000108314 001__ 108314
000108314 005__ 20230519145352.0
000108314 0247_ $$2doi$$a10.1016/j.polymer.2020.123145
000108314 0248_ $$2sideral$$a121156
000108314 037__ $$aART-2021-121156
000108314 041__ $$aeng
000108314 100__ $$aResende, P.M.
000108314 245__ $$aPolyethylene three-dimensional nano-networks: How lateral chains affect metamaterial formation
000108314 260__ $$c2021
000108314 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108314 5203_ $$aPolymers occupy a central role in current society due to their utility and versatile properties. As part of the class of soft materials, polymers have also been employed in research through nanostructuration and functionalization, looking for the development of new metamaterials with wide applicability in science and society. A particular polymer, Polyethylene, has been widely used both in research and commodities, and new ways to nanostructure and improve its functionality should be considered. Here, we report on the nanostructuration of polyethylene for the fabrication of three-dimensional nanonetworks, by resorting to 3 different variants of polyethylene: low density, high density, and ultra-high molecular weight. Through the melt infiltration of these polymers into well-known three-dimensional interconnected anodic aluminum oxide templates (3D-AAO), a study can be performed to understand the effects of the chain length, structure, and chain-branching of the used polymers on the stability and integrity of the resulting polymeric nanonetworks. This was accomplished by performing infiltrations in the presence of excess bulk material and quenching the infiltration process to access transient infiltration stages. The morphology of these networks was analyzed through SEM and STEM-HAADF to understand the differences arising from polymer structure. The observed results are interpreted through the use of the Lucas-Washburn equation for capillary flow and the determination of the critical contact angle for spontaneous capillary infiltration. The resulting metamaterials also exhibit photonic responses, resulting from the replication of the periodic nature of the employed templates.
000108314 536__ $$9info:eu-repo/grantAgreement/ES/CSIC/2D-MESES$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-86450-C4-3-R
000108314 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000108314 590__ $$a4.432$$b2021
000108314 591__ $$aPOLYMER SCIENCE$$b22 / 90 = 0.244$$c2021$$dQ1$$eT1
000108314 594__ $$a7.1$$b2021
000108314 592__ $$a0.774$$b2021
000108314 593__ $$aOrganic Chemistry$$c2021$$dQ1
000108314 593__ $$aMaterials Chemistry$$c2021$$dQ1
000108314 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108314 700__ $$aGutiérrez-Fernández, E.
000108314 700__ $$0(orcid)0000-0002-1296-4793$$aAguirre, M.H.$$uUniversidad de Zaragoza
000108314 700__ $$aNogales, A.
000108314 700__ $$aMartín-González, M.
000108314 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000108314 773__ $$g212, 123145 (2021), [10 pp]$$pPolymer$$tPolymer$$x0032-3861
000108314 8564_ $$s552437$$uhttps://zaguan.unizar.es/record/108314/files/texto_completo.pdf$$yPostprint
000108314 8564_ $$s2393324$$uhttps://zaguan.unizar.es/record/108314/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108314 909CO $$ooai:zaguan.unizar.es:108314$$particulos$$pdriver
000108314 951__ $$a2023-05-18-13:27:13
000108314 980__ $$aARTICLE