000108304 001__ 108304
000108304 005__ 20230519145350.0
000108304 0247_ $$2doi$$a10.1080/10255842.2020.1836622
000108304 0248_ $$2sideral$$a121142
000108304 037__ $$aART-2021-121142
000108304 041__ $$aeng
000108304 100__ $$aSerrano-Alcalde, F.
000108304 245__ $$aCell biophysical stimuli in lobodopodium formation: a computer based approach
000108304 260__ $$c2021
000108304 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108304 5203_ $$aDifferent cell migration modes have been identified in 3D environments, e.g., modes incorporating lamellopodia or blebs. Recently, a new type of cellular migration has been investigated: lobopodia-based migration, which appears only in three-dimensional matrices under certain conditions. The cell creates a protrusion through which the nucleus slips, dividing the cell into two parts (front and rear) with different hydrostatic pressures. In this work, we elucidate the mechanical conditions that favour this type of migration. One of the hypotheses about this type of migration is that it depends on the mechanical properties of the extracellular matrix. That is, lobopodia-based migration is dependent on whether the extracellular matrix is linearly elastic or non-linearly elastic. To determine whether the mechanical properties of the extracellular matrix are crucial in the choice of cell migration mode and which mechanotransduction mechanism the cell might use, we develop a finite element model. From our simulations, we identify two different possible mechanotransduction mechanisms that could regulate the cell to switch from a lobopodial to a lamellipodial migration mode. The first relies on a differential pressure increase inside the cytoplasm while the cell contracts, and the second relies on a change in the fluid flow direction in non-linearly elastic extracellular matrices but not in linearly elastic matrices. The biphasic nature of the cell has been determined to mediate this mechanism and the different behaviours of cells in linearly elastic and non-linearly elastic matrices.
000108304 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-094494-B-C21
000108304 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000108304 590__ $$a1.669$$b2021
000108304 591__ $$aENGINEERING, BIOMEDICAL$$b84 / 98 = 0.857$$c2021$$dQ4$$eT3
000108304 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b98 / 112 = 0.875$$c2021$$dQ4$$eT3
000108304 594__ $$a2.8$$b2021
000108304 592__ $$a0.439$$b2021
000108304 593__ $$aBioengineering$$c2021$$dQ3
000108304 593__ $$aMedicine (miscellaneous)$$c2021$$dQ3
000108304 593__ $$aHuman-Computer Interaction$$c2021$$dQ3
000108304 593__ $$aBiomedical Engineering$$c2021$$dQ3
000108304 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108304 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, J.M.$$uUniversidad de Zaragoza
000108304 700__ $$0(orcid)0000-0002-1878-8997$$aGómez-Benito, M.J.$$uUniversidad de Zaragoza
000108304 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000108304 773__ $$g24, 5 (2021), 496-505$$pComput. methods biomech. biomed. eng.$$tComputer Methods in Biomechanics and Biomedical Engineering$$x1025-5842
000108304 8564_ $$s3123711$$uhttps://zaguan.unizar.es/record/108304/files/texto_completo.pdf$$yPostprint
000108304 8564_ $$s581238$$uhttps://zaguan.unizar.es/record/108304/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108304 909CO $$ooai:zaguan.unizar.es:108304$$particulos$$pdriver
000108304 951__ $$a2023-05-18-13:26:21
000108304 980__ $$aARTICLE