000108347 001__ 108347
000108347 005__ 20230519145415.0
000108347 0247_ $$2doi$$a10.1016/j.camwa.2021.08.020
000108347 0248_ $$2sideral$$a124827
000108347 037__ $$aART-2021-124827
000108347 041__ $$aeng
000108347 100__ $$aPé de la Riva, Álvaro$$uUniversidad de Zaragoza
000108347 245__ $$aA two-level method for isogeometric discretizations based on multiplicative Schwarz iterations
000108347 260__ $$c2021
000108347 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108347 5203_ $$aIsogeometric Analysis (IGA) is a computational technique for the numerical approximation of partial differential equations (PDEs). This technique is based on the use of spline-type basis functions, that are able to hold a global smoothness and allow to exactly capture a wide set of common geometries. The current rise of this approach has encouraged the search of fast solvers for isogeometric discretizations and nowadays this topic is receiving a lot of attention. In this framework, a desired property of the solvers is the robustness with respect to both the polynomial degree p and the mesh size h. For this task, in this paper we propose a two-level method such that a discretization of order p is considered in the first level whereas the second level consists of a linear or quadratic discretization. On the first level, we suggest to apply one single iteration of a multiplicative Schwarz method. The choice of the block-size of such an iteration depends on the spline degree p, and is supported by a local Fourier analysis (LFA). At the second level one is free to apply any given strategy to solve the problem exactly. However, it is also possible to get an approximation of the solution at this level by using an h-multigrid method. The resulting solver is efficient and robust with respect to the spline degree p. Finally, some numerical experiments are given in order to demonstrate the good performance of the proposed solver.
000108347 536__ $$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PGC2018-099536-A-I00$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-105574GB-I00
000108347 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000108347 590__ $$a3.218$$b2021
000108347 592__ $$a0.984$$b2021
000108347 594__ $$a6.4$$b2021
000108347 591__ $$aMATHEMATICS, APPLIED$$b25 / 267 = 0.094$$c2021$$dQ1$$eT1
000108347 593__ $$aModeling and Simulation$$c2021$$dQ1
000108347 593__ $$aComputational Theory and Mathematics$$c2021$$dQ1
000108347 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108347 700__ $$0(orcid)0000-0002-1598-2831$$aRodrigo, Carmen$$uUniversidad de Zaragoza
000108347 700__ $$0(orcid)0000-0002-9777-5245$$aGaspar, Francisco J.$$uUniversidad de Zaragoza
000108347 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000108347 773__ $$g100 (2021), 41-50$$pComput. math. appl.$$tCOMPUTERS & MATHEMATICS WITH APPLICATIONS$$x0898-1221
000108347 8564_ $$s766878$$uhttps://zaguan.unizar.es/record/108347/files/texto_completo.pdf$$yVersión publicada
000108347 8564_ $$s2669779$$uhttps://zaguan.unizar.es/record/108347/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108347 909CO $$ooai:zaguan.unizar.es:108347$$particulos$$pdriver
000108347 951__ $$a2023-05-18-13:59:39
000108347 980__ $$aARTICLE