Cubic spline fractal solutions of two-point boundary value problems with a non-homogeneous nowhere differentiable term

A.K.B. Chand a, K.R. Tyada a, M.A. Navascués b,∗

a Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India
b Department de Matemática Aplicada, Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza-50018, Spain

ARTICLE INFO

Article history:
Received 9 January 2020
Received in revised form 15 October 2020

MSC:
65D05
65D07
65L10
65L20
26A27
28A80

Keywords:
Splines
Fractal interpolation
Ordinary differential equations
Boundary value problems
Nondifferentiability
Fractals

ABSTRACT

Fractal interpolation functions (FIFs) supplement and subsume all classical interpolants. The major advantage by the use of fractal functions is that they can capture either the irregularity or the smoothness associated with a function. This work proposes the use of cubic spline FIFs through moments for the solutions of a two-point boundary value problem (BVP) involving a complicated non-smooth function in the non-homogeneous second order differential equation. In particular, we have taken a second order linear BVP: \(y''(x) + Q(x)y'(x) + P(x)y(x) = R(x) \) with the Dirichlet’s boundary conditions, where \(P(x) \) and \(Q(x) \) are smooth, but \(R(x) \) may be a continuous nowhere differentiable function. Using the discretized version of the differential equation, the moments are computed through a tridiagonal system obtained from the continuity conditions at the internal grids and endpoint conditions by the derivative function. These moments are then used to construct the cubic fractal spline solution of the BVP, where the non-smooth nature of \(y'' \) can be captured by fractal methodology. When the scaling factors associated with the fractal spline are taken as zero, the fractal solution reduces to the classical cubic spline solution of the BVP. We prove that the proposed method is convergent based on its truncation error analysis at grid points. Numerical examples are given to support the advantage of the fractal methodology.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Differential equations have been used to describe or model real life phenomena. They occur frequently in many areas of scientific and engineering disciplines like physics, chemistry, architecture, ecology, chemical kinetics, mechanical engineering, quantum mechanics, electrical engineering, civil engineering, meteorology, and a relatively new science called chaos. The ultimate goal of solving a differential equation is finding an explicit or an analytical solution which can be used to describe the underlying physical phenomena or scientific experiment.

On the other hand, many of the real world and experimental signals are irregular and rarely render a sensation of smoothness in their structures. Thereby traditional interpolants with simple geometric structures may not describe these fine microscopic patterns effectively. Thus, there is a need for the search of interpolation techniques which can produce interpolants that fail to be differentiable in a dense subset of the interpolation interval. To address this cause, Barnsley [1] introduced the notion of fractal interpolation using the theory of iterated function system. Graph of the fractal

* Corresponding author.
E-mail addresses: chand@iitm.ac.in (A.K.B. Chand), kurmaths86@gmail.com (K.R. Tyada), manavas@unizar.es (M.A. Navascués).

https://doi.org/10.1016/j.cam.2020.113267
0377-0427/© 2020 Elsevier B.V. All rights reserved.
interpolant possesses a non-integer dimension which can be used as a quantifier for the complexity of the underlying phenomenon. Barnsley and Harrington [2] initiated the construction of smooth FFIs, and unfolded the notable relationship between fractal functions and splines. Smooth FFIs can be applied to generalize the classical interpolation techniques (see, for instance, [3–9]). Therefore, fractal interpolation offers the flexibility of choosing either a smooth or non-smooth interpolant depending on the modeling problem at hand.

A boundary value problem (BVP) is a differential equation together with a set of additional constraints called the boundary conditions. A solution to a boundary value problem satisfies the differential equation and the prescribed boundary conditions. There are many methods developed in the literature for solving higher order BVPs. Bickley [10] used general cubic splines and Albasiny [11] used cubic splines through moments for the solution of linear (regular) two-point BVPs. Fyfe [12] discussed the application of deferred corrections to the method proposed by Bickley. Jain and Aziz [13] proposed a parametric spline function consisting of trigonometric and polynomial maps of order 1 for the solution of the system of ordinary and partial differential equations. Al-Said [14] presented a method to approximate the solution of linear second order BVP and also to determine first, second and third order derivatives at every point of the range of integration. Ramos and others [15–17] used different types of block methods to the direct approximation of the solution of the system of ordinary and partial differential equations. Al-Said [14] presented a parametric spline function consisting of trigonometric and polynomial maps of order 1 for the solution of general cubic splines and Albasiny [11] used cubic splines through moments for the solution of linear (regular) two-point BVP for these nonlinear phenomena.

In this paper, we consider a two point BVP whose solution is a curve obtained by a fractal methodology through discretization of the domain, and this solution is an extension of the cubic spline defined in Albasiny [11]. The classical cubic spline does not give appropriate solution if the non-homogeneous differential equation involves a continuous discretization of the domain, and this solution is an extension of the cubic spline defined in Albasiny [11]. The classical cubic spline is a particular case of fractal spline, the proposed method can be used to consider any type of continuous function in a BVP. We define the prerequisite material on (smooth) fractal functions and the general two-point second order boundary value problem in Section 2. We develop the description of our methods to solve the two-point BVPs using the cubic spline FFIs through moments in Section 3. Truncation error analysis is studied in Section 4. Finally, the proposed methods are used to solve BVPs in Section 5.

2. Preliminaries

To equip ourselves with the requisite general material, we will discuss the construction of fractal functions in Section 2.1, and the basics of a 2nd order BVP in Section 2.2.

2.1. Fractal interpolation function

This section targets to equip a novice reader with the basics of fractal interpolation. These materials are collected from the well-known treatises [1,2,21].

For \(r \in \mathbb{N} \), denote \(\mathbb{N}_r \) as the set of first \(r \) natural numbers. For \(N > 1 \), let \(x_0 < x_1 < \cdots < x_N \) be real numbers and \(I = [x_0, x_N] \). Let the prescribed set of interpolation data be \(\{(x_j, y_j) \in I \times \mathbb{R} : j \in \mathbb{N}_N \} \). We want to construct a finite number of contraction maps in \(\mathbb{R}^2 \) for an iterated function system (IFS) so that its fixed point is the required fractal function. The abscissa values are defined through \(L_i \) and the ordinate values are defined through \(F_i \) (see [1] for details). For \(i \in \mathbb{N}_N \), set \(L_i = [x_{i-1}, x_i] \) and let \(L_i : I \rightarrow L_i \) be contractive homeomorphisms such that

\[
L_i(x_0) = x_{i-1}, \quad L_i(x_N) = x_i \quad \forall \ i \in \mathbb{N}_N, \quad |L_i(x) - L_i(x^*)| \leq l_i|x - x^*| \quad \forall \ x, x^* \in I \text{ for some } 0 < l_i < 1.
\]

(2.1)

Let \(F_i : I \times \mathbb{R} \rightarrow \mathbb{R} \) be continuous maps satisfying

\[
F_i(x_0, y_0) = y_{i-1}, \quad F_i(x_N, y_N) = y_i, \quad \forall \ i \in \mathbb{N}_N, \quad |F_i(x, y) - F_i(x, y^*)| \leq k_i|y - y^*|, \quad x \in I; \ y, y^* \in \mathbb{R}; \quad \text{for some } 0 \leq k_i < 1.
\]

(2.2)

For \(i \in \mathbb{N}_N \), define functions \(\omega_i(x, y) = (L_i(x), F_i(x, y)) \). It is easy to check that each \(\omega_i \) is a contraction map in \(\mathbb{R} \). We need the required IFS \(\{I \times \mathbb{R}; \ \omega_i : i \in \mathbb{N}_N\} \) for construction of a fractal function. The following is the most fundamental result in the field of fractal interpolation.

Theorem 2.1 ([21]). The following hold:

(i) The IFS \(\{I \times \mathbb{R}; \ \omega_i : i \in \mathbb{N}_N\} \) has a unique attractor \(G \) such that \(G \) is the graph of a continuous function \(f : I \rightarrow \mathbb{R} \).

(ii) The function \(f \) interpolates the data set, i.e., \(f(x_j) = y_j \) for all \(j \).
(iii) Let \(G \) := \{ g \in C(I) : g(x_0) = y_0, g(x_N) = y_N \} be endowed with the uniform metric \(d(g, \tilde{g}) := \max\{|g(x) - \tilde{g}(x)| : x \in I\} \). If \(T : G \to G \) is defined by \(Tg(x) = F(L_i^{-1}(x), g \circ L_i^{-1}(x)) \), \(x \in I_i \), \(i \in \mathbb{N}_N \), and for all \(g \in G \), then \(T \) has a unique fixed point \(f \), and \(f = \lim_{n \to \infty} T^n(g) \) for any \(g \in G \). Further, the fixed point \(f \) is the function satisfying conditions given in (i)-(ii).

The function which has made its debut in the foregoing theorem is termed a fractal interpolation function (FIF), and it satisfies the functional equation:

\[
f(x) = F(L_i^{-1}(x), f \circ L_i^{-1}(x)), \quad x \in I_i, \ i \in \mathbb{N}_N.
\]

(2.3)

The adjective fractal is used to emphasize that the graph of \(f \) may have non-integer Hausdorff and Minkowski dimension. Also, the graph \(G(f) \) is a union of transformed copies of itself, specifically \(G(f) = \bigcup_{i=1}^{N} \omega_i(G(f)) \). The most extensively studied FIF in theory and applications is formed by

\[
L_i(x) = a_i x + e_i, \quad F_i(x, y) = \alpha_i y + q_i(x), \quad i \in \mathbb{N}_N,
\]

(2.4)

where \(\alpha_i \) are constants satisfying \(0 \leq |\alpha_i| < 1 \) and \(q_i \) are continuous functions so that the “join-up conditions” in (2.2) imposed on the bivariate functions \(F_i \) are satisfied. The multiplier \(\alpha_i \) is called a vertical scaling factor for the transformation \(\omega_i \) and the vector \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N) \in (-1, 1)^N \) is called a scale vector of the FIF. The prescriptions in (2.1) uniquely determine the constants \(a_i \) and \(b_i \) appearing in the affine map \(L_i \) as

\[
a_i = \frac{x_{i-1} - x_i}{x_N - x_0}, \quad e_i = \frac{y_{i-1} - y_i}{y_N - y_0}.
\]

Let us recall that the function \(f \) determined by the IFS in (2.4), which takes the form

\[
f(x) = \alpha f(L_i^{-1}(x)) + q_i(L_i^{-1}(x)), \quad x \in I_i, \ i \in \mathbb{N}_N
\]

(2.5)

is, in general, non-smooth in nature. The following theorem provides the conditions on \(\alpha_i \) and functions \(q_i \) so that the FIF is \(C^p \)-continuous.

Theorem 2.2 ([2]). Let \(\{(x_j, y_j) : j \in \mathbb{N}_N \cup \{0\}\} \) be a given data set with strictly increasing abscissae. Let \(L_i(x) = a_i x + b_i \) satisfy (2.1) and \(F_i(x, y) = \alpha_i y + q_i(x) \) obeys (2.2) for \(i \in \mathbb{N}_N \). Suppose that for some integer \(p \geq 0, |\alpha_i| < a_i^p \) and \(q_i \in C^p(I), i \in \mathbb{N}_N \). Let

\[
F_{i,k}(x, y) = \frac{\alpha_i y + q_i^{(k)}(x)}{a_i^k}, \quad y_{0,k} = \frac{q_i^{(k)}(x_0)}{a_i^k - \alpha_i}, \quad y_{N,k} = \frac{q_i^{(k)}(x_N)}{a_i^k - \alpha_i}, \quad k = 1, 2, \ldots, p.
\]

(2.6)

If \(F_{i-1,k}(x_N, y_{0,k}) = F_i(x_0, y_{0,k}) \) for \(i \in \mathbb{N}_N \) and \(k \in \mathbb{N}_p \), then the IFS \(\{ I \times \mathbb{R}; (L_i(x), F_i(x, y)) : i \in \mathbb{N}_N \} \) determines a FIF \(f \in C^p(I) \), and \(f^{(k)} \) is the FIF defined by \(\{ I \times \mathbb{R}; (L_i(x), F_{i,k}(x, y)) : i \in \mathbb{N}_N \} \) for \(k \in \mathbb{N}_p \).

2.2. A two-point boundary value problem

Definition 2.1. Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be a given function. The problem

\[
y'' = f(x, y, y'), \quad x \in [x_0, x_N].
\]

(2.7)

along with the boundary conditions

\[
\begin{align*}
\beta_1 y(x_0) + \beta_2 y'(x_0) &= \beta_3, \\
\gamma_1 y(x_N) + \gamma_2 y'(x_N) &= \gamma_3,
\end{align*}
\]

(2.8)

where \(\beta_1, \beta_2, \beta_3, \gamma_1, \gamma_2 \) and \(\gamma_3 \) are real numbers, is called a two-point second order boundary value problem (BVP). The existence and uniqueness of the solution of two point BVP have been discussed by Keller [22]. Bickley [10] considered this BVP when (2.6) is taken as

\[
P(x)u'' + Q(x)u' + R(x)u = S(x).
\]

A BVP (2.6)-(2.7) should be well posed in order to be useful in the applications, which means that there exists a unique solution, which continuously depends on the input imposed to the problem. There are several types of schemes proposed to obtain numerical solutions like shooting method, finite difference schemes, finite element and finite volume methods at discretized points of the domain. When the number of discretized points is very large, the numerical solution is close to the original solution if the concerned method is convergent. Similarly, various types of splines have been used to get the solution of BVP in a closed manner. But this closed forms of the classical solutions does not match with the exact solution, when \(R(x) \) is not differentiable in a dense subset of the domain. Thus, we propose a deterministic fractal cubic spline solution for this second order BVP with Dirichlet’s boundary conditions, which is more general than the classical cubic spline solution.
3. Solution of BVP by fractal splines

In this section, we solve the two-point BVP by using a cubic spline FIF through moments, which was proposed in [3]. The main idea is to use the condition of continuity of the derivative of the fractal spline at the grid points in the discretization of (2.6) for the computation of moments so that we can write the fractal cubic spline solution explicitly.

3.1. Cubic spline FIF through moments formulation

In the first part, we describe the general construction of cubic spline FIFs \(f(x) \in C^2[x_0,x_N] \) through the moments, \(M_j = f''(x_j), \ j \in \mathbb{N}_N \cup \{0\}, \) which passes through the interpolation data set \((\{x_j, y_j\} : j \in \mathbb{N}_N \cup \{0\}\) (see [3] for details).

Let \(\Delta \) represent the partition \(x_0 < x_1 < \cdots < x_N \) of the domain of the interval \(I := [x_0, x_N] \) of the BVP. The graph of the cubic spline FIF \(f \) is the attractor of the IFS \(\mathcal{I} := \{ I \times \mathbb{R}; \alpha_0(x,y) = (L_i(x), F_i(x,y)), \ i \in \mathbb{N}_N \} \), where \(L_i(x) \) satisfies (2.1) and \(F_i(x,y) = a_i^2 (\alpha_0 y + q_i(x)), |a_i| < 1, \) and \(q_i(x) \) is a suitable cubic polynomial.

Using the moments \(M_j, j \in \mathbb{N}_N \cup \{0\}, \) \(f''(x_0) \) and \(f''(x_N) \) in the structure of a \(C^2 \)-fractal cubic spline, we will get \(N + 1 \) equations. In order to compute these \(N + 3 \) unknowns, we have to put two additional boundary conditions similar to the construction of the classical \(C^2 \)-cubic splines. This construction helps us solve a system of order at most \(N + 3 \) equations instead of a system of \(4N \) equations for the computations of the cubic polynomials \(q_i(x), i \in \mathbb{N}_N \). Thus, we will assume the structure of the cubic spline FIF through moments in the following:

\[
f(L_i(x)) = a_i^2 \left\{ \alpha f'(x) + \frac{(M_i - \alpha_i M_N)(x_0 - x_N)^3}{6(x_N - x_0)^3} + \frac{(M_i - \alpha_i M_N)(x_0 - x_N)^2}{2(x_N - x_0)^2} \right\}, \quad i \in \mathbb{N}_N,
\]

where

\[
L_i(x) = a_i x + e_i, \quad a_i = \frac{x_i - x_{i-1}}{x_N - x_0}, \quad \text{and} \quad e_i = \frac{x_N x_{i-1} - x_0 x_i}{x_N - x_0}.
\]

Now differentiating (3.1) with respect to \(x \), we obtain

\[
f'(L_i(x)) = a_i \left\{ \alpha f'(x) + \frac{(M_i - \alpha_i M_N)(x_0 - x_N)^2}{2(x_N - x_0)} - \frac{(M_i - \alpha_i M_N)(x_0 - x_N)}{2(x_N - x_0)} \right. \]

\[
+ \frac{(M_i - \alpha_i M_N)(x_N - x_0)}{2} - \frac{(M_i - \alpha_i M_N)(x_N - x_N)}{2} \right\}.
\]

Let \(\ell = x_N - x_0 \). Then, the above equation can be written as

\[
f'(L_i(x)) = a_i \left\{ \alpha f'(x) + \frac{(M_i - \alpha_i M_N)(x_0 - x_N)^2}{2 \ell} - \frac{(M_i - \alpha_i M_N)(x_0 - x_N)}{2 \ell} \right. \]

\[
+ \frac{\ell}{6} \left[M_i - M_i + \alpha_i(M_N - M_0) \right] + \frac{1}{\ell} \left(\frac{y_i - y_{i-1}}{a_i^2} - \alpha_i(y_N - y_0) \right) \right\}.
\]

Since \(f'(x) \) is continuous at the knots \(x_i, \ i = 1, \ldots, N - 1 \), we have \(\lim_{x \to x_i} f'(x) = \lim_{x \to x_i} f'(x) \) for \(i \in \mathbb{N}_{N-1} \). As per assumption (2.1), \(L_i(x_N) = L_{i+1}(x_0) = x_i \). For \(d_i := f'(x_N), \) substituting \(x = x_N \) in (3.2), we deduce

\[
f'(x_i^-) = a_i \left\{ \alpha d_i + \frac{\ell}{2} (M_i - \alpha_i M_N) + \frac{\ell}{6} \left[M_i - M_i + \alpha_i(M_N - M_0) \right] \right. \]

\[
+ \frac{1}{\ell} \left(\frac{y_i - y_{i-1}}{a_i^2} - \alpha_i(y_N - y_0) \right) \right\}, \quad i \in \mathbb{N}_N.
\]

Now, for \(d_0 := f'(x_0), \) putting \(x = x_0 \) in \(f'(L_{i+1}(x)) \), we get

\[
f'(x_i^+) = a_{i+1} \left\{ \alpha_{i+1} d_0 + \frac{\ell}{2} (M_i - \alpha_{i+1} M_0) + \frac{\ell}{6} \left[M_i - M_{i+1} + \alpha_{i+1}(M_N - M_0) \right] \right. \]

\[
+ \frac{1}{\ell} \left(\frac{y_{i+1} - y_i}{a_{i+1}^2} - \alpha_{i+1}(y_N - y_0) \right) \right\}, \quad i \in \mathbb{N}_{N-1} \cup \{0\}.
\]
Denote \(h_i = x_i - x_{i-1}, \ i \in \mathbb{N}_N \), Using (3.3)-(3.4) and continuity at internal grid points, we get the following equations:

\[
\begin{align*}
\frac{h_i}{6} M_{i-1} + \frac{h_i + h_{i+1}}{3} M_i + \frac{h_{i+1}}{6} M_{i+1} = \\
\frac{1}{h_i} y_{i-1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) y_i + \frac{1}{h_{i+1}} y_{i+1} - \left\{ a_i a_i d_N - a_i a_{i+1} d_0 - \frac{1}{6} (2h_i a_i) \right\} + h_{i+1} \alpha_{i+1} M_N - \frac{1}{6} (h_i a_i + 2h_{i+1} \alpha_{i+1}) M_0 + \frac{1}{\ell} (a_i a_{i+1} - a_i a_i) (y_N - y_0) \\
\text{for } i = 1, 2, \ldots, N - 1.
\end{align*}
\] (3.5)

Substituting \(i = 1 \) and \(x = x_0 \) in (3.2), the functional relation for \(d_0 \) is

\[
d_0 = a_1 a_1 d_0 - \frac{h_1}{2} (1 - a_1) M_0 + \frac{h_1}{6} ((1 - a_1) M_0 - M_1 + a_1 M_N) + \frac{a_1}{\ell} \left(\frac{y_1 - y_0}{a_1^2} - a_1 (y_N - y_0) \right),
\]

\[
\Rightarrow (1 - a_1 a_1) d_0 = \frac{y_1 - y_0}{h_1} - \frac{a_1 a_1}{\ell} (y_N - y_0) - \frac{h_1}{3} (1 - a_1) M_0 - \frac{h_1}{6} (M_1 - a_1 M_N).
\] (3.6)

Similarly, substituting \(i = N \) and \(x = x_N \) in (3.2), the functional relation for \(d_N \) is

\[
d_N = a_N a_N d_N + \frac{h_N}{2} ((1 - a_N) M_N) + \frac{h_N}{6} (M_{N-1} - M_N + a_N (M_N - M_0)) + \frac{a_N}{\ell} \left(\frac{y_N - y_{N-1}}{a_N^2} - a_N (y_N - y_0) \right),
\]

\[
\Rightarrow (1 - a_N a_N) d_N = \frac{y_N - y_{N-1}}{h_N} - \frac{a_N a_N}{\ell} (y_N - y_0) + \frac{h_N}{3} (1 - a_N) M_N + \frac{h_N}{6} (M_{N-1} - a_N M_N).
\] (3.7)

Thus, we have \(N + 1 \) equations in (3.5)-(3.7) for the computation of IFS parameters \(M_j, \ j \in \mathbb{N}_N \cup \{0\}, d_0 = f'(x_0) \) and \(d_N = f'(x_N) \). Our aim is to replace these \(M_j \) with functional values at grid points with suitable discretization of the given differential equation.

3.2. Discretization of BVP by fractal splines

Now we wish to solve a linear two-point second order BVP of the form

\[
y''(x) + P(x)y'(x) + Q(x)y(x) = R(x)
\] (3.8)

with Dirichlet boundary conditions

\[
y(x_0) = \beta^* \quad \text{and} \quad y(x_N) = \gamma^*,
\] (3.9)

where \(R(x) \) may be continuous and nowhere differentiable function in \(I := [x_0, x_N] \). If we use any classical spline solution \(\psi \) of the BVP (3.8)-(3.9), then \(\psi''(x) + P(x)\psi'(x) + Q(x)\psi(x) \) is a piecewise differentiable function which does not match with \(R(x) \). Therefore, we need a \(C^2 \)-function whose 2nd derivative may be similar to a continuous and nowhere differentiable function. This can be easily achieved by a fractal cubic spline. First, we will discretize the domain \([x_0, x_N]\) as \(x_0 = x_1 < x_2 < \cdots < x_{N-1} < x_N \). We have to find the approximate values of the solution as \(y_i \) at the grid \(x_i \) for \(j = 1, 2, \ldots, N - 1 \) through the fractal cubic spline solution (3.1). We compute the approximate solution of the BVP using (3.3)-(3.7) in our methodology.

At \(x = x_i \), (3.8) can be written in the discretization form as

\[
M_i + P_i d_i + Q_i y_i = R_i \quad \text{for } i = 0, 1, 2, \ldots, N,
\] (3.10)

where \(M_i = y''(x_i), \ P_i = P(x_i), \ d_i = y'(x_i), \ Q_i = Q(x_i), \ y_i = y(x_i) \) and \(R_i = R(x_i) \). Using (3.10) in (3.4), we obtain the following equations for \(i = 0, 1, \ldots, N - 1 \):

\[
\left(1 - \frac{h_{i+1}^2}{3} \right) M_i - \frac{h_{i+1} P_i}{6} M_{i+1} = R_i + \left(\frac{P_i}{h_{i+1}} - Q_i \right) y_i - \frac{P_i}{h_{i+1}^2} y_{i+1} + K_{i,N} a_{i+1} a_{i+1} P_i,
\] (3.11)

where

\[
K_{0,N} = -\left[d_0 + \frac{\ell}{6} (M_N - M_0) + \frac{\ell}{2} M_0 - \frac{1}{2} (y_N - y_0) \right].
\]
Similarly, using (3.10) in (3.3), we obtain the following equations for \(i = 1, \ldots, N \):

\[
\frac{h_i P_i}{6} M_{i-1} + \left(1 + \frac{h_i}{3} P_i \right) M_i = R_i - \left(\frac{P_i}{h_i} + Q_i \right) y_i + \frac{P_i}{h_i} y_{i-1} + K_{0,N}^2 a_i \alpha_i P_i,
\]

(3.12)

where \(K_{0,N}^2 \) is defined as:

\[
K_{0,N}^2 = -\left[d_N + \frac{\ell}{6} \left(M_N - M_0 \right) - \frac{\ell}{2} M_N - \frac{1}{2} \left(y_N - y_0 \right) \right].
\]

It is clear that (3.11) and (3.12) constitute a system of 2\(N \) equations with the 2\(N + 4 \) unknowns, \(M_0, M_1, \ldots, M_N \) and \(y_0, y_1, \ldots, y_N \) and \(d_0, d_N \). Elimination of \(M_i \)'s leads directly to \(N + 1 \) unknowns \(y_1, y_2, \ldots, y_{N-1} \) and \(d_0, d_N \). The continuity conditions at the internal grid points along with the two boundary conditions are sufficient for their determination.

Addition of (3.11) and (3.12) yields the following relations for \(i = 1, 2, \ldots, N - 1 \):

\[
\frac{h_i}{6} P_i M_{i-1} + \left[2 - \frac{h_{i+1} - h_i}{3} \right] M_i - \frac{h_{i+1}}{6} P_i M_{i+1} = 2R_i + \frac{P_i}{h_i} y_{i-1} - \frac{P_i}{h_{i+1}} y_{i+1} - \left(\frac{h_{i+1} - h_i}{h_i h_{i+1}} \right) + 2Q_i \right) y_i + (K_{0,N}^1 a_i \alpha_i + K_{0,N}^2 a_i) P_i.
\]

(3.13)

Elimination of \(M_i \) from (3.13) and (3.5), leads us to the following equations:

\[
A_{1,i} M_{i-1} + A_{2,i} M_{i+1} = A_{3,i} y_{i-1} + A_{4,i} y_i + A_{5,i} y_{i+1} - A_{6,i} y_{i+1},
\]

(3.14)

where

\[
A_{1,i} = \frac{h_i}{3} \left(1 - \frac{h_{i+1} P_i}{3} \right), \quad A_{2,i} = \frac{h_i}{3} \left(1 + \frac{h_{i+1} P_i}{3} \right), \quad A_{3,i} = 2 \left(1 - \frac{h_{i+1} P_i}{3} \right), \quad A_{4,i} = 2 \left(1 + \frac{h_{i+1} P_i}{3} \right), \quad A_{5,i} = 2 \left(1 + \frac{h_{i+1} P_i}{3} \right), \quad A_{6,i} = -2 \left((h_i + h_{i+1}) \left[\frac{1}{h_i h_{i+1}} - \frac{Q_i}{3} \right] + \frac{h_i^2 - h_{i+1}^2}{3h_i h_{i+1}} P_i \right). \]

But an explicit form of \(M_{i-1} \) can be obtained in terms of \(y_{i-1} \) and \(y_i \) by eliminating \(M_i \) from (3.11) (by replacing \(i \) by \(i - 1 \)) and (3.12) as

\[
A_{7,i} M_{i-1} = A_{8,i} y_{i-1} - A_{9,i} y_i + A_{10,i},
\]

(3.15)

where

\[
A_{7,i} = \left(1 - \frac{h_{i+1} P_i}{3} \right) \left(1 + \frac{h_i}{3} P_i \right) + \frac{h_i^2}{36} P_{i-1} P_i, \quad A_{8,i} = \left(1 + \frac{h_i}{3} P_i \right) \left(P_{i-1} - Q_{i-1} \right) + \frac{P_{i-1}}{6}, \quad A_{9,i} = \left(1 + \frac{h_i}{3} P_i \right) \left(P_{i-1} - \frac{h_{i+1} P_i}{6} \right) + \frac{P_{i+1}}{6}, \quad A_{10,i} = \left[\left(1 + \frac{h_i}{3} P_i \right) K_{0,N}^1 + \frac{h_i}{6} K_{0,N}^2 P_i \right] a_i \alpha_i P_{i-1} + \left(1 + \frac{h_i}{3} P_i \right) R_{i-1} + \frac{h_{i+1} P_i}{6} R_i.
\]

Similarly, an explicit form of \(M_{i+1} \) can be obtained in terms of \(y_i \) and \(y_{i+1} \) by eliminating \(M_i \) from (3.11) (by replacing \(i \) by \(i + 1 \)) and (3.12) as

\[
A_{11,i} M_{i+1} = A_{12,i} y_i + A_{13,i} y_{i+1} + A_{14,i},
\]

(3.16)
where

\[A_{11,i} = \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(1 + \frac{h_{i+1}}{3} p_i \right) + \frac{h_i^2}{36} p_i p_{i+1}, \]
\[A_{12,i} = \left(1 - \frac{h_{i+1}}{3} p_i \right) \frac{p_{i+1}}{h_{i+1}} - \frac{h_{i+1} p_{i+1}}{6} \left(\frac{p_i}{h_{i+1}} - Q_i \right), \]
\[A_{13,i} = \frac{p_{i+1}}{6} - \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(\frac{p_{i+1}}{h_{i+1}} - Q_i \right), \]
\[A_{14,i} = \left[\left(1 - \frac{h_{i+1}}{3} p_i \right) k_{0,N}^{1} - \frac{h_{i+1}}{6} K_{0,N}^{2} p_{i+1} \right] a_{i+1} a_i + \left(1 - \frac{h_{i+1}}{3} p_i \right) R_i + \frac{h_{i+1} p_{i+1}}{6} R_i. \]

Substituting \(M_{i-1} \) and \(M_{i+1} \) in (3.14), we obtain the following equations in terms of \(y_{i-1}, y_i \) and \(y_{i+1} \):

\[A_{1,i} y_{i-1} + A_{2,i} y_i + A_{3,i} y_{i+1} = A_{4,i} R_{i+1} + A_{5,i} P_i + A_{6,i} R_{i-1} + A_{7,i}, \quad i \in \mathbb{N}_{-1}, \]

(3.37)

where

\[A_{1,i} = \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(1 + \frac{h_{i+1}}{3} p_i \right) \left[p_{i-1} - \frac{h_i}{3} Q_i - \frac{2}{h_{i+1}} \right] A_{11,i}, \]
\[A_{2,i} = \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(1 + \frac{h_{i+1}}{3} p_i \right) \left[\frac{1}{h_{i+1}} \left(1 + \frac{h_{i+1} p_{i+1}}{2} \right) A_{17,i} + \frac{1}{h_{i+1}} \left(1 - \frac{h_{i+1} p_{i-1}}{2} \right) A_{11,i} \right], \]
\[A_{3,i} = \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(1 + \frac{h_{i+1}}{3} p_i \right) \left[p_{i+1} + \frac{h_{i+1}}{3} Q_i + \frac{2}{h_{i+1}} \right] A_{7,i}, \]
\[A_{4,i} = -\frac{h_i}{3} \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(1 + \frac{h_{i+1}}{3} p_i \right) A_{11,i}, \]
\[A_{5,i} = \frac{h_{i+1} p_{i+1}}{18} \left(1 + \frac{h_{i+1}}{3} p_i \right) A_{7,i} - \frac{h_{i+1} p_{i-1}}{18} \left(1 - \frac{h_{i+1} p_i}{3} \right) A_{11,i}, \]
\[A_{6,i} = -\frac{h_{i+1}}{3} \left(1 - \frac{h_{i+1}}{3} p_i \right) \left(1 + \frac{h_{i+1}}{3} p_i \right) A_{7,i}, \]
\[A_{7,i} = \left[K_{0,N}^{1} a_{i+1} + K_{0,N}^{2} a_i + \left(2 - \frac{h_{i+1}}{3} p_i \right) K_{0,0,0,0}^{1} \right] A_{7,i} A_{11,i}, \]
\[- \frac{h_i}{3} \left(1 - \frac{h_{i+1}}{3} p_i \right) \left[\left(1 + \frac{h_{i+1}}{3} p_i \right) K_{0,N}^{1} + \frac{h_i}{6} K_{0,N}^{2} p_{i+1} A_{11,i} \right], \]
\[- \frac{h_{i+1}}{3} \left(1 + \frac{h_{i+1}}{3} p_i \right) \left[\left(1 - \frac{h_{i+1}}{3} p_i \right) K_{0,N}^{1} - \frac{h_{i+1}}{6} K_{0,N}^{2} p_{i+1} A_{11,i} \right]. \]

\[C_i = \left(h_i + h_{i+1} \right) - \frac{3h_i + 4h_{i+1}}{12} h_i p_{i+1} + \frac{3h_i + 4h_{i+1}}{12} h_{i+1} p_i + \frac{h_{i+1}}{12} (h_i + h_{i+1}) p_i p_{i+1}. \]

Solving (3.17) in conjunction with the boundary conditions in (3.9), we compute the values of \(y(i \in \mathbb{N} \cup \{0\}) \). Using (3.15) and (3.16), we will get the values of all moments \(M_i, \quad i \in \mathbb{N} \cup \{0\} \). Finally, the cubic spline fractal solution to the BVP is obtained from (3.1).

Remark 3.1. When the scaling factors are taken zeros and the partition points are equally spaced then the spline FIF (3.1) reduces to the classical spline function as discussed in Albasyini et al. [11].

Remark 3.2. When we select a uniform partition \(h_1 = h \) gives \(a_i = a = \frac{1}{h} \) and equal scaling factors \(\alpha_i = \alpha, \quad i \in \mathbb{N} \), then (3.17) reduces to the following recurrence relation:

\[\frac{a}{a^2} (y_{i-1} - 2y_i + y_{i+1}) - \frac{h}{6} (p_{i-1} y_{i-1} + 4p_i y_i + p_{i+1} y_{i+1}) \]
\[= \frac{h}{6} (R_{i-1} + 4R_i + R_{i+1} + K_0), \quad i \in \mathbb{N}_{-1}. \]

This clearly corresponds to the central finite-difference representation:

\[\frac{\delta^2 y_i}{\delta x^2} + a^2 h^2 \left(1 + \frac{\delta^2}{6} \right) p_i y_i = a^2 h^2 \left(1 + \frac{\delta^2}{6} \right) R_i + K_0, \quad i \in \mathbb{N}_{-1}. \]
where $K_0 = a^2h^2a(d_N - d_0) + \frac{ah}{2}(P_0y_0 + P_Ny_N) - \frac{ah}{2}(R_0 + R_N)$, and the central difference is defined as $\delta y_i = f(y_i + \frac{h}{2}) - f(y_i - \frac{h}{2})$.

Similarly considering $P(x)$ as a constant P (say), then it is clear that $A_{ij} = A_{11,i} = C_i = \frac{a^2h^2p^2}{12}$ (a cancellation term throughout (3.13) and (3.13)) reduces to the following finite-difference representation:

$$
\delta^2 y_i + \frac{ahP}{2}(y_{i+1} - y_{i-1}) + a^2h^2\left(1 + \frac{\delta^2}{6}\right)Q_i y_i = a^2h^2\left(1 + \frac{\delta^2}{6}\right)R_i + K_{i,0,N}, \quad i \in \mathbb{N}_{N-1}.
$$

By solving the above algebraic equations, the unknowns y_j, $j \in \mathbb{N} \cup \{0\}$, can be computed. Finally, using these y_j and M_j, we get the analytical fractal solution of BVP from (3.1).

Remark 3.3. When the first derivative is absent i.e., $Q(x) = 0$, one can use the above procedure with $Q_j = 0$ for all $j \in \mathbb{N} \cup \{0\}$. Otherwise, one can use a simpler way to calculate the moments as described in the following:

In this case, (3.8) reduces to

$$
y^{(r)}(x) + P(x)y(x) = R(x).
$$

Discretizing (3.18), we get

$$
M_i = R_i - P_i y_i \quad \text{for} \quad i = 0, 1, 2, \ldots, N,
$$

where $M_i = y^{(r)}(x_i)$, $R_i = R(x_i)$, $P_i = P(x_i)$, $y_i = y(x_i)$ for $i = 0, 1, 2, \ldots, N$.

Using (3.19) in (3.5), we have

$$
\frac{6 + h_i^2P_{i-1}}{6h_i} y_{i-1} + \left[\frac{p_i}{3} - \frac{1}{h_i h_{i+1}} \right] (h_i + h_{i+1})y_i + \frac{6 + h_{i+1}^2P_{i+1}}{6h_{i+1}} y_{i+1} = \frac{h_i + h_{i+1}R_i}{3}.
$$

Using (3.6) and (3.19), we obtain

$$
\left(\frac{1}{R_1} - \frac{a_i a_1}{\ell} + \frac{h_1(1 - a_1)P_0}{3} \right) y_0 = \frac{6 + h_1^2P_1}{6h_1} y_1 + \frac{6a_1 + \ell h_1 P_N}{6\ell} a_1 y_N - \frac{h_1}{3}(1 - a_1) R_0 - \frac{h_1}{6}(R_1 - a_1 R_N) - (1 - a_1) d_0.
$$

Similarly, from (3.7) and (3.19), we get

$$
\frac{6a_N - \ell h_N P_N}{6\ell} a_N y_0 - \frac{6 - h_N^2P_{N-1}}{6h_N} y_{N-1} + \left(\frac{1}{h_N} - \frac{a_N a_N}{\ell} + \frac{h_N(1 - a_N)P_N}{3} \right) y_N = \frac{h_N}{N}(1 - a_N) R_N + \frac{h_N}{6}(R_{N-1} - a_N R_0) + (1 - a_N a_N) d_N.
$$

Since $y_0 = y(x_0) = \beta^*$ and $y_N = y(x_N) = \gamma^*$ are available, we need to compute $(N + 1)$ unknowns $y_1, \ldots, y_{N-1}, d_0$ and d_N from the system (3.20)-(3.22). Once this system is solved, using the values with M_0, \ldots, M_N in (3.1), we obtain the desired spline FIF solution to the BVP.

4. Error analysis

In this section, we investigate the truncation error corresponding to the proposed method. Assume that the partition $\Delta := x_0 < x_1 < x_2 < \cdots < x_N$ of the domain interval $I := [x_0, x_N]$ is equally spaced. That is $h_i = x_i - x_{i-1} = h \vee i \in \mathbb{N}_N$, where $h = \frac{x_N - x_0}{N}$, and $a_i = a = \frac{1}{h} \forall i \in \mathbb{N}_N$. Then (3.5)-(3.7) can be written as:

$$
\left\{ \begin{array}{l}
\frac{h}{6} M_{i-1} + \frac{2h}{3} M_i + \frac{h}{6} M_{i+1} = \frac{1}{h} y_{i-1} - \left(\frac{1}{h} + \frac{1}{n} \right) y_i + \frac{1}{h} y_{i+1} - \left\{ a_i d_N - a_i a_{i+1} d_0 - \frac{1}{6} (2h a_i \\
+h a_{i+1}) M_N - \frac{1}{6} (h a_i + 2h a_{i+1}) M_0 + \frac{1}{\ell} (a a_{i+1} - a a_{i}) (y_N - y_0) \right\} \\
\text{for} \quad i = 1, 2, \ldots, N - 1.
\end{array} \right.
$$

$$
d_0 = a a_1 d_0 - \frac{h}{2} (1 - a_1) M_0 + \frac{h}{6} ((1 - a_1) M_0 - M_1 + a_1 M_N) + \frac{a}{\ell} (y_1 - y_0 - a_1 (y_N - y_0)).
$$
\[(1 - a \alpha_1)d_0 = \frac{y_1 - y_0}{h} - \frac{a \alpha_1}{\ell} (y_N - y_0) - \frac{h}{3} (1 - \alpha_1) M_0 \]
\[- \frac{h}{6} (M_1 - \alpha_1 M_0). \]

(4.2)

and

\[d_N = a \alpha_N d_N + \frac{h}{2} ((1 - \alpha_N) M_N) + \frac{h}{6} \left[M_{N-1} - M_N + \alpha_N (M_N - M_0) \right] + \alpha \left(\frac{y_N - y_{N-1}}{a^2} - \alpha (y_N - y_0) \right), \]
\[\Rightarrow (1 - a \alpha_N) d_N = \frac{y_N - y_{N-1}}{h} - \frac{a \alpha_N}{\ell} (y_N - y_0) + \frac{h}{3} (1 - \alpha_N) M_N \]
\[+ \frac{h}{6} (M_{N-1} - \alpha_N M_0). \]

(4.3)

Assume that \(y \in C^4 [x_0, x_N] \). Let us consider the Taylor series expansion of \(y(x_i) \) and \(y(x_{i+1}) \) around the point \(x_{i-1} \) as

\[y(x_i) = y(x_{i-1}) + h y'(x_{i-1}) + \frac{h^2}{2!} y''(x_{i-1}) + \frac{h^3}{3!} y'''(x_{i-1}) + \mathcal{O}(h^4). \]

and

\[y(x_{i+1}) = y(x_{i-1}) + 2h y'(x_{i-1}) + 2h^2 y''(x_{i-1}) + \frac{4h^3}{3} y'''(x_{i-1}) + \mathcal{O}(h^4). \]

It is clear that

\[\frac{-y(x_{i+1}) + 4y(x_i) - 3y(x_{i-1})}{2h} = y'(x_{i-1}) - \frac{h^2}{3} y'''(x_{i-1}) + \mathcal{O}(h^3). \]

Using the Taylor series expansion of \(y(x_{i-1}) \) and \(y(x_{i+1}) \) around the point \(x_i \), we obtain the following:

\[\frac{y(x_{i+1}) - y(x_{i-1})}{2h} = y'(x_i) + \frac{h^2}{3!} y'''(x_i) + \mathcal{O}(h^4). \]

Similarly using the Taylor series expansion of \(y(x_{i-1}) \) and \(y(x_i) \) around the point \(x_{i+1} \), we obtain the following:

\[\frac{3y(x_{i+1}) - 4y(x_i) + y(x_{i-1})}{2h} = y'(x_{i+1}) - \frac{h^2}{3} y'''(x_{i+1}) + \mathcal{O}(h^3). \]

Hence, the following second order approximations to \(d_i \) can be used.

\[d_i = \frac{y_{i+1} - y_{i-1}}{2h}, \quad d_{i+1} = \frac{3y_{i+1} - 4y_i + y_{i-1}}{2h}, \quad d_{i-1} = \frac{-y_{i+1} + 4y_i - 3y_{i-1}}{2h}. \]

Substituting \(M_i = R_i - P d_i - Q_x y_i \) and \(d_i \) for \(i = 0, 1, N \) in (4.1), we get

\[3h(1 - a \alpha_1) + h^2 (1 - \alpha_1) P_0 + \frac{h^2 P_1}{6} + 2h - \frac{2h^2 \alpha_1}{\ell^2} - \frac{2h^3 (1 - \alpha_1) Q_0}{3} \]
\[+ \left[\frac{4h^2 (1 - \alpha_1)}{3} - \frac{h^2 \alpha_1 P_0}{3} - 2h - \frac{h^3 Q_1}{3} \right] y_1 + \left[-h (1 - \alpha_1) + \frac{h^2 (1 - \alpha_1) P_0}{3} - \frac{h^2 P_1}{6} \right] y_2 + \frac{h^2 \alpha_1 P_N}{3} \]
\[- \frac{2h^2 \alpha_1 P_N}{3} y_{N-1} + h^2 \alpha_1 \left(\frac{P_0}{2} + 2 \frac{h \alpha_1}{\ell^2} + \frac{h \alpha_1 Q_0}{3} \right) y_N = - \frac{2h^2 (1 - \alpha_1)}{3} R_0 - \frac{h^3}{3} R_1 + \frac{h^2 \alpha_1 R_N}{3}. \]

(4.4)

Replacing \(M_i = R_i - P d_i - Q_x y_i \) and \(d_i \) for \(i = 0, N - 1, N \) in (4.2), we deduce

\[3h(1 - a \alpha_1) + h^2 (1 - \alpha_1) P_0 + \frac{h^2 P_1}{6} + 2h - \frac{2h^2 \alpha_1}{\ell^2} - \frac{2h^3 (1 - \alpha_1) Q_0}{3} \]
\[+ \left[\frac{4h^3 (1 - \alpha_1)}{3} - \frac{h^2 \alpha_1 P_0}{3} + 3h + \frac{h^3 Q_1}{3} \right] y_{N-1} + \left[h (1 - \alpha_1) + \frac{h^2 (1 - \alpha_1) P_0}{3} - \frac{h^2 P_1}{6} + 2h + \frac{h^3 Q_1}{3} \right] y_{N-2} \]
\[- \frac{h^2 \alpha_1 P_0}{6} y_2 + \frac{2h^2 \alpha_1 P_0}{3} y_1 - h^2 \alpha_1 \left(\frac{P_0}{2} + 2 \frac{h \alpha_1}{\ell^2} + \frac{h \alpha_1 Q_0}{3} \right) y_0 = \frac{2h^2 (1 - \alpha_1)}{3} R_N + \frac{h^2 R_{N-1}}{3} - \frac{h^2 \alpha_1 R_0}{3}. \]

(4.5)

Similarly, substituting \(M_i = R_i - P d_j - Q_x y_j \) and \(d_j \) for \(j = 0, N, i - 1, i, i + 1 \) in (4.3), we have

\[\left[6 + h^2 Q_1 - \frac{3h P_1}{2} - 2h P_i + \frac{h P_1}{2} \right] y_{i-1} + \left[4h^2 Q_i - 12 + 2h P_{i-1} - 2h P_i - 2h P_{i+1} \right] y_i \]
\[+ \left[6 + h^2 Q_i - \frac{3h P_{i+1}}{2} + 2h P_i + \frac{3h P_{i+1}}{2} \right] y_{i+1} + \left[h^2 (\alpha_i + 2 \alpha_1 Q_0 - \frac{6h^2 (\alpha_1 - \alpha_i)}{\ell^2} - \frac{9h \alpha_1}{\ell} \right] y_{i+2} \]
+ \frac{3h(\alpha_1 + 2\alpha_{i+1})P_0}{2} \bigg] y_0 + \bigg[\frac{12h\alpha_{i+1}}{\ell} + 2h(\alpha_1 + 2\alpha_{i+1})P_0 \bigg] y_1 - \bigg[\frac{3h\alpha_{i+1}}{\ell} + h(\alpha_1 + 2\alpha_{i+1})P_0 \bigg] y_2 \\
- \bigg[\frac{3h\alpha_i}{\ell} + \frac{h(2\alpha_i + \alpha_{i+1})}{2} P_0 \bigg] y_N - 2 + \bigg[\frac{12h\alpha_i}{\ell} + 2h(2\alpha_i + \alpha_{i+1})P_N \bigg] y_{N-2} - \bigg[\frac{9h\alpha_i}{\ell} + \frac{3h(2\alpha_i + \alpha_{i+1})P_N}{2} \bigg] y_{N-1} \bigg] y_N - 2 \\
= h^2 R_{i+1} + 4h^2 R_i + h^2 R_{i+1} + h^2 (\alpha_i + 2\alpha_{i+1}) R_0 - h^2 (\alpha_i + 2\alpha_{i+1}) R_N. \tag{4.6}

Now let \(|\alpha_i| < a^2 = \frac{h^2}{\ell^2}\). We get the truncation error \(T_0(h)\) associated with the equation given in (4.4) as

\[
T_0(h) = \left[-3h(1 - a\alpha_1) + h^2(1 - a\alpha_1) P_0 + \frac{h^2 P_1}{6} + 2h - \frac{2h^3(1 - a\alpha_1) Q_0}{3} \right] y_0 + \left[4h(1 - a\alpha_1) \right] y_{x_0} \\
- \frac{4h^2(1 - a\alpha_1) P_0}{3} - 2h - \frac{h^3 Q_1}{3} \bigg] y_1 + \left[-h(1 - a\alpha_1) + \frac{h^2(1 - a\alpha_1) P_0}{3} - \frac{h^2 P_1}{6} \right] y_2 \\
\frac{2h^2 a_1 P_N}{3} y_{N-2} + \frac{2h^2 a_1 P_N}{3} y_{N-1} + h^2 \left[\frac{P_N}{2} + \frac{h^2 P_1}{6} \right] y_N + \frac{2h^2(1 - a\alpha_1) R_0 + h^2 a_1 R_N}{3}. \tag{4.7}
\]

Replacing \(R_i = y''(x_i) + P_i y'(x_i) + Q_i y_i\) for \(i = 0, 1, N\) in (4.7) and after simplifying, we obtain

\[
T_0(h) = \frac{2h^3 a_1}{\ell^2} (y_N - y_0) + a_1 h^2 P_0 \left[-\frac{h^3}{3} y'''(x_N) + \cdots \right] - \frac{h^3 a_1}{3} y'(x_0) \\
+ h^4 \left[\frac{P_0 - P_1}{3} - \frac{2a_1}{\ell} \right] y''(x_0) + h^4 \left[\frac{P_0 - P_1}{3} - \frac{2a_1}{\ell} \right] y''(x_0) + \cdots. \tag{4.8}
\]

Using the Taylor series expansion for \(y(x_1), y(x_2), y'(x_1), y''(x_1)\) about the point \(x_0\) and using

\[
\frac{y_N - 3y_N - 4y_{N-1}}{2h} = y'(x_0) - \frac{h^2}{3} y'''(x_N) + \cdots.
\]
in (4.8), we obtain

\[
T_0(h) = \frac{2h^3 a_1}{\ell^2} (y_N - y_0) + a_1 h^2 P_0 \left[-\frac{h^3}{9} y'''(x_N) + \cdots \right] - \frac{h^3 a_1}{3} y'(x_0) \\
+ h^4 \left[\frac{P_0 - P_1}{3} - \frac{2a_1}{\ell} \right] y''(x_0) + h^4 \left[\frac{P_0 - P_1}{3} - \frac{2a_1}{\ell} \right] y''(x_0) + \cdots.
\]

Clearly, we can write \(|T_0(h)| \leq C_0 h^3\), where \(C_0\) is a constant. Thus, \(T_0(h) = O(h^3)\) as \(h \to 0\). Since \(|\alpha_i| < a^2 = \frac{h^2}{\ell^2}\), it is possible to get \(T_0(h) = O(h^5)\) as \(h \to 0\) under the assumption \(|P_0 - P_1| = O(h^2)\).

We get the truncation error \(T_N(h)\) associated with the equation given in (4.5) as

\[
T_N(h) = \left[3h(1 - a\alpha_N) + h^2(1 - a\alpha_N) P_0 + \frac{h^2 P_{N-1}}{6} - 2h + \frac{2h^3 a_N}{\ell^2} - \frac{2h^2(1 - a\alpha_N) Q_N}{3} \right] y_N \\
+ \left[-4h(1 - a\alpha_N) + \frac{4h^2(1 - a\alpha_N) P_0}{3} + 2h + \frac{h^3 Q_{N-1}}{3} \right] y_{N-1} + \left[h(1 - a\alpha_N) \right] y_{N-2} \\
+ \frac{h^2(1 - a\alpha_N) P_N}{3} - \frac{h^2 P_{N-1}}{6} \right] y_{N-2} - \frac{h^2 a_N P_0}{6} - \frac{h^2 a_N y_2}{6} + \frac{2h^2 a_N P_0}{3} y_1 + h^2 a_N \left[\frac{P_0}{2} - \frac{2h}{\ell^2} \right] \\
- \frac{h Q_N}{3} y_0 - \frac{h^2(1 - a\alpha_N) R_N}{3} - \frac{h^2 a_N R_{N-2} + h^2 a_N R_{N-1}}{3}. \tag{4.9}
\]

Substituting \(R_i = y''(x_i) + P_i y'(x_i) + Q_i y_i\) for \(i = 0, N - 1, N\) in (4.7) and after simplifying, we obtain

\[
T_N(h) = \frac{2h^3 a_N}{\ell^2} (y_N - y_0) + a_N h^2 P_0 \left[-\frac{y_N - 3y_N + 4y_1}{6} + \frac{h}{3} y'(x_0) \right] - \frac{2h^2(1 - a\alpha_N) y'(x_N)}{3} \\
\frac{h^3}{3} a_N y''(x_0) + \left[-h(3a\alpha_N - 1) + h^2(1 - a\alpha_N) P_N + \frac{h^2 P_{N-1}}{6} \right] y_N + \left[-2h(1 - 2a\alpha_1) \right.
\]

10
Using the Taylor series expansion for \(A.K.B. Chand, K.R. Tyada and M.A. Navascués \) Journal of Computational and Applied Mathematics xxx (xxxx) xxx

Further, we can write the truncation error \(T_N(h) \) as

\[
T_N(h) = \left[12 + 2h^2 Q_{i-1} - 3h P_{i-1} - 4h + h P_{i+1} \right] y_{i-1} + \left[8h^2 Q_0 - 24 + 4h P_{i-1} \right] y_i + \left[12 \right.
\]

\[
+ 2h^2 Q_{i-1} - h P_{i-1} + 4h + 3h P_{i+1} \right] y_{i+1} + \left[2h^2(\alpha_i + 2\alpha_{i+1})Q_0 - \frac{12h^2}{\ell^2}(\alpha_{i+1} - \alpha_i) \right.
\]

\[
- \frac{18h^2 \alpha_{i+1}}{\ell} - 3h(\alpha_i + 2\alpha_{i+1})P_0 \right] y_0 + \left[\frac{24h^2 \alpha_{i+1}}{\ell^3} + 4h(\alpha_i + 2\alpha_{i+1})P_0 \right] y_1 + \left[\frac{6h \alpha_{i+1}}{\ell} \right.
\]

\[
- 2h(\alpha_i + 2\alpha_{i+1}) P_0 \right] y_2 + \left[\frac{-6h \alpha_{i+1}}{\ell} - 2h(2\alpha_i + \alpha_{i+1})P_0 \right] y_{N-2} + \left[\frac{4h(2\alpha_i + \alpha_{i+1})P_N}{\ell} \right.
\]

\[
+ \frac{24h \alpha_{i+1}}{\ell} \right] y_{N-1} + \left[-2h^2(2\alpha_i + \alpha_{i+1})Q_0 + \frac{12h^2}{\ell^2}(\alpha_{i+1} - \alpha_i) - 3h(2\alpha_i + \alpha_{i+1})P_0 \right) y_0
\]

\[
- \frac{18h^2 \alpha_{i+1}}{\ell} y_{N-2} - 8h^2 R_1 - 8h^2 R_1 - 2h^2(\alpha_i + 2\alpha_{i+1}) R_0 + 2h^2(2\alpha_i + \alpha_{i+1}) R_N. \tag{4.12}
\]

Replacing \(R_j = y''(x_j) + P_j y'(x_j) + Q_j y_j \) for \(j = 0, 1, i, i+1, N \) and using the Taylor series expansions of \(y(x_i) \) and \(y(x_{i+1}) \) around the point \(x_{i-1} \), we obtain the following:

\[
T_i(h) = 4h^3(1 - 2p_i) y''(x_{i-1}) + h^3 \left[12 - \frac{8h}{3} - \frac{2h P_{i-1}}{3} - \frac{4h^2 P_i}{3} + \frac{10h P_{i+1}}{3} \right] y'''(x_0) + \ldots
\]

\[
+ \left[2h^2(\alpha_i + 2\alpha_{i+1})Q_0 - \frac{12h^2}{\ell^2}(\alpha_{i+1} - \alpha_i) - \frac{18h^2 \alpha_{i+1}}{\ell} - 3h(\alpha_i + 2\alpha_{i+1})P_0 \right] y_0
\]

\[
+ \left[4h(\alpha_i + 2\alpha_{i+1}) P_0 + \frac{24h^2 \alpha_{i+1}}{\ell^3} \right] y_1 + \left[\frac{-6h \alpha_{i+1}}{\ell} - 2h(\alpha_i + 2\alpha_{i+1})P_0 \right] y_2
\]

\[
+ \left[-2h(2\alpha_i + \alpha_{i+1}) P_0 \right] y_{N-2} + \left[4h(2\alpha_i + \alpha_{i+1}) P_N + \frac{24h \alpha_{i+1}}{\ell} \right] y_{N-1}
\]

\[
+ \left[-2h^2(2\alpha_i + \alpha_{i+1})Q_0 + \frac{12h^2}{\ell^2}(\alpha_{i+1} - \alpha_i) - 3h(2\alpha_i + \alpha_{i+1}) P_0 \right] y_N - \frac{18h^2 \alpha_{i+1}}{\ell} y_N.
\]

Since \(|\alpha_i| < \frac{a^2}{2} \), we have \(|T_i(h)| \leq C_i h^3 \), where \(C_i \) is a constant. Thus, \(T_i(h) = O(h^3) \) as \(h \to 0 \) for \(i = 1, 2, \ldots, N - 1 \). Consequently, any approximation solution will converge to the exact solution as \(h \to 0 \).

5. Numerical results and discussion

First, we consider the case (a) when \(y' \) is absent. Here, we try to get a smooth fractal solution of the following BVP:

Example 5.1. Consider the two point boundary value problem

\[
y'' + y + 1 = 0, \quad y(0) = 0, \quad y(1) = 0, \tag{5.1}
\]
Note that the scaling factors can be chosen from the range \((-M, M)\). It is clear that \(h\) values to scaling factors, say \(\alpha\). The iteration of this function equation gives us the graph of the desired cubic spline \(F\) in Fig. 1(a). By assuming different for \(P\) and \(Q\), we obtain \(\alpha = 0.1\) for \(i = 1, 2\). Here \(P(0) = 1\), \(Q(x) = 0\), and \(R(x) = -1\). Thus, \(P_j = 1\), \(Q_j = 0\), and \(R_j = -1\) for \(j = 0, 1, 2\). From (3.17), we get the following equation for \(i = 1\):

\[
\alpha(d_2 - d_0) + 8y_1 - \frac{2}{3}y_1 = -\alpha + 1 \Rightarrow y_1 = \frac{3\alpha}{22}(d_0 - d_2 - 1) + \frac{3}{22}. \tag{5.2}
\]

From (3.6) and (3.7), we find the following equations respectively:

\[
d_0 = f'(0) = \frac{\alpha}{88}(69d_0 - 25d_2 - 49) + \frac{47}{88}, \tag{5.3}
\]

\[
d_2 = f'(1) = \frac{\alpha}{88}(69d_2 - 25d_0 + 49) - \frac{47}{88}.
\]

Solving the above system (5.2)-(5.3), we compute \(d_0 = -d_2 = 0.5356\) and \(y_1 = y(1/2) = 0.136904 \equiv 3/22\). Now, we will compute the moments using the above values with \(y_0 = y_2 = 0\).

\[
M_0 = R_0 - P_0y_0 \Rightarrow M_0 = -1,
\]

\[
M_2 = R_2 - P_2y_2 \Rightarrow M_2 = -1,
\]

\[
M_1 = R_1 - P_1y_1 \Rightarrow M_1 = -1.1081.
\]

These moments are then used in (3.1) to write the functional equation of a cubic spline \(F\) (say \(f_1\)) in the following:

\[
f_1(L_0(x)) = \begin{cases}
\frac{1}{45}f_1(x) - \frac{239}{40000}x^3 - \frac{81}{160}x^2 + \frac{1}{80}x & \text{for } x \in [0, 1/2], \\
\frac{1}{45}f_1(x) + \frac{239}{40000}x^3 - \frac{5187}{4000}x^2 - \frac{269}{2000}x + \frac{687}{5000} & \text{for } x \in [1/2, 1].
\end{cases}
\]

The iteration of this functional equation gives us the graph of the desired cubic spline \(F\) in Fig. 1(a). By assuming different values to scaling factors, say \(\alpha_1 = 1/8\) and \(\alpha_2 = -1/7\), we obtain the following system of equations with the unknown variables \(y_1\), \(d_0\), \(d_2\) directly from (3.20)-(3.22):

\[
y_1 + 0.0195d_0 + 0.0170d_2 = 0.2740,
\]

\[
y_1 - 0.45d_0 = 0.1050,
\]

\[
y_1 + 0.5450d_2 = 0.1491.
\]

The solution of the above system gives \(y_1 = 0.2705\), \(d_0 = 0.3678\) and \(d_2 = -0.2172\). Thus, we get \(M_0 = -1\), \(M_1 = -1.2705\) and \(M_2 = -1\). Using these moments in (3.1), we obtain another cubic spline \(F\) (say \(f_2\), see Fig. 1(b), and its functional equation is

\[
f_2(L_0(x)) = \begin{cases}
\frac{1}{27}f_2(x) - 0.0113x^3 - 0.1094x^2 + 0.3911x, & \text{for } x \in [0, 1/2], \\
-\frac{1}{27}f_2(x) + 0.0113x^3 - 0.1767x^2 - 0.0105x + 0.2705, & \text{for } x \in [1/2, 1].
\end{cases}
\]

Note that the scaling factors can be chosen from the range \((-a^2, a^2) = (-0.25, 0.25)\). We have shown \(f_2\) to demonstrate the possible of getting a large class of solutions by fractal methodology. By setting all scaling factors to zero, we obtain the classical cubic spline interpolant \(P\), see Fig. 1(c). From Fig. 1, it is easy to observe that the fractal cubic spline \(f_1\) is a better approximant in comparison with the classical cubic spline solution.
shown in Fig. 3b and is defined as follows:

\[
f_1(L(x)) = \begin{cases}
\frac{16}{125}f_1(x) - \frac{669}{2500}x^3 + \frac{4}{125}x^2 + \frac{129}{500}x, & \text{for } x \in [0, 0.4], \\
\frac{49}{500}f_1(x) + \frac{491}{2500}x^3 - \frac{209}{500}x^2 + \frac{32}{625}x - \frac{110}{625}, & \text{for } x \in [0.4, 0.75], \\
\frac{1}{25}f_1(x) - \frac{235}{250}x^3 + \frac{715}{250}x^2 - \frac{91}{100}x + \frac{91}{100}, & \text{for } x \in [0.75, 1].
\end{cases}
\]

Similarly, for different choices of scaling factors \(a_i\), \(i = 1, 2, 3\), we obtain different values for \(d_0, d_3, M_0, M_1, M_2\) and \(M_3\) which are listed in Table 1. With respect to these values, we obtain various fractal cubic spline solutions, and they are presented in Figs. 3c–e. Setting all scaling factors to 0, we obtain the classical cubic spline solution \(P\) defined through moments as shown in Fig. 3f. A comparison between the exact solution, 4 different cubic fractal solutions and the classical solution are illustrated in Fig. 4. The uniform errors between the exact solution of the BVP with various fractal cubic spline solutions are listed in Table 2. It is easy to observe from Fig. 4 that the cubic fractal spline solution \(f_1\) is the closest approximated solution among the proposed five solutions to the given BVP, whose non-homogeneous term is nowhere differentiable function in the given domain.
Remark 5.1. Note that the solution of BVP (3.8)-(3.9) is not unique if \(y(x) \) is not infinitely differentiable. When we assume that \(y'' \) is not differentiable, it is possible to get a wide variety of solutions by fractal methodology due to the flexibility offered by the scaling factors. The flexibility in the choice of fractal interpolants can be harvested to elect a
suitable interpolant by concentrating some desirable features such as smoothness, fairness, fractality in the derivative, and threshold error between $R(x)$ and its approximation. The question on “optimum curve” can be addressed based on Levkovichi’s work [23]. Here the problem is for given functions $P(x), Q(x), R(x)$, find the IFS parameters of y such that $y'' + Py' + Q = R$ on $[x_0, x_N]$. In Levkovichi’s work, contraction affine mappings generating a given function is obtained based on the connection between the maxima skeleton of wavelet transform of the function and positions of the fixed points of the affine mappings. One can adapt a similar procedure to find the connection between the strongest singularities.
of $R(x)$ and the 2nd derivative of the fixed points of the cubic spline IFS. This will give an idea to fix the position of grid points on $[x_0, x_N]$. Then, the optimal curve can be defined as the fractal curve produced by a specific set of parameters that minimizes a suitable numerical quantity assigned to all possible curves obtained by the scheme ensuring that the error $\|y'' + Py' + Q - R\|$ is minimal. Such a constrained optimization problem may be solved by means of a differential evolution optimization algorithm/genetic algorithm to choose the scaling parameters for construction of the desired cubic spline FIF.

6. Summary

In this work, we have discussed the solutions of two-point BVPs by using cubic spline FIFs through moments in a deterministic manner even if the non-homogeneous differential equation involves a continuous function which is nowhere differentiable. Using the continuity condition at the grid points of the cubic spline fractal and the end point conditions by the derivatives, we have computed the values at the nodes $y_1, y_2, \ldots, y_{N-1}$ from a tridiagonal system. Then, the moments are computed in terms of y_i, $i \in \mathbb{N}_N \cup \{0\}$ to obtain the desired cubic spline fractal solution. Selecting the scaling factors to be zero and equal interpolating knot sequences, the proposed method coincides with the solution developed in [11]. Hence, our method is more general than the classical cubic spline solution of the second order ordinary BVP. The truncation error of the proposed method is $O(h^3)$ as $h \to 0$.

Acknowledgments

The first author is thankful for the project: MTR/2017/000574 - MATRICS from the Science and Engineering Research Board (SERB), Government of India. The authors would like to thank the anonymous referees for their valuable suggestions to improve the exposition of the paper.

References