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Disruption of the microbiota–gut–brain axis results in a wide range of pathologies that are
affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells
to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the
search for the language that allows microbiota to communicate with the gut and the brain,
serotonin seems to be the most important mediator. In recent years, serotonin has
emerged as a key neurotransmitter in the gut–brain axis because it largely contributes to
both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin
signaling, which gives more relevance to the role of the serotonin as an important mediator
in microbiota–host interactions. Despite the numerous investigations focused on the gut–
brain axis and the pathologies associated, little is known regarding how serotonin can
mediate in the microbiota–gut–brain axis. In this review, we will mainly discuss
serotonergic system modulation by microbiota as a pathway of communication
between intestinal microbes and the body on the microbiota–gut–brain axis, and we
explore novel therapeutic approaches for GI diseases and mental disorders.

Keywords: serotonin, 5-HT, tryptophan, microorganisms, PRRs, TLRs, NLRs
1 INTRODUCTION

The gastrointestinal (GI) tract is one of the major defensive organs in individuals because it is
continuously exposed to the external environment. In this context, microbial colonization of the
intestine during infancy is a major moment for the development of not only the GI tract (1) but also
the brain (2) and the immune system (3). In the last years, numerous researchers have focused their
efforts on understanding how intestinal microbiota have the ability to affect the brain and behavior,
which has not yet been completely clarified. In this context, the neurotransmitter serotonin
(5-hidroxytriptamine, 5-HT) could be the key to resolving this mystery.

The gut–brain axis is a bidirectional crosstalk between the central nervous system (CNS) and the
gut. Recently, given the important role in the regulation of gut functions, microbiota are included in
the axis. Then, the microbiota–gut–brain axis resides in a coordinated network composed of the CNS,
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enteric nervous system (ENS), hypothalamic–pituitary–adrenal
axis, gut, and microbiota. Both clinical and experimental data
suggest that intestinal microbiota play a crucial role in the axis,
interacting not only locally with intestinal cells and the ENS but
also directly with the CNS through neuroendocrine and metabolic
pathways. In fact, germ-free mice studies have proven that the
absence of microbial colonization leads to defects in neuron
maturation at both CNS and ENS levels, altered expression of
neurotransmitters, and gut sensory and motor dysfunctions (4).
Intestinal microbiota dysbiosis has been extensively studied as one
of the most important factors in the pathogenesis of inflammatory
bowel diseases (IBDs) (5), including Crohn’s disease (CD) and
ulcerative colitis (UC). In this context, several studies have
described that intestinal serotonin may shape the microbiota
composition that protects against the development of IBDs (6),
suggesting the critical relation between the intestinal microbiota
and serotonergic system in GI pathologies. However, the role of
the microbiota–serotonin interaction would not be limited locally
to the gut but also to the CNS. Germ-free mice studies have
reported the importance of the microbiota control of the
serotonergic system in the CNS (7) or how specific intestinal
microorganisms, such as Akkermansia muciniphila, can increase
serotonin production in the hippocampus (8). In this context,
recent studies have described the involvement of microbiota in
serotonin signaling in CNS disorders such as Alzheimer’s or
schizophrenia (9).
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Serotonin is a key neurotransmitter, which substantially
coordinates the GI physiology and owns critical central
functions. Interestingly, serotonin is involved in each
component of the microbiota–gut–brain axis, acting as an ideal
language for the crosstalk. Microbiota regulate the tryptophan
metabolism involved in serotonin production, serotonin acts as a
key neurotransmitter in the CNS and ENS, and serotonin
receptors play a pivotal role in the hypothalamic–pituitary–
adrenal axis.

Here, we highlight recent findings into how microbiota
regulate the intestinal and central serotonergic systems, as well
as novel clinical approaches to address GI pathologies and brain
disorders through the microbiota–gut–brain axis.
2 SEROTONERGIC SYSTEM

In 1940 , Vi t tor io Erspamer di scovered serotonin
(5-hydroxytryptamine, 5-HT) in the GI tract in rabbits (10)
and it was later discovered in the CNS (11). There are two main
serotonergic systems: the central serotonergic system located in
the brain and the intestinal serotonergic system in the gut. Both
share the same principles of synthesis (“ON mechanism”),
internalization and degradation (“OFF mechanism”), and
5-HT signaling through its specific receptors (Figure 1).
FIGURE 1 | Schematic representation of brain and intestinal serotonergic systems: “ON/OFF” and signaling mechanisms. “ON” mechanism refers to the synthesis of
5-HT by enterochromaffin cells (EC) in the gut and serotonergic neurons both in the gut and in the central nervous system (CNS). Tryptophan (Trp) is catalyzed by the
enzyme tryptophan hydroxylase (TPH), TPH1 in EC cells, and TPH2 in neurons, to synthesize 5-hydroxytryptophan (5-HTP), which is converted to 5-HT by aromatic
amino acid decarboxylase (AADC). 5-HT is stored into vesicles through the vesicular monoamine transporter VMAT (VMAT1 in EC cells, and VMAT2 in neurons) and
finally released into the extracellular space. 5-HT can bind to different serotonin receptors (5-HTR) or uptake into neurons, enterocytes, or platelets by the serotonin
transporter (SERT), ending 5-HT effects (“OFF” mechanism). 5-HT is mostly stored in the dense (d)-granules of platelets; however, the binding of plasma 5-HT to the
platelet surface receptor 5-HT2A initiates the mobilization of intracellular calcium stores for platelet activation, which promotes platelet degranulation, resulting in 5-HT
release. Serotonin exerts its effects by signaling mechanisms through the 5-HT receptors located in postsynaptic and presynaptic neurons at CNS and intestinal
serotonergic neurons, and in different cell types of gastrointestinal (GI) tract, but also in other systems such as the cardiovascular or immune system.
November 2021 | Volume 12 | Article 748254
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• The “ON” mechanism is constituted in the gut by
enterochromaffin cells and serotonergic neurons of the
ENS, while in the CNS, 5-HT is produced only by
serotonergic neurons. The primary source of 5-HT is the
amino acid L-tryptophan that is catalyzed by the rate-limiting
enzyme tryptophan hydroxylase (TPH) to synthesize
5-hydroxytryptophan (5-HTP), which then is converted
into serotonin by aromatic amino acid decarboxylase
(AAAD) (12). TPH reaction is a limitative step in the
production of 5-HTP and, subsequently, serotonin. It has
been described in two isoforms of TPH: TPH1 expressed in
enterochromaffin cells and TPH2 in serotonergic neurons
from both the ENS and CNS (13).

• The “OFF” mechanism in the gut is formed by enterocytes
because these intestinal epithelial cells (IECs) internalize
5-HT from the extracellular compartment to the cytoplasm
by means of the serotonin transporter (SERT) from the apical
and the basolateral membranes. At the CNS level, the “OFF”
mechanism is formed by the same serotonergic neurons that
synthesize 5-HT because SERT is expressed at terminals and
varicosities of serotonergic neurons (14). SERT is a
transmembrane protein grouped in the solute carrier
transporters of the SLC6 family that uptakes 5-HT from the
extracellular space for subsequent catabolization, reuse, or
storage, ending 5-HT effects. SERT is a classic secondary
active transporter to which 5-HT binds together with a Na+

and a Cl-. Once extracellular serotonin is attached to SERT
together with Na+ and Cl-, SERT undergoes a conformational
change that allows SERT translocation with the release of 5-
HT, Na+, and Cl- into the cytoplasm of the cell. Once 5-HT is
transported inside the cell, intracellular K+ binds to SERT and
is reoriented toward the extracellular direction, where K+ is
released and the uptake of 5-HT continues. Then, SERT is not
only a key component for the regulation of 5-HT levels, but
also an important ion transporter (15).

• 5-HT signaling is mediated by specific serotonin receptors
that trigger intracellular 5-HT effects (Table 1). Scientific
community studies on serotonin receptors have recently
described a detailed work that classifies the 18 receptors
grouped into seven families (5-HT1 to 5-HT7), which are
widely expressed not only in the CNS and the GI tract but also
in other systems such as the cardiovascular or immune system
(79). As a short summary, the serotonin receptor family
consists of G-protein-coupled receptors, with the exception
of the 5-HT3 receptor family (80). 5-HT1 includes five
subtypes: 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F.
They are fundamentally involved in CNS disorders such as
anxiety. In the case of the GI tract, the 5-HT1 family is mainly
expressed in neurons of the gut submucosa and the myenteric
plexus, so their main function is the modulation of GI motility
(18). The 5-HT2 family involves 5-HT2A, 5-HT2B, and
5-HT2C. 5-HT2A and 5-HT2B are expressed in myenteric
neurons and neurons from the submucosal plexus in the GI
tract, as well as in enterocytes and smooth muscle cells in the
gut (36). Thus, the effect of these receptors is mainly in the GI
tract through the regulation of GI motility (81). However,
Frontiers in Endocrinology | www.frontiersin.org 3
these receptors are expressed in the brain, where they may
control central processes such as memory and cognition (82)
or be implicated in CNS disorders such as depression (83). 5-
HT2C is mainly expressed in the CNS and is involved in
several central processes such as the limbic system and motor
behavior (38). The 5-HT3 family includes five receptors (5-
HT3A-D) and works as an ion channel similar to GABA
receptors. 5-HT3 receptors are expressed in both the CNS
and the GI tract and are involved in several GI processes such
as intestinal motility (84), absorption and secretion (85), and
even 5-HT release from enterochromaffin cells (86); in the
brain, 5-HT3 receptors are related with cognition (87). In this
context, 5-HT3 family dysfunction has been involved in a
broad range of pathologies from brain disorders, including
psychosis, anxiety, and eating disorders (43), to GI
pathologies such as IBDs (88). 5-HT4 receptors are mainly
expressed in the gut and participate in intestinal secretion
(63) and motility (53). The 5-HT5 receptor is the least known
from the serotonergic system as some researchers have
referred to it for two decades as “the orphan serotonin
receptor” (89). Despite the limited information about this
5-HT receptor, the scientific community has established two
subtypes expressed exclusively in the nervous system: 5-HT5A

and 5-HT5B (90). These receptors may be involved in several
processes, including memory (65) or pain (67). 5-HT6

receptors, such as 5-HT5 receptors, have also been poorly
studied. Previous studies in mice have highlighted that it may
be important in the GI physiology; however, its importance is
not clear (91). At the CNS level, 5-HT6 is involved in mental
disorders, such as psychosis, and in cognition and learning
(70). Finally, the 5-HT7 receptor is mainly expressed in the
brain but is also located in peripheral organs such as the GI
tract (73). The 5-HT7 receptor is involved in circadian rhythm
(78), and its dysfunction is important in the onset of
depression (92). In the GI tract, 5-HT7 modulates SERT
activity (75) and intestinal motility (77).
3 MICROBIAL PATTERN RECOGNITION
RECEPTORS: EFFECTS ON
SEROTONERGIC SYSTEM

Defense mechanisms in the intestine are widely developed
because external agents are in continuous contact with the
intestinal epithelium. Innate immunity, throughout several
detectors called pattern recognition receptors (PRRs), detects
external factors, triggering either tolerant or defense responses to
beneficial or pathogenic molecules, respectively. The most
important and studied PRRs are microbial detectors: toll-like
receptors (TLRs) and nucleotide oligomerization domain
(NOD)-like receptors (NLRs) (Table 2) . TLRs are
transmembrane glycoproteins, whereas NLRs are cytosolic
receptors. Until now, 11 different TLRs have been identified in
humans (TLR1–TLR11) and expressed in both the endosomal
membrane (TLR3, 7, 8, and 9) and cell membrane (TLR1, 2, 4, 5,
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TABLE 1 | 5-HT receptors.

Receptor Subtypes Location Mechanism Gastrointestinal
Function

CNS Function

5-HT1 5-HT1A

5-HT1B

5-HT1D

5-HT1E

5-HT1F

5-HT1P

CNS: Hippocampus, neocortex, raphe
nuclei, cerebellum, and basal ganglia (16)

GI: Neurons of the gut submucosa and the
myenteric plexus (17)

Other locations: Lymph nodes, thymus and
spleen, activated T cells, but not in resting
T cells (18, 19)

G-protein-coupled receptor for 5-
HT that inhibits adenylate cyclase
(20)

Modulation of the
intestinal motility (21).

Modulation of gastric
motility and sensitivity
(22)

Degranulation of enteric
mast cells and release
of mediators (23)

Inflammation (24)

Addiction (25)

Behavior (26, 27)

Appetite (28)

Memory (29)

Sleep (30)

5-HT2 5-HT2A

5-HT2B

5-HT2C

CNS: Cerebellum, lateral septum,
hypothalamus, hippocampus, middle part
of the amygdala, and cortex (31)

GI: Myenteric neurons and neurons from
the submucosal plexus at the GI tract, in
enterocytes and smooth muscle cell (32)

Other locations: Heart and kidney (33)

G-protein-coupled receptor for 5-
HT that activates phospholipase
C (20)

Modulation of the
intestinal motility (34)

Enterocyte secretion
(35)

Development of enteric
neurons (36)

Behavior (37)

Memory and cognition (38

Limbic system or motor behavior
(39)

5-HT3 5-HT3A

5-HT3B

5-HT3C

5-HT3D

CNS: Hippocampus, dorsal motor nucleus
of the solitary tract and area postrema,
olfactory bulb, the trochlear nerve nucleus,
the dorsal tegmental region, the facial
nerve nucleus, the nucleus of the spinal
tract of the trigeminal nerve, and the spinal
cord dorsal horn (40)

GI: Enteric neurons, smooth muscle cells,
vagal and spinal primary afferent neurons,
and in the spinal cord (41)

Other locations: Dorsal root ganglia (40)

Ligand-gated ion channels (LGIC)
that mediates neuronal
depolarization and excitation (42)

Intestinal motility (43)

Inflammation (44)

Colonic secretion (45)

Intestinal pain and
sensitivity (46)

Release control of other
neurotransmitters: dopamine, GABA
or acetylcholine among others (47).

Regulation of emesis (48)

Neurodevelopment (49)

Anxiety (50)

5-HT4 CNS: Cortical areas, hippocampus,
olfactory tubercles (51)

GI: Enteric neurons and smooth muscle
cells (52)

Other locations: Heart muscle and pituitary
gland (Protein Atlas)

G-protein-coupled receptor for 5-
HT that promote cyclic AMP
formation (53)

Motility (54)

Absorption (55)

Intestinal sensitivity (56)

Memory and cognition (57, 58)

Behavior (59)

Feeding (60)

5-HT5 5-HT5A

5-HT5B

CNS: Cerebral cortex, hippocampus and
cerebellum (61)

G-protein-coupled receptor for 5-
HT that regulates adenylate
cyclase (62)

Intestinal secretion (63) Behavior (64)

Memory and cognition (64, 65)

Sensory perception and
neuroendocrine function (66)

Pain (67)
5-HT6 CNS: Olfactory tubercle, cerebral cortex

(frontal and entorhinal regions),
hippocampus, and cerebellum among
others (68)

G-protein-coupled receptor for 5-
HT that regulates adenylate
cyclase (69)

Learning and cognition (70)

Release control of other
neurotransmitters (71)

Motor control (72)
5-HT7 CNS: Thalamus, hypothalamus, limbic, and

cortical regions (73)

GI: Gut-associated neurons, but also in
enterocyte-like and immune cells in
lymphatic tissues (74)

Other locations: Spleen, kidney, heart,
coronary artery immune cells (73)

G-protein-coupled receptor for 5-
HT that regulates adenylate
cyclase (74)

SERT activity
modulation (75)

Intestinal motility (76)

Inflammation (74)

Inflammation and repair (77)

Circadian rhythm (78)
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TABLE 2 | Pattern recognition receptors: TLRs and NLRs.

Receptor Cellular
location

Tissue location Intracellular Mechanism MAMPs DAMPs

TLR2 Plasma
membrane

CNS: Microglia, astrocytes and
oligodendrocytes (93)

GI: Mononuclear cells of the lamina
propria, goblet cells, enterocytes,
and neurons from the ENS (94, 95)

TLR2 forms heterodimers with TLR1 and TLR6 to
detect most of its specific ligands. Then, it
generally triggers a MyD88-dependent signaling
pathway to promote the translocation of nuclear
factor-B that regulate the synthesis of
inflammatory factors (96)

Molecules with diacyl and
triacylglycerol moieties,
proteins, and polysaccharides
(96)

HSP60 and
HSP70 (97)

HMGB1 (98)

Gp96 (99)
TLR3 Endosomal

membrane
CNS: Astrocytes, oligodendrocytes,
and microglia cells (93)

GI: Immune cells of lamina propria
and IECs including goblet cells and
enterocytes (100) and in neurons
from ENS (101).

TLR3 activation triggers TRIF/TICAM1 intracellular
signaling that ends in the NF-kappa-B activation
with IRF3 nuclear translocation and the synthesis
and release of inflammatory factors (102)

Double-stranded (ds) RNA
(103)

Endogenous
mRNA from
inflammation
(104)

TLR4 Plasma
membrane

CNS: Microglia cells (105), astrocytes
(106)

GI: Immune cells of lamina propria, in
the apical membrane of IECs in small
intestine and in the basolateral
membrane in the colon (107).
Moreover, it can be found in neurons
from ENS (101)

TLR4 can trigger a Myd88-dependent signaling
pathway and a Myd88-independent intracellular
signaling pathway driven by TRIF to promote the
translocation of nuclear factor-B that regulate the
synthesis of inflammatory factors (108)

Lipopolysaccharide (109) HMGB1 (110)

Fibrinogen (111)
HSP60, HSP72,
SP22 (112)

Lactoferrin (113)

TLR5 Plasma
membrane

CNS: Microglia cells (93)

GI: Basolateral side of IECs at the
colon, at Paneth cells at the small
intestine while in small intestine its
expression is restricted to Paneth
cells.

TLR5 activation triggers MYD88 and TRIF
intracellular signaling that leads to the
translocation of NF-kappa-B and inflammatory
response (114, 115)

Flagellin (116) HMGB1 (117)

Hyaluronan (118)

TLR7 Endosomal
membrane

CNS: Microglia cells (93)

GI: IECs, plasmacytoid dendritic cells
(pDCs), B cells at the lamina propria
(119), and in the myenteric and
submucous plexuses of murine
intestine and human ileum (101).

TLR7 activation triggers MYD88 intracellular
pathway signaling that leads to the activation NF-
kappa-B and IRF7 to promote the synthesis of
inflammatory factors (120)

ssRNA (121) Guanosine and
short O(R)Ns
from RNA
degradation
(122)

ssRNA (123)
TLR8 Endosomal

membrane
CNS: Microglia cells (93)

GI: Macrophages and monocyte-
derived DCs at lamina propria (121)

TLR8 activation recruits MYD88 intracellular
pathway signaling that activates NF-kappa-B and
IRF7 to promote the synthesis of inflammatory
factors (124)

ssRNA (121) ssRNA (123)

Uridine and
short ORNs from
RNA
degradation
(122)

TLR9 Endosomal
membrane/
Plasma
membrane

CNS: Microglia, neurons, and
astrocytes (125)

GI: Immune cells from lamina propria
in GI epithelial cells (119)

TLR9 activation induce MYD88 and TRAF
intracellular pathway downstream that leads into
the activation of NF-kappa-B (126)

Unmethylated cytidine-
phosphate-guanosine (CpG)
dinucleotides (127)

IgG–chromatin
complexes (128)

Host DNA
degradation
(129)

TLR10 Plasma
membrane

CNS: Microglia (130)

GI: B-cells (131) and IECs (132)

TLR10 may trigger intracellular responses
MyD88-dependent and MYD88-independent
downstream signaling (132)

Unknown MAMPs

Candidates as a TLR10
ligand: diacylated lipopeptides
(133) and lipopolysaccharide
(133)

Unknown
DAMPs

NOD1 Intracellular
compartment

CNS: Microglia (134), neurons, and
astrocytes at prefrontal cortex,
hippocampus, and cerebellum (135)

GI: IECs and in the immune cells
from lamina propria (136)

NOD1 recruits RIPK2, which promotes
interactions with TRAF, and activates the
expression NF-kB and

MAPK involved in inflammatory responses (137)

k-d-glutamyl-meso-
diaminopimelic acid (136)

Endoplasmic
reticulum stress
molecules (138)

Calcium (138)

(Continued)
Frontiers in
 Endocrinology
 | www.frontiersin.org
 5
 November 2021 | Volume 12
 | Article 748254

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Layunta et al. Serotonin in the Microbiota–Gut–Brain Axis
6, 9, and 10) (107). Regarding NLRs, 22 receptors have been
discovered until now, which can be classified into five groups
depending on their structure: NLRA, NLRB, NLRC, NLRP, and
NLRX (141).

PRRs are widely expressed in immune cells (phagocytes,
neutrophils, macrophages, or lymphocytes) and nonimmune
ones, such as IECs in the GI tract, as well as microglia cells,
neurons, or astrocytes in the CNS. PRRs trigger defense-related
responses by the detection of specific microbial-associated
molecular patterns from microorganisms (MAMPs) or
damage-associated molecular patterns (DAMPs) from tissue
injury, so we can consider the PRRs the caretakers of our body.

PRRs functioning in IECs are focused on the protection of the
intestinal epithelium from potential harmful agents. Thus, and
through PRR signaling, the intestine continuously develops the
status of physiological inflammation to prevent possible damage
and maintain intestinal homeostasis (142). In the brain, the main
role of the PRRs is to detect dangerous molecules that can injure
the tissue and trigger repair mechanisms. The brain is protected
by the skull, the fluid cerebrospinal, the meninges, and the
blood–brain barrier (BBB), which isolates the CNS from the
general circulation. However, under pathological conditions,
harmful microorganisms can breach the BBB and access the
CNS, where the PRRs can trigger defense mechanisms to
eliminate the pathogen and to repair the tissue (143).

PRRs are widely expressed along the GI tract, which differs
dramatically between the small intestine and colon (122).
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From all of them, TLR2, TLR3, TLR4, TLR5, and TLR9 seem
to be critical in microbial detection and damage repair in the
intestine. In the brain, the most studied PRRs, in relation with
brain injury and pathogen infection, are TLR2, TLR3, TLR4,
and TLR9. However, the scientific community does not discard
the relevant importance of other TLRs in this location
because they are expressed in several cells from the CNS
(125). PRRs influence the serotonergic system activity and
expression (Table 3).

3.1 Toll-Like Receptor 2
TLR2 is expressed in the GI tract in mononuclear cells of the
lamina propria, goblet cells, and enterocytes (96), as well as
neurons from the ENS (97). TLR2 is able to detect a broad range
of MAMPs from several microorganisms, including Gram-
positive bacteria through the formation of heterodimers with
TLR1 (TLR2/1) and TLR6 (TLR2/6) (157), some fungi such as
Candida albicans (158), viruses such as the hepatitis C virus
(159), and some parasites such as Trypanosoma cruzi (160). At
the CNS level, TLR2 is expressed in microglia, astrocytes, and
oligodendrocytes (93). TLR2 in the brain mainly recognizes
DAMPs as heat shock family proteins HSP60 and HSP70 (95)
or high-mobility group box 1 proteins from dying tumor cells
(HMGB1) (98), among others. However, the effect of TLR2 is not
limited to immune responses. Previous results carried out in our
laboratory have showed that TLR2 activation may modify the
intestinal serotonergic system. TLR2 activation could decrease
TABLE 2 | Continued

Receptor Cellular
location

Tissue location Intracellular Mechanism MAMPs DAMPs

NOD2 Intracellular
compartment

CNS: Microglia (134)

GI: Monocytes, dendritic cells,
epithelial cells, Paneth cells, and
intestinal stem cells (139)

NOD2 recruits RIPK2, which promotes
interactions with TRAF, and activates the
expression NF-kB and MAPK involved in
inflammatory responses (137)

Muramyl dipeptide (140) Endoplasmic
reticulum stress
molecules (138)

Calcium (138)
November 2021 | Volume 12
Indication of intracellular location, expression at the central nervous system (CNS) and gastrointestinal tract (GI), main intracellular mechanism, main microbial-associated molecular
patterns (MAMPs), and main damage-associated molecular patterns (DAMPs).
TABLE 3 | Pattern recognition receptors on serotonergic system.

Pattern Recognition Receptor Effects on serotonergic system Model References

TLR2 activation Decreased SERT IEC model (144)
Upregulated TPH1 expression and 5-HT production GF mice (145)

TLR3 activation Inhibited SERT IEC model (146)
Increased SERT activity Astrocytes (147)

TLR4 activation Inhibited SERT activity IEC model (148)
Enhanced cortical SERT activity Wistar rats (149)

TLR7/8 activation Inhibited 5-HT2B signaling Dendritic cells (150)
TLR10 activation Regulation of SERT activity IEC model (131)
NOD1 activation Decreased SERT IEC model (151)
NOD2 activation Reduced SERT activity IEC model (152)
TLR2 deficiency Decrement of gut 5-HT level Tlr2 KO mice (145)
TLR4 deficiency Increased central 5-HT level Tlr4 KO mice (153)
TLR2/4 deficiency Altered gut 5-HT receptors expression Tlr2/4 DKO mice (154, 155)
NODs deficiency Altered gut 5-HT signaling Nod DKO mice (156)
| A
Effects of activation of TLRs and NLRs on serotonergic system and effects of TLRs and NLRs deficiency on different in vivo and in vitro models.
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SERT activity due to a reduction in SERT protein expression,
with cAMP/PKA and p38/MAPK intracellular pathways being
implicated. Moreover, the expected increment of extracellular
5-HT will induce a negative feedback in TLR2 expression,
supported by this cross-regulation between the TLR2 and
serotonergic system (144). In fact, TLR2 and TLR4 activation
may increase the production of IL-10 in the intestine (161),
which in turn seems to modify SERT (162). In addition, TLR2
and TLR4 signaling seem to modulate GI motility mediated by
5-HT2, 5-HT3, 5-HT4, and 5-HT7 receptors (154). In line with
these results, other researchers have found that TLR2 deficiency
results in a decrement of gut 5-HT synthesis in vivo and that
TLR2 activation upregulates the expression of TPH1 and 5-HT
production in the gut (145). Serotonin-TLR2 relation is not
limited to the GI tract, as previous data have highlighted that
5-HT2B receptor activation downregulates TLR2 expression and
TLR3-induced proinflammatory factors in the brain (150).
Selective 5-HT2A receptor antagonists activate glucocorticoid
receptor nuclear translocation to upregulate TLR2 and
TLR4 in response to microglial phagocytosis stimulation as a
novel therapy in central pathologies such as Alzheimer’s
disease (163).

3.2 Toll-Like Receptor 3
TLR3 is expressed in IECs, which mainly differentiates double-
stranded RNA (dsRNA) from viruses. Surprisingly, TLR3 levels
are age dependent because TLR3 expression increases after the
suckling-to-weaning transition so as to give protection to the
individuals against the virus as a rotavirus (164). In contrast,
central TLR3 expression decreases during neurogenesis of the
CNS in the embryo (165). TLR3 is also able to recognize
endogenous mRNA as a DAMP from necrotic cells during
intestinal inflammation (102). At the CNS level, TLR3 is
expressed in a broad range of cells, including astrocytes,
oligodendrocytes, and microglia cells (93), which is not
surprising because viruses can easily reach the brain through
other ways different from the BBB, such as neural pathways.
Thus, TLR3 can detect dsRNA from the virus in the brain and
trigger defense responses to protect the CNS against pathogens.
Actually, TLR3 may protect the brain against some viruses such
as the herpes simplex virus type 1 (HSV-1) (166). However, other
microorganisms such as the Zika virus can activate TLR3 and
induce an exacerbated inflammation and necrosis of the natural
defenses of the brain, including the BBB (167). TLR3’s role in
inflammatory responses may also be exacerbated by its potential
pro-oxidant effect. In fact, TLR3 induces protein and lipid
oxidation by reducing antioxidant enzymatic activity (168).

TLR3 activation is involved not only in inflammatory and
oxidative damage–related responses but also in the modulation
of the serotonergic system in the GI tract; TLR3 activation
inhibits SERT activity and expression (146). In contrast,
central TLR3 may have an opposite role because recent results
have shown that TLR3 activation in a mice model with a brain
infection increases SERT activity in astrocytes and therefore
reduces extracellular 5-HT levels (147). In contrast to other
TLRs, increased levels of 5-HT will not regulate TLR3
expression (146); meanwhile, other studies have reported that
Frontiers in Endocrinology | www.frontiersin.org 7
the activation of 5-HT2B receptors may reduce TLR3
expression (150).

3.3 Toll-Like Receptor 4
TLR4 is one of the most studied PRRs, and its expression can be
found in the apical membrane of IECs in the small intestine and
in the basolateral membrane in the colon (110). In the brain,
TLR4 is an important PRR in the glia because several researchers
have reported its expression (105); meanwhile, TLR4 is expressed
less often in astrocytes (106) and may be absent in
oligodendrocytes (93). TLR4 recognizes the lipopolysaccharide
(LPS), which is the fundamental component of Gram-negative
bacteria walls. In this process, the myeloid differentiation factor 2
(MD-2) protein is critical because several studies have found that
MD-2 deletion yields to the lack of detection of LPS by TLR4
(169), suggesting that MD-2 retains TLR4 in the cellular surface
to detect LPS due to changes in TLR4 glycosylation (170). Due to
the broad microorganisms that TLR4 can identify through LPS
detection, TLR4 has been defined as a gate keeper of microbial
homeostasis in the intestine, where it is involved in several
defense mechanisms, including the zoonotic Campylobacter
(171), Helicobacter pylori (172), or Salmonella (173). TLR4
could also have a regulator role in the serotonergic system.
TLR4 modulates contractile response in the intestine and is
mediated by serotonin receptors (154). TLR4 activation
inhibits SERT activity through post-transcriptional
mechanisms, leading to an increase in extracellular 5-HT
(148). In addition, melatonin, a molecule linked with 5-HT
synthesis, may modify intestinal microbiota composition
through TLR4 signaling (174). At the CNS level, TLR4
participates in the detection of pathogens that cause
meningitis, such as Neisseria meningitidis (175), where some
DAMPs linked to brain damage mediate TLR4 signaling (176).
Interestingly, recent results have pointed out that microbiota and
TLR4 signaling are key players in Parkinson’s disease, one of the
most important degenerative brain pathologies (177). In this
context, previous studies have shown that the lack of TLR4 in the
CNS leads to an increase in the central 5-HT level, suggesting the
critical regulatory role of TLR4, not only in the GI tract but also
in the central serotonergic system (153).

3.4 Toll-Like Receptor 5
TLR5 seems to be one of the most important TLRs in the GI tract
because its expression and activity has been reported in all
intestinal segments (122). In this context, TLR5 is expressed in
the basolateral side of IECs from the colon, while in the small
intestine, its expression is restricted to Paneth cells. TLR5
recognizes flagellin, a component that enables the motility of
several bacteria. Several studies have indicated that flagellin
origin is determinant in the defense response against bacteria
because flagellin from pathogenic Salmonella typhimurium
triggers a more exacerbated immune response than does
flagellin from the nonpathogenic bacteria E. coli (178). In this
context, TLR5 is a critical gatekeeper because it may control the
intestinal microbiota composition by maintaining a
physiological low grade of inflammation in the GI tract (179).
Previous studies have extensively described TLR5 expression in
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microglia cells, where its function may be involved in the
inflammatory diseases in the brain comprising bacteria that
cause meningitis (180). However, TLR5 is not only involved in
bacterial infection but can also be related with depression.
Previous works have described how TLR3, TLR4, TLR5,
TLR7, TLR8, and TLR9 mRNA expressions in peripheral
blood mononuclear cells seem to be increased in patients
with depression. The improvement of these patients through
the use of selective serotonin reuptake inhibitors (SSRIs)
indicates the implication not only of TLR5 but also other
PRRs in the modulation of the serotonergic system in brain
disorders (181).

3.5 Toll-Like Receptor 7 and Toll-Like
Receptor 8
TLR7 and TLR8 are closely related PRRs expressed in endosomal
membranes that can detect single-stranded RNA (ssRNA) (120).
Previous works have described the lack of TLR7 expression in
IECs, being mainly expressed in plasmacytoid dendritic cells
(pDCs), in B cells at the lamina propria (122), and in the
myenteric and submucous plexuses of murine intestine and
human ileum (104). Meanwhile, TLR8 can be found in
macrophages and monocyte-derived DCs (120). In both cases,
it seems that TLR7 and TLR8 could have more importance in
other organs, such as the respiratory system, than in the GI tract
by recognizing respiratory viruses and triggering inflammatory
responses (182). At the CNS level, TLR7 and TLR8 are mainly
expressed in microglia cells. TLR7 acts by regulating the
inflammation (183) and modulation of TLR9 expression (184);
meanwhile, TLR8 is related with the attenuation of the
outgrowth of neurons and the induction of apoptosis (185). In
the GI tract, 5-HT can act by regulating TLR7 in DC through the
5-HT2B receptor (150). Moreover, SSRIs seem to decrease the
expression of both TLR7 and TLR8 in the CNS (181).

3.6 Toll-Like Receptor 9
TLR9 is included, together with TLR3, TLR7, and TLR8, in the
group of TLRs that is classically expressed in membranes of
intracellular organelles such as the endoplasmic reticulum,
endosomes, and lysosomes. However, TLR9 can also be
detected in endosomal locations (186). In the GI tract, TLR9
can be expressed in the apical and basolateral membrane of IECs
to control homeostasis by means of various intracellular
signaling (187). The intestinal map of TLRs describes TLR9
expression mainly in the lamina propria, and at low levels in GI
epithelial cells (122). TLR9 recognizes unmethylated DNA found
generally in microorganisms such as viruses and bacteria (127).
However, TLR9 can also detect host DNA in aberrant locations,
such as a DAMP of tissue damage (129), and it participates in the
protection against GI damage and in GI repair (188). Moreover,
TLR9 seems to act as an inhibitor of antimicrobial peptides in the
intestine to avoid the colonization of pathogens (189). Because
pathogen-free mice display a higher TLR9 expression in the
intestine than germ-free mice do, it has been suggested that
beneficial bacteria could modulate TLR9 expression in the GI
tract (190). At the CNS level, TLR9 is expressed in microglia,
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neurons, and astrocytes (125), mediates immune responses
related with brain infections, such as the herpes simplex virus
(191), and attenuates brain injury (192). Little research has been
carried out in the influence of TLR9 over the serotonergic
system, and only a few works have indicated that SSRIs may
modulate TLR9 mRNA expression in the peripheral blood
mononuclear cells of depression patients (181) and will be
implicated in the tryptophan catabolism (i.e., the main 5-HT
resource) (193). In fact, preliminary data from our research
group indicate that TLR9 could affect SERT activity and
expression in an IECs model (194).

3.7 Toll-Like Receptor 10
TLR10 is the only PRR without known ligand specificity and
biological function. Human TLR10 is encoded on chromosome 4
within the TLR2 gene cluster, together with TLR1, TLR2, and
TLR6, suggesting a possible heterodimer TLR2/TLR10 (195). It
has been described that TLR10 could act as an inhibitory
receptor that essentially controls TLR2-driven signals (196).
TLR10 is predominantly expressed in tissues rich in immune
cells, such as the spleen, lymph node, thymus, tonsil, and lung
(197). Genetic variations found in the TLR10 gene may cause a
shift in the levels of pro- and anti-inflammatory responses and
enhance the susceptibility to autoimmune diseases, cancers, and
infections at the GI tract (198–200). Recently, TLR10 has been
described in multiple mucosal sites, such as the small intestine,
fallopian tubes, eyes, or stomach (198, 201, 202), suggesting a key
role as a pathogen sensor in the mucosa. In the GI tract, TLR10
seems to be a chief component in the immune response to
Listeria monocytogenes in IECs. In this context, previous studies
have shown that L. monocytogenes affects SERT activity mediated
by TLR10, which triggers the activation of a MyD88-dependent
intracellular pathway (which may increase 5-HT uptake), and by
a MyD88-independent downstream signaling (which may
decrease 5-HT uptake), proving a deep involvement of TLRs in
the serotonergic mechanism (131). At the CNS level, TLR10
could be critical for macrophage activity. In fact, microglial cells
express TLR10, and this receptor inhibits M1 macrophage
cytokines but promotes M2 cytokines, indicating that TLR10
may have a protective role in the brain (130).

3.8 NOD-Like Receptors
Like the TLRs, the NLRs are PRRs that detect both DAMPs and
MAMPs triggering immune-related responses to protect the
host. However, NLRs differentiate from TLRs with regard to
the quality of being cytosolic receptors. NLRs can be classified
into two big groups: the NLRC subfamily that encompasses the
most popular, including NOD1, NOD2, and NLRC4, and the
NLRP subfamily that includes up to 14 PRRs (203).

3.8.1 NOD1
NOD1 is an intracellular PRR widely expressed in the organism
with special relevance in the IECs and in the immune cells from
lamina propria in the GI tract, where this PRR detects k-d-
glutamyl-meso-diaminopimelic acid (iE-DAP) from bacterial
peptidoglycan, which can be found in most of the bacterial
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wall (136). NOD1 has been involved in the protection of the GI
tract against pathogens such as S. typhimurium (204),
Citrobacter rodentium (205), or H. pylori (206), among others.
Previous works have described the expression of NOD1 in the
CNS but at a lower level compared with TLRs (207), where one of
the main functions is the protection against bacterial infections
(208). Interestingly, NOD1 and NOD2 defense effects are only
related with immunity because an elegant study has
demonstrated that the lack of both receptors in mice leads to
signs of stress-induced anxiety, cognitive impairment, and
depression, together with increased GI permeability and altered
serotonin signaling in the gut, suggesting that NOD1 and NOD2
are novel therapeutic targets for gut–brain axis disorders (156).
Supporting these results, NOD1 activation may decrease SERT
activity in IECs due to the diminishment of SERT expression. In
turn, 5-HT levels seem also to upregulate NOD1 expression.
However, NOD1 could also regulate other PRR expression such
as TLR2 and TLR4 (151).

3.8.2 NOD2
NOD2 is one of the most studied NLRs in the GI tract because
polymorphisms in the gene that encodes NOD2 have been
strongly associated with IBDs (209) and colorectal cancer
(210). NOD2 is an intracellular PRR expressed in all IECs in
the GI tract, which explains its implication in the protection of
the intestine against the mentioned pathologies (211). NOD2
detects the bacterial peptidoglycan named muramyl dipeptide
(MDP), which allows the identification of several pathogens,
including Yersinia (212), Campylobacter (213), and Listeria
(214). At the CNS level, NOD2 seems to play a similar role by
detecting pathogens, triggering immune-related responses, and
protecting the host (215). Like NOD1, NOD2 would be an
important PRR in the gut–brain axis, especially because of its
relation with the serotonergic system in both the CNS and the GI
tract (156). In this sense, bacterial activation of NOD2 may
decrease SERT activity and expression, thus leading to an
increase in extracellular serotonin, and then serve as a negative
feedback modulation of NOD2. In addition, NOD2 not only
modulates the serotonergic system directly but also through
its interdependence with TLR2 and TLR4 (152). In fact,
the increase of extracellular 5-HT by NOD2 is not only for
the downregulation of SERT but also for the increase of
enterochromaffin cells that are responsible for 90% of the total
5-HT (216).
4 INTESTINAL MICROBIOTA: DIRECT
EFFECTS ON SEROTONERGIC SYSTEM

In recent years, intestinal microbiota involvement has gained
high importance in numerous pathologies, including gut–brain
disorders such as IBDs (217), depression (218), or Alzheimer’s
disease (219). In this context, several studies have indicated that
5-HT and serotonergic system modulation by intestinal
microbiota are critical in the maintenance of the gut–brain axis
Frontiers in Endocrinology | www.frontiersin.org 9
(220–222). Microbiota can produce tryptophan and tryptamine,
directly affecting central 5-HT production (223). GF mice display
a reduction in anxiety-like behavior compared with specific
pathogen-free mice, showing a decreased expression of
serotonin receptor 1A in the hippocampus (224). In the GI
tract, microbiota increase the production of intestinal 5-HT by
increasing TPH1 expression (225), and, more interestingly,
microbiota can also synthesize 5-HT on their own (226). In
agreement with this study, the alteration of microbiota
composition and diversity seems to reduce host serotonin
levels, increase tryptamine levels, and disrupt the GI immune
system (227). However, it seems that microbiota not only
influence 5-HT synthesis and SERT expression but also
modulate the expression of some 5-HT receptors (228).

Some pathogenic bacteria such as E. coli can downregulate the
activity and expression of SERT in the intestine (229), and an
increase of extracellular 5-HT may induce an adherent-invasive
E. coli colonization (230). Moreover, it has been described that
E. coli can produce tryptophan, which will affect 5-HT
production (231). Similarly, some beneficial bacteria such as
Lactobacillus seem to degrade tryptophan, affecting central and
intestinal 5-HT production (232). Several studies have shown
that germ-free animals have a lower number of enterochromaffin
cells compared to those with a standard microbiota (233).
Specific pathogen-free mice display lower 5-HT levels (234),
concluding that microbiota can regulate host 5-HT production
not only at the intestinal level but also in the CNS (235). Apart
from that, intestinal microbiota can produce tryptamine, the
precursor of 5-HT, independently of the host (226), which
introduces new strategies as to how microbiota will not only
modify the intrinsic serotonergic system but also externally
modify the levels of 5-HT in the host.

Moreover, intestinal microbiota can modify serotonergic
systems by means of their metabolites and affect behavior
through the modulation of 5-HT signaling (236). In this
context, some metabolites, including the short-chain fatty acids
(SCFAs), are a key component in this modulation and directly
affect the gut–brain axis (237). SCFAs are metabolites from
dietary fiber fermentation. They are characterized by having
less than six carbon atoms, so they can easily cross membranes,
including the BBB. Although studies on the physiological
concentrations of SCFAs in the brain are scarce, the three
main SCFAs—acetate, propionate, and butyrate—have been
detected in cerebrospinal fluid (Human Metabolome Database.
Available online at: http://www.hmdb.ca/). In fact, SCFAs could
have a critical role in the maintenance and integrity of the BBB
(238). SCFAs seem to regulate the expression levels of TPH1 in
the intestine (239). In our lab, we have described that SCFAs can
regulate intestinal SERT activity and expression (240). Similarly,
other bacterial metabolites such as L-lactate seem to control the
expression of 5-HT receptors 1B, 1D, and 4 in the CNS (241). In
fact, there is a growing interest in the involvement of microbiota
metabolites in the modulation of multiple neurochemical
pathways through the highly interconnected gut–brain axis,
which could be open novel approaches for gut–brain axis
disorders (242).
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5 CONCLUSIONS AND FUTURE
PERSPECTIVES

The serotonergic system is the chief mechanism in the intestine
that controls the GI tract (243) and the CNS physiology (244),
wi th serotonin be ing one of the most important
neurotransmitters in these organs. In addition, 5-HT
modulates not only the GI tract and CNS functions, but also
their interconnection (i.e., the gut–brain axis). In this context,
numerous researchers have claimed that either 5-HT or
tryptophan (main 5-HT resource) could be a key factor in gut–
brain axis regulation (245) and that its imbalance could trigger
pathologies in any of these organs (246). Interestingly, intestinal
microbiota participate directly in 5-HT production, and by
means of PRRs activation, microbiota can also affect SERT and
regulate 5-HT levels. Moreover, changes in the extracellular
5-HT level may affect PRRs expression in a feedback regulation
in order to maintain homeostasis (Figure 2).
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Interestingly, various pathologies within the gut–brain axis
that are apparently unrelated seem to have three common
aspects: changes in intestinal microbiota, alterations of the
intestinal serotonergic system, and dysfunction of the PRRs
(Table 4). In the GI tract, IBDs, including CD and UC, are
characterized by changes in the microbiota (345), alterations
in the serotonergic system (346, 347), and dysfunction of the
innate immune system, including TLRs (109) and NLRs (348).
In recent years, novel IBD therapy has focused on treatment to
reestablish these three components. Classical control of the
intestinal microbiota has focused on antibiotics treatment.
However, long-term use of antibiotics in IBDs seems not to
resolve the inflammation and is associated with more harm
than benefits (349). Fecal microbial transplantation is one of
the most promising novel treatments in IBDs (350), together
with the use of probiotics (351). In the last century, the use of
anti-TNF has also been the most important drug intervention
in IBD patients (352). However, this therapy may be
FIGURE 2 | Serotonin (5-HT) communication pathways of the microbiota–gut–brain axis. Serotonin can modulate gastrointestinal (GI) and central nervous system
(CNS) functions and is a key network for the gut–brain axis. Microorganisms produce tryptophan, and degrade tryptophan, affecting the central and intestinal 5-HT
production. Intestinal microbiota modulate the synthesis of 5-HT and produce 5-HT independently of the host. Microbial associated molecular patterns from
microorganisms (MAMPs) through toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) affect directly the serotonergic system.
TLR/NLR signaling seems to modulate the activity and the expression of serotonin transporter (SERT) and serotonin receptors (5-HTRs), as well as the 5-HT synthesis
in the GI tract. However, this interconnection between TLRs/NLRs and serotonergic system exists in the CNS. In a feedback regulation, 5-HT affects pattern recognition
receptor (PRR) expression. In addition, microbial metabolites, such as short chain fatty acids (SCFAs), can promote 5-HT synthesis by enterochromaffin (EC) cells and
regulate SERT activity and expression. In the same way, these metabolites can migrate into the bloodstream to reach the brain, and some of them such as L-acetate
can modulate the nervous serotonergic system, controlling the expression of 5-HT receptors.
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TABLE 4 | Gut microbiota in intestinal disorders (IBD and IBS) and neurodegenerative pathologies and their interaction with serotonergic system.

Bacteria phyla Bacteria family Intestinal disorders Central neurodegenerative
pathologies

5-HT alterations Therapeutic approach

Actinobacteria Bifidobacteriaceae

Coriobacteriaceae

Decreased in IBS (247, 248)

Decreased in IBD (249, 250)

Decreased in UC and CD
(251)

Increased in IBS (248)
Decreased in IBD (249)
Increased in UC and CD (252)

Increased in Parkinson’s
disease (253–255)

Decreased in Alzheimer’s
disease (251)
Decreased in autism
spectrum disorder (256, 257)
Increased in bipolar disorder
(258)

Decreased in Parkinson’s
disease (259)
Increased in bipolar disorder
(258)

Increases TPH1 and
decreases SERT expression
(260)

Increases 5-HT in CNS (261)
Increases mucosal 5-HT, and
expression of SERT; 5-HTR2

and 5-HTR4 (237)
Bifidobacterium are
decreased in SERT-/- mouse
(262)
Correlated with increased
levels of serotonin (263)

Microbial manipulation:
prebiotic and probiotics in GI
disorders (264–266)

Probiotic supplementations in
neurodegenerative disorders
(267, 268);

Microbial manipulation:
microbiota transplant in GI
disorders (269–272)
Microbial manipulation:
microbiota transplant in
neurodegenerative disorders
(273–276)

Natural products in
neurodegenerative disorders
(277, 278)

Natural products in GI
disorders (279, 280)

Dietary fibers in GI disorders
(281)

Nanotechnology and
nanotheranostic approach in
neurodegenerative disorders
(282–284)

Oxidized phospholipidis (285,
286)

SCFAs in GI inflammatory
disorders (287–289)

CD36 in Alzheimer’s disease
(290)

Firmicutes Clostridiaceae Decreased in IBS (291)

Increased in IBD (292, 293)

Increased in CD (293)

Increased in Parkinson’s
disease (284, 294)

Increased in autism spectrum
disorder (256, 257)

Decreased in bipolar disorder
(258)

Increases mucosal 5-HT and
EC cells and decreased SERT
expression (295)

Correlated with increased
levels of serotonin (263)

Increases SERT expression
(296)

Lachnospiraceae Decreased in IBS (291)

Decreased in IBD (293, 297)

Decreased in UC and CD
(298)

Not modified in CD (252)

Increased in UC (252)

Decreased in Parkinson’s
disease (259, 299, 300)

Decreased in autism
spectrum disorder (257, 301)

Correlated with increased
levels of serotonin (263)

Increased in Tph-/- mice (6)

Ruminococcaceae Reduced in IBD (293, 297)

Increased in IBS (248, 302)

Increased in UC (252) and in
CD (293)

Reduced in CD (252, 298)

Increased in Parkinson’s
disease (259)

Increased in Alzheimer’s
disease (300)

Decreased in autism
spectrum disorder (301)
Decreased in bipolar disorder
(258)

Increases 5-HT levels (232)

Correlated with levels of
serotonin (303)

Veillonellaceae Increased in IBS (304, 305)

Increased in IBD (305, 306)

Increased in UC and CD (252)

Decreased in autism
spectrum disorder (256)

Correlated with increased
levels of serotonin (307)

Lactobacillaceae Increased in IBS (248)

Increased in IBD (297)

Decreased in IBD
(Lactobacillus) (250)

Increased in CD and reduced
in UC (252)

Increased in Parkinson’s
disease (253, 255, 308)

Decreased in Alzheimer’s
disease (251)

Increased in Alzheimer’s
disease (300)

Increased in autism spectrum
disorder (257)

Decreases TPH1, 5-THR3

and 5-HTR4 expression; and
increases SERT expression
(260)

Increases 5-HT levels (309)

Lactobacillus are increased in
SERT-/- mouse (262)

Serotonin-producing bacterial
strains (Lactobacillus) (310)

(Continued)
Frontiers in Endoc
rinology | www.frontie
rsin.org
 11
 November 2021
 | Volume 12 | Article 748254

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Layunta et al. Serotonin in the Microbiota–Gut–Brain Axis
TABLE 4 | Continued

Bacteria phyla Bacteria family Intestinal disorders Central neurodegenerative
pathologies

5-HT alterations Therapeutic approach

Enterococcaceae Decreased in IBS (291)

Increased in IBD (250, 311)

Increased in CD (312) and UC
(313)

Increased in Parkinson’s
disease (299, 314)

Increased in Alzheimer’s
disease (251) Increased in
autism spectrum disorder
(257)

Enterococcus are increased
in SERT-/- mouse (262)

Staphylococcaceae Increased in IBD (315) Induces 5-HT release (316)

5-HT producers (317)
Listeriaceae Increased in IBD (318) SERT inhibition (132)

Bacteriodetes Bacteroidaceae Increased in IBS (319)

Reduced in IBD (297)

Reduced in CD (252) and UC
(320)

Increased in Parkinson’s
disease (255, 259)

Decreased in autism
spectrum disorder (257, 321)

Increased in state of anxiety
(322)

Increased in Tph-/- mice (6)
Increases EC cells (323)

Tannerellaceae Decreased in UC (252) Increases 5-HT in
hippocampus (324)

Rikenellaceae Decreased in IBS (325)

Decreased in IBD (297)

Decreased in UC and CD
(252)

Decreased in Parkinson’s
disease (259)

Increased in autism spectrum
disorder (256, 257)

Correlated with levels of
serotonin (303)

Prevotellaceae Decreased in IBS (248)

Increased in IBS (304)

Increased in IBD (326)

Increased in UC and CD (252)

Decreased in Parkinson’s
disease (254, 327)

Decreased in autism
spectrum disorder (256, 321)

Proteobacteria Enterobacteriaceae Increased in IBS (302)

Increased in IBD (292, 306)

Increased in UC and CD (252)

Increased in Parkinson’s
disease (328)

Increased in Alzheimer’s
disease (300)

Increased in autism spectrum
disorder (257)

Decreases 5-HT and SERT
protein (329)

Increase 5-HT bioavailability
(330)

Increases EC cells (331)

Serotonin-producing bacterial
strains (Escherichia coli K-12)
(332), (Morganella morganii,
Klebsiella pneumonia, Hafnia
alvei) (333)

Campylobacteraceae Increased in IBD (334)

Risk factor of IBS (335)

5-HT modulates
Campylobacter jejuni
physiology (336)

Helicobacteraceae Reduced in IBD, UC and CD
(337)

Increased in Alzheimer’s
disease (251)

Increases 5-HT levels (338)

Fusobacteria Fusobacteriaceae Increased in IBS (339)

Increased in IBD (250, 306)

Increased in CD (340) and UC
(341)
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Frontiers in Endoc
rinology | www.frontie
rsin.org
 12
 November 2021
 | Volume 12 | Article 748254

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Layunta et al. Serotonin in the Microbiota–Gut–Brain Axis
insufficient, and novel studies have indicated that more
treatments addressing innate immunity should be carried
out. In this context, several studies have indicated that TLR
(353) and NLR (354) modulation may help in the treatment of
these chronic pathologies. Finally, serotonergic system
modulation has been one of the main targets for IBD
therapeutics in recent years. In this context, the inhibition
of mucosal serotonin (355) or the use of inhibitors for SERT
(356) may help in IBDs and thus be considered as a novel
therapy for IBDs.

Irritable bowel syndrome (IBS) has been described as a
gut–brain disorder, where the serotonergic system may be
altered in both the intestine and the CNS (357). Interestingly,
intestinal microbiota (358), as well as SCFAs and 5-HT,
are altered in IBS patients (359). In addition, TLRs and NLRs
play a chief role in the pathogenesis of IBS. In fact, several
studies have indicated that some PRRs serve as predictive
markers for the disease (360) because their expression is
increased in the mucosa from IBS patients (361). Thus, it is
not surprising that gut–brain axis modulation in IBS seems to be
the most effective therapy in this pathology. Previous studies
have shown that SERT regulation (362, 363) and the synthesis of
5-HT (364) may be important in the treatment of IBS. Moreover,
serotonin therapy efficiency in IBS is improved through the
modulation of microbiota (365, 366), and previous studies
have suggested the immunomodulation of PRRs in this GI
disease (367).

Surprisingly, disorders in the CNS may share the same
alterations as the GI pathologies. In this context, serotonergic
system alteration may be involved not only in depression and
anxiety (368) but also in Parkinson’s disease (369), multiple
sclerosis (370), amyotrophic lateral sclerosis (370), and autism
spectrum disorder (371), among others. In fact, conventional
treatment for CNS disorders, especially depression, has focused
on the modulation of the serotonergic system by means of SSRIs
(372). Important findings have been published in the last years
regarding the changes of intestinal microbiota in the CNS
pathologies. Recent data have shown that intestinal microbiota
may be a critical susceptibility factor in the development of
Frontiers in Endocrinology | www.frontiersin.org 13
neurological disorders such as Alzheimer’s disease, autism
spectrum disorder, multiple sclerosis, Parkinson’s disease
(373), and depression in particular, where the modulation of
the intestinal serotonin by the microbiota seems to be
an important trigger (138, 374). In fact, certain bacteria
families modulate tryptophan levels in blood plasma that
can cross the BBB and thus influence the central serotonergic
system (375). Within this context, novel therapies of brain
pathologies, such as Alzheimer’s disease, are focused on the
modulation of intestinal microbiota to prevent and ameliorate
the development of the pathology (376). These new studies have
shown that the balance of the gut–brain axis is critical in
preventing the development of GI and brain disorders
mediated by 5-HT (377). Innate immune receptors, including
TLRs and NLRs, could also be a key component in the correct
function of the microbiota–gut–brain axis. Previous works have
shown that TLR modulation by means of intestinal microbiota
may be a critical factor in the development of brain disorders
such as Parkinson’s disease (177, 378); in addition, NLRs may
be involved in CNS inflammation and neurodegenerative
diseases (379). New therapeutics have shown that the use of
antidepressants may improve the negative regulation of PRRs in
some CNS disorders such as depression (380), especially for
TLR4 (381).

Based on the numerous studies focusing on the gut–
brain axis, it is clear that the balance of this bidirectional
communication may be important in the prevention of GI and
CNS disorders, where the intermodulation of the microbiome,
serotonergic system, and innate immunity is critical in
maintaining homeostasis. However, more studies are needed to
understand the implication of these elements, as well as their
modulation as novel therapeutic targets, for the GI and
CNS pathologies.
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Bacteria phyla Bacteria family Intestinal disorders Central neurodegenerative
pathologies

5-HT alterations Therapeutic approach

Verrucomicrobia Akkermansiaceae Reduced in IBD (297, 311)

Reduced in UC (342)

Increased in Parkinson’s
disease (254, 255, 327)

Increased in autism spectrum
disorder (256)

Increases SERT expression
(296)

Increases 5-HT in colon and
hippocampus (8)

Akkermansia are decreased in
SERT-/- mouse (262)
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The table summarizes the alterations of bacteria belonging to different bacterial families that are included in the six major phyla of the human gut microbiota (343, 344) in relation to
inflammatory intestinal disorders (IBD, IBS, UC, and CD) and neurodegenerative pathologies (Alzheimer, Parkinson, etc.). Likewise, the table indicates the observed effects of the different
bacteria on components of the serotonergic system or the bioavailability of serotonin. The last column lists some examples of therapeutic approaches related to the intestinal microbiota for
the treatment of intestinal and neurodegenerative pathologies. IBD, inflammatory bowel disease; IBS, inflammatory bowel syndrome; UC, ulcerative colitis; CD, Crohn’s disease; CNS,
central nervous system; GI, gastrointestinal; EC, enterochromaffin; TPH, tryptophan hydroxylase; SERT, serotonin transporter.
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