kT T

)
, with kT/T → 0.

Alternatively, we can assume that α also converges to
zero such that for high-dimensional problems we have
λ = o(1/T ) and 1 − α = o(1/

√
T ). These two conditions

are sufficient to guarantee the correct selection of the
parameters as T → ∞. In practice, for a given sample
size, these parameters are optimized by cross-validation.

The first-order conditions of the objective function (22)
can also provide some insight into the sparsity of the
vector w1(l)

j within the matrix W1
j when some of the

lements of the matrix are nonzero. In this case, the group
orresponding to the input variable xjt is not rejected and
he question of interest is to select those lags that influ-
nce the forecasting of xit and, by doing so, the optimal
umber of lags that should be included in the model.
parsity in this case is provided by subsets of parameters
n the matrix W1

j that are actually zero. The aim of our
bjective function is to be able to delete these parameters.
More formally, if W1

j ̸= 0, the corresponding first-
rder conditions of the objective function (22), if xj,t−lˆ1(l)
oes not influence xit , must satisfy, for wj = 0, the
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following condition:∂gi(Xt−1;W, z)
∂w1(l)

j

(Yi − gi(Xt−1;W, z))


2

≤ Tλα
√
z1. (31)

In this case, it is sufficient to assume that λ = o(1/T )
and α are constant for the model to delete those param-
eters that are zero within a larger group and to achieve
model selection consistency.

There is another source of sparsity within groups. Thus,
we can consider parameters that are zero within the
group of parameters that determine the relevance of a
lag. More specifically, we can have w1(l)

j ̸= 0, but some
parameters of this vector are equal to zero. To address this
case, one possibility is to extend the objective function
(22) to include a further penalty function

W1

1 inducing

sparsity at the individual level. Although this additional
penalty would allow us to correctly detect those weights
that are zero if the vectorw1(l)

j is at least partially nonzero,
this would increase the computational complexity of the
method. More importantly, the marginal benefit of includ-
ing those terms would be negligible from the point of
view of model selection since the parameters that would
be rightly identified as zero would correspond to con-
nections between input nodes and specific nodes in the
first hidden layer. The interpretation of these connections
is not important once we accept that for some nodes
in the first hidden layer the weights are different from
zero, w1(l)

j ̸= 0, and, therefore, carry information relevant
for Granger causality and lag selection. For this reason,
we shall not further pursue the identification of these
parameters.

Finally, we should mention that in contrast to lasso
penalty functions expanding least squares procedures and
well-behaved likelihood functions (see Yuan and Lin
(2006), Zhou and Zhu (2010), Simon et al. (2013), and
Nicholson et al. (2014, among other leading examples),
the objective function (22) is highly nonlinear due to
the presence of nonlinear activation functions θ in each
hidden layer that characterize the function gi(Xt−1;W, z).
This implies that it is not possible to derive, in closed
form, the estimates of the weights different from zero that
characterize the objective function (22).

5. Empirical analysis: Tobalaba network

The Energy Web Foundation provides the energy sec-
tor with a blockchain-based test network with a Proof-
of-Authority10 consensus mechanism: the Tobalaba test
network (Energy Web Foundation, 2018). The World Bank
Group (2018) highlights the benefit of a distributed ledger
technology over the traditional centralized ledgers: it en-
ables decentralization and disintermediation, it guaran-
tees information symmetry due to the verifiable audit of
transactions of both physical and digital assets, and it
ensures the cost reduction and the associated increase
in speed of the stipulation of contracts via smart con-
tracts. J.P. Morgan (2018) argues that the automation

10 Transactions are validated through validators, reducing the energy
impact.
12
and the disintermediation arising from the application
of blockchain technologies will automate the functions
necessary to participate in the market, also expanding
the access to smaller participants. The Energy Web Foun-
dation (2018) states that smart contracts, by automating
bilateral transactions, will allow for a greater diversity
of market structure. The resulting information symmetry
will allow tracing in the carbon and renewable energy
market and credit ownership with lower costs and higher
accuracy (Energy Web Foundation, 2018).

Using these arguments, one should expect an increase
in the stipulation of contracts, and thus an increase in
the interactions among the members of the Tobalaba net-
work. The increase in the connections (unilateral or bi-
lateral) is justified by a higher transparency of credit
and asset ownership, by the automation of the execution
of smart contracts (not feasible for centralized ledgers),
and by the reduction of transaction costs due to disin-
termediation. The aim of this section is to explore this
empirically. To do this, we use recent work on social and
financial networks (see Billio et al. (2012) and Hecq et al.
(2019)) that establish connections in a network through
the presence of Granger causality between the variables
characterizing the nodes. These authors explore Granger
causality between pairs of variables. In this application,
we broaden the analysis of Granger causality to define
a network, and consider equation (4), reproduced here
again:

xit = gi(Xt−1;W, z) + ϵit , for i = 1, . . . , p,

where gi(Xt−1;W, z) captures the multivariate dynamic
structure between the percentage cumulative log-returns
over a 30-minute time window for the firms below. We
model the multivariate dependence component-wise us-
ing a neural network for each company i = 1, . . . , p.

5.1. Data

Intra-day prices in 30-minute intervals for the compa-
nies reported in Table 1 over the period 09/05/2016 to
10/05/2019 are collected from Bloomberg. Of the 70 com-
panies belonging to the Tobalaba Network, only those re-
ported in Table 1 are considered.11 We exclude companies
listed in different time zones and nonlisted companies.
Our dataset is divided in two periods: before the introduc-
tion of Tobalaba (09/05/2016–29/03/2018) and after the
creation of Tobalaba (26/10/2018 - 10/05/2019). A time
interval between the two subsets is left in order to allow
the creation of the connections between the members of
the Energy Web blockchain.

The missing values in the dataset are completed using
the MissForest algorithm (Stekhoven, 2013). The maxi-
mum number of trees to be grown in each forest is set
equal to 500, the maximum number of nodes for each
tree is equal to 100, and the maximum number of it-
erations is 50. The MissForest algorithm does not make
any assumption about the distribution of the variables

11 The rest of the companies are excluded for two main reasons:
because they are either not public or have a high number of missing
random observations.
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Table 1
Names, market, and a short description of the core activities of the companies considered in this study.
Company name Market Core Tick

Acciona Spain Renewable energy ANA
Aes Corp USA Electricity sell, mines coal, alternative source of energy AES
Centrica London Home and business energy solution CAN
Duke Energy USA Manage portfolio of natural gas supply and delivery DUK
Engie Brasil Energia Brasil Exploration, production and trading of electricty and natural gas EGIE3
Equinor Asa Oslo Develops oil, gas, wind and solar energy projects EQNR
Exelon Corp USA Distributes energy to Illinois and Pennsylvania EXC
Fluvius Luxemburg Renewable energy distribution Network FLUVIU
General Electric USA Diversified technology GE
Iberdrola Spain Generates, distributes, trade electricity IBE
Innogy Germay Manages plans to generate power from renewable energy IGY
Itron USA Collecting, communicating analysing electric data ITRI
PG&E Corp USA Holding company that provides natural gas and electricyt PCG
Royal Dutch Shell London Explores, produces, refines petroleum RDSA
Siemens Germany Engineering and manufacturing company SIE
Total Sa Euronext Paris Explores for producers, refines, transports, and market oil and natural gas FP
Wipro India E-commerce, data warehousing, system administration WPRO
Fig. 3. Granger causal networks before and after the introduction of Tobalaba. The out-of-sample RMSE is reported for each company.
as it involves estimating the missing values by fitting a
random forest trained on the observed values. The Out-Of-
Bag (OOB) estimates of the imputation error in terms of
the Normalized Root Mean Squared Error (NRMSE) for the
two subsamples are 0.01438 and 0.012984, respectively.
The returns are then computed from the intra-day prices.

Table 2 reports the exploratory data analysis con-
ucted for both subsamples for each individual series
onsidered. There is a general increase in the mean and
tandard deviation of the returns for each company. In all
ases, the Dickey-Fuller test rejects the null hypothesis of
he unit root at a 0.05 significance level, and we fail to
eject the null hypothesis of the stationarity of the KPSS
est at a 0.05 significance level, showing that, for both
ubsamples, all series considered are stationary.
13
5.2. Empirical results

Fig. 3 shows the network topologies induced by fitting
model (4) to detect Granger causality between the p =

17 firms considered in our sample before and after the
introduction of Tobalaba. The method to detect Granger
causality is based on using an optimized neural network
and the objective function (22). Thus, the network is
constructed by fitting 17 feedforward neural networks
with a double group lasso penalty function to the weights
that connect input nodes to the nodes in the first hidden
layer. Each component-wise feedforward neural network
has company xit in the output layer and the lagged values
of companies xjt with j ̸= i in the input layer. The
edges for each vertex are identified by the Granger causal
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the first sub-sample. Moreover, the test statistics and

PGC RDSNA SIE FP WPRO

0.0063 0.0017 0.0013 0.0009 0.0007
1.5639 0.3069 0.3286 0.3069 1.1897
−32.8006 −8.5474 −8.7049 −9.5013 −11.4161
33.9859 5.2412 6.7774 4.9290 10.5179
0.7876 −1.5988 −1.8681 −2.7896 −0.3433
122.7723 93.5393 129.5589 119.0220 19.4230
0.2221 0.3017 0.3033 0.2940 0.2167
<.0001 <.0001 <.0001 <.0001 <.0001
−48.3805 −48.1052 −49.8299 −49.9683 −50.6796
0.0100 0.0100 0.0100 0.0100 0.0100
0.0589 0.0456 0.3180 0.0333 0.0472
0.1000 0.1000 0.1000 0.1000 0.1000

PCG RDSA SIE FP WPRO

−0.0111 0.0027 0.0028 −0.0013 −0.0031
11.7503 1.2577 1.3416 1.1393 2.0681
−116.7995 −9.2351 −11.5270 −9.5761 −23.3458
85.3738 9.6994 11.5836 9.9737 25.3803
−1.1079 0.1642 0.0447 0.2635 −1.1434
24.8550 16.2953 25.5945 22.2098 49.7950
0.4822 0.5319 0.4741 0.5222 0.4525
<.0001 <.0001 <.0001 <.0001 <.0001
−24.3258 −23.0250 −22.8387 −22.7410 −23.9251
0.0100 0.0100 0.0100 0.0100 0.0100
0.0162 0.0101 0.0316 0.0275 0.0343
0.1000 0.1000 0.1000 0.1000 0.1000

14
Table 2
Exploratory data analysis of the series considered. Due to the number of observations, the Kolmogorov-Sminrov test for normality is adopted in
associated p-values of the Dickey-Fuller and the KPSS tests for stationarity are reported.
(09/05/2016–29/03/2018)

ANA AES CAN DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI

Mean −0.0015 −0.0005 −0.0045 −0.0005 0.0000 0.0032 0.0013 0.0003 −0.0092 −0.0003 −0.0007 0.0054
Std. Deviation 0.3127 0.7086 0.4612 0.5685 0.7603 0.4184 0.6126 0.0667 1.0939 0.2951 0.5256 1.6895
Min −8.3657 −8.5695 −17.1965 −6.6416 −9.6321 −3.6688 −5.2387 −0.6217 −13.8826 −12.8402 −7.6234 −34.4226
Max 3.7182 10.7099 14.3815 6.5628 10.5759 4.2803 5.4795 0.6585 21.9190 3.3580 7.5691 34.7628
Skweness −1.7878 −0.1906 −5.8680 −0.2275 0.0911 0.0493 −0.3339 0.3446 0.6017 −9.3001 −0.0698 0.8649
Kurtosis 72.9088 35.5819 423.4997 28.9009 36.5251 15.1058 17.3413 36.5411 66.8865 419.7467 53.2526 101.3114
Kolm. t . stat. 0.2872 0.2576 0.2696 0.2835 0.2342 0.2718 0.2648 0.4399 0.2652 0.3070 0.2935 0.2257
Kolm. p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
DF t . stat. −47.2078 −50.6489 −46.6261 −50.4284 −50.6923 −57.6236 −52.4630 −54.1766 −48.6654 −50.2723 −51.1224 −47.7949
DF p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
KPSS stat 0.1414 0.0155 0.1606 0.0630 0.0626 0.0605 0.0343 0.0539 0.3718 0.1060 0.0176 0.0387
KPSS p-value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.0893 0.1000 0.1000 0.1000

(26/10/2018–10/05/2019)

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI

Mean 0.0079 0.0016 −0.0145 −0.0006 0.0060 −0.0022 0.0022 0.0003 0.0104 0.0053 −0.0007 0.0055
Std. Deviation 2.1697 1.5338 2.4323 0.8389 2.8989 1.3800 0.8406 0.0656 3.8024 1.3659 0.5781 2.2506
Min −27.0106 −17.2372 −24.6358 −6.1559 −24.1935 −12.3153 −8.8194 −0.4471 −41.8479 −11.1166 −5.4102 −21.9921
Max 26.1996 18.7566 24.8999 6.9390 22.7915 12.3872 8.6189 0.3615 40.9288 11.0580 5.2053 22.4000
Skweness −0.2296 0.7305 −0.0618 −0.3039 −0.1741 0.2325 0.5157 −0.2896 0.0196 0.0515 −0.2343 −0.2159
Kurtosis 47.4203 52.9197 34.5855 21.1393 30.9132 37.4122 31.7782 15.4785 33.8791 29.2221 27.9577 26.2839
Shapiro t . stat. 0.3710 0.4670 0.3945 0.5968 0.4429 0.4528 0.5746 0.6277 0.5099 0.4557 0.5111 0.5600
Shapiro p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
DF t . stat. −24.4804 −24.8217 −22.9151 −24.9950 −23.7368 −22.8723 −24.7452 −18.4441 −24.4323 −23.9530 −23.4678 −23.4181
DF p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
KPSS t . stat. 0.0192 0.0497 0.0646 0.0171 0.0145 0.0176 0.0192 0.0640 0.0141 0.0208 0.0191 0.0356
KPSS p-value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
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interactions, defined by the sparsity induced in the objec-
tive function (22).

To train the component-wise feedforward neural net-
orks, we apply the Adam optimizer with a constant

earning rate. Different learning rates (0.0001, 0.001, 0.01,
nd 0.1) are tuned and the optimal learning rate for both
efore and after the introduction of Tobalaba is 0.1. The
nitial number of hidden nodes is set equal to z1 = 30 and
z2 = 35. Following Montgomery and Eledath (1995), the
tuning parameters of the algorithm are κ = 1, µ = 0.2,
χ = 0.000001, and the number of epochs is 7000. The
same parameters are adopted for both subsamples. The
optimal combination of α and λ is obtained by cross-
validation. The domain of the two hyper-parameters was
discussed earlier. As in the simulation exercise (see
Appendix A), we consider 75% of the dataset to train the
network and 25% of the sample to obtain the out-of-
sample RMSE associated with each combination.

Fig. 3 shows an increase in the number of edges in
the network after the introduction of Tobalaba (from 63
to 165) and, in particular, there is an increase in bi-
directional edges. This finding clearly reveals the increase
in connections after the introduction of the platform and
can be justified by the introduction of the distributed
ledgers and smart contracts that allow significantly more
contracts to be stipulated due to the reduction of trans-
action costs, the increase in information, and the absence
of intermediaries.

5.2.1. Centrality measures
In this section, we study different centrality measures

to interpret the results with respect to the importance
of the firms in the Tobalaba platform. Table 3 reports
different measures of the degree centrality for each net-
work, the betweenness centrality, the eigen centrality,
the page rank, and the in-degree and out-degree central-
ity reported below. The different measures reported in
Table 3 are used to identify the central nodes in the two
uncovered networks; the different centrality measures
allow the absence of a general definition of centrality to
be overcome (Rodrigues, 2019).

Looking at degree centrality (defined as the number
of connections relative to each node), we observe an
increase in the number of links for each vertex after
the introduction of Tobalaba. Before the introduction of
Tobalaba, the companies AES, EQNR, ITRI, and SIE were the
central nodes, whereas after the introduction of Tobalaba
the number of central nodes increases drastically to 10.12
However, as pointed out by Rodrigues (2019), degree
centrality should be considered as a local centrality mea-
sure that does not take into account the density of the
links among different nodes. In Table 3 we also report
the in-degree and out-degree centrality statistics that are
relevant in directed networks. The in-degree centrality
defines how prominent a node is and the out-degree cen-
trality measures the centrality of a node in the network.
The reported out-degree centrality measures confirm the
conclusions drawn from the other centrality measures an-
alyzed: the introduction of the new blockchain platform

12 Degree centrality higher than 20.
15
increases the number of central nodes from 4 to 12. More
interestingly, the directed measures of degree centrality
provide useful insights regarding the interactions among
the members of the network. After the introduction of
Tobalaba, all nodes become more receptive due to an
increase in the in-degree centrality for all the analyzed
companies. However, the out-degree centrality for EXC ,
FLUVIU , GE, and FP is still zero, which is in contrast to all
he other members of the network that increase the out-
egree statistic after the introduction of Tobalaba. Looking
t the core activities of the members of the network, we
ote that EXC and FLUVIU are retail distributors of energy

and, as such, are expected to receive a high number of
incoming transactions from companies that are either
producers of energy or of the infrastructures used for
distribution.

The betweenness centrality (unweighted) quantifies
the importance of a node when connecting to other ver-
tices (Bloch et al., 2017). Table 3 also shows that the de-
gree of centrality, with the exception of EXC, FLUVIU, GE,
and FP, changes after the introduction of Tobalaba. Before
the introduction of Tobalaba, the betweenness centrality
identifies ITRI as the primary central node, implying that
a removal of ITRI from the network would have implied
a disruption of the overall network activity. Conversely,
after the introduction of Tobalaba, the primary central
node is PCG. It is also interesting to see, after the in-
troduction of Tobalaba, how the number of nodes that
influence the flow of information circulating through the
network increases. The betweenness centrality for the
majority of the vertices in the network is zero before
the introduction of Tobalaba and increases, in most cases,
after the introduction of the blockchain platform.

Eigenvector centrality (Bonancich, 1987) takes into ac-
count not only the connections of the particular node
but also how many links the connected neighbours have.
In other words, it measures the ‘‘prestige’’ (Bloch et al.,
2017) of a node. Before the introduction of Tobalaba,
the eigenvector centrality confirms the conclusions drawn
from the betweenness centrality. After the introduction of
Tobalaba, DUK is identified as the primary central node.
Also, in this case, it is possible to note how the degree of
centrality increases for all the members of the network,
with the companies ANA, AES, CNA, IBE, IGY, ITRI, PCG, SIE,
and WPRO characterized by an eigenvalue of centrality
close to unity.

Finally, the page rank is also analyzed. The page rank is
a variant of the eigenvector centrality that also takes into
account the directions of the different links. Before the
introduction of Tobalaba, the page rank identifies PCG and
EXC as central nodes; after the introduction of Tobalaba,
the degree of centrality of the different nodes becomes
more uniform, reducing the spread in page rank across the
different members.

To summarize, the different centrality measures con-
firm an increase in the degree of centrality associated
with each vertex of the Granger causal network after
the introduction of Tobalaba. The increase in the number
of central nodes can be associated with an increase in
the number of bilateral transactions due to the newly
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network.
PCG RDSA SIE FP WPRO

6 5 17 4 3
6 3 2 3 3
0 2 15 1 0
0.0000 0.0000 0.6667 0.0000 0.0000
0.4366 0.3451 0.8904 0.2971 0.2802
0.1069 0.0490 0.0450 0.0480 0.0475

24 18 25 11 25
11 11 10 11 9
13 7 15 0 16
17.3520 0.9917 4.5448 0.0000 2.6096
0.9055 0.7214 0.9254 0.4586 0.9301
0.0830 0.0609 0.0606 0.0635 0.0526
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Table 3
Centrality Measures: Degree centrality, betweenness centrality, eigen centrality, and page rank before and after the introduction of the Tobalaba

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI

(09/05/2016–29/03/2018)

Degree 4 13 3 5 5 18 6 4 7 3 4 19
In-Degree 4 3 3 5 5 2 6 3 4 3 4 4
Out-Degree 0 10 0 0 0 16 0 1 3 0 0 15
Betweennes 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 19.3333
Eigen 0.3533 0.7329 0.2802 0.3878 0.4069 0.9191 0.4199 0.3221 0.5372 0.2802 0.3533 1.0000
Page Rank 0.0515 0.0475 0.0475 0.0724 0.0661 0.0451 0.1127 0.0475 0.0515 0.0475 0.0515 0.0626

(26/10/2018–10/05/2019)

Degree 23 20 22 27 20 12 8 9 11 25 25 25
In-Degree 7 10 10 11 10 10 8 9 11 9 9 9
Out-Degree 16 10 12 16 10 2 0 0 0 16 16 16
Betweennes 0.7100 1.1445 3.0056 5.2286 1.0215 0.3270 0.0000 0.0000 0.0000 2.1262 2.4052 3.5334
Eigen 0.8644 0.8216 0.8305 1.0000 0.7846 0.4841 0.3453 0.3879 0.4423 0.9353 0.9337 0.9306
Page Rank 0.0448 0.0561 0.0593 0.0648 0.0561 0.0554 0.0459 0.0513 0.0829 0.0533 0.0533 0.0563
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a

adopted blockchain technology, thereby reducing the
overall network reliance on a single central vertex, in-
creasing its activity, robustness, and reliability.13

5.2.2. Structure of neural network
Table 4 reports the optimal α, λ, and structure of the

component-wise feedforward neural networks fitted to
construct the networks reported in Fig. 3. These results
highlight the sensitivity of the structure of the neural net-
work to the amount of information transmitted through
it, and, hence, the importance of constructing an optimal
neural network prior to uncovering the presence of the
predictive ability between the variables. Before the intro-
duction of Tobalaba, the optimal number of nodes in the
first and second hidden layers is lower than the number
of hidden nodes after the introduction of Tobalaba. After
the introduction of Tobalaba, the larger number of hidden
nodes captures the higher number of interactions that
arise between firms due to the increase in the number
of bilateral (decentralized) transactions, which increases
the interdependencies between operating firms, naturally
leading to a ‘more dense’ network architecture to capture
them. The optimal construction of the neural network
obtained from applying the algorithm from Montgomery
and Eledath (1995) guarantees that the network does
not propagate noise through the neural network, instead
only considering meaningful information for the analy-
sis of Granger causality and the predictive ability of the
variables.

To add robustness to the results of this exercise, we
also consider a reduced dataset. In particular, both sub-
samples are reduced to the first 25% of the observations.
In these cases, the number of edges observed before the
introduction of Tobalaba is 63, and the number after the
introduction of Tobalaba is 143. These results corroborate
previous findings: there is no change in the number of
connections and interactions between the firms before
the introduction of Tobalaba; conversely, after the intro-
duction of Tobalaba, when the first 25% of the dataset is
used, we observe a reduction in the number of edges com-
pared to Fig. 3, showing that the number of interactions
between the firms has increased over time.

5.2.3. Forecast accuracy
The original definition of lagged causality (Granger,

969), xj,t−l ⇒ xit , involves an increase in the forecast
ccuracy of time series xit given the lagged values of the

time series xjt . The edges of the Granger causal network
reported above are identified by the Granger causal in-
teractions discovered by the objective function (22). Once
the parameters are estimated and the weights penalized,
it is possible to forecast out of sample. Consequentially,
the Granger causal network that we have uncovered in
this empirical exercise can be justified as a framework for

13 It is worth noting that the increase in the number of central nodes,
and thus in the number of critical companies and connections, may
have a significant impact on the study of cascading failures based on
the dependency risk methodology of Kotzanikolaou et al. (2013). The
study of cascade failure and risk transmission will be the subject of
future research.
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improving the forecasts of a multivariate time series of
the log returns of 17 firms.

We formalize this claim by comparing the component-
wise forecast accuracy of the feedforward neural net-
work against several benchmark models. To obtain the
one-step-ahead forecasts, a rolling window approach is
implemented. We compare the predictive ability of the
constructed Tobalaba network against the different bench-
mark models by applying a one-sided Diebold–Mariano
test (1995). The hypothesis of the predictive ability can be
written in terms of the mean square forecast error (MSFE)
between both predictive models. For each i, we have:

H0 : MSFE i
nn ≥ MSFE i

VAR, (32)

and the alternative is:

HA : MSFE i
nn < MSFE i

VAR, (33)

with MSFE i
nn denoting the mean square forecast error for

the prediction obtained from the neural networks, and
MSFE i

VAR the corresponding quantity obtained from the
alternative models. Table 5 reports the test statistics and
the p-value of the one-sided Diebold–Mariano test (1995)
for different benchmark models.

In the absence of a relevant model for an unknown
data generating process, the linear VAR(K ) is chosen as
the first benchmark as it can be considered the best
linear approximation of a process that may be nonlinear.
Moreover, Plagborg-Møller and Wolf (2020) show how,
for a large number of lags, a VAR(K ) is as robust to
nonlinearities as the linear projection. The maximum lag
length allowed in the VAR(K ) is 10; the optimal lag is
selected using the AIC scores. The top panel in Table 5
corresponds to the period before the introduction of the
Tobalaba network and the bottom panel corresponds to
the period afterwards. For the first period, we fail to reject
the null hypothesis of equal forecast ability in six cases, at
a 0.05 significance level. However, after the introduction
of Tobalaba, the null hypothesis is rejected in all cases.
The higher forecast accuracy of the feedforward neural
network for each vertex is a result of including nonlinear
interactions between the variables and also a potentially
larger persistence compared to the VAR(10) model.

As a robustness exercise, we also propose three differ-
ent benchmark models that compete against our neural
network specification. First, we select the optimal lag of
our VAR(K ) model using the BIC score instead of the AIC
score.14 In addition to the model obtained from the BIC
score, we also consider two alternative benchmarks given
by a linear VAR(K ) model estimated using a component-
wise hierarchical group lasso, as in Nicholson et al. (2014).
This benchmark defines the best linear VAR alternative
that can be considered in such high-dimensional multi-
variate time series. This model is, therefore, a suitable al-
ternative strategy in large dimensions for our feedforward
neural network. Finally, we also consider an ARIMA(p, d,

14 Lütkepohl (1985) shows in his simulation study with VAR models
that the BIC outperforms other model selection criteria by choosing
the correct autoregressive order and by returning the smallest mean
squared forecast error from one-step-ahead forecasts
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Table 4
Optimal λ and α returned from cross-validation for each of the fitted Feedforward Neural Networks. The structure of the Network selected by the
Algorithm of Montgomery and Eledath (1995) is also reported.

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI PCG RDSA SIE FP WPRO

(09/05/2016–29/03/2018)

z1 3 6 2 1 1 11 3 2 7 2 3 20 3 3 1 5 11
z2 2 3 1 1 1 4 1 2 1 1 2 4 2 1 1 1 3
α 0.1 0.3 0.2 0.2 0.3 0.4 0.1 0.3 0.3 0.1 0.1 0.2 0.3 0.3 0.4 0.3 0.3
λ 0.3 0.2 0.7 1 0.8 0.3 0.4 0.5 0.3 0.9 0.5 0.4 0.9 0.5 0.2 0.7 0.6

(26/10/2018–10/05/2019)

z1 28 28 17 24 24 19 15 2 29 19 2 27 30 20 17 21 18
z2 7 8 3 7 6 4 4 2 11 5 1 7 11 5 4 5 4
α 0.2 0.4 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.3 0.1 0.2 0.1 0.1 0.3 0.3
λ 0.4 0.9 0.4 0.3 0.5 0.6 0.9 0.5 1 0.1 0.1 0.1 0.1 0.4 0.2 1 0.3
q) process; this model does not accommodate any feed-
back effect from other input variables and, hence, fails
to incorporate Granger causal interactions. The predic-
tive ability of these models is compared, as before, using
the Diebold and Mariano (1995) tests in Table 5. The
choice of these benchmarks allows us to understand dif-
ferent aspects regarding the performance of the proposed
methodology in uncovering Granger causal relations.

The results show that the forecasts of the VAR(K )
model obtained using the BIC score have a similar predic-
tive ability to the VAR(K ) model using the AIC score. Both
models fare poorly with respect to the feedforward neural
network in terms of predictive ability. The second bench-
mark is given by a high-dimensional VAR - optimized
over one-step ahead forecasts - with the component-
wise hierarchical group lasso proposed by Nicholson et al.
(2014). Despite both procedures - Nicholson et al. (2014)’s
VAR benchmark and our methodology - being able to
accommodate high-dimensional systems, the results in
Table 5 report statistically significant differences in one-
step-ahead forecasts between the two models. These re-
sults provide evidence that the neural network is able to
outperform state-of-the-art high-dimensional linear VARs
with induced sparsity via convex regularizers. The main
reason for this is the ability of feedforward neural net-
work models to capture the nonlinearities in the under-
lying data generating process. Finally, an ARIMA(p, d, q)
is used to further validate the Granger causal network
discovered with our novel methodology against a time
series linear model that exhibits no Granger causality.
The results reported in the bottom panels of Table 5 pro-
vide further empirical support of the feedforward neural
network model.

6. Conclusions

This paper has proposed a new methodology for the
detection of Granger causality in a vector autoregres-
sive setting using feedforward neural networks. To do
this, we have constructed an optimal neural network that
maximizes the mutual information transfer between in-
put and output nodes. In a second stage, we propose a
novel objective function that introduces sparsity in high-
dimensional systems and controls for the number of con-
nections between the input variables and the nodes in

the first hidden layer. The newly proposed objective func-

18
tion detects the Granger causal interactions between the
variables and also the optimal lag length associated with
each input variable, allowing different lag orders for each
endogenous time series.

The simulation study shows, in finite samples, the im-
portance of using an optimal network structure to reduce
type I and type II errors. In particular, we show that the
number of nodes in the first hidden layer has a signif-
icant impact on the correct detection of Granger causal
interactions. Our simulations also show the consistency
of the algorithm used to detect the optimal number of
nodes in each hidden layer as the sample size increases.
We compare the performance of our approach against
a hierarchical group lasso penalty function. The results
show clear evidence that our method outperforms others
in detecting Granger causality.

The empirical application shows that after the intro-
duction of the Tobalaba network there is an increase in
the number of edges among the 17 companies studied.
Moreover, the centrality measures obtained show an in-
crease in the number of central nodes in the network after
the introduction of the new platform. Our results demon-
strate how the introduction of the blockchain platform
has changed the structure of the connections between the
firms trading in the platform due to the introduction of
smart contracts and disintermediation. The application of
the Diebold–Mariano test (1995) shows that the Granger
causal network constructed using the algorithm proposed
in this paper outperforms, in terms of forecast accuracy,
several linear VAR(K ) models in low and high dimensions,
and provides empirical evidence of the importance of our
nonlinear method for forecasting.

Since the paper focused on Granger causality, forecast-
ing, estimation, and inference within regularized neural
networks were thus not analyzed. The recent contribution
by Hecq et al. (2019) develops an LM test for Granger
causality in high-dimensional VAR models based on pe-
nalized least squares estimations. To obtain a test that
retains an appropriate size after the variable selection
performed by the lasso, these authors propose a post-
double selection procedure to partially remove the effects
of nuisance variables and establish its uniform asymptotic
validity. Although the method performs very well in high-
dimensional settings, it is devised for linear parametric
settings. In contrast, the method presented in this paper
based on detecting Granger causality through sparsity
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3 3.7315 0.6025 1.1613 0.5325 2.8867
01 0.0002 0.2744 0.1248 0.2980 0.0025

4 4.4937 0.6554 0.5775 0.97435 2.4512
01 <.0001 0.2572 0.2827 0.1666 0.0008

6 2.2178 −0.3449 1.0025 −0.7035 6.7251
01 0.0149 0.6344 0.1598 0.7580 <.0001

9 1.5788 1.7826 1.9389 1.5764 4.4666
9 0.0598 0.0395 0.0283 0.0598 <.0001

0 5.8294 6.0783 3.7364 5.5485 5.7272
01 <.0001 <.0001 0.0002 <.0001 <.0001

8 4.4794 4.9785 3.3436 4.1410 5.3268
01 <.0001 <.0001 0.0007 <.0001 <.0001

4 2.1622 1.7082 3.9536 −0.5101 3.7499
01 0.01703 0.0460 <.0001 0.6942 0.0002

3 0.7802 1.8874 0.9494 0.3256 3.4211
9 0.2190 0.0316 0.1729 0.3728 0.0005

19
Table 5
Test statistics and p-values for the one sided Diebold–Mariano (1995) test.

ANA AES CNA DUK EGIE3 EQNR EXC FLUVIU GE IBE IGY ITRI

(09/05/2016–29/03/2018)

VAR(10) - AIC

DM t-stat 0.7109 3.5557 −0.3475 4.1242 3.4742 2.7946 1.8170 1.7894 3.3899 −0.1324 5.9087 4.200
P-value 0.2398 0.0003 0.6354 <.0001 0.0005 0.0034 0.0367 0.0390 0.0006 0.5526 <.0001 <.00

VAR(10) - SC/BIC

DM t-stat 0.8314 1.4418 −0.3375 5.0691 3.2742 1.8498 3.7063 −0.0756 1.2011 −0.2029 5.1596 4.009
P-value 0.2043 0.0770 0.6316 <.0001 0.0009 0.0343 0.0002 0.5301 0.1169 0.5801 <.0001 <.00

VAR(10) - H. Lasso

DM t-stat 0.5715 2.8837 3.2669 4.6904 5.5815 1.8014 4.3471 −1.3607 1.8002 −0.4502 5.9700 5.781
P-value 0.2848 0.0026 0.0008 <.0001 <.0001 0.038 <.0001 0.9110 0.0381 0.6730 <.0001 <.00

ARIMA

DM t-stat 0.2950 1.6813 −0.1464 4.0966 1.3429 0.6443 4.2751 −1.1433 3.3477 3.1960 1.9294 2.424
P-value 0.3844 0.04862 0.558 <.0001 0.0918 0.2608 <.0001 0.8761 0.0006 0.0011 0.0289 0.000

(26/10/2018–10/05/2019)

VAR(10) - AIC

DM t-stat 4.4708 5.4614 4.4851 5.3019 7.1449 5.2264 5.3268 3.7235 6.3085 4.6958 4.6995 4.090
P-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002 <.0001 <.0001 <.0001 <.00

VAR(10) - SC/BIC

DM t-stat 5.5601 3.5373 4.1454 3.5823 4.2906 2.3727 4.8180 3.5271 5.7450 4.8650 3.6427 4.628
P-value <.0001 0.0004 <.0001 0.0003 <.0001 0.0102 <.0001 0.0004 <.0001 <.0001 0.0003 <.00

VAR(10) - H. Lasso

DM t-stat 4.1515 −1.3573 2.6058 0.0533 3.8638 2.5957 1.6365 −0.36215 −0.29011 3.9205 −1.5090 7.907
P-value <.0001 0.9105 0.0056 0.4788 0.0001 0.0057 0.0531 0.6408 0.6137 0.0001 0.9321 <.00

ARIMA

DM t-stat −0.6447 1.3833 1.2962 3.2208 2.3887 1.6395 3.3682 0.87364 4.8382 −0.4006 2.6907 2.217
P-value 0.7394 0.0855 0.0996 0.0009 0.0098 0.0523 0.0006 0.1927 <.0001 0.6550 0.0044 0.014
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induction presents a suitable alternative that works in
more general settings. Future research will extend the
current work to the derivation of nonasymptotic bounds
for regularized and non-regularized neural networks (Far-
rell et al., 2018), as well as the limiting distributions for
the two-step estimator proposed in this paper.

Another potential extension of the current research is
o couple our methodology to detect Granger causality
ith the graphic theory introduced by Eichler (2007),
ichler and Didelez (2012). The main advantages of the
nalysis of Granger causality in graph theory are the pos-
ibility of visualizing the complex dependence structures
hat may underline multivariate time series and a defini-
ion of Granger causality that can be applied to multivari-
te time series with nonlinear dependencies. Therefore,
y analyzing the matrix of the weights and error terms
f a VAR defined by our feedforward neural networks ap-
roach, it may be possible to define the directed and undi-
ected edges in a mixed path diagram in high-dimensional
nd potentially nonlinear time series.

eclaration of competing interest

The authors declare that they have no known com-
eting financial interests or personal relationships that
ould have appeared to influence the work reported in
his paper.

ppendix A. Supplementary data

Supplementary material related to this article can be
ound online at https://doi.org/10.1016/j.ijforecast.2020.
0.004.

eferences

they, S., & Imbens, G. W. (2019). Machine learning methods that
economists should know about. Annual Review of Economics, 11.

ańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector
auto regressions. Journal of Applied Econometrics, 25(1), 71–92.

elloni, A., Chernozhukov, V., & Kato, K. (2014). Uniform post-
selection inference for least absolute deviation regression and other
z-estimation problems. Biometrika, 102(1), 77–94.

illio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric
measures of connectedness and systemic risk in the finance and
insurance sectors. Journal of Financial Economics, 104(3), 535–559.

Bloch, F., Jackson, M. O., & Tebaldi, P. (2017). Centrality measures in
networks. Available at SSRN 2749124.

Bonancich, P. (1987). Power and centrality: A family of measures.
American Journal of Sociology, 92(5), 1170–1182.

Box, G. E., & Tiao, G. C. (1977). A canonical analysis of multiple time
series. Biometrika, 64(2), 355–365.

hakraborty, K., Mehrotra, K., Mohan, C. K., & Ranka, S. (1992). Forecast-
ing the behavior of multivariate time series using neural networks.
Neural Networks, 5(6), 961–970.

ybenko, G. (1989). Approximation by superposition of a sigmoidal
function. Mathematics of Control, Signals and Systems, 2(4), 303–314.

De Veciana, G., & Zakhor, A. (1992). Neural net based continuous phase
modulation receivers. IEEE Transactions on Communications, 40(8),
1396–1408.

Diebold, F. C., & Mariano, R. S. (1995). Comparing predictive accuracy.
Journal of Business & Economic Statistics, 13(3), 253–263.

Dufour, J. M., & Taamouti, A. (2010). Short and long run causality
measures: Theory and inference. Journal of Econometrics, 154(1),
42–58.

Eichler, M. (2007). Granger causality and path diagrams for multivariate
time series. Journal of Econometrics, 137(2), 334–353.
20
Eichler, M., & Didelez, V. (2012). Causal reasoning in graphical time
series models. arXiv preprint arXiv:1206.5246.

Energy Web Foundation (2018). The energy web chain: Accel-
erating the energy transition with an open-source, decentral-
ized blockchain platform. Available at: http://www.energyweb.org/
papers/the-energy-web-chain.

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized like-
lihood and its oracle properties. Journal of the American statistical
Association, 96(456), 1348–1360.

Farrell, M. H., Liang, T., & Misra, S. (2018). Deep neural networks for
estimation and inference: Application to causal effects and other
semiparametric estimands. arXiv preprint arXiv:1809.09953.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized
dynamic-factor model: Identification and estimation. Review of
Economics and Statistics, 82(4), 540–554.

Géron, A. (2017). Hans-on machine learning with scikit-learn &
tensorflow. O’Reilly.

Geweke, J. (1982). Measurement of linear dependence and feedback
between multiple time series. Journal of the American Statistical
Association, 77(378), 304–313.

Geweke, J. (1984). Inference and causality in economic time series
models. Handbook of Econometrics, 2, 1101–1144.

lorot, X., & Bengio, Y. (2010). Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteen
international conference on artificial intelligence and statistics (pp.
249–256).

oodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
press.

ranger, C. W. (1969). Investigating causal relations by econometric
models and cross-spectral methods. Econometrica, 37(3), 424–438.

astie, T., Tibshirani, R., & Friedman, J. (2005). The elements of statistical
learning. Springer.

ecq, A., Margaritella, L., & Skeekes, S. (2019). Granger causality testing
in high-dimensional VARs: a post-double-selection procedure. arXiv
preprint arXiv:1902.10991v3.

ornik, K. (1991). Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4(2), 251–257.

aastra, I., & Boyd, M. (1996). Designing a neural network for fore-
casting financial and economic time series. Neurocomputing, 10(3),
215–236.

oop, G. M. (2013). Forecasting with medium and large Bayesian VARs.
Journal of Applied Econometrics, 28(2), 177–203.

otzanikolaou, P., Theoharidou, M., & Gritzalis, D. (2013). Assessing n-
order dependencies between critical infrastructures. International
Journal of Critical Infrastructures, 6(9(1-2)), 93–110.

eCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436–444.

ütkepohl, H. (1985). Comparison of criteria for estimating the order
of a vector autoregressive process. Journal of Time Series Analysis,
6(1), 35–52.

ontgomery, M. C., & Eledath, J. K. (1995). Maximum information
transfer in feedforward neural networks. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.330&
rep=rep1&type=pdf.

organ, J. P. (2018). Blockchain and the decentralization revolution (pp.
1–21).

icholson, W. B., Wilms, I., Bien, J., & Matteson, D. S. (2014). High
dimensional forecasting via interpretable vector autoregression.
arXiv preprint arXiv:1412.5250.

eña, D., & Box, G. E. (1987). Identifying a simplifying structure in
time series. Journal of the American statistical Association, 82(399),
836–843.

lagborg-Møller, M., & Wolf, C. K. (2020). Local projections and vars
estimate the same impulse responses. Econometrica, forthcoming.

eed, R., Marks, R. J., & Oh, S. (1995). Similarities of error regularization,
sigmoid gain scaling, target smoothing, and training with jitter. IEEE
Transactions on Neural Networks, 6(3), 529–538.

odrigues, F. A. (2019). Network centrality: an introduction. arXiv
preprint arXiv:1901.07901v1.

cardapane, S., Comminiello, D., Hussain, A., & Uncini, A. (2017). Group
sparse regularization for deep neural networks. Neurocomputing,
241, 81–89.

chmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks, 61, 85–117.

https://doi.org/10.1016/j.ijforecast.2020.10.004
https://doi.org/10.1016/j.ijforecast.2020.10.004
https://doi.org/10.1016/j.ijforecast.2020.10.004
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb1
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb1
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb1
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb2
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb2
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb2
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb3
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb3
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb3
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb3
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb3
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb4
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb4
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb4
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb4
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb4
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb5
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb5
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb5
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb6
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb6
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb6
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb7
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb7
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb7
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb8
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb8
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb8
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb8
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb8
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb9
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb9
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb9
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb10
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb10
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb10
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb10
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb10
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb11
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb11
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb11
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb12
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb12
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb12
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb12
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb12
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb13
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb13
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb13
http://arxiv.org/abs/1206.5246
http://www.energyweb.org/papers/the-energy-web-chain
http://www.energyweb.org/papers/the-energy-web-chain
http://www.energyweb.org/papers/the-energy-web-chain
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb16
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb16
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb16
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb16
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb16
http://arxiv.org/abs/1809.09953
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb18
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb18
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb18
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb18
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb18
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb19
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb19
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb19
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb20
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb20
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb20
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb20
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb20
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb21
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb21
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb21
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb23
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb23
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb23
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb24
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb24
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb24
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb25
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb25
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb25
http://arxiv.org/abs/1902.10991v3
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb27
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb27
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb27
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb28
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb28
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb28
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb28
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb28
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb29
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb29
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb29
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb30
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb30
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb30
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb30
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb30
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb31
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb31
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb31
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb32
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb32
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb32
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb32
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb32
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.330&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.330&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.330&rep=rep1&type=pdf
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb34
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb34
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb34
http://arxiv.org/abs/1412.5250
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb36
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb36
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb36
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb36
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb36
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb37
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb37
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb37
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb38
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb38
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb38
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb38
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb38
http://arxiv.org/abs/1901.07901v1
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb40
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb40
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb40
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb40
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb40
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb41
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb41
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb41


H. Calvo-Pardo, T. Mancini and J. Olmo International Journal of Forecasting xxx (xxxx) xxx
Schreiber, T. (2000). Measuring information transfer. Physical Review
Letters, 85(2), 165–461.

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2013). A sparse-
group lasso. Journal of Computational and Graphical Statistics, 22(2),
231–245.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal
of the Econometric Society, 48(1), 1–48.

Skripnikov, A., & Michailidis, G. (2019). Joint estimation of multiple
network Granger causal models. Econometrics and Statistics, 10,
120–133.

Song, X., & Taamouti, A. (2018). Measuring nonlinear granger causality
in mean. Journal of Business & Economic Statistics, 36(2), 321–333.

Song, X., & Taamouti, A. (2019). A better understanding of granger
causality analysis: A big data environment. Oxford Bulletin of
Economics and Statistics, 81(4), 911–936.

Stekhoven, D. J. (2013). missForest: Nonparametric missing value
imputation using random forest, R package version 1.4.0.

Stock, J. H., & Watson, M. W. (2002). Forecasting using principal
components from a large number of predictors. Jounral of the
American Statistical Association, 97(460), 1167–1179.

Taamouti, A., Bouezmarni, T., & El Ghouch, A. (2014). Nonparametric
estimation and inference for conditional density based Granger
causality measures. Journal of Econometrics, 180(2), 251–264.
21
Tank, A., Covert, I., Foti, N., Shojaie, A., & Fox, E. (2018). Neural Granger
causality for time series. arXiv preprint arXiv:1802.05842.

Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B. Statistical
Methodology, 58(1), 267–288.

Urban, S. (2017). Neural network architectures and activation functions:
A Gaussian process approach (Doctoral dissertation), Technische
Universität München.

Wiener, N. (1956). The theory of prediction in modern mathematics for
engineers. New York: McGraw-Hill.

Wilms, I., Gelper, S., & Croux, C. (2016). The predictive power of the
business and bank sentiment of firms: A high-dimensional granger
causality approach. European Journal of Operational Research, 254(1),
138–147.

World Bank (2018). Distributed ledger technology (DLT) and
blockchain. FinTech Note, 1, 1–60.

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society. Series
B. Statistical Methodology, 68(1), 49–67.

Zhou, N., & Zhu, J. (2010). Group variable selection via a hierarchical
lasso and its oracle property. arXiv preprint arXiv:1006.2871.

http://refhub.elsevier.com/S0169-2070(20)30158-8/sb42
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb42
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb42
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb43
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb43
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb43
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb43
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb43
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb44
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb44
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb44
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb45
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb45
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb45
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb45
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb45
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb46
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb46
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb46
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb47
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb47
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb47
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb47
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb47
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb48
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb48
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb48
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb49
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb49
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb49
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb49
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb49
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb50
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb50
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb50
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb50
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb50
http://arxiv.org/abs/1802.05842
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb52
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb52
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb52
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb52
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb52
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb53
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb53
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb53
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb53
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb53
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb54
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb54
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb54
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb55
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb56
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb56
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb56
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb57
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb57
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb57
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb57
http://refhub.elsevier.com/S0169-2070(20)30158-8/sb57
http://arxiv.org/abs/1006.2871

	Granger causality detection in high-dimensional systems using feedforward neural networks
	Introduction
	Granger causality in neural networks
	Estimation and model selection
	Stage 1: Choosing the optimal neural network
	Stage 2: Model selection
	Sparse double group lasso penalty
	Algorithm for the detection of Granger causality

	Interpretable neural networks

	Parameter identification and model selection
	Empirical analysis: Tobalaba network
	Data
	Empirical results
	Centrality measures
	Structure of neural network
	Forecast accuracy


	Conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References


