000108400 001__ 108400
000108400 005__ 20230519145443.0
000108400 0247_ $$2doi$$a10.1039/D1RA01391B
000108400 0248_ $$2sideral$$a125013
000108400 037__ $$aART-2021-125013
000108400 041__ $$aeng
000108400 100__ $$aPiedrabuena, David
000108400 245__ $$aEnzymatic synthesis of novel fructosylated compounds by Ffase from Schwanniomyces occidentalis in green solvents
000108400 260__ $$c2021
000108400 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108400 5203_ $$aThe β-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces potential prebiotic fructooligosaccharides (FOS) by self-transfructosylation of sucrose, being one of the highest known producers of 6-kestose. The use of Green Solvents (GS) in biocatalysis has emerged as a sustainable alternative to conventional organic media for improving product yields and generating new molecules. In this work, the Ffase hydrolytic and transfructosylating activity was analysed using different GS, including biosolvents and ionic liquids. Among them, 11 were compatible for the net synthesis of FOS. Besides, two glycerol derivatives improved the yield of total FOS. Interestingly, polyols ethylene glycol and glycerol were found to be efficient alternative fructosyl-acceptors, both substantially decreasing the sucrose fructosylation. The main transfer product of the reaction with glycerol was a 62 g L−1 isomeric mixture of 1-O and 2-O-β-D-fructofuranosylglycerol, representing 95% of all chemicals generated by transfructosylation. Unexpectedly, the non-terminal 2-O fructo-conjugate was the major molecule catalysed during the process, while the 1-O isomer was the minor one. This fact made Ffase the first known enzyme from yeast showing this catalytic ability. Thus, novel fructosylated compounds with potential applications in food, cosmetics, and pharmaceutical fields have been obtained in this work, increasing the biotechnological interest of Ffase with innocuous GS.
000108400 536__ $$9info:eu-repo/grantAgreement/ES/DGA-ERDF/E37-20R$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-093431-B-100$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-105838RB-C3-2$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-096037-B-I00
000108400 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000108400 590__ $$a4.036$$b2021
000108400 592__ $$a0.667$$b2021
000108400 594__ $$a5.9$$b2021
000108400 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b75 / 180 = 0.417$$c2021$$dQ2$$eT2
000108400 593__ $$aChemistry (miscellaneous)$$c2021$$dQ1
000108400 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000108400 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108400 700__ $$aRumbero, Ángel
000108400 700__ $$0(orcid)0000-0002-2676-8814$$aPires, Elísabet$$uUniversidad de Zaragoza
000108400 700__ $$0(orcid)0000-0002-3256-2089$$aLeal-Duaso, Alejandro
000108400 700__ $$aCivera, Concepción
000108400 700__ $$aFernández-Lobato, María
000108400 700__ $$aHernaiz, María J.
000108400 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000108400 773__ $$g11, 39 (2021), 24312-24319$$pRSC ADVANCES$$tRSC Advances$$x2046-2069
000108400 8564_ $$s750487$$uhttps://zaguan.unizar.es/record/108400/files/texto_completo.pdf$$yVersión publicada
000108400 8564_ $$s2886433$$uhttps://zaguan.unizar.es/record/108400/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108400 909CO $$ooai:zaguan.unizar.es:108400$$particulos$$pdriver
000108400 951__ $$a2023-05-18-14:36:02
000108400 980__ $$aARTICLE