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Abstract

Different cell migration modes have been identified in 3D environments, e.g.,

modes incorporating lamellopodia or blebs. Recently, a new type of cellular mi-

gration has been investigated: lobopodia-based migration, which appears only

in three-dimensional matrices under certain conditions. The cell creates a pro-

trusion through which the nucleus slips, dividing the cell into two parts (front

and rear) with different hydrostatic pressures. In this work, we elucidate the

mechanical conditions that favour this type of migration.

One of the hypotheses about this type of migration is that it depends on

the mechanical properties of the extracellular matrix. That is, lobopodia-based

migration is dependent on whether the extracellular matrix is linearly elastic or

non-linearly elastic.

To determine whether the mechanical properties of the extracellular matrix

are crucial in the choice of cell migration mode and which mechanotransduc-

tion mechanism the cell might use, we develop a finite element model. From

our simulations, we identify two different possible mechanotransduction mecha-

nisms that could regulate the cell to switch from a lobopodial to a lamellipodial

migration mode. The first relies on a differential pressure increase inside the

cytoplasm while the cell contracts, and the second relies on a change in the fluid

flow direction in non-linearly elastic extracellular matrices but not in linearly

elastic matrices. The biphasic nature of the cell has been determined to medi-

ate this mechanism and the different behaviours of cells in linearly elastic and

non-linearly elastic matrices.
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1. Introduction

Cell migration is essential for many processes, such as embryogenesis, mor-

phogenesis, to maintain tissue regeneration and cancer cell progression. In re-

cent years, several studies have investigated the relationship between the me-

chanical properties of the extracellular matrix (ECM) and the mechanisms of

cellular migration [1, 2, 3]. Understanding how and why cells are able to sense

the ECM stiffness and select the best migration strategy have become crucial

for progress in these areas of research.

Cell migration in two dimensions (2D) has been extensively described in

previous experimental works [4]. These studies have revealed some basic migra-

tion mechanisms, such as lamellipodia protrusion, adhesion-mediated traction

[5] and actomyosin contractility [6, 7]. In addition, there are different studies in

2D and in three dimensions (3D) relating the mode of cell migration with the

mechanical properties of the ECM [2, 8, 9, 10, 11]. These mechanisms depend

on the cell type and their physical environments. To better understand the

cellular behaviour, several authors studied the influence of the ECM molecular

composition [12], the density and orientation of fibres, the fibre-cell interaction

[13, 14, 15], the bulk and local stiffness of the ECM [16], the dynamic of actin

filaments [17, 18] and the mechanical response of the ECM [8].

However, cell movement mainly occurs in 3D, where cells normally adopt

two modes of migration, based on lamellipodia or blebs, depending on the de-

gree of adhesion [19]. Recently, Petrie et al. [8] proposed a new mode of single

cell migration, lobopodia-based migration, which takes place only in 3D ma-

trices. In this migration mode, the nucleus has a relevant role. The effect of

the nucleus has been studied in previous works for different situations [20, 21].

In this case, the nucleus acts as a piston dividing the cell into two parts with

different pressures. The internal pressure in the leading edge is three times

larger in lobopodia-based migration than in lamellipodia-based migration [10].

In lamellipodia-based migration, the cell uses different lamellae to move instead

of a single large cylindrical protrusion (lobopodium). The possibility of mea-
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suring the internal pressure of cells [22] addresses one of the largest differences

found between these two migration modes.

Petrie et al. [8, 10] showed that a single fibroblast may switch from actin-

driven lamellipodial protrusion to a nuclear piston lobopodia-driven mode of

migration. This migration mode depends on the mechanical properties of the

ECM, primarily the deformation of the matrix. In fact, whether the ECM

is linearly elastic or non-linearly elastic is an essential factor. To elucidate

when and where the cell adopts this lobopodial migration mode, the authors

carried out experiments with different ECMs [8]. Fibroblasts were embedded in

three linearly elastic and non-linearly elastic matrices with different stiffnesses,

ranging from 8 to 647 Pa. The ECM was treated to maintain its architecture and

change its stiffness and behaviour from linearly elastic or non-linearly elastic.

An additional ECM with a higher elastic modulus was also analysed (10 kPa).

The authors found no correlation between the migration mode and stiffness of

the ECM. However, they found a strong correlation between the ECM non-linear

or linear elasticity and the migration mode. Their main conclusion was that the

mechanical properties of the ECM are related to the mode of cell migration. For

non-linearly elastic matrices, migration occurs via the lamellipodia; however, for

linearly elastic matrices, lobopodia predominate in migration. It is known that

RhoA, ROCK and myosin II govern intrinsically large protrusions, but why a

combination of these signals does not appear in non-linearly elastic ECMs is

still unclear. Furthermore, no correlation between the ECM stiffness and the

mode of migration was found [8].

Thus, the aim of this work is to elucidate how the mechanical properties

and behaviour of the ECM may influence the cell migration mode and why

cells adopt a lamellipodial migration mode in non-linearly elastic matrices and

a lobopodial mode in linearly elastic matrices. In fact, we hypothesize about the

role of the poroelastic behaviour of the cell as a possible mechanotransduction

mechanism that could distinguish the impact of different regulatory effects of

the surrounding matrix.
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2. Materials and Methods

We simulate the experiment developed by Petrie et al. [8] in which a single

cell is embedded in different ECMs. A sufficiently large ECM is simulated to

avoid border effects. The cell is in the centre of the ECM, and its geometry

is a simplified lobopodial geometry (Figure 1). This geometry is approximated

from typical lobopodia-based migration behaviour, as shown by Petrie et al.

[10]. The model is implemented in commercial finite element (FE) software

(ABAQUS).

Figure 1: Axisymmetric cell section with a simplified lobopodial geometry (units: µm).

We simulate four different extracellular matrices (Table 1). Two of them

have a constant Young’s modulus: a cell-derived matrix (CDM) [8] and a

trypsinized CDM, both without strain-dependent behaviour and with an elastic

modulus of 627 and 8 Pa, respectively. The other two ECMs initially have the

same mechanical properties but with a strain-dependent behaviour when the

cell starts to deform. Herein, the non-trypsinized CDM matrix is considered

the high-stiffness linearly elastic matrix, and the non-trypsinized matrix with

strain-dependent behaviour is considered the high-stiffness non-linearly elastic

matrix. The trypsinized CDM matrices with an elastic modulus of 8 Pa are

considered the low-stiffness linearly and non-linearly elastic matrices.
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Matrix Initial Young’s modulus (Pa) Strain-dependent?

Low stiffness, linearly elastic 8 No

Low stiffness, non-linearly elastic 8 Yes

High stiffness, linearly elastic 627 No

High stiffness, non-linearly elastic 627 Yes

Table 1: Summary of the simulated ECM properties [8].

We fix the Poisson’s ratio of the ECM as 0.48 following Petrie et al. [8]. As

a first approach, we assume finite strains in all simulations. All linearly elastic

matrices are modelled as an elastic material defined by a Young’s modulus and

Poisson’s ratio. We assume a fibrous hyperelastic material in the non-linearly

elastic ECMs [23, 24]. The fibres are assumed to be randomly distributed in the

ECM, thus an isotropic behaviour can be considered [25]. This model captures

the major features of the material properties of collagen gels, including non-

linear elasticity.

For collagen hydrogels, we use the strain energy function for fibrous hyperelastic

materials from Holzapfel-Gasser-Ogden [26]:

U = C
(
Î1 − 3

)
+

1

D

((
Jel
)2 − 1

2
− ln Jel

)
+

k1
2k2

N∑
α=1

{
exp

[
k2
〈
Ēα
〉2]− 1

}
(1)

with

Ēα = κ
(
Î1 − 1

)
+ (1− 3κ)

(
Î4(αα) − 1

)
(2)

where C,D, k1, k2 and κ are material parameters, N is the number of families of

fibres (N ≤ 3), Î1 is the first invariant of the right Cauchy-Green deformation

tensor, Jel is the elastic volume ratio and Î4(αα) are pseudo-invariants of the

right Cauchy-Green deformation tensor. In our simulations, the parameter κ

is fixed to 0.33 assuming a random distribution of fibres, thus resulting in an

isotropic material. The values of k1 and k2 are 40, 000 Pa and 85, respectively,
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for the stiff matrix and 1, 000 Pa and 20 for the compliant matrix.

To simplify the cell complexity, we simulate only the cytoplasm and the

nucleus. The cell nucleus is considered a neo-Hookean hyperelastic material with

an initial Young’s modulus ten times larger than the stiffness of the cytoplasm

following Friedl et al. [27] and Dahl et al. [28] (Table 2) and a Poisson’s ratio

of 0.49, in accordance with the work of Vaziri et al. [29]. The strain energy

function presents the following form:

U = C
(
Î1 − 3

)
+

1

D

(
Jel − 1

)2
(3)

According to the work of Moeendarbary et al. [30], the cytoplasm is sim-

ulated as a poroelastic material. Thus, it is composed of two distinct phases,

the solid matrix (which is modelled as a linearly elastic material) and the fluid

flowing through the solid matrix pores. We consider poroelasticity following the

constitutive equation introduced by Biot [31]. This equation relates the total

stress tensor σ to the strain energy density (a function of the shear Gs and

Poisson’s ratio νs of the drained network) Ws of the solid phase and the pore

fluid pressure p following Malandrino and Moeendarbary [32]:

σ =
2

J

∂Ws

∂b
b− pI (4)

where J and b are the determinant and the Left Cauchy-Green tensor both

derived from the deformation gradient in the large strain theory. In the solid

phase, we assume different Young’s moduli depending on the initial stiffness

of the ECM following Solon et al. [33]. Cells are able to adjust their internal

stiffness to the stiffness of the ECM, clearly indicating mechanical feedback

between the cell and its environment. To define the fluid phase, we use the

permeability of the solid phase (wherein is implicit the viscosity of the fluid

[30]), the volume fraction of the fluid and the specific weight of water. The

permeability value is taken from Moeendarbary et al. [30]; however, the volume

fraction is chosen as an intermediate value between the previous works of Taber

et al. [34], in which the volume fraction was fixed at 0.5, and Moeendarbary
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et al. [30], in which the volume fraction was fixed at 0.75 of the fluid. All

cytoplasmic properties are shown in Table 2.

Cell in a compliant ECM Cell in a stiff ECM

Young’s modulus of the cytoplas-

mic solid phase [35]

100 Pa 2500 Pa

Poisson’s ratio of the cytoplas-

mic solid phase

0.4 0.4

Permeability of the cytoplasmic

solid phase [30]

4 ·10−15 m4

N ·s 4 ·10−15 m4

N ·s

Volume fraction of fluid in the

cytoplasm [34, 30]

0.6 0.6

Young’s modulus of the cell nu-

cleus [27, 28]

1 kPa 10 kPa

Poisson’s ratio of the cell nucleus

[29]

0.49 0.49

Table 2: Mechanical properties of the cytoplasm and nucleus.

Finally, following other previous work [10], we assume that all the organelles

of the cell (Golgi apparatus, endoplasmic reticulum, and so on) are compacted

and do not allow fluid flow between the front and the rear part of the cell. Thus,

an elastic cytoplasm is simulated surrounding the nucleus and separating the

front part of the cytoplasm from the rear part. We assume a linearly elastic

material model in this volume, with material properties equal to those of the

solid phase of the cytoplasm.

Regarding the FE discretization, the model is simulated using coincident

node conditions in the cell and ECM, thus assuming full adhesion between the

cell and ECM. We discretize the nucleus, the elastic cytoplasm, the poroelastic

cytoplasm and the extracellular matrix with tetrahedral elements (C3D4) (Table

3). The total number of nodes in the final model is 36, 990. Furthermore, a
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mesh sensitivity analysis is performed by increasing the total number of nodes

up to 369, 132, and the results are equivalent except for a significantly increased

calculation time.

Part Number of

elements

Element geometry

type

Element material

type

ECM 164.224 Tetrahedral C3D4 Solid mechanics

Cytoplasm 44.850 Tetrahedral

C3D4P

Solid mechanics

and pore pressure

Elastic cytoplasm 3.591 Tetrahedral C3D4 Solid mechanics

Nucleus 6.869 Tetrahedral

C3D4H

Hybrid elements

Table 3: Number and type of elements used in the model.

As boundary conditions, we fix all normal displacements of the ECM external

surface, and we also fix the flow rate through the cell-matrix interface to zero

to avoid the loss of fluid in the cytoplasm, simulating the effect of the cell

membrane.

In the simulation, we first apply a predefined stress in the cytoplasm assum-

ing an initial pressure inside the cell [10]. Previous works [35] established an

initial pre-stress in the cell that is related to the ECM stiffness. Petrie et al. [10]

also measured the hydrostatic pressure of a cell with a lamellipodial migration

mode. Thus, we use this pressure to calibrate the initial pressure of the cell.

In addition, we simulate 3 seconds to make the internal pressure along the cell

homogeneous after the initial pre-stress and to establish the initial equilibrium

state.

Finally, for lobopodia-based migration, the cell is not polarized in the same

way as lamellipodia-based, and the movement depends on the RhoA, ROCK

and myosin II contractility [8]. Furthermore, the myosin II distribution inside

the cell for lamellipodia-based migration is homogeneous, while for lobopodia-

based migration, the distribution is concentrated forward of the nucleus. Thus,
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a different polarization is present and is apparently necessary to maintain cell

migration. Accordingly, we apply a constant linear contraction for 20 seconds

at the front of the cell to simulate the cell contractility. Due to the behavior of

the poroelastic material, we are modeling a dense solid network connecting the

nucleus with the trailing edge and we apply the contraction on this solid phase

of the cytoplasm. Furthermore, we assume anisotropic contraction of the cell

and we only allow cell contractility in the longitudinal direction.

3. Results

We focus our analysis on the pressure in the front part of the cell (where

contraction occurs), the ECM strains, the stresses on the cell nucleus and the

fluid flow inside the cell. All measurements are taken during cell contraction.

First, we analyse the evolution of pressure in the front part of the cyto-

plasm. Figures 2a and 2b show the evolution of hydrostatic pressure in the

front part of the cytoplasm for the stiff and compliant ECMs, respectively,

while the cell contracts. Cell contraction provokes the volume variation of the

cell in the longitudinal direction. This added to the coupled effect of the solid

phase (compressibility) and the cell-matrix adhesion are the main effects causing

the pressure variation. The initial pressure of cells in the stiff matrix is higher

than that of cells in the compliant matrix since we apply more pre-stress in the

stiffer cytoplasm following the work of Discher et al. [35]. Then, the difference

between linearly elastic and non-linearly elastic ECMs can be observed. For

the high-stiffness linearly elastic matrix, the pressure increases linearly from the

initial 600 Pa to 2000 Pa at the end of the contraction. Nevertheless, for the

high-stiffness non-linearly elastic matrix, the pressure starts increasing; how-

ever, it subsequently reaches saturation at approximately 1500 Pa. The same

tendency is found for the cell in the compliant ECM: in the linearly elastic case,

the increase in pressure is maintained; however, in the non-linearly elastic case,

the pressure first increases and then reaches saturation.

We also carry out a sensitivity study of the cytoplasmic mechanical proper-
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Figure 2: Evolution of the hydrostatic pressure in the front part of the cytoplasm while the

cell contracts for high-stiffness (a) and low-stiffness (b) linearly elastic and non-linearly elastic

ECMs.

ties. We vary the fluid content, elastic modulus and Poisson’s ratio for the cell

in the stiffer ECM. We choose a higher and a lower value for each parameter.

All the results show the same behaviour of cell pressure, but the values are prop-

erty dependent. There is a sustained increase in the cytoplasmic pressure when

the cell contracts in the linearly elastic ECM and an initial increase and subse-

quent asymptotic decrease in pressure in the non-linearly elastic ECM (Figure

3). The effects of the elastic modulus and Poisson’s ratio of the cytoplasm on

the cytoplasmic pressure are higher than those of the fluid volume fraction.

Nevertheless, there are slight differences in the pressure for the linearly elastic

and non-linearly elastic ECMs.

Second, we analyse the fluid velocity in the cytoplasm during contraction.

We find a change in the direction of the fluid flow in the non-linearly elastic case.

In the first seconds of contraction, the fluid shifts from the front part to the rear

part of the cytoplasm, which undergoes contraction in both the linearly elastic

and the non-linearly elastic ECMs. Nevertheless, when the pressure starts to

increase in the non-linearly elastic matrices (Figure 2a and 2b), the fluid in the
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Figure 3: Sensitivity analysis of the cytoplasmic mechanical properties on the cytoplasmic

hydrostatic pressure while the cell contracts within high-stiffness linearly elastic and non-

linearly elastic ECMs. a) Influence of the elastic modulus of the cytoplasm solid phase; b)

influence of Poisson’s ratio of the cytoplasm solid phase; c) influence of the fluid volume in

the cytoplasm.

cytoplasm changes direction and flows from the nucleus to the front part (Figure

4). This response could activate some mechanotransduction mechanism in the

cell to change from a lobopodia-based to a lamellipodia-based migration mode.

We also analyse the role of the mechanical characteristics of the ECM. We

focus on the maximum tensile strains (Figure 5) in the ECM for both the linearly

elastic and the non-linearly elastic ECMs with high and low elastic moduli. In

general, the maximum principal strains are lower in the non-linearly elastic

matrices than in the linearly elastic matrices for both high- and low-stiffness

matrices. In addition, the strains around the cell are more homogeneously

distributed (with values close to 17 %) in the non-linearly elastic ECM. For the

linearly elastic ECMs, the distribution is less uniform, and the strain values close
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Figure 4: Fluid velocity in the cytoplasm for the a) low-stiffness linearly elastic ECM, b) low-

stiffness non-linearly elastic ECM, c) high-stiffness linearly elastic ECM and d) high-stiffness

non-linearly elastic ECM at the begining of the contraction (1) and the end of the contraction

(2) (units: µm/s).

to the cell are between 30 and 60 % in the linearly elastic case. The maximum

value is at the front of the cell, but the strain distribution away from the cell is

very similar for both the linearly elastic and the non-linearly elastic ECMs.

Figure 5: Logarithmic maximum principal strain in the ECM: a) low-stiffness linearly elastic

ECM, b) low-stiffness non-linearly elastic ECM, c) high-stiffness linearly elastic ECM and d)

high-stiffness non-linearly elastic ECM.

These differences can be attributed to the non-linear or linear elasticity of

the ECM. In the case of the linearly elastic matrices, the stiffness remains con-
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stant, but for the non-linearly elastic matrices, the elastic modulus of the ECM

increases in the zones with high strains, mainly in the front part of the cell

(Figure 6).

Figure 6: Final equivalent elastic modulus (Pa) of the ECM: a) low-stiffness linearly elastic

ECM, b) low-stiffness non-linearly elastic ECM, c) high-stiffness linearly elastic ECM and d)

high-stiffness non-linearly elastic ECM.

Finally, we analyse the mechanical state of the cell nucleus related to different

cell processes, such as differentiation (Dahl et al. [28]). To study how ECM

behaviour could affect the nucleus, if cells migrate in the lobopodia-based mode,

we obtain the maximum tensile stress in the cell nucleus (Figure 7). Although

the value of the maximum principal stress depends on the ECMs in which cells

migrate, we find the same distribution of stresses depending on the mechanical

behaviour of the ECM. For the linearly elastic matrices, all the nuclei bear

the same tensile stress, while for the non-linearly elastic matrices, the range of

values is higher, with a higher tensile stress in the front part of the nucleus and

a lower stress in the rear part of the nucleus.

4. Discussion and Conclusions

Different mechanotransduction mechanisms could regulate the cell to change

from a lobopodial to a lamellipodial migration mode or vice versa. From our

simulation, we hypothesize that the cell capacity to deform the ECM regulates
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Figure 7: Maximum principal stresses in the nucleus for the a) low-stiffness linearly elastic

ECM, b) low-stiffness non-linearly elastic ECM, c) high-stiffness linearly elastic ECM and d)

high-stiffness non-linearly elastic ECM (units mPa).

the pressure differences across the cell body. Pressure variation is actively caused

by cell contraction, but how easy or not the matrix allows the movement of the

cell influences passively the pressure. Somehow, there is a competition between

the cell and the extracellular matrix. Therefore, depending on the mechanical

response to the cell forces, the pressure differs inside the cell. In fact, these

pressure differences could also reorganize the cytoskeleton and consequently de-

fine the migratory path [36]. In particular, in our work, we estimate that the

first increase in pressure at the beginning of cell contraction and the subsequent

decrease could be one factor leading a mechanotransduction mechanism. Addi-

tionally, the change in fluid flow inside the cytoplasm when the cell contracts

could act as a stimulus that prompts the cell to change to a lamellipodial mi-

gration mode. Other authors have hypothesized that cells can select different

migration mechanisms depending on the external coefficient of hydraulic resis-

tance associated with the ECM [37]. Under this framework, the mechanism

that regulates cell migration is the capacity of the cell to displace the external

water in the ECM. Both theories—i.e., that are based on the effect that the
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cytoskeleton exerts on the movement of the fluid inside the cell body or that are

based on a related effect outside the cell body—can provide new perspectives

on how cells regulate their movement.

One of the challenges of computational models of single cells is the mechani-

cal properties of cells and the ECM. It is difficult to obtain an accurate measure

of such properties due to the scale and the complexity of testing each single

component of the cell separately from the other components. In addition, most

works assume different Poisson ratios when measuring the elastic modulus of the

cell. For example, Moeendarbary et al. [30], who presented (to our knowledge)

the first work in which the cytoplasm is assumed to be a poroelastic material,

fixed the Poisson’s ratio of the solid phase as 0.3, and Mahaffy et al. [38] stud-

ied the effect of different values. This problem is even more important if we are

assuming a two-phase material (poroelastic cytoplasm). Thus, in our opinion,

it is important to develop and implement computational models because they

provide us with information that allows us to qualitatively compare the cell

behaviour under different assumptions. In our parametric study, as shown in

Figure 3, we can see the different behaviour of the intracellular pressure varying

the cytoplasmic properties. For an increasing elastic modulus or Poisson’s ratio,

the increase in pressure is very similar, but we observe more differences between

the linearly elastic and non-linearly elastic ECMs in terms of the increasing

elastic modulus of the cytoplasm. In contrast, by decreasing Young’s modulus

or Poisson’s ratio of the cytoplasm, the pressure decreases in both cases, but

the differences between the linearly elastic and non-linearly elastic ECMs are

higher as Poisson’s ratio decreases. Furthermore, the effect of the fluid volume

ratio on the cytoplasm is quite similar to that of Poisson’s ratio, but the former

parameter has a lower impact on the intracellular pressure.

To carry out this work, we make several simplifications in the model due

to the absence of available experimental data. First, the role of the membrane

is taken into account only to avoid fluid flow between the cell and the ECM;

it is not simulated as an active part of the cell. Second, we assume that the

cell changes its properties depending on the ECM in which it is embedded. In
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fact, Solon et al. [33] demonstrated that the elastic modulus of the cytoplasm

changes depending on the substrate properties. However, we decided to simulate

these particular ECMs since they are the only ones for which Petrie et al. [10]

measured the hydrostatic pressure inside the cell. Finally, the geometry is a

simplification of a real cell because of the variability in cell geometry while

migrating. This geometry captures the main geometrical features of the cell in

its lobopodial migration mode.

In this work, we simulate the experimental work of Petrie et al. [10]. Our

aim is to elucidate whether the differences observed in their experiments could

be at least partially explained by the water movement through the solid phase

of the cytoplasm (featuring a cytoskeleton and macromolecular crowding) [30].

We observe different behaviour in the internal pressure of the cytoplasm, and

we also show the effect of the cytoplasmic properties. Another important result

is the internal fluid flow of the cell. This flow changes direction depending on

the ECM response. The final elastic modulus of the ECM (Figure 6) results in

higher stresses in the nucleus for the non-linearly elastic ECM.

Despite all these simplifications, we obtain similar results to those obtained

in the experimental work [10]. We use the results of the intracellular pressure

in the front part of a lobopodial cell in the CDM matrix (high stiffness, linearly

elastic) to validate our results. The experimental value of the pressure is on the

order of 2 kPa, which is approximately the value estimated from our numeri-

cal predictions in Figure 2. Thus, the model could help to better understand

why cells do not use lobopodia-based migration in non-linearly elastic matrices.

We identify two possible mechanosensory variables that could regulate the cell

changes from the lobopodial to the lamellipodial migration mode, which are

the fluid flow and the hydrostatic pressure inside the cytoplasm. Our results

show that relevant differences can be found in the fluid flow and the hydrostatic

pressure for different behaviours of the extracellular matrix, although we do not

analyse how these variables can control cell migration. Certainly, this aspect

would require additional study and further simulations.
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[14] J. Escribano, M. Sánchez, J. Garćıa-Aznar, Modeling the formation of cell-

matrix adhesions on a single 3d matrix fiber, Journal of theoretical biology

384 (2015) 84–94.

[15] S. I. Fraley, P.-h. Wu, L. He, Y. Feng, R. Krisnamurthy, G. D. Longmore,

D. Wirtz, Three-dimensional matrix fiber alignment modulates cell migra-

19



tion and mt1-mmp utility by spatially and temporally directing protrusions,

Scientific reports 5 (2015) 14580.

[16] K. E. Kubow, S. K. Conrad, A. R. Horwitz, Matrix microarchitecture and

myosin {II} determine adhesion in 3d matrices, Current Biology 23 (17)

(2013) 1607 – 1619.

[17] Y. Inoue, T. Deji, Y. Shimada, M. Hojo, T. Adachi, Simulations of dy-

namics of actin filaments by remodeling them in shearflows, Computers in

Biology and Medicine 40 (11) (2010) 876–882.

[18] S. Hervas-Raluy, J. Garcia-Aznar, M. Gomez-Benito, Modelling actin poly-

merization: the effect on confined cell migration, Biomechanics and mod-

eling in mechanobiology (2019) 1–11.

[19] V. Te Boekhorst, L. Preziosi, P. Friedl, Plasticity of cell migration in vivo

and in silico, Annual review of cell and developmental biology 32 (2016)

491–526.

[20] R. Allena, H. Thiam, M. Piel, D. Aubry, A mechanical model to investigate

the role of the nucleus during confined cell migration, Computer methods

in biomechanics and biomedical engineering 18 (sup1) (2015) 1868–1869.
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