000108298 001__ 108298
000108298 005__ 20211115135504.0
000108298 0247_ $$2doi$$a10.1088/1742-5468/abbcd4
000108298 0248_ $$2sideral$$a121202
000108298 037__ $$aART-2020-121202
000108298 041__ $$aeng
000108298 100__ $$aDe Arruda, G.F.
000108298 245__ $$aUniversality of eigenvector delocalization and the nature of the SIS phase transition in multiplex networks
000108298 260__ $$c2020
000108298 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108298 5203_ $$aUniversal spectral properties of multiplex networks allow us to assess the nature of the transition between disease-free and endemic phases in the SIS epidemic spreading model. In a multiplex network, depending on a coupling parameter, p, the inverse participation ratio (IPR) of the leading eigenvector of the adjacency matrix can be in two different structural regimes: (i) layer-localized and (ii) delocalized. Here we formalize the structural transition point, p*, between these two regimes, showing that there are universal properties regarding both the layer size n and the layer configurations. Namely, we show that IPR ~ n-d, with d ˜ 1, and revealed an approximately linear relationship between p. and the difference between the layers'' average degrees. Furthermore, we showed that this multiplex structural transition is intrinsically connected with the nature of the SIS phase transition, allowing us to both understand and quantify the phenomenon. As these results are related to the universal properties of the leading eigenvector, we expect that our findings might be relevant to other dynamical processes in complex networks.
000108298 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P
000108298 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000108298 590__ $$a2.231$$b2020
000108298 591__ $$aPHYSICS, MATHEMATICAL$$b14 / 55 = 0.255$$c2020$$dQ2$$eT1
000108298 591__ $$aMECHANICS$$b73 / 135 = 0.541$$c2020$$dQ3$$eT2
000108298 592__ $$a0.427$$b2020
000108298 593__ $$aStatistical and Nonlinear Physics$$c2020$$dQ3
000108298 593__ $$aStatistics, Probability and Uncertainty$$c2020$$dQ3
000108298 593__ $$aStatistics and Probability$$c2020$$dQ3
000108298 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108298 700__ $$aMéndez-Bermúdez, J.A.
000108298 700__ $$aRodrigues, F.A.
000108298 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Y.$$uUniversidad de Zaragoza
000108298 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000108298 773__ $$g2020, 10 (2020), 103405 [10 pp]$$pJ. Stat. Mech.-Theory Exp.$$tJournal of Statistical Mechanics: Theory and Experiment$$x1742-5468
000108298 8564_ $$s1032779$$uhttps://zaguan.unizar.es/record/108298/files/texto_completo.pdf$$yPostprint
000108298 8564_ $$s3279480$$uhttps://zaguan.unizar.es/record/108298/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108298 909CO $$ooai:zaguan.unizar.es:108298$$particulos$$pdriver
000108298 951__ $$a2021-11-15-08:54:23
000108298 980__ $$aARTICLE