000108433 001__ 108433
000108433 005__ 20211115162715.0
000108433 0247_ $$2doi$$a10.1016/j.enconman.2015.03.065
000108433 0248_ $$2sideral$$a124990
000108433 037__ $$aART-2015-124990
000108433 041__ $$aeng
000108433 100__ $$aAcevedo, Luis
000108433 245__ $$aNumerical study of cullet glass subjected to microwave heating and SiC susceptor effects. Part II: Exergy transfer analysis
000108433 260__ $$c2015
000108433 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108433 5203_ $$aThe mathematical model of exergy transfer in cullet glass heated by microwave inside of a cubical cavity with the aid of a susceptor is presented. Part I of this paper presented a numerical combined electromagnetic and heat transfer model by applying both transient Maxwell’s equations and heat transfer equations. Then, the electromagnetic and temperature fields were used to obtain the exergy transfer analysis in the oven. Exergy transfer analysis informs us about the efficiency of energy transformations taking place during the heating process, since it explains how the quality of the energy behaves along the heating process. The rate of internal exergy, exergy flowing and destroyed exergy were obtained and presented for this transient process. Part I showed that the susceptor location could change the temperature fields of cullet glass. So, an exergy analysis is important to understand the irreversibilities produced by a susceptor during preheating (microwaves activation) and heating process of the cullet glass, and how they could be minimized. Exergy transfer analysis shows how both, electromagnetic and heat transfer, are responsible of the irreversibilities generated in the heating process.
000108433 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000108433 590__ $$a4.801$$b2015
000108433 591__ $$aENERGY & FUELS$$b12 / 88 = 0.136$$c2015$$dQ1$$eT1
000108433 591__ $$aTHERMODYNAMICS$$b2 / 58 = 0.034$$c2015$$dQ1$$eT1
000108433 591__ $$aPHYSICS, NUCLEAR$$b3 / 21 = 0.143$$c2015$$dQ1$$eT1
000108433 591__ $$aMECHANICS$$b3 / 135 = 0.022$$c2015$$dQ1$$eT1
000108433 592__ $$a2.023$$b2015
000108433 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1
000108433 593__ $$aRenewable Energy, Sustainability and the Environment$$c2015$$dQ1
000108433 593__ $$aNuclear Energy and Engineering$$c2015$$dQ1
000108433 593__ $$aFuel Technology$$c2015$$dQ1
000108433 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108433 700__ $$0(orcid)0000-0002-9279-1959$$aUsón, Sergio$$uUniversidad de Zaragoza
000108433 700__ $$0(orcid)0000-0003-4408-6881$$aUche, Javier$$uUniversidad de Zaragoza
000108433 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000108433 773__ $$g97 (2015), 458-469$$pEnergy convers. manag.$$tEnergy Conversion and Management$$x0196-8904
000108433 8564_ $$s6474336$$uhttps://zaguan.unizar.es/record/108433/files/texto_completo.pdf$$yVersión publicada
000108433 8564_ $$s2822452$$uhttps://zaguan.unizar.es/record/108433/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108433 909CO $$ooai:zaguan.unizar.es:108433$$particulos$$pdriver
000108433 951__ $$a2021-11-15-12:21:08
000108433 980__ $$aARTICLE