000108355 001__ 108355
000108355 005__ 20230519145410.0
000108355 0247_ $$2doi$$a10.1111/1462-2920.15552
000108355 0248_ $$2sideral$$a124916
000108355 037__ $$aART-2021-124916
000108355 041__ $$aeng
000108355 100__ $$0(orcid)0000-0002-1960-2672$$aSarasa-Buisan, Cristina$$uUniversidad de Zaragoza
000108355 245__ $$aFurC (PerR) from Anabaena sp. PCC7120: a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation
000108355 260__ $$c2021
000108355 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108355 5203_ $$aFurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation.
000108355 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000108355 590__ $$a5.476$$b2021
000108355 592__ $$a1.445$$b2021
000108355 594__ $$a8.2$$b2021
000108355 591__ $$aMICROBIOLOGY$$b42 / 138 = 0.304$$c2021$$dQ2$$eT1
000108355 593__ $$aMicrobiology$$c2021$$dQ1
000108355 593__ $$aEcology, Evolution, Behavior and Systematics$$c2021$$dQ1
000108355 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108355 700__ $$0(orcid)0000-0002-0474-255X$$aGuio, Jorge$$uUniversidad de Zaragoza
000108355 700__ $$0(orcid)0000-0003-4155-749X$$aBroset, Esther
000108355 700__ $$0(orcid)0000-0002-2742-3711$$aPeleato, M. Luisa$$uUniversidad de Zaragoza
000108355 700__ $$0(orcid)0000-0001-8644-4574$$aFillat, María F.$$uUniversidad de Zaragoza
000108355 700__ $$0(orcid)0000-0001-6435-3540$$aSevilla, Emma$$uUniversidad de Zaragoza
000108355 7102_ $$11002$$2412$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Fisiología Vegetal
000108355 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000108355 773__ $$g24, 2 (2021), 566-582$$pEnviron. microbiol.$$tEnvironmental Microbiology$$x1462-2912
000108355 8564_ $$s2509978$$uhttps://zaguan.unizar.es/record/108355/files/texto_completo.pdf$$yVersión publicada
000108355 8564_ $$s2908056$$uhttps://zaguan.unizar.es/record/108355/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108355 909CO $$ooai:zaguan.unizar.es:108355$$particulos$$pdriver
000108355 951__ $$a2023-05-18-13:54:23
000108355 980__ $$aARTICLE