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Abstract—The development and deployment of the so-called
Industrial Internet of Things (IIoT) have significantly increased
the control and monitoring capabilities of companies, and thus
their potential productivity. In this paper, we propose the use
of Raspberry Pi devices in industrial environments to mea-
sure productivity parameters. Our proposal can economically
and efficiently gather data related with the availability and
productivity of industrial machinery. However, since low-cost
devices are prone to suffer the negative effects of electromagnetic
interferences, we additionally propose an alternative to prevent
signal alterations caused by them. More specifically, we propose
a filtering mechanism called Smart Coded Filter (SCF), which
eliminates wrong signals caused by electromagnetic interferences,
and, therefore, highly improves the accuracy when estimating the
availability metric. Results obtained demonstrate that our low-
cost device provided with the SCF completely ignores 100% of
wrong availability data, while reducing up to 70% the number
of records stored into the database.

Index Terms—Industrial Internet of Things, OEE, Low-Cost
devices, Raspberry Pi, Electromagnetic Interferences.

I. INTRODUCTION

The Industry 4.0 concept was initially coined by the German

government within its High-Tech Strategy [1]. In particular,

it focuses on enterprise-wide business process automation to

create smart factories, thus fostering the development of new

business models to enhance the value chain thanks to the

application of Big Data and Machine Learning strategies to

the industrial environment. Industry 4.0, basically, seeks to

incorporate the information and communication technologies

to allow the customization of products and flexible mass

production.

One important concept related to Industry 4.0 is the so-

called Industrial Internet of Things (IIoT), which refers to

the use of automated and connected machines, devices, and

sensors in industrial environments. IIoT not only enables

remote condition monitoring, but also increases the efficiency

and reliability of enterprises and industries.

In that industrial environment, the Overall Equipment Effec-

tiveness (OEE) is an useful metric to accurately estimate the

productivity of industries. This metric can be measured in real

time by means of the IoT paradigm, where smart devices can

be deployed to collect important data, thus providing industry

owners with useful information to make the right decisions to

improve productivity while reducing costs.

OEE considers three key factors which affect the equipment

effectiveness. They are: (i) availability, (ii) performance, and

(iii) quality. Fortunately, there currently exist IoT-based sen-

sors and devices which allow us to gather the data required

to accurately measure all these factors, and thus estimate the

OEE. However, low-cost low-power IoT devices can present

problems due to electromagnetic interferences (EMIs) com-

monly present in hostile electromagnetic environments such

as industries, where a plethora of electronic components and

power supply units can cause EMIs.

In this paper, we propose a system, based on Raspberry Pi,

which is specially designed to monitor the productivity and

effectiveness of industries by means of the real-time estimation

of the OEE. In addition, we propose the Smart Coded Filter

(SCF), designed to prevent the problems that EMIs cause in

this type of low-cost devices.

So far, several works related to OEE estimation can be

found in the literature. Kao et al. [2] proposed a novel metric

coined as Predictive Overall Equipment Effectiveness (POEE).

In particular, they seek to monitor and assess the forthcoming

effectiveness of a single tool. The POEE is composed of two

parts: (i) the deterministic effectiveness, such as the preventive

maintenance, engineering experiments, as well as job schedul-

ing, and (ii) the predictive effectiveness in terms of the extra

production time due to the abnormal tool condition or unde-

sired product quality. Krachangchan and Thawesaengskulthai

[3] thoroughly studied the problems related to breakdowns,

equipment defects, and poor working conditions in a tobacco

company. The purpose of their work was to reduce time losses,

and so improve performance through the implementation of

Total Productive Maintenance (TPM) and Reliability Centered

Maintenance (RCM) by using Failure Modes and Effects

Analysis (FMEA). After the implementation of their approach,

the performance rate increased from 75% to 79%, which also

enhanced OEE from 66% to 72%. Unlike our work, none of

these proposals considered the use of low-lost devices, studied

the effect of EMIs, or the possibility of remotely obtaining

real-time OEE.

Regarding the use of low-cost low-power devices in indus-

trial environments, Weiss [4] presented a low-cost radar for

near-range, which employs nanosecond pulses in the 5.8 GHz

industrial, scientific, and medical (ISM)-band. Experimental
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Fig. 1: Example of OEE and its parameters during a full working day

results showed good performance in industrial environments,

i.e., it showed an accuracy about 10mm over a distance of 10m.

Haus et al. [5] studied several cost-effective piezoresistive ma-

terials to implement low-cost tactile sensor matrices for phys-

ical human robot interaction (pHRI) applications in industrial

manufacturing environments. In particular, they modeled the

input-output behavior by using a machine learning approach

to determine the best material and a cheaper alternative.

Unlike previously presented works, our proposal also mit-

igates the effect of electromagnetic interferences in low-cost

low-power devices, which are prone to occur in industrial envi-

ronments, and especially affect this kind of devices. Therefore,

preventing them represents a challenge. Our proposal presents

a low-cost system which provides sensing and communication

capabilities to accurately estimate OEE. In particular, our

approach can monitor the availability of machinery, while

ignoring erroneous signals due to the electronic noise caused

by EMIs.

II. BACKGROUND: OVERALL EQUIPMENT EFFECTIVENESS

The main objective of our proposal is measuring one of

the parameters that contribute to calculating real-time OEE

using low-cost devices. OEE reflects how the equipment of

a industry is performing to meet the production demanding

expectations [6]. This indicator enables us to better under-

stand the main reasoning behind deficient performance and,

therefore, it provides the basis for establishing improvement

priorities to fix problems.

Figure 1 shows the factors used to calculate OEE. They are:

• Availability metric, which measures the percentage of

time that the machine is really available to work.

• Performance metric, which represents the percentage of

time that the machine is available to work, but without

considering the time lost due to speed losses.

• Quality metric, which measures the percentage of time

that the machine is fully productive, subtracting the time

lost due to defect losses (i.e., the time taken to produce

defective products).

Equation 1 details how the OEE is calculated.

OEE = Availability · Performance ·Quality (1)

where Availability =
OT

NAT
, Performance =

NOT

OT
, and

Quality =
FPT

NOT

The OEE, besides allowing the evaluation of equipment

effectiveness, can also be used to compare different indus-

try production units. In particular, OEE provides significant

information to optimize the use of resources, as well as the

adoption of better practices in the industry [7].

Concerning the OEE calculation, for the sake of clarity,

Figure 1 depicts an example of production data during one

day. In particular, it shows the total scheduled time, and the

time lost due to different causes (i.e., scheduled shutdowns,

inactivity, speed losses, and defective products). These values

allow us to calculate the parameters affecting availability, per-

formance, and quality, and ultimately, the OEE value. Finally,

equation 2 shows how the OEE is calculated considering the

data presented in Figure 1.

OEE =
8.5

10
·

8

8.5
·
7.66

8
= 0.766 (2)

The values return an OEE of 76.6%, thus showing that, al-

though the overall equipment effectiveness is very acceptable,

improvements should mainly focus on those issues related to

increasing the availability, i.e., reducing time losses due to

unscheduled inactivity.
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Fig. 2: System configuration.

III. LOW-COST MEASUREMENT OF THE MACHINERY

AVAILABILITY

In this paper we focus on solving the problems related

to the measurement of the OEE availability factor in real

time. In particular, our approach was validated in two different

industrial environments: (i) a meat product processing industry,

that performs several operations with a variety of products,

mainly ham, and (ii) a cheese factory that produces cheese

in various formats. In this section, we present the system

configuration, detailing how it operates.

As stated before, our system measures one of the factors

involved in the OEE calculation, in particular, the availability

parameter, which is obtained by processing the availability

signals obtained from any machine. Our proposal improves

many current systems, since this parameter has to be manually

introduced by operators, in many cases.

Figure 2 shows the system configuration. More specifically,

it presents the different elements involved in gathering the

data related to availability. They are: (i) industrial equipment.

In the example, we show a cheese vacuum sealer, although

our system can monitor the availability of any machine, (ii)

a Raspberry Pi, which receives signals from the machine,

processes them, and sends data to the database via a wireless

connection, (iii) the database, which stores the signals col-

lected, and (iv) a dashboard, which enables the visualization

of the overall effectiveness.

After operating the proposed system in a real industrial

environment, that is, a cheese packaging plant, we found EMIs

causing noise in the signals, since the system records much

more availability signals than those that actually occur.

Particularly, with the purpose of quantifying the erroneous

signals the system records, we carefully checked several

production shifts, although, in this paper, we only present six

TABLE I: Results obtained in different working days

Day #Real signals #Stored signals error

1 82 282 244%

2 116 172 48%

3 28 84 200%

4 50 72 44%

5 28 50 79%

different working days. During these observations we analyzed

the availability of the sealing machine, according to the data

provided by machine operators, and compared them against

the data obtained and stored by our system.

Table I quantifies the effect of electromagnetic interferences

in the availability signal by comparing the signals recorded

by the device for these days with the real availability data.

In particular, the table shows the number of real availability

signals, which includes both the number of shutdowns and

unscheduled stops, as well as the number of signals already

detected. As shown, the error committed greatly varies (rang-

ing from 44 to 244%), making it very difficult to predict.

Moreover, it is clearly unacceptable, thus making it absolutely

necessary to address the problems due to EMIs.

IV. PROPOSED APPROACH TO INCREASE RESILIENCE TO

ELECTROMAGNETIC INTERFERENCE (SCF)

As stated above, we corroborated that our system can

monitor the machines’ availability, as required to estimate the

OEE, but we also detected that the number of signals recorded

was significantly higher than expected due to electromagnetic

interferences (EMIs). On this basis, in this work we addi-

tionally designed the Smart Coded Filter (SCF), which avoids

wrong availability signals, and thus improves the precision of

our system.
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Fig. 3: Flow chart of the Smart Coded Filter.

Figure 3 presents a flow chart which summarizes how SCF

operates. In particular, it shows the two different processes that

run in parallel on the Raspberry Pi. On the one hand, the sender

process continually sends (every second), using the GPIO 03

port, the frame (0-1-0-1-0-1) by following a predetermined

duration per bit (50ms, 150ms, 75ms, 125ms, and 100ms), i.e.,

the system sends a ’0’ during 50ms., then sends a ’1’ during

150ms., a ’0’ during 75 ms., etc., and waits for 500ms to repeat

the process again. On the other hand, the receiver process

continually monitors the GPIO 04 port waiting to recognize

the frame sent by the sender process, since the frame could

be only received correctly when the sealer switches the circuit

on, in other words, when the machine is available.

In order to greatly increase the reliability of the system, it

only considers that an availability signal is correct when the

frame is correctly received twice in the last 10 seconds (note

the counter parameter in the flow chart). Otherwise, it means

that the machine is currently unavailable. This double check

ensures that the signals received are not fictitiously generated

by electromagnetic noise.

Once the signal has been identified, it is stored in the

availability database. If data is not inserted correctly, usually

due to a lack of connectivity, the signal goes to the Pending

File Storage, and the process will go back to waiting for a

new signal. Conversely, i.e., in case of available connection,

the system will check whether there are signals stored in the

Pending File Storage, and will insert them into the database.

The data stored in the availability database basically con-

tains the following information: (i) line, a four-digit code

that identifies the machine from which data are obtained,

(ii) timestamp, which determines the time instant when the

signal is received, and (iii) signal value, which is 1 or 0 when

the machine is available or not, respectively. It is also worth

mentioning that the last value parameter prevents the system

from continuously inserting duplicate values into the database,

since once an availability (or unavailability) signal has been
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TABLE II: Available and unavailable times for the different working days

Day
System w/ SCF System w/o SCF

Available time Unavailable time Availability ratio Available time Unavailable time Availability ratio Error

1 11h 33’ 29” 3h 26’ 31” 0.771 10h 23’ 48” 4h 36’ 12” 0.693 10.05%

2 11h 50’ 46” 3h 09’ 14” 0.790 10h 02’ 28” 4h 57’ 32” 0.669 15.24%

3 12h 26’ 35” 2h 33’ 25” 0.830 11h 39’ 50” 3h 20’ 10” 0.778 6.26%

4 12h 40’ 05” 2h 19’ 55” 0.845 8h 46’ 26” 6h 13’ 34” 0.585 30.74%

5 12h 04’ 08” 2h 55’ 52” 0.805 11h 16’ 42” 3h 43’ 18” 0.752 6.55%

stored, the next signal to store should not be the same.

The purpose of SCF is to discard received signals that do not

represent the machine’s availability. According to this, erro-

neous signals are filtered immediately by the system provided

they do not comply with the SCF protocol. Consequently, SCF

prevents fictitious availability or unavailability values from

being inserted into the database. The effectiveness of SCF was

assessed by comparing the data provided by operators to the

availability signals recorded by our system. This comparison

demonstrated the accuracy and reliability of our approach,

since SCF ignored 100% of wrong signals.

Table II presents the available and unavailable times, as well

as the availability ratios and the error values, comparing our

system with and without our SCF approach. As shown, avail-

ability times and ratios are quite different for both approaches.

In fact, the error introduced by the system without using SCF

varies from 6.26% to 30.74%. Hence, this issue additionally

demonstrates the need for avoiding wrong signals due to EMIs.

Figures 4 and 5 present a visual comparison of the availabil-

ity signals detected by both approaches, i.e., the one including

the SCF, and the one without it, respectively. Due to space

limitations, we only include data from days 3 and 4, because

they can be considered quite interesting, as they presented the

lowest and highest errors in terms of availability ratio, although

it is worth mentioning that the results for the rest of days are

similar. Note that the periods in which the machine is available

are colored in light blue (w/ SCF) and light red (w/o SCF),

whereas the inactivity periods appear in white.

Regarding the system including SCF, which accurately

reflects the availability of the machine, we can easily observe

the product changeovers (i.e., when the production changes

between whole cheeses, wedges, quarters, or slices). In par-

ticular we can find them at 11:10, 19:30 and 19:50, in Figure

4a, and 8:15, 8:25, 11:20, 14:10, 20:00, and 21:10 in Figure

5a. In addition, scheduled downtimes can be identified starting

from 13:50 (in Day 3), as well as at 14:50 and 18:10 (in Day

4). Finally, note that there are two unavailability slots during

Day 3 due to minor breakdowns. More specifically, they can be

found at the beginning of the day (from 7:00 to 7:45), and also

from 11:30 to 13:00. However, electromagnetic noise provoked

that the system without SCF wrongly considered that, during

the first shutdown slot, the machine was mainly available (see

Figure 4b).

As for the effect of EMIs, and according to data previously

presented on Table II, the two approaches behave differently.

In particular, they present similar results in terms of availabil-

ity in Day 3, whereas noticeable differences appear in Day 4.

The effects of EMIs are not only reflected in sudden changes

of availability, but also in wrong availabilities for longer

periods, which clearly do not express the real availability

of the machine. Figure 4b shows erroneous signals at 7:15,

8:45, 11:35, 12:10, 17:15, and 19:00 (see Figure 4b). These

alterations can also be observed in Day 4 (see Figure 5b), as

there are wrong signals starting from 7:15, 7:30, 13:00, 17:05,

and 19:20. Although the availability errors should be fixed to

correctly estimate OEE, there is an additional benefit of using

SCF, since the number of signals stored in the database is

considerably reduced using our proposal (up to 70% fewer

accesses). This is also an important issue, since having a high

amount of transactions in the database is clearly inefficient

and can overload the system. In summary, the results obtained

demonstrated that, using the availability monitoring system,

and including the Smart Coded Filter we have proposed,

we are capable of correctly measuring the availability ratio,

required to estimate OEE, since our approach completely

ignores wrong signals due to the electromagnetic noise.

V. CONCLUSIONS

Estimating OEE in real time, by using IIoT, enables business

managers to detect which aspects they should study in detail

to improve the efficiency of the production process, and

thus increase their benefits. In this paper, we proposed a

system based on low-cost devices for accurately estimate the

availability of any industrial machine.

Additionally, we also addressed the problems caused by

EMIs, which have a special impact on this type of low-power

devices. More specifically, we propose a filtering mechanism,

namely the Smart Coded Filter, which completely ignores erro-

neous signals caused by EMIs, thus enabling an accurate OEE

estimation at a considerably lower cost than other proprietary

systems with similar characteristics.

Results demonstrated that SCF ignores 100% of wrong

availability data, hence avoiding all the signal alterations due

to electromagnetic noise. In addition, our system reduces up

to 70% the number of accesses, and so the number of records

stored into the database.
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(a)

(b)

Fig. 4: Availability signals obtained during Day 3: (a) using the proposed system with SCF and (b) without including the SCF

approach.

(a)

(b)

Fig. 5: Availability signals obtained during Day 4: (a) using the proposed system with SCF and (b) without including the SCF

approach.
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