000108295 001__ 108295
000108295 005__ 20230519145348.0
000108295 0247_ $$2doi$$a10.1016/j.jcp.2020.109950
000108295 0248_ $$2sideral$$a120910
000108295 037__ $$aART-2021-120910
000108295 041__ $$aeng
000108295 100__ $$aHernández Laín, Quercus$$uUniversidad de Zaragoza
000108295 245__ $$aStructure-preserving neural networks
000108295 260__ $$c2021
000108295 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108295 5203_ $$aWe develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC (Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of balance equation, and thus no previous knowledge on the nature of the system is needed. Conservation of energy and dissipation of entropy in the prediction of previously unseen situations arise as a natural by-product of the structure of the method. Examples of the performance of the method are shown that comprise conservative as well as dissipative systems, discrete as well as continuous ones.
000108295 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MINECO-CICYT/DPI2017-85139-C2-1-R$$9info:eu-repo/grantAgreement/ES/UZ/ESI-ENSAM-Simulated Reality
000108295 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000108295 590__ $$a4.645$$b2021
000108295 591__ $$aPHYSICS, MATHEMATICAL$$b3 / 56 = 0.054$$c2021$$dQ1$$eT1
000108295 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b40 / 112 = 0.357$$c2021$$dQ2$$eT2
000108295 594__ $$a7.1$$b2021
000108295 592__ $$a2.069$$b2021
000108295 593__ $$aApplied Mathematics$$c2021$$dQ1
000108295 593__ $$aComputational Mathematics$$c2021$$dQ1
000108295 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1
000108295 593__ $$aNumerical Analysis$$c2021$$dQ1
000108295 593__ $$aModeling and Simulation$$c2021$$dQ1
000108295 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108295 700__ $$0(orcid)0000-0001-7639-6767$$aBadías Herbera, Alberto$$uUniversidad de Zaragoza
000108295 700__ $$0(orcid)0000-0003-3003-5856$$aGonzález Ibáñez, David$$uUniversidad de Zaragoza
000108295 700__ $$aChinesta Soria, Francisco
000108295 700__ $$0(orcid)0000-0003-1017-4381$$aCueto Prendes, Elías$$uUniversidad de Zaragoza
000108295 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000108295 773__ $$g426, 109950  (2021), [16 pp.]$$pJ. comput. phys.$$tJournal of Computational Physics$$x0021-9991
000108295 8564_ $$s346629$$uhttps://zaguan.unizar.es/record/108295/files/texto_completo.pdf$$yPostprint
000108295 8564_ $$s2498922$$uhttps://zaguan.unizar.es/record/108295/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108295 909CO $$ooai:zaguan.unizar.es:108295$$particulos$$pdriver
000108295 951__ $$a2023-05-18-13:23:10
000108295 980__ $$aARTICLE