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Universal spectral properties of multiplex networks allow us to assess the nature of the transition between
disease-free and endemic phases in the SIS epidemic spreading model. In a multiplex network, depending
on a coupling parameter, p, the inverse participation ratio (IPR) of the leading eigenvector of the adjacency
matrix can be in two different structural regimes: (i) layer-localized and (ii) delocalized. Here we formalize the
structural transition point, p∗, between these two regimes, showing that there are universal properties regarding
both the layer size n and the layer configurations. Namely, we show that IPR ∼ n−δ , with δ ≈ 1, and
revealed an approximately linear relationship between p∗ and the difference between the layers’ average degrees.
Furthermore, we showed that this multiplex structural transition is intrinsically connected with the nature of the
SIS phase transition, allowing us to both understand and quantify the phenomenon. As these results are related
to the universal properties of the leading eigenvector, we expect that our findings might be relevant to other
dynamical processes in complex networks.

Universality is at the core of physics [1, 2]. Universal prop-
erties do not change from one system to another but repre-
sent an entire class of them. They allow us to go beyond
the observation of macro variables towards the understand-
ing of the mechanisms that trigger a given behavior. Another
notable consequence of universality is that by understanding
the behavior of one system, we are able to make conclusions
about other systems of the same class or governed by the same
set of symmetries. Universality in multilayer networks was
firstly explored in [3], where the eigenvector properties of the
corresponding adjacency matrix were shown to follow a sim-
ple scaling law. Complementarily, the spectral properties of
multiplex networks have been recently explored in [4–6]. In
addition, Ref [7] reported a non-trivial relationship between
the eigenvalues of a relatively simple multiplex network com-
posed of two layers. However, the analysis carried out in [7]
mainly focused on the eigenvalues and their bounds rather
than eigenvectors, which may provide additional valuable in-
formation about the network structure. Although here we fo-
cus on the analysis of the adjacency matrix in multiplex net-
works, we must also remark that the spectral properties of the
Laplacian matrix were studied in [8–11] and were applied to
the study of diffusion processes in [12].

From the dynamical viewpoint, the concept of layer-
localization in multiplex networks was introduced in [5]. That
is, when a disease is on top of a multiplex network, it can be
localized in one or a subset of layers. This phenomenon de-
pends on the intra-layer configurations and also on the cou-
pling strength between layers. Moreover, it is intrinsically
linked to the localization properties of the eigenvectors of the
network adjacency matrix, commonly measured by the in-
verse participation ratio, IPR. Although this phenomenon was
well-characterized in [5], the mechanism driving it was not
fully understood. In more technical words, the leading eigen-

vector of a multiplex network can be in one of two different
regimes as a function of the coupling parameter between lay-
ers: layer-localized regime and delocalized regime. However,
the precise definition of the structural transition between those
regimes, to the best of our knowledge, is still lacking in the lit-
erature. Therefore, here we propose a definition for the transi-
tion point between layer-localization to delocalization, show-
ing that it can be used to collapse the IPR curves in a wide
range of network configurations. This collapsing also reveals
the universality of the transition. Finally, as an application,
we analyze the disease spreading on multiplex networks, pro-
viding a dynamical condition for the layer-localization to the
delocalization phase transition.

In its more general form, multiplex networks are composed
by m layers [13–16]. Each layer has at most n nodes which
might have a counterpart in the other layers. Here, we restrict
to 2-layer multiplex networks (i.e., m = 2) where each layer
has n nodes and each node has a counterpart on the other layer.
Formally, these networks can be represented by the adjacency
matrix A whose eigenvalue problem is given as[

A1 p I
p I A2

] [
v1

v2

]
= λ

[
v1

v2

]
= λv = Av, (1)

where A1,2 are the individual adjacency matrices, v1,2 are the
respective sub-vector components, p is the coupling weight,
and ∥ v ∥= 1. Furthermore, we focus on the case where
there is layer dominance [6, 17], i.e., λ1 ≫ λ2, where λ1 and
λ2 are the leading eigenvalues of the individual layers. As
a consequence, the components of the leading eigenvector of
A2 should be relatively small, i.e., (v2)j ≈ 0. This can be
easily seen using perturbation theory, see e.g. [17].

In network theory [18–22], the inverse participation ratio is
commonly used to characterize the localization features of a
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FIG. 1: (a) Contribution of the dominating and non-dominating network layers to the IPR as a function of p for several 2-layer network
configurations considering Erdös-Rényi (ER) and power-law (PL) layers. In (b), we present an example, where the layer-localized and delo-
calized regimes are characterized by log(IPRNDL(p < p∗)) ≈ α log(p) + c1 and log(IPRDL(p > p∗)) ≈ c2 (dashed and dot-dashed lines),
respectively, and the delocalization transition coupling p∗ is given as the crossing of these two curves (vertical dotted line). Here α ≈ 4,
c1 = −9.698 and c2 ≈ 8.92× 10−6.

network [5, 24, 25]. It is defined as

IPR(v) =
N∑
i

v4
i . (2)

It is instructive to recall the IPR(v) behavior in single-layer
networks. If the leading eigenvector is fully delocalized,
IPR(v) ∼ N−1, which is the case of Erdös – Rényi net-
works above the percolation transition. On the other hand,
if IPR(v) ∼ N−δ , with δ < 1, then some form of local-
ization is present, which is the case of power-law (PL) net-
works, P (k) ∼ k−γ , where IPR(v) ∼ N−( 3−γ

2 ), as demon-
strated in [23]. While, in the localized regime the leading
eigenvector is concentrated in a one or a finite number of
nodes and IPR(v) ∼ O(1). For the sake of notation, we
denote the IPR of the dominating and non-dominating lay-
ers as IPRDL and IPRNDL, respectively: IPRDL ≡ IPR(v1)
and IPRNDL ≡ IPR(v2). Furthermore, since A is a func-
tion of p, both, their eigenvalues and eigenvectors also de-
pend on p, therefore, IPR ≡ IPR(p). Consequently, by tun-
ing p we can observe two different eigenvector regimes char-
acterized by the IPR [5]: (i) layer-localized, where, as dis-
cussed in [5, 24], IPR ∼ O

(
1
m

)
and (ii) delocalized, where

IPR ∼ O
(

1
nm

)
. This statement is exemplified in Fig. 1 (a)

where, without loss of generality, we consider homogeneous
layers, so we can not observe node localization. Next, we
define p∗ as the crossover point between the layer-localized
and localized regimes. Thus, when p ≪ p∗, the eigenvec-
tor components are concentrated in a sub-extensive part of
the eigenvector. Such part of the eigenvector corresponds to
the dominating layer. However, the density of non-negligible
eigenvector components corresponding to the non-dominating
layer increases with the coupling parameter p. Indeed, from

Fig. 1 (a), we observe that in the localized regime, p < p∗,
the IPR’s contribution of the non-dominating layer can be
characterized by a power-law (i.e. a linear trend in log-log
scale), that is, log(IPRNDL(p < p∗)) ≈ α log(p) + c1 with
α ≈ 4. We also verified that α is independent of N , while
c1 is dependent on the system size. Moreover, in the delo-
calized regime, p > p∗, the states are evenly extended and
do not change anymore with p and they are characterized by
log(IPR(p > p∗)) ≈ c2. In this regime, the inter-layer con-
nections play the major role, while the intra-layer connections
can be interpreted as perturbations. Hence, all the nodes con-
tribute similarly to the leading eigenvector, making it delocal-
ized. Therefore, the coupling p∗, characterizing the delocal-
ization transition, can be defined as the value of p such that
IPRNDL(p < p∗) = IPR(p > p∗). This is illustrated in Fig. 1
(b). With this prescription, we were able to systematically
characterize the structural transition of the eigenvectors of our
2-layer network by means of the IPR. Importantly, Fig. 1 also
shows that different network configurations produce different
IPR functions. Note that, although all the curves have sim-
ilar behavior, they are shifted in both axes. Aside from the
dependence of the IPR on p, it also depends on the system
size as IPR(p, n) ∼ n−δ; as shown in Fig. 2 (a). Thus, for a
fixed number of layers and in the thermodynamic limit, both
regimes scale similarly with δ ≈ 1 (see Fig. 2, (a)). We re-
mark that, in the thermodynamic limit, both IPRNDL(p < p∗)
and IPR(p > p∗) vanish, however, since they obey the same
scaling we are also able to define the structural transition in
the thermodynamic limit.

As a consequence of the IPR behavior described above, and
taking into account both the dependencies on the system size
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FIG. 2: (a) Scaling of the IPR with n, IPR ∼ n−δ , for both the minimum and maximum values of p calculated: IPR(pmin) and IPR(pmax).
In both cases we estimated δ ≈ 1. The network sizes used here are n = 1 × 103, 2 × 103, 3 × 103, 4 × 103, 5 × 103, 10 × 103, 20 × 103,
and 30 × 103. (b) Collapsing of the curves IPR vs. p by the use of IPR∗ = n × IPR (see (a)) and p′ = p/p∗. In the homogeneous layer
configurations (ER networks) we used all the combinations of k1 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and k2 = {10, 20, 30, 40}. In
the mixed case, where one layer is an ER network and the other is a PL network, we considered all the combinations of γ1 = {2.25, 2.5, 3.5}
for the PL layer and k2 = {20, 30, 40} for the ER layer.

n and on the coupling parameter p (see also [5, 24]), we define

IPR∗ = n× IPR, (3)

p′ =
p

p∗
. (4)

Under these scalings, all the IPR∗ vs. p′ curves should col-
lapse on top of a universal curve. Indeed, the scaling of the
IPR is shown in Fig. 2 (b).

It is relevant to stress that the quantity driving the IPR scal-
ing, for a fixed p and fixed layer structure (i.e., the class of net-
work considered), is the network size. For example, the IPR of
an Erdös-Rényi (ER) single-layer network scales as n−1 and
node-localization is absent [23]. Furthermore, for power-law
networks (PL), P (k) ∼ k−γ , depending on the value of γ, one
can observe different scaling laws that depend on n; namely,
the network can present k-core or hub localization [23]. In
multiplex networks, the layer-localization phenomena were
already discussed in [5], in the context of disease localization.
There, it was shown that the states could be localized in one or
more layers. Moreover, in the multiplex case, p∗ depends on
the layer configurations. For instance, note that considering
a fixed value of p, by changing the average degree of a layer
in the multiplex, the eigenstates can transit from localization
to delocalization (the opposite is also true); see for example
Fig. 1. Thus, the universality is shown in Fig. 2 (a) could not
be robust against the inner configuration of the layers. We re-
mark that this behavior is adjusted by rescaling p as proposed
in Eq. (4), as shown in Fig. 2 (b). Moreover, a detailed study
of the IPR as a function of p, allows relating the structural
properties of the multiplex with the delocalization transition
coupling p∗. Interestingly enough, we found that p∗ is ap-
proximately linearly described by the difference between the

average degree of the layers; that is

p∗ = β1|⟨k1 − k2⟩|+ β2, (5)

as can be clearly seen in Fig. 3 for a wide range of param-
eter combinations. This relationship describes the change of
the IPR curves with the inner configuration of the layers. Sur-
prisingly, despite the local structures that might appear inside
the multiplex (cycles), for the range of parameters studied,
the average degree difference describes reasonably well the
eigenvector’s structural transition.

To the best of our knowledge, a definition of the eigenvector
structural transition, from layer-localization to delocalization,
is not available in the literature. This concept might seem
natural at first glance, but, since there is no abrupt transition
on the spectral properties of the adjacency matrix nor a sin-
gularity to look for, a transition in the strict sense is hard to
define. In the following, we formalize this transition and pro-
vide a definition for it. It is important to stress that this struc-
tural change, characterized by the IPR∗, is continuous, and the
IPR∗(p = p∗) does not vanish in the thermodynamic limit.
This behavior contrasts with second-order phase transitions,
where the transition is associated with a divergence, and it gets
better defined as the system size increases. Here, in the layer-
localization transition, measured by IPR∗, this phenomenon
does not occur. However, as we have two clearly defined
regimes associated only with the structure, layer-localized,
and delocalized regimes, we call it a structural transition.
We also remark that a similar nomenclature was used on the
analysis of the so-called abrupt structural transition found in
the Laplacian matrix [8–12]. Moreover, the adjacency and
the Laplacian matrices concern different dynamical processes.
So, our interest here is the adjacency matrix due to its rele-
vance to the SIS epidemic spreading process.
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FIG. 3: Delocalization transition coupling p∗ as a function of the
absolute degree difference of the two layers forming the multiplex.
The dashed line is p∗ = β1⟨k1 − k2⟩ + β2, with β1 = 1.218 and
β2 = 0.430. Same network parameters as in Fig. 2.

In [5] it was shown that the disease spreading, more pre-
cisely the SIS model, on a multilayer network might present a
transition from layer-localization to delocalization. This phe-
nomenon depends on the layer configurations, as well as the
spreading parameters [5]. Motivated by [25], the authors ex-
tended the concept of localization from node localization to
layer-localization. Here, by establishing IPR∗ as in Eq. (3),
we go one step further since this quantity does not vanish in
the thermodynamic limit. Notably, the most important contri-
bution of our analysis regards the nature of the SIS transition
on multiplex networks. From the quenched mean-field (QMF)
theory, where we assume that the individual probabilities are
independent, (see [5, 24]) we have

d

dt

[
y1

y2

]
= −µ

[
y1

y2

]
+ λ

[
A1

η
λ I

η
λ I A2

] [
y1

y2

]
+O(y2),

(6)
where the transition from a disease-free state to an endemic
state occurs at the critical point given by λc = µ/Λ1, with Λ1

being the leading eigenvalue of A, see Eq. (1), and p = η/λ
in our context. Therefore, p∗ = η/λc = ηΛ1. Moreover, we
know that if p > p∗ the eigenvectors of the multiplex are in
the delocalized regime. Conversely, if p < p∗ the eigenvectors
show layer localization. We can now translate this condition
into the SIS epidemic spreading context. Thus, from the QMF
theory, if

η >
p∗

Λ1
, (7)

where η is the inter-layer spreading rate, the disease is delocal-
ized, and the whole multiplex is active. Notice that if Eq. (7)
is not satisfied a transition from a disease-free state to a layer-
localized state is still present. Aside from that, note that the
evaluation of Eq. (7) is not trivial since p∗ and Λ1 depend on
η. We also remark that, since the delocalization transition is
continuous, i.e., it is not characterized by a divergence on a
given derivative (see for instance Fig. 2, where the finite size
effects are not present and the curves for different network
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FIG. 4: Quasi stationary simulation of a SIS epidemic spreading.
Susceptibility χ (upper panels) and order parameter ρ (lower panels)
as a function of λ, for each layer. The multiplex network used in
this simulation is composed by two ER networks with ⟨k⟩ = 30
and ⟨k⟩ = 10. From the left to the right we have three different
structural regimes: (i) the layer-localized regime with η = 0.01, (ii)
near the structural delocalization transition point, ηΛ1 ≈ p∗ with
η = 0.85, p∗ = 24.795 [from Eq. (5)] and Λ1 = 31.058, and (iii)
the delocalized regime with η = 3.0. The gray dashed lines mark
the susceptibility peaks.

sizes collapse), the corresponding dynamics is also expected
to suffer a smooth transition. This is very relevant, because
it might be easier to study localization-delocalization transi-
tions through spectral properties than from dynamical prop-
erties, which usually involves more refined and cumbersome
numerical techniques. We also want to stress that an impor-
tant consequence of the renormalization defined in Eqs. (3)
and (4) is that they allow for the analysis of finite systems.
In other words, these definitions do not require the thermody-
namic limit. For the sake of rigor, however, we remark that a
true critical point is properly defined only in the infinite size
limit.

Furthermore, in Fig. 4, we present Monte Carlo simulations
using the quasi-stationary algorithm [5, 24, 26, 27], where the
absorbing state is avoided, conferring a numerical validation
to our analysis. Here we are interested in the order parameter,
and the susceptibility, defined as

ρ =
nI

N
(8)

χ =
⟨n2

I⟩ − ⟨nI⟩2

⟨nI⟩
, (9)

respectively, where nI is the number of infected individu-
als, ρ is the average fraction of individuals, and χ is the
coefficient of variation of the number of infected individ-
uals. Importantly, in a second-order phase transition, χ
presents a peak, and this peak diverges in the thermodynamic
limit [5, 24, 26, 27]. Besides, these quantities can also be de-
fined considering the number of infected individuals in each
layer individually, here denoted by ρLayer and χLayer. From
the structural viewpoint, we evaluate the dynamical response
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of the SIS model on the different structural regimes: (i) the
layer-localized regime, ηΛ1 < p∗, (ii) near the structural
transition point, ηΛ1 ≈ p∗ and (iii) the delocalized regime,
ηΛ1 > p∗. Note that, in the layer-localized regime, the epi-
demics play a role similar to an external field for the non-
dominating layer. Thus, the non-dominating layer plays a mi-
nor role. This behavior can be observed in both, the order
parameter (for each layer) ρ, and the susceptibility (also cal-
culated individually for each layer) χ, see the left panels of
Fig. 4. In the susceptibility curves, we can even see a second
peak, as predicted in [5]. As discussed before, the eigenvec-
tor transition from layer-localization to delocalization is not a
sharp transition. This is also illustrated in the middle panels
of Fig. 4. In the transition regime, a small change in η does
not imply an important change of behavior. Note that at the
critical point (peak of susceptibility), the fraction of infected
individuals, ρ, is similar in both layers. Besides, these two
curves have different growth rates for larger values of λ. Fi-
nally, in the right panels of Fig. 4, we present the delocalized
structural regime, where the curves of χ and ρ are practically
the same for both layers. In this regime, as we increase η,
we are also increasing the leading eigenvalue of A and, thus,
moving the critical point to the left. Therefore for large η, us-
ing perturbative analysis, we can interpret the block diagonal
matrices as a perturbation on the off-diagonal ones.

In this paper, we have formalized the layer-localization to
delocalization transition in bilayer multiplex networks. This
process was already anticipated in [5]; however, a proper def-
inition was lacking. In the latter study, the different structural
regimes (layer-localized and delocalized) were characterized,
but the transition point between them was not defined. In
order to properly define the transition, we first performed a
scaling analysis of the IPR of the eigenvectors of the adja-
cency matrix of the bilayer multiplex network as a function of
the parameter associated to the coupling between the layers.
Furthermore, we also found a linear relationship between the

delocalization transition point, p∗, and the difference of the
average degree between the layers. We remark that this rela-
tionship is valid for the set of parameters evaluated here. That
is, for homogeneous-layer settings and mixed-layer settings
both with a reasonably high average degree, since in order to
observe layer-localization, layer dominance is needed.

Finally, we have also applied our results on the universality
of layer delocalization to the disease spreading. By using the
QMF approach, we were able to define a criterion for disease
layer-localization, which was validated through Monte Carlo
simulations. This constitutes a step towards a better under-
standing of the delocalization transition reported for disease
dynamics on multilayer networks [5]. We hope that our work
could also motivate further research on the impact of the layer
delocalization transition in dynamical processes, as well as on
the universality of other properties of multiplex networks.
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