000108340 001__ 108340
000108340 005__ 20230519145410.0
000108340 0247_ $$2doi$$a10.3390/fractalfract5020042
000108340 0248_ $$2sideral$$a125039
000108340 037__ $$aART-2021-125039
000108340 041__ $$aeng
000108340 100__ $$0(orcid)0000-0003-4847-0493$$aNavascués Sanagustín, María Antonia$$uUniversidad de Zaragoza
000108340 245__ $$aFractal frames of functions on the rectangle
000108340 260__ $$c2021
000108340 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108340 5203_ $$aIn this paper, we define fractal bases and fractal frames of L2(I   J), where I and J are real compact intervals, in order to approximate two-dimensional square-integrable maps whose domain is a rectangle, using the identification of L2(I   J) with the tensor product space L2(I) NL2(J). First, we recall the procedure of constructing a fractal perturbation of a continuous or integrable function. Then, we define fractal frames and bases of L2(I   J) composed of product of such fractal functions. We also obtain weaker families as Bessel, Riesz and Schauder sequences for the same space. Additionally, we study some properties of the tensor product of the fractal operators associated with the maps corresponding to each variable.
000108340 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000108340 590__ $$a3.577$$b2021
000108340 592__ $$a0.644$$b2021
000108340 594__ $$a2.8$$b2021
000108340 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b18 / 108 = 0.167$$c2021$$dQ1$$eT1
000108340 593__ $$aStatistical and Nonlinear Physics$$c2021$$dQ2
000108340 593__ $$aAnalysis$$c2021$$dQ2
000108340 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108340 700__ $$aMohapatra, Ram
000108340 700__ $$aAkhtar, Md Nasim
000108340 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000108340 773__ $$g5, 42 (2021), [15 pp.]$$pFractal fract.$$tFractal and fractional$$x2504-3110
000108340 8564_ $$s501545$$uhttps://zaguan.unizar.es/record/108340/files/texto_completo.pdf$$yVersión publicada
000108340 8564_ $$s2763719$$uhttps://zaguan.unizar.es/record/108340/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108340 909CO $$ooai:zaguan.unizar.es:108340$$particulos$$pdriver
000108340 951__ $$a2023-05-18-13:54:15
000108340 980__ $$aARTICLE