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Abstract-- This work proposes a methodology to automate the 

recognition of Partial Discharges (PD) sources in Electrical 

Distribution Networks using a Deep Neural Network (DNN) 

model called Convolutional Autoencoder (CAE), which is able to 

automatically extract features from data to classify different 

sources.  The database used to train the model is constructed with 

real defects commonly found in MV switchgear in service, and it 

also includes noise and interference signals that are present in 

these installations. PD sources consist of defective mountings, 

such as the loss of sealing cap of cable terminations, or an earth 

cable in contact with cable termination insulation. Four sources 

were replicated in a Smart Grid Laboratory and on-line 

measurement techniques were used to obtain the PD signal data. 

The Continuous Wavelet Transform (CWT) was applied to post-

process the PD signal into a time-frequency image 

representation. The trained model predicts with high accuracy 

new data, demonstrating the effectiveness of the methodology to 

automate the recognition of different partial discharges and to 

differentiate them from noise and other interference sources.    

 
Index Terms-- Condition monitoring, convolutional neural 

networks, deep learning, fault diagnosis, image classification, 

partial discharge, signal processing, substations, wavelet 

transforms 

I.  INTRODUCTION 

ARTIAL discharge (PD) is a phenomenon generated as a 

consequence of dielectric insulation imperfections such as 

voids in solid dielectrics or sharp edges in air. In this 

phenomenon, an avalanche of electrons is produced, creating a 

very fast transient current pulse at very high frequencies whose 

width and rise time depend on the PD source that has generated it. 

This is because each PD defect has its own particular degradation 

mechanism, where discriminatory features from the measured 

pulses can be extracted [1].   
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The detection of PD in the energized electrical system is crucial 

to prevent costly outages of the electrical network and thus, the 

identification of the source before total breakdown is essential. 

For this reason, the classification (or identification) of PD has 

been widely investigated over the last years. A review of different 

approaches of these methods can be found in [2]-[3].  

Nowadays, to automate classification tasks, new algorithms 

based on Deep Neural Networks (DNN)  have been implemented 

[4]–[6]. This technique, which has demonstrated to be highly 

effective, can be included within a larger maintenance system and 

used as a PD diagnosis tool in a “smart condition monitoring” 

context. However, this technique presents interesting challenges 

to its general applicability and certain improvements in the 

methodology have to be done to obtain a good classifier. 

The methodology of a DNN technique is illustrated in Fig. 1, 

and consists of several steps: a) Create a database containing 

relevant information of the phenomena that will be classified, this 

data could be images, audio, etc.; b) Define and train the DNN 

model with the database; and, c) Use the trained model to predict 

(or classify) new test data. 

The Partial Discharge data representations that have been 

used in literature to build the databases are: Phase Resolved 

Pattern (PRPD) [5]-[6], Spectrogram image [7]-[8] and, Time-

Domain Waveform [9]-[11]. Most of the datasets used in these 

references were collected from artificial PD sources 

constructed in laboratories, and not enough data from real 

installations was used.   

 

 
 
Fig. 1. Methodology for classification technique using Deep Neural Networks. 

 

The design of a proper database is the main key to make this 

technique applicable in real electrical installations because, if the 

data used to train the model do not represent exactly the same 

phenomenon found in the installations or if they present biases, 

the trained DNN model will not make a reasonable prediction. 

DATABASE

Training Data

MODEL

TRAINING MODEL
TRAINED

TEST DATA

PREDICTION

Defect Type

Partial Discharge Identification in MV switchgear 
using Scalogram representations and Convolutional 

AutoEncoder 
Sonia Barrios, David Buldain, Maria Paz Comech and Ian Gilbert 

P 

mailto:buldain@unizar.es
mailto:igi@ormazabal.com


0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3042934, IEEE
Transactions on Power Delivery

 2 

This work is focused on the identification of PD sources found 

in MV substation facilities by using a Convolutional Autoencoder 

(CAE) to extract the features from PD data and classify the 

different sources. The data used for training and testing the CAE 

model has been developed in this work and consists of real 

defective mountings found in MV switchgears. Furthermore, to 

build the database, an alternative PD data representation is used, 

which is a time-frequency image of a single PD signal, called 

Scalogram. This representation optimizes the time of data 

acquisition and guarantees a faithful representation of the PD 

phenomenon. 

Hereafter, the technique used to obtain the time-frequency 

representation is explained in section 2. In Section 3, the PD 

sources and the experimental setup to collect the data are 

presented. The processing steps to construct the database are 

detailed in section 4. Section 5 introduces the CAE model and 

the methodology implemented. The practical considerations of 

the proposed method and the results are presented in section 6, 

followed by the conclusions in section 7. 

II.  TIME-FREQUENCY SIGNAL REPRESENTATION 

A common time-frequency representation used to analyze 

and classify PD sources is the Spectrogram obtained with 

Fourier Transform. Since this technique may be inadequate to 

represent PDs, an alternative representation given by 

Continuous Wavelet Transform (CWT) is applied in this work. 

Spectrogram is defined as the square modulus of the Short-

Time Fourier Transform (STFT) and it provides a distribution 

of the energy of the signal in the time-frequency plane, i.e. it 

shows the changes of the spectrum density of the signal power 

in time. Next equation shows its mathematical expression:  

 

𝑆𝑇𝐹𝑇(𝜏, 𝑓) = ∫ 𝑥(𝑡)ℎ∗(𝑡 − 𝜏)𝑒−2𝜋𝑗𝑓𝑡𝑑𝑡 

 

(1) 

 

As shown in (1), the STFT maps the signal into a two-

dimensional function in the time-frequency plane (𝜏, 𝑡). The 

signal x(t) is assumed to be stationary when it is seen through 

a window h(t) of a limited extent, centered at time location τ. 

The analysis here depends critically on the choice of this 

window function. 

The main problem with the STFT approach is known as the 

Uncertainty principle or Heisenberg inequality. This principle 

originally applied to the momentum and location of moving 

particles, can be applied to time-frequency information of a 

signal. This principle states that is not possible to know what 

frequency components exist at what precise time, it is just 

possible to know the time intervals in which certain bands of 

frequencies exist, which is a resolution problem. 

To overcome the resolution limitation of the STFT, which 

gives fixed resolution all the time, the CWT analyzes the 

signal at different frequencies with different resolutions. 

Therefore, the CWT is a generalization of the STFT that can 

be used to perform multi-resolution signal analysis [14]. 

The mathematical definition of CWT is expressed in (2) 

and, as it can be seen, the transformed signal is a function of 

two variables: the translation parameter, τ and the scale 

parameter, a. The transforming function is 𝑔(𝜏, 𝑎) and is 

called the mother wavelet. The constant 1/√𝑎 is used for 

energy normalization. 

 

 
𝐶𝑊𝑇(𝜏, 𝑎) =

1

√𝑎
∫ 𝑥(𝑡)𝑔∗

(𝑡 − 𝜏)

𝑎
𝑑𝑡 

 

(2) 

 

The distribution of the energy signal in the time-scale plane 

is given by the Scalogram, which is defined as the squared 

modulus of the CWT.  

Fig. 2 illustrates the interpretation of time and frequency 

resolutions for the Spectrogram and Scalogram respectively. 

In the definition of the STFT (Fig. 2(a)) the same window 

length has to be chosen and used at all times so, every box has 

the same area determined by the Heisenberg inequality (also 

known as the Gabor limit for signal processing), lower 

bounded by 1/4π. In CWT (Fig. 2(b)), the widths and heights 

of the boxes change, giving different proportions to time and 

frequency, even so the area remains constant. In contrast to the 

spectrogram, in this representation the energy of the signal is 

distributed with different resolutions. 

 

 
Fig. 2.  Time-Frequency resolution for: a) Short-Time Fourier Transform 

(STFT) and b) Continuous Wavelet Transform (CWT). 
 

CWT is designed to give good time resolution and poor 

frequency resolution at high frequencies and good frequency 

resolution and poor time resolution at low frequencies, i.e. 

higher frequencies are better resolved in time, and lower 

frequencies are better resolved in frequency. This kind of 

analysis is suitable if the signal is composed of high frequency 

components for a short duration and low frequency 

components for a long duration, which is often the case with 

signals encountered in practical applications, such as partial 

discharges. 

III.   PD IN MV SUBSTATIONS ENVIRONMENT 

One of the principle causes of partial discharge failures in 

substations are due to installation errors through rough 

handling or poorly assembled joints and terminations. It is 

more likely to find PD sources in cable accessories than in the 

cable itself, since the advances in material processing, 

manufacturing and factory test procedures assures a cable free 

from partial discharges. 

It has been found that defective mountings, such as the loss of 

cable termination sealing caps, an earth cable in contact with 

cable terminator insulation, a poorly tightened cable 

termination, or a metallic part not linked to a defined potential, 

etc., causes partial discharges in the system. In this paper, four 

different sources are used and listed in Table I. 
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TABLE I 
PD sources found in MV switchgear. 

PDS1 

Cable termination floating earth. 

This defect is caused when the earthing eye 
and ground lead of the tee-connector to the 

switchgear is not (or badly) connected to 

ground, thus generating a floating earth 
potential. 

 

 

PDS2 

Earth cable in contact with cable 

termination insulation. 

If the earth cable does not respect electrical 

distance with the cable terminator insulation, 

partial discharges are produced. In this case, 
the defect source was located in a metering 

cubicle. 

 

PDS3 

VPIS Bushing screen disconnected 

The Voltage Presence Indicating Systems 
(VPIS) is an indicator integrated into the 

cubicle that shows the presence of voltage in 

the phases through permanent light signals 
and is connected to the bushing screen of 

each phase. A faulty or broken connection 

will generate partial discharges. 
 

PDS4 

Earth grounding spring missing on 

busbar connector. 

The link connection is used to complete the 

electrical connection between different 

switchgear cubicle modules.  It maintains the 

rated insulation values, along with the rated 

and short-circuit currents. It also controls the 
electric field. Faulty or missing components 

of this link connection will generate PDs.  

 

A.  Experimental Setup 

The experimental measurements used in this work have 

been carried out in Ormazabal’s Smart Grid Laboratory, called 

UDEX. This is a highly configurable medium voltage 

network, whose single-line diagram with different line 

topologies that are possible to interconnect and other relevant 

information can be found in [15].  

The four defect sources described in Table I are replicated 

in the UDEX laboratory, and partial discharge activity is 

detected using an on-line measurement technique. In Fig. 3 

components of UDEX substations are shown. These 

substations include modular cubicles with feeder (l), fuse 

protection (f), circuit-breaker protection (v) and metering (m).  

The electric scheme used for the test is illustrated in Fig. 4. 

Star symbols indicate the relative locations of the different PD 

sources. Sensors are located in the closest feeder cubicle to the 

PD source to avoid as much as possible the distortion of the 

pulse when it propagates in the circuit [16]. 

The measure of the PD activity is realized with a coupling 

capacitor (Ormazabal ekor.EVT-C) with a frequency 

bandwidth from 2 to 32MHz, which is installed directly into 

the T-junction cable end-plug within the switchgear cubicle. 

 
Fig. 3.  UDEX substation equipped with modular cubicles. 

 

 
Fig. 4.  Electrical connection diagram of the switchgear cubicles used for the 
experimental setup. 

 

The system is energized with high current flow, from the 

utility company. Even though measurements are made on the 

three phases, only the measurements from the phase 

corresponding to the PD source location are taken into account 

to build the database described in next section. These tests 

were performed at three different voltage levels for each PD 

source. 

IV.  DATA PROCESSING 

The generated database includes real PD sources found in 

real MV substations, as shown in the previous section.  

The construction of a large dataset is important to train a 

deep neural network and avoid bias. Usually this data is not 

available because of the complexity in performing repetitive 

tests and some authors [17]–[19] have used generative models 

[20] to create more data and complete their database. 

A.  Signal pre-processing  

In order to build the dataset, raw pulses acquired by the 

sensor are required. The PD pulses have to be extracted from 

the raw data recorded by the instrument. The minimum time 

step that can be recorded with the considered PD instrument is 

100ms, which correspond to five consecutive voltage cycles, 

sampled at 80 MHz. Fig. 5 shows an example of this data. The 

image represents pulses generated by source PDS1 at 25kV, 

showing a repetitive pattern after each AC voltage cycle.  

The pre-processing step includes the extraction of an 

individual pulse from the raw data in a 6.4 µs window length 

(512 samples), locating the maximum amplitude of each signal 

at 1.25 µs. On the left side of Fig. 6, some examples of the PD 

signals recorded from different PD sources are shown. 



0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3042934, IEEE
Transactions on Power Delivery

 4 

Depending on the PD rate of each defect source, several 

individual pulses can be extracted from this raw data, which 

allows the generation of a large dataset. 

 

 
Fig. 5.  Raw data recorded for PDS1 at 25kV by the instrument. 

 

The PRPD pattern shown on the right side of Fig. 6, was 

used to analyze the PD sources. However, after several 

measurements at different voltage levels and time step 

recorded, it has been found that apart from the time needed to 

obtain the PRPD, the regularity of the pattern in the image 

depends on the PD development over time, the state of the 

insulation at the time of measurement, applied voltage level, 

recording time, the acquisition sensor used, the location of the 

sensor with respect to the PD source and the frequency 

integration range for the computation. These drawbacks make 

it difficult to build a large database with this type of 

representation. Therefore, the alternative scalogram image 

representation of the PD data is used in this paper, which 

optimize the time of data acquisition and guarantee a faithful 

representation of the PD phenomenon. 

 

B.  Signal post-processing  

Once the individual pulse time-window has been extracted, 

it is converted to its scalogram image representation. 

To create the scalograms, a CWT filter bank is 

precomputed with Matlab, which is the preferred method 

when the CWT of many signals using the same parameters has 

to be obtained. The analytic Morse (3, 60) wavelet is used and 

the scalograms are converted to RGB images in pseudo-color, 

in which each image is an array of size 224x224x3 as can be 

seen in the images in the middle column of Fig. 6. 

Besides the scalograms of PD pulses, the dataset also 

includes images from other high frequency signals, such as 

electromagnetic interferences and noises encountered in the 

MV network. Fig. 7 shows examples of their scalograms. 

V.  CONVOLUTIONAL AUTOENCODER  FOR PD IDENTIFICATION 

The Convolutional Autoencoder (CAE) model combines the 

benefits of convolutional filtering in Convolutional Neural 

Networks (CNN) [21] with unsupervised pre-training of 

Autoencoders [22], allowing the training of convolutional 

layers independently from the classification task in order to 

generate a new data codification. This codification includes 

the most interesting comprised features from which it is 

possible to reconstruct the data. CAE model was firstly 

introduced by Masci et al. [23] and it has demonstrated that 

pre-training a neural network using Autoencoder weights can 

improve the classification accuracy. 

 

 

Fig. 6.  Individual pulses, scalograms and PRPD representations for different 

PD sources. 

 

 

Fig. 7.  Scalograms from Noises and other HF signals. 

 

 
Fig. 8.  Autoencoder Architecture. 

An Autoencoder is divided in two main parts: An Encoder 

(𝑓) and a Decoder (𝑔) as illustrated in Fig. 8. The Encoder  

(𝑓) takes the original input 𝑥 and maps it to the latent 

representation, called the Latent Space or code, where the 
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comprised representation of the input data is stored. Then, the 

Decoder (𝑔) has to reconstruct the original input 𝑥 from the 

code (ℎ)  to obtain the reconstruction 𝑥̂. 

Usual Autoencoders are composed of fully connected layers 

of neurons that ignore the 2D image structure. To tackle the 

dimensionality of 2D images, 2D convolutional layers in the 

encoding part replace dense layers. De-convolutional layers 

are implemented in the decoding part. The combination of 

both parts gives the resulting CAE model. 

The benefit of using Autoencoders is that unlabeled data can 

be used to pre-train the feature extraction stage of the 

classifier. The Encoder extracts useful features, detecting and 

removing input redundancies and preserving only essential 

aspects of the data. It has been proven in [24] that this 

unsupervised initialization helps to avoid local minima and to 

increases the performance stability of the network. 

A.  PD Diagnosis Methodology 

The methodology to implement the CAE model for PD 

diagnosis is divided in three steps:  

1) Unsupervised Pre-Training of CAE - Step 1 

This step is focused on the intermediate goal of learning a 

good data representation before beginning to work on the 

classification problem. The CAE is trained with unlabeled 

input data, and its optimal architecture has to be discovered by 

simulation trials.   

The input for this network is the dataset containing PD 

scalogram images that represent several different PD sources, 

noises and other HF signals recorded over the years in the 

UDEX laboratory. They are all mixed, without labels, i.e. each 

image is just "labeled" by the image itself. For this reason, this 

kind of labeling is also called self-supervision.  

In this step, as can be seen at the top of Fig. 9, the CAE tries 

to reconstruct the input image, learning the optimal filters that 

minimize the reconstruction error. However, this reconstructed 

image is not actually used; the aim of this step is that the 

network learns the relevant image information (Feature 

Extraction). Basic features, such as lines, edges, and corners 

appear in the initial layers, and more complex features are 

generated in the ascending layers as a result of combining 

basic features. 

 

 
Fig. 9.  Unsupervised Pre-Training of the CAE (top) and Supervised Training 
of the CNN (bottom). 

2) Supervised Training of classifier – Step 2 

The feature detectors of the latent codification that were 

automatically generated in the previous step can be used now 

to feed the classification stage. The main goal of this step is to 

classify the different PD sources. 

In this second step, the Decoder of the previous model is 

removed from the network and a fully connected network 

(Multi-Layer Perceptron, MLP) is added on top of the 

Encoder stage. The training of the MLP, maintaining the 

Encoder stage unmodified, follows a supervised process with 

input images labeled with their correct class index. The 

bottom image in Fig. 9 illustrates the combined model. 

The dataset used in this case is grouped according to the 

type of partial discharge source. In this work, due to 

computational limitations, only four different PD sources are 

chosen to be classified (PDS 1-2-3-4 described in Table I), but 

this methodology can be applied with more PD sources. A 

fifth class called NOTPDS is also included. This class is 

considered a rejection class where all images that do not 

correspond to a defect source are grouped (Noise and Other 

HF signals). 

The output of the model is given by a softmax function, 

which estimates the probability 𝑃(𝑦𝑘/𝑥𝑖) that a given input 𝑥𝑖  

belongs to the class label 𝑦𝑘  for 𝑘 = {1, 2, … , 𝑛}, where 𝑛 

denotes the number of classes (5 in this case). 

3) Prediction with the Trained Model 

Once trained, the complete model, the weights and the 

architecture are saved and used to predict a single image. The 

main parts of the procedure to predict the PD signal recorded 

by the PD instrument are: 

• Read the PD raw data recorded by the PD instrument. 

• Pre-process data: segment the time-window PD pulse. 

• Post-process data: calculate scalogram of the signal. 

• Load the full-trained model. 

• Predict the PD source, showing the probabilities.  

VI.  RESULTS 

The architecture for the CAE model has to be selected for 

the unsupervised pre-training and for the supervised training. 

Experimental results are presented in following sections. 

A.  Unsupervised pre-training 

The optimal number of convolution layers needed for the 

encoding part has to be investigated. Through several 

simulations not shown, an Encoder with three layers was 

found to provide good results, so this architecture was selected 

for the implementation. The Decoder should have a similar or 

identical number of layers, trying to invert the convolutional 

process of the Encoder. It is an open design to explore. Hence, 

two approaches were explored: a) the use of upsampling 

layers combined with convolution layers, which is 

denominated as Architecture#1, and b) the use of de-

convolutional layers (transposed convolution) denominated 

Architecture#2. 

Fig. 10 shows both architectures. Both Autoencoders were 

designed in order to have approximately the same number of 

trainable parameters. Table II resumes the layer parameters of 

both architectures. Convolutional and deconvolutional layers 
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used zero padding and SELU (Scaled Exponential Linear 

Units) as activation functions. 

 

 

Fig. 10.  CAE architectures compared in simulations. The number of filters of 

respective layers appear inside parenthesis. 

 
TABLE II 

Details of CAE Architectures. 

Layer Architecture#1 Architecture#2 

Convolution Kernel 3x3 2x2 

Convolution Stride 1x1 2x2 

MaxPooling 2x2 - 

UpSampling 2x2 - 

Deconvolution Kernel - 2x2 

Deconvolution Stride - 2x2 

Parameters  

Trainable weights 21971 21875 

 

These architectures are implemented in Python using Keras 

deep learning library, with Tensorflow as backend. The 

machine on which the experiments have been run has an Intel 

Core i5-6200U CPU with 8GB RAM. 

For training in this step, the dataset consists of 62367 RGB 

scalograms images (detailed in Table III). 80% of them are 

used for training, and the remaining 20% for validation.  

 
TABLE III 

Detailed number of PD samples used for Step 1 and Step 2 

Samples PDS1 PDS2 PDS3 PDS4 OTHER 

PDS 

NOTPDS 

Step 1 15000 11850 12000 8190 9945 5382 

Step 2 3524 3510 3573 3517 0 3530 

 

The Keras class ImageDataGenerator was used to load the 

train and validation datasets, which is a suitable method when 

working with thousands of images that may not fit into system 

memory. Therefore, instead of loading all images into 

memory, only the data corresponding to a batch will be loaded 

during training time. A batch size of 128 was chosen.  

The CAE models were firstly trained for many epochs, 

finding that 10 epochs give good results with regard to 

computational time consumed and model performance. The 

loss function used is the Mean Squared Error with Adam 

optimizer [25]. Mean Absolute Error (MAE) is the metric 

evaluated by the model during training and validation. 

Fig. 11. shows the synchronized training and validation loss 

evolutions along one simulation. Since validation losses 

followed decreasing curves, we can expect that both CAE 

models are not overfitting. 

 
Fig. 11.  Training and validation loss history for CAE models. 

 

Comparative results for both architectures are listed in 

Table IV. The main difference is that training Architecture#1 

takes 3.5 times longer than Architecture#2, and presents lower 

performance.  
 

 TABLE IV 

Comparative Results between Architectures. 

 Architecture#1 Architecture#2 

Loss Validation 0.0025 0.0008 

MAE Validation 2.91 1.38 

Training time 26.9 h 7.8 h 

 

Fig. 12. illustrates the reconstructed images obtained with 

the two architectures for one example. Even though these 

images are not totally well reconstructed and checkboard 

artifacts [26] can be seen, the main goal of this step was to 

generate in the latent code relevant features of the images and 

not to reconstruct the image perfectly.  

 

 
Fig. 12.  Original and reconstructed images after 10 epoch training of CAE 
Architectures #1 and #2.  

 

B.  Supervised training 

As said before, in this step, the Decoder part of the previous 

architecture is removed and fully connected layers are stacked 

up with the pre-trained Encoder part. A flatten layer has to be 

added after the CONV_4, with the aim of transforming its 

two-dimensional output tensor into a vector to be fed into a 

fully connected layer.  

The number of fully connected layers and their number of 

neurons also has to be investigated. The output layer presents 

five neurons associated to the five classes of this problem, 

followed by a Softmax layer, which provides a probabilistic 

output distribution. In this study, classifiers without hidden 

Original Image 

Architecture #1 Architecture #2

Reconstructed Image 
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layer and architectures with one hidden layer are simulated. 

Simulations were made varying the number of hidden neurons 

from 8 to 20. As regularization method, a dropout layer with 

dropout rate of 50% is implemented between the flatten 

activation and the first dense layer, as this connectivity 

comprises the majority of the trainable weights in the 

classifier. The final architecture is illustrated in Fig. 13. 

 

Fig. 13.  Full model: encoder and classifier. 

 

This second training allows verification that the previous 

architecture has learned meaningful information to achieve a 

good classification. The dataset consisted of 17654 scalogram 

images corresponding to PDS1-2-3-4 and NOTPDS (detailed 

in Table III). 80% of these images are used for training, 10% 

for validation and the remaining 10% for testing.  

In order to compare performance of previous architectures 

(#1and #2) for the classification task, 8 neurons are chosen in 

the hidden layer of Fig. 13. The performance of the networks 

was measured using Accuracy metric during training and 

validation over 10 epochs. The loss function used is the 

Categorical Cross Entropy and Adam optimization. Fig. 14 

shows the synchronized training and validation loss evolutions 

during one simulation. 

 

 
Fig. 14.  Training and validation curve for fully connected layer with 8 

neurons combined with architectures #1 and #2. 

 

Table V summarizes the results for both architectures. Even 

though Architecture#1 is slightly more precise, it takes 6 times 

longer to train than Architecture#2. Therefore, the 

Architecture#2 is used to investigate the optimal number of 

neurons in the hidden layer.  

The optimal number of neurons in the hidden layer was 

obtained by repeating the training 10 times for each number of 

hidden neurons. Multiple repetitions were performed in order 

to minimize the uncertainty rising from the random 

initialization of the network weights. 

Results are shown as boxplots in Fig. 15, where zero 

neurons correspond to the case of the classifier without a 

hidden layer. It is clear that having a hidden layer does not 

significantly improve the result of using only the output layer, 

and so to avoid overfitting, the chosen architecture should be 

the simplest.  
  

TABLE V 

Results for fully connected layer with 8 neurons. 

 Architecture#1 Architecture#2 

Loss Test 0.00163 0.02106 

Accuracy Test 100% 99.72% 

Trainable parameters 125445 62725 

Training time 60 min 10 min 

 

 
Fig. 15.  Boxplot for training and validation Accuracy calculated for 10 
repetitions for each number of neurons in the hidden layer. 

 

The final model is tested with 10% of the dataset that was 

unseen for the training and validation process. Results are 

shown as a confusion matrix in Fig. 16, where none of the 

classes were misclassified, which validates the high 

performance of the chosen CAE architecture. 

 
Fig. 16.  Confusion matrix of final model. 

 

Fig. 17 shows the comparison of two images of PDS2. The 

one on the right is noisier than the one on the left, as can be 

seen in the scalogram. As it can be notices, despite the 

background noise, the model can predict the defect with an 

accuracy of approximately 87%. 

 
Fig. 17.  Predictions with Architecture#2 and a fully connected layer. 
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VII.  CONCLUSIONS 

In this paper, a new methodology for the automatic 

recognition of partial discharges was presented. The method 

has consisted of training a Deep Neural Network (DNN) 

model to predict the sources of partial discharge that are 

commonly found in MV switchgear. PD measurements were 

made in a real MV electrical network and the data were 

collected from four different PD sources, along with typical 

noise sources found in these types of installations. The 

database was built with scalogram representations, which are 

images obtained using the CWT of the PD signal. 
The chosen DNN model was a Convolutional Autoencoder 

(CAE), which combines the benefits of convolutional filtering 

in Convolutional Neural Networks (CNN) with unsupervised 

pre-training of Autoencoders (AE). The optimal architecture 

was investigated though simulations summarized on section 6. 

It has been found that the use of deconvolutional layers 

instead of pooling layers in the decoder part reduces the 

training time and gives better performance results. Results 

have also shown that no hidden layer is need for the classifier.  

The high prediction accuracy of the model has proven that 

this methodology is an effective tool to automate the 

recognition of PDs. However, its implementation in a large 

condition monitoring system has still to be developed.  
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