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Abstract
Efficient Simulation Tools (EST)

for sediment transport in
geomorphological shallow flows

by Sergio Martínez Aranda

Among the geophysical and environmental surface phenomena, rapid
flows of water and sediment mixtures are probably the most challenging
and unknown gravity-driven processes. Sediment transport is ubiquitous
in environmental water bodies such as rivers, floods, coasts and estuaries,
but also is the main process in wet landslides, debris flows and muddy slur-
ries. In this kind of flows, the fluidized material in motion consists of a mix-
ture of water and multiple solid phases which might be of different nature,
such as different sediment size-classes, organic materials, chemical solutes
or heavy metals in mine tailings. Modeling sediment transport involves an
increasing complexity due to the variable bulk properties in the sediment-
water mixture, the coupling of physical processes and the presence of multi-
ple layers phenomena. Two-dimensional shallow-type mathematical mod-
els are built in the context of free surface flows and are applicable to a large
number of these geophysical surface processes involving sediment trans-
port. Their numerical solution in the Finite Volume (FV) framework is gov-
erned by the particular set of equations chosen, by the dynamical properties
of the system, by the coupling between flow variables and by the compu-
tational grid choice. Moreover, the estimation of the mass and momentum
source terms can also affect the robustness and accuracy of the solution. The
complexity of the numerical resolution and the computational cost of sim-
ulation tools increase considerably with the number of equations involved.
Furthermore, most of these highly unsteady flows usually occur along very
steep and irregular terrains which require to use a refined non-structured
spatial discretization in order to capture the terrain complexity, increasing
exponentially the computational times. So that, the computational effort re-
quired is one of the biggest challenges for the application of depth-averaged
2D models to realistic large-scale long-term flows. Throughout this thesis,
proper 2D shallow-type mathematical models, robust and accurate FV nu-
merical algorithms and efficient high-performance computational codes are
combined to develop Efficient Simulation Tools (EST’s) for environmental
surface processes involving sediment transport with realistic temporal and
spatial scales. New EST’s able to deal with structured and unstructured
meshes are proposed for variable-density mud/debris flows, passive sus-
pended transport and generalized bedload transport. Special attention is
paid to the coupling between system variables and to the integration of
mass and momentum source terms. The features of each EST have been
carefully analyzed and their capabilities have been demonstrated using an-
alytical and experimental benchmark tests, as well as observations in real
events.
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Resumen
Herramientas Eficientes de Simulación (HES)

para transporte de sedimentos en
flujos superficiales geomorfológicos

por Sergio Martínez Aranda

Entre los fenómenos superficiales geofísicos y medioambientales, los
flujos rápidos de mezclas de agua y sedimentos son probablemente los más
exigentes y desconocidos de los procesos movidos por gravedad. El trans-
porte de sedimentos es ubicuo en los cuerpos de agua naturales, como ríos,
crecidas, costas o estuarios, además de ser el principal proceso en desliza-
mientos, flujos de detritos y coladas barro. En este tipo de flujos, el mate-
rial fluidificado en movimiento consiste en una mezcla de agua y múltiples
fases sólidas, que pueden ser de distinta naturaleza como diferentes clases
de sedimento, materiales orgánicos, solutos químicos o metales pesados en
lodos mineros. El modelado del transporte de sedimentos involucra una
alta complejidad debido a las propiedades variables de la mezcla agua-
sólidos, el acoplamiento de procesos físicos y la presencia de fenómenos
multicapa. Los modelos matemáticos bidimensionales promediados en la
vertical (’shallow-type’) se construyen en el contexto de flujos superficiales
y son aplicables a un amplio rango de estos procesos geofísicos que involu-
cran transporte de sedimentos. Su resolución numérica en el marco de los
métodos de Volúmenes Finitos (VF) está controlada por el conjunto de ecua-
ciones escogido, las propiedades dinámicas del sistema, el acoplamiento
entre las variables del flujo y la malla computacional seleccionada. Además,
la estimación de los términos fuente de masa y momento puede también
afectar la robustez y precisión de la solución. La complejidad de la res-
olución numérica y el coste computacional de simulación crecen consider-
ablemente con el número de ecuaciones involucradas. Además, la mayor
parte de estos flujos son altamente transitorios y ocurren en terrenos irreg-
ulares con altas pendientes, requiriendo el uso de una discretización es-
pacial no-estructurada refinada para capturar la complejidad del terreno e
incrementando exponencialmente el tiempo computacional. Por tanto, el
esfuerzo computacional es uno de los grandes retos para la aplicación de
modelos promediados 2D en flujos realistas con grandes escalas espaciales
y largas duraciones de evento. En esta tesis, modelos matemáticos super-
ficiales 2D apropiados, algoritmos numéricos de VF robustos y precisos,
y códigos eficientes de computación de alto rendimiento son combinados
para desarrollar Herramientas Eficientes de Simulación (HES) para proce-
sos medioambientales superficiales involucrando transporte de sedimentos
con escalas temporales y espaciales realistas. Nuevas HES capaces de traba-
jar en mallas estructuradas y no-estructuradas son propuestas para el flujos
de lodo/detritos con densidad variable, transporte pasivo en suspensión
y transporte de fondo generalizado. Una atención especial es puesta en el
acoplamiento entre las variables del sistema y en la integración de los tér-
minos fuente de masa y momento. Las propiedades de cada HES han sido
cuidadosamente analizadas y sus capacidades demostradas usando tests
de validación analíticos y experimentales, así como mediciones en eventos
reales.
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(a)e Variable a evaluated at the static-moving bed interface ze
tr(A) Traze of the tensor A
∇a Gradient of the scalar a
∇ ·A Divergence of the vector/tensor A
sgn(a) Sign of the scalar a
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Chapter 1

Introduction

Among the environmental and geophysical surface phenomena, rapid
water-sediment flows are probably the most challenging and unknown
gravity-driven processes. In this kind of flows, the fluidized material in
motion consists of a mixture of water and multiple solid phases which
might be of different nature, such as different sediment size-classes, organic
materials, chemical solutes or heavy metals in mine tailings [118]. Sedi-
ment transport is ubiquitous in environmental water bodies such as rivers,
floods, coasts and estuaries, but also is the main process in wet landslides,
debris flows and muddy slurries (Figure 1.1). Furthermore, these flows
usually move rapidly downstream steep channels and involve complex to-
pography.

Shallow-type mathematical models are built in the context of free sur-
face flows under the main hypothesis that both the flow layer depth and
characteristic wave celerity are smaller than a relevant horizontal length
scale. They represent a simplified formulation, derived from the general
3D Navier-Stokes equations, which is applicable to a large number of these
geophysical surface processes involving sediment transport. Their numer-
ical solution in the Finite Volume (FV) framework is governed by the dy-
namical properties of the flow, by the particular set of equations chosen
to represent them, by the uneven distribution of the bed level and also by
the computational grid choice. The unified discretization of spatial flux
derivatives and source terms has proven useful to ensure the properties of
monotonicity, stability and conservation in the numerical solution [104].

Figure 1.1: Geophysical surface flows involving sediment transport
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Furthermore, surface shallow-type flows that occur in catchments and
coasts usually require large space resolution over long periods of time. The
increasing complexity of the mathematical models and the advance on nu-
merical methods, as well as the increasing power of computation, are mak-
ing possible the physically based simulation of these phenomena. The ne-
cessity of spatial resolution involves the use of a large number of elements
hence increasing the computational time when simulating realistic scenar-
ios for a long time period.

The resulting approach of combining proper mathematical models, ro-
bust and accurate numerical algorithms and efficient high-performance
computational codes allows the development of Efficient Simulation Tools
(EST) [89] for environmental surface processes involving sediment trans-
port with realistic temporal and spatial scales.

Highly sediment-laden flows

Natural ladslides, debris flows, muddy slurries or mining tailings are
considered highly solid-laden fluids, where the density of the water-solid
mixture can be more than twice or three times the water density and the
bulk solid phase represents about 40–80% of the flow volume [55]. Fur-
thermore, the characteristic size of the different transported solids might
vary from about a couple of meters (boulders, trees stumps, etc) to very
fine materials, as fine clay or heavy metal particles. The presence of the
solid phases, especially the fine material as silt or clay, affects the rheo-
logical behavior of the mixture. Therefore, different states can be distin-
guished in highly solid-laden shallow flows. A clear-water flow transitions
into a hyperconcentrated flow when particles on the bed begin to move
together and coarse sediment becomes suspended in the flow. The water-
sediment mixture rheology begins to be affected by fine solid particle trans-
ported in the flow when the volumetric concentration of fine sediment par-
ticles reaches about 4% by volume [118], creating a slight shear strength
within the fluid. For higher concentrations, the mixture shows a marked
non-Newtonian rheology. Mud and debris flows lie between hyperconcen-
trated flows and dry avalanches [54]. High concentrations of solids gen-
erate a critical yield stress which allows that coarse particles can be sus-
pended indefinitely in the mixture flow [14]. Mud/debris flows are char-
acterized by high sediment volume concentrations, often greater than 60%.
In debris flows, sand/gravel and coarser sediment fractions predominate
in the solid phase whereas dominant fine fractions (silt and clay) are typi-
cal for mud flows. Also the plasticity of the fine transported materials has
been used to difference debris flows (plasticity index lower than 5%) from
muddy slurries with plasticity index larger than 5% in the sand and finer
fractions [54]. Nevertheless, these transitional processes in the flow behav-
ior are extremely complex and continue to be debated up to now.

The mathematical modeling of solid-liquid mixture flows and their nu-
merical resolution is still a challenging topic, especially when dealing with
realistic applications. When liquid and solid phases are well-mixed, as-
suming that the solid phase is distributed uniformly over the flow column
allows the use of depth-averaged models derived from the vertical inte-
gration of the Navier-Stokes equations [144]. The simplest models, used
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in river and coastal dynamics, assume small enough sediment concentra-
tions throughout the flow to consider the bulk density constant and uni-
form, hence it can be extracted from the conservative terms of the depth-
averaged equations. However, most of the numerical models reported for
highly solid-laden flows use this one-single-phase approach, neglecting the
bulk density in the shallow-flow mass and momentum equations [12, 64,
81, 102]. Other approaches manipulate the depth-averaged equations to
decouple the flow density and depth, leading to a modified form of the
shallow-water equations where the mixture density spatial gradients only
contribute within the momentum equation as a source term [20, 42, 79, 111,
112]. This simplification has been widely used since it allows to compute
the numerical fluxes at the intercell edges using the numerical schemes im-
plemented for plain shallow-water models. Nevertheless, even small den-
sity gradients influence importantly the mixing dynamics in flow conflu-
ences [47, 75, 123] and larger gradients can also generate numerical oscilla-
tions and instabilities throughout mixing interfaces, since the density vari-
ation does not participate in the characteristic-waves celerity.

More complicated models consider the separated transport of the liq-
uid and solid phases presented in the mixture. Some distinctions can be
made here between two-phase and mixing-phase models. On the one hand,
two-phase approaches consider the depth-averaged mass and momentum
equations for the liquid and solid phases separately [43, 46, 51, 79, 95]. The-
oretically, the two-phase mathematical framework describes properly the
complex interaction between fluid and solid particles within the mixture
but the high uncertainty involved in the equations and the difficulty to im-
plement efficient and robust numerical schemes have hindered its applica-
tion to realistic geophysical problems. Two-phase depth-averaged systems
are known to lose hyperbolicity since the eigenvalues of the coupled Jaco-
bian matrix of the liquid and solid convective fluxes become complex under
certain configurations [62, 121]. This drawback can cause numerical models
based on the complete eigenstructure of the Jacobian (Roe-type approach)
to become unstable [117] and the loss of hyperbolicity must be prevented
numerically. Although system reformulations have been proposed to over-
come the loss of hyperbolicity [79], the computational effort demanded
by two-phase numerical models is much larger than that required by one-
single-phase or mixing-phase models.

On the other hand, an alternative approach consists of encapsulating
solid-fluid phase velocities into the depth-averaged bulk velocity of the
mixture by accounting for the effects of solid-fluid particle interactions in
the mixture stresses. This leads to the mixing-phase approach, which con-
siders separately the mass and momentum conservation for the mixture
and the mass conservation for the solid phase. Many versions of this ap-
proach have been reported in last years. Denlinger & Iverson [29] and
Iverson & Denlinger [56] adopted a constant-density one phase approach
but including the solid-liquid phase interaction effects in the mixture basal
resistance by using the Terzaghi’s effective stress principle, i.e. normal
stresses at grain contacts are proportional to bulk normal stresses minus
the pore-fluid pressure. The pore-fluid pressure was estimated as a fraction
of the basal normal stress, indicating the liquefaction state of the flow. Lan-
caster et al. [74] assumed the same hypothesis but estimating the pore-fluid
pressure at the basal surface as an excess of pressure over the hydrostatic
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value. George & Iverson [42] proposed a constant-density mixture model
but adding a vertical dissipation term for the pore-fluid pressure and ad-
vecting this pressure with the bulk mixture velocity. The solid-liquid phases
interaction was included into the momentum equations by the evolution of
the granular dilatancy, which was determined by the evolution of the pore-
fluid pressure excess and solid volume fraction. Kowalski & McElwaine
[69] derived a one-dimensional mixing-phase model where changes on the
flow density were included into the homogeneous fluxes and the pore-fluid
pressure component of the bulk mixture stress was algebraically coupled to
the volume fraction, based on whether there is net solid phase settling or re-
suspension. The mixing-phase mathematical approach requires important
simplifications of the multi-grain mixture physics but its unconditional hy-
perbolic character represents a decisive advantage in order to develop ef-
ficient numerical models able to deal with realistic large-scale mud/debris
events.

Other important aspect of highly sediment-laden flows is the entrain-
ment of materials from the underlying erodible bed layers. The mass ex-
change between mud/debris mixtures and erodible beds involves compli-
cated physical processes and the understanding of its theoretical basis re-
mains unclear. Experiments in large-scale channel [31, 60, 125] and field
observations in real debris events [5, 94, 142] indicate that the entrainment
volume in steep beds can be in the same order of magnitude as the initial
volume mobilized. Debris and mud flows gain much of their mass and
momentum as they move over steep slopes as a consequence of the ma-
terial entrainment from the erodible bed, before deposition begins on flat-
ter terrain downstream. Armanini et al. [2] proposed a 2D mixing-phase
model including the mixture density into the homogeneous part of the sys-
tem and taking into account the bulk bed entrainment. Ouyang et al. [111,
112] also included the bulk bed entrainment in their 2D single-phase mod-
els but considering additional momentum terms due to entrainment and
deposition of the solid phase Iverson & Ouyang [58]. Moreover, natural
beds are composed by a mixing of different size sediment particles which
participate directly in the bulk solid phase volume when they are incor-
porated into the moving mixture. Each sediment size-class can be consid-
ered as an independent solid phase, with its own entrainment and settling
processes, leading to multi-grain mixture models. Both Li et al. [79] and
Xia et al. [147] obtained promising results using a 1D two-phase and a 1D
mixing-phase model, respectively, including entrainment of different sedi-
ment classes into the multi-grain mixture.

Suspended and bedload transport in natural surface currents

In the context of natural surface moving water bodies, such as river or
coasts, the sediment concentration is much lower than in sediment-laden
flows. In these processes, the usual assumption is that the sediment parti-
cles can be transported by two basic mechanisms: suspended load, which
is composed by the particles moving inside the flow with the same veloc-
ity as the fluid, and bedload which involves the particles moving in a rel-
atively thin layer over the static bed. In this bedload layer or transport
layer, the sediment particles remain in contact with the bed and their ve-
locity is generally much lower than the fluid velocity [149]. Although the
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total load transported by suspension can be much larger than the sediment
weight moving in the active bed layer [144], the bedload mechanism plays
an important role and it can cause marked and rapid changes in the bed
bathymetry. Relevant investigations have been carried out by means of lab-
oratory experiments or field measurements [11, 36, 120, 133, 135, 143, 150],
but they are mostly limited by the small scale of the laboratory flumes or the
fact that field measurements are very time-consuming, expensive and ex-
tremely difficult to perform. Therefore, numerical modelling is an attractive
tool to understand and predict the morphodynamical evolution of rivers
and reservoirs. However, uncertainties arise in computational simulations
due to simplifications, assumptions and empirical relationships introduced
into the mathematical models used for sediment transport prediction [149].

The solid particles can be transported under equilibrium (capacity or
saturated) conditions or non-capacity (non-equilibrium or unsaturated)
conditions. The classical equilibrium approach assumes that the actual sed-
iment transport rates for suspended and bedload are equal to the capacity
of the flow to carry solid weight. They are only determined by instanta-
neous local flow features and can be formulated by different empirical clo-
sure relations found in literature [149]. Models based on this assumption
are commonly called equilibrium or capacity transport models [15, 22, 45,
48, 52, 65, 83, 86, 103, 137]. On the other hand, in non-capacity models, the
actual transport rates are computed through advection and mass exchange
with the static erodible bed. Non-equilibrium (i.e. non-capacity) sediment
transport models have been proposed [1, 4, 10, 16, 33, 37, 41, 80, 145, 152]
for both suspended and bedload transport. Natural morphodynamical sys-
tems such as alluvial rivers are always changing in time and space and
hence absolute equilibrium states rarely exist in natural conditions. There-
fore, intuitively non-capacity approaches are more suitable than models
based on the equilibrium assumption since they account for the temporal
and spatial delay of the actual sediment transport rate with respect to its
potential capacity. However, if this adaptation delay is sufficiently small,
equilibrium models can be also applied at least in theory [144].

Unlike purely suspended load models, where it has been demonstrated
that the non-capacity assumption is necessary to compute correctly the
solid suspended concentration and the bed evolution [16, 99], the impor-
tance of assuming non-equilibrium conditions in bedload numerical mod-
els remains uncertain. Van-Rijn [140] suggested that the actual bedload
transport rate in unsteady flows can be assumed equal to the bedload ca-
pacity because the adjustment of the transported sediment particles to the
new flow conditions proceeds rapidly close to the bed surface. This as-
sumption was conceptual and without a theoretical or numerical justifi-
cation. Cao et al. [16] and Cao et al. [19] analysed numerically the multi-
ple time scales involved in bedload transport for fluvial processes. They
found that, at least for flood cases, the bedload transport rate was able to
rapidly adapt to the local flow features, which justifies the widespread ap-
plication of the equilibrium models [19]. However, a comparative analysis
of both capacity and non-capacity bedload models in highly erosive un-
steady flows, as dam-break waves or overtopping dyke-collapses, remains
unperformed, especially including experimental benchmarking cases and
accurate numerical schemes.

The assumption of non-equilibrium conditions leads to the requirement
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of computing the temporal evolution of the transport layer thickness and
the velocity of the bedload particles in order to predict the actual transport
rate, as well as the net exchange flux between static and moving bed lay-
ers. This requirement introduces a high uncertainty in non-capacity mod-
els due to the necessity of calibration parameters associated to solid parti-
cles velocity, transport layer thickness and bedload erosion-deposition rates
for transient flows. The calibration process for non-capacity models can be
an annoying task with few empirical supporting data. Different strategies
have been proposed in order to overcome this uncertainty. Wu [144] and El
Kadi Abderrezzak et al. [34] proposed to approximate the net exchange flux
through the static-moving bed layers interface by the difference between
the actual and capacity transport rates affected by an adaptation length and
to assume a non-storage mass condition for the active bed layer, leading to
the quasi-steady solid flux relaxation models. A more complex approach
was also proposed by [134, 145, 152], based on the same adaptation length
parameter to determine the net exchange flux through the interface but ac-
counting now for the mass storage in the active bed layer. This approach
leads to the direct computation of the actual transport rate as one of the un-
known conserved variables, assuming that the velocity in the active layer
can be evaluated by one of the empirical closure relations for capacity con-
ditions found in literature [39, 76, 139].

Recently, new and more complex approaches to the non-equilibrium
bedload transport phenomenon have been derived based on a pioneering
work [25]. The physical interaction between flow and sediment particles
at the static-moving bed layer interface was studied at a grain scale. Zech
et al. [150] modelled the net exchange flux through the interface as a func-
tion of the shear stress at the moving layer and at the upper boundary of
the static layer. Fernández-Nieto et al. [37] and Fernández-Nieto et al. [38]
proposed new empirical formulae for the erosion and deposition rates at
the interface, as well as a new closure relation for the actual sediment trans-
port rate which reduces to the classical one under equilibrium conditions.
Bohorquez & Ancey [10] also analysed erosion and deposition rates at the
static-moving interface including a new diffusion term in the bedload con-
servation equations.

Furthermore, the presence of bedrock strata underlying the erodible al-
luvial layers is ubiquitous in natural rivers and estuaries. When a non-
erodible layer is reached by erosion, the actual bedload transport rate be-
comes different from the transport capacity of the flow, leading to a non-
capacity transport state even under nearly uniform flow regimes. Some
recent approaches to this topic consist of small adaptations of the classical
capacity bedload transport theory or of simple numerical fixes. Struiksma
[136] proposed to reduce the capacity transport rate in regions where the
sediment becomes partially unavailable using a parameter based on the
actual sediment thickness over the non-erodible layer and the theoretical
active layer thickness for the capacity transport state. Rulot et al. [130]
proposed an iterative method to correct the over-eroded cells by affect-
ing the sediment distribution after each time step computation. Caviedes-
Voullième et al. [24] implemented a numerical fix based on the limitation
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of the numerical solid flux at the intercell edges as a function of the avail-
able sediment volume at the involved cells. Although these simplified ap-
proaches to the finite-depth erodible layer problem seem to work reason-
ably well in some conditions, they offer a limited modelling ability of the
real physical phenomenon and require a more detailed analysis.

High-performance computing

Modelling sediment transport involves an increasing complexity with
respect to rigid-bed shallow water models [27, 131] due to the presence of
variable sediment-fluid mixture properties, coupling of physical processes
and multiple layers phenomena [30]. One of the biggest challenges for
the application of depth-averaged models to realistic large-scale long-term
flows is the computational effort required. Most of these highly unsteady
flows usually occur along very steep and irregular terrains which require
to use a refined non-structured spatial discretization in order to capture
the terrain complexity, increasing exponentially the computational times.
Furthermore, the complexity of the numerical resolution and the compu-
tational cost of the solvers also increase considerably with the number of
equations involved and the coupling between flow variables adds special
features to the mathematical model.

Most of the 2D numerical algorithms applied to sediment transport
are adaptations of simplified shallow clear-water models. There exists
a lack of efficient and robust two-dimensional numerical models specifi-
cally designed for highly sediment-laden flows and able to work with non-
structured triangular meshes. New strategies to reduce the computational
effort have been developed in the last decade through the use of paral-
lelization techniques based on Multiprocessing (OpenMP) or Message Pass-
ing Interface (MPI), which allow to run simulations on multi-CPU clusters.
Their main drawback is the associated hardware cost and energy require-
ments, which are directly proportional to the number of CPU-cores avail-
able and limit their efficiency. In the last 5 years, the usage of Graphics Pro-
cessing Units (GPU) hardware accelerators for sequential computation has
demonstrated to be an efficient and low cost alternative to the traditional
multi-CPU strategies [70]. GPU-accelerated algorithms have been devel-
oped for real-time floods forecasting [71, 72, 98], real-scale bedload erosive
shallow-flows [67] or tsunami prediction [28, 84].

GPU devices are oriented to perform arithmetical operations on vector-
based information. Unlike the conventional shared-memory multi-CPU im-
plementations, the GPU solution must be designed taking into account the
fact that the GPU is an independent device with its own RAM memory. This
means that the memory transfer between the conventional RAM memory
and the GPU device memory plays a key role in the performance of GPU-
accelerated software. The most common way of performing this memory
transfer is by means of explicit memory copy operations in the code. In any
case, if the algorithm requires a large number of transfers, the performance
of the GPU solution may be dramatically reduced due to this separate mem-
ory space.
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1.1 Main goals

This thesis aims the combination of properly derived 2D shallow-type
mathematical models with both the development of robust and accurate Fi-
nite Volume (FV) numerical algorithms and the implementation of efficient
HPC codes. This comprehensive approach allows to develop Efficient Sim-
ulation Tools (EST’s) for environmental surface processes involving sedi-
ment transport with realistic temporal and spatial scales. New EST’s able
to deal with structured and unstructured meshes are proposed for variable-
density mud/debris flows over movable beds, passive suspended trans-
port and generalized bedload transport. GPU-based algorithms are im-
plemented for the proposed models using C++ and the NVIDIA CUDA
Toolkit. Similarly, a CPU-based version of the numerical algorithms using
shared-memory OMP parallelization with C++ are also developed for code
debugging and efficiency comparison.

1.2 Outline

The text organizes as follows:

Chapters

• Chapter 2: The shallow-type mathematical formulation for general-
ized surface sediment-laden flows is derived from the 3D Navier-
Stokes equations. The foundations of the simplified mathematical
models used throughout this thesis are analyzed here.

• Chapter 3: A new ETS for highly sediment-laden flows , such as de-
bris flows or muddy slurries, is derived and assessed in this chapter.

• Chapter 4: In this section, simplified numerical models for suspended
sediment transport have been derived and analyzed.

• Chapter 5: This chapter is devoted to the numerical modeling of the
bedload transport. New approaches for the capacity and non-capacity
transport have been assessed.

• Chapter 6: The main conclusions and the relevant contribution are
finally summarized in the last chapter.

Appendices

• Appendix A: Is devoted to the explanation of the high-performance
computational algorithms implemented throughout this thesis.

• Appendix B: A complete list of the relevant publications and commu-
nications carried out in relation with this thesis con be found here.
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Chapter 2

Governing equations for
sediment-laden erosive flows

The main goals for this chapter are:

• Derivation of the depth-averaged conservation laws for environmen-
tal surface flows of water-sediment mixtures from the 3D compress-
ible Navier-Stokes equations.

• Definition of effects of the solid phase dilation and the pore-fluid pres-
sure in the transport of the solid particles within the mixture flow.

• Analysis of the mathematical model for the bed exchange processes
considering both capacity and non-capacity conditions for the solid
transport.

2.1 Depth-integrated equations for shallow flows

2.1.1 Mass and linear momentum conservation

The flow of a water-sediment mixture can be mathematically described as-
suming the movement of the solid particles as a diffusion phenomenon into
the liquid phase. Then, the continuity and momentum conservation for the
mixture, supplemented with the transport equation for the solid phase, can
be established for modelling these two-phase flows. Although both solid
and liquid phases are incompressible when considered independently, the
bulk behaviour of the solid-liquid mixture is the same as that of a com-
pressible material depending on the local solid phase volumetric concen-
tration. Therefore, the 3D time-averaged Navier-Stokes equations for mass
and momentum conservation of a two-phase mixture can be written in the
Cartesian coordinate system X = (x, y, z) as



10 Chapter 2. Governing equations for sediment-laden erosive flows

∂ρ
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where (ux, uy, uz) are the components of the bulk mixture velocity u in any
point of the fluidized material, (Fx, Fy, Fz) are the external forces, such as
gravity, p denotes the pressure of the mixture and ρ accounts for the bulk
density of the mixture. This bulk mixture is usually expressed as a weighted
combination of the solid and liquid phase densities depending on the vol-
umetric solid concentration.

Terms τij (i, j = x, y, z) are the components of the deviatoric stress
tensor τ . With low solid-phase concentrations, the water-sediment mix-
ture behaves as a Newtonian fluid, with a constitutive relation given by
the Navier-Poisson law [144]. Nevertheless, for high sediment concentra-
tions the mixture becomes a kind of non-Newtonian fluid with a complex
constitutive law, which depends on mulplite factors, relating stresses and
deformation rates.

in order to develop a shallow-type depth-averaged mathematical
model, the Navier-Stokes system (2.1) is integrated between the free surface
zs = zs(t, x, y) and the bottom surface of the flow column zb = zb(t, x, y),
which is also considered a movable interface. The kinematic conditions at
these boundaries can be expressed as

∂zs
∂t

+ (ux)s
∂zs
∂x

+ (uy)s
∂zs
∂y

= (uz)s (2.2)

∂zb
∂t

+ (ux)b
∂zb
∂x

+ (uy)b
∂zb
∂y

= (uz)b +Nb (2.3)

being Nb the net volumetric flux through the bed interface along the
z−coordinate. The subscripts (·)s and (·)b indicate the value of the cor-
responding variable at the flow free surface and the bottom bed interface
respectively.
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The mass conservation equation (2.1a) is integrated along the water col-
umn as

zs∫
zb

∂t(ρ) dz +

zs∫
zb

∂x(uxρ) dz +

zs∫
zb

∂y(uyρ) dz +

zs∫
zb

∂z(uzρ) dz = 0 (2.4)

Applying Leibnitz’s rule to each term on the left hand side of (2.4) leads
to
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∂t(ρ) dz =
∂

∂t

zs∫
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ρdz − (ρ)s
∂zs
∂t

+ (ρ)b
∂zb
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(2.5a)
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+ (uyρ)b
∂zb
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(2.5c)

zs∫
zb

∂z(uzρ) dz = (uzρ)s − (uzρ)b (2.5d)

It is now convenient to introduce the depth-averaged value ρ of the mix-
ture bulk density as

ρh =

zs∫
zb

ρdz (2.6)

being h = zs − zb the flow depth so that the depth-averaged velocities are
expressed as

u =
1

ρh

zs∫
zb

uxρdz v =
1

ρh

zs∫
zb

uyρdz (2.7)

Considering the boundary conditions (2.3) and (2.2), it possible to ex-
press the depth-averaged mass conservation equation as

∂(ρh)

∂t
+

∂

∂x
(ρhu) +

∂

∂y
(ρhv) = −(ρ)bNb (2.8)

where (ρ)b is the mixture bulk density at the bed interface zb. Hence, the
term on the right hand side of (2.8) accounts for the mass exchange between
the flow and the bed layers, being positive for net entrainment conditions
and negative for net deposition fluxes.

Regarding the momentum depth integration, the volumetric force
(Fx, Fy, Fz) in (2.1) is considered for the sake of simplicity as

Fx = Fy = 0; Fz = −ρg (2.9)
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Moreover, the z-momentum equation (2.1d) can be simplified to the hy-
drostatic pressure equation for variable density along the mixture column
by neglecting temporal, convective and stress terms, leading to

∂p

∂z
= −ρg =⇒ p(z) =

zs∫
z

ρg dz (2.10)

assuming the atmospheric pressure at the flow free surface as reference
value.

The x-momentum (2.1b) is integrated throughout the flow depth in the
following way
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zs∫
zb

∂x(uxρux) dz +

zs∫
zb

∂y(uyρux) dz +

zs∫
zb

∂z(uzρux) dz =

−
zs∫
zb

∂x(p) dz +
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(
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)
dz

(2.11)
Applying Leibnitz’s rule to each term on the left hand side of (2.11) leads

to
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uxρux dz − (uxρux)s
∂zs
∂x

+ (uxρux)b
∂zb
∂x

(2.12b)

zs∫
zb

∂y(uyρux) dz =
∂

∂y

zs∫
zb

uyρux dz − (uyρux)s
∂zs
∂y

+ (uyρux)b
∂zb
∂y

(2.12c)

zs∫
zb

∂z(uzρux) dz = (uzρux)s − (uzρux)b (2.12d)

where, assuming (2.6) and (2.7), the spatial derivatives of the momentum
integrals can be rewritten as

zs∫
zb

uxρux dz = ρhu2 +

zs∫
zb

ρ(ux − u)2 dz = ρhu2 − ρhDxx (2.13a)

zs∫
zb

uyρux dz = ρhuv +

zs∫
zb

ρ(ux − u)(uy − v) dz = ρhuv − ρhDxy (2.13b)

with (Dxx, Dxy) accounting for the depth-averaged dispersion momentum
transport due to the non-uniformity of the vertical velocity profile, and de-
fined as
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Dxx = − 1

ρh

zs∫
zb

ρ(ux − u)2 dz (2.14a)

Dxy = − 1

ρh

zs∫
zb

ρ(ux − u)(uy − v) dz (2.14b)

Therefore, replacing (2.13) into (2.12), and considering the kinematic
boundary conditions at both the bed interface (2.3) and free surface (2.2),
the left hand side of (2.11) can be expressed as

∂(ρhu)

∂t
+

∂

∂x
(ρhu2 − ρhDxx) +

∂

∂y
(ρhuv − ρhDxy) + (ρux)bNb (2.15)

On the right hand side of (2.11), using (2.10), the integral of the pressure
gradient along the x−coordinate can be expressed as

−
zs∫
zb

∂x(p) dz = −g
zs∫
zb

( ∂
∂x

zs∫
z

ρdz
)

dz (2.16)

Then, assuming that the vertical density gradient is negligible compared
with those along the horizontal plane, as occurs in natural debris and mud
slurry flows, it can be stated that

zs∫
z

ρdz ≈ ρ(zs − z)

and, applying Leibnitz’s rule, (2.16) can be expressed as

− g
zs∫
zb

( ∂
∂x

zs∫
z

ρdz
)

dz = −g
zs∫
zb

∂

∂x

(
ρ(zs − z)

)
dz =

− g ∂
∂x

zs∫
zb

ρ(zs − z) dz + g
(
ρ(zs − z)

)
s

∂zs
∂x
− g
(
ρ(zs − z)

)
b

∂zb
∂x

=

− ∂

∂x

(1

2
gρh2

)
︸ ︷︷ ︸
Conservative term

−gρh∂zb
∂x︸ ︷︷ ︸

Bed-pressure term

(2.17)

separating the pressure gradient term (2.16) into a conservative component
plus a bed-pressure component.

The stress terms on the right hand side of (2.11) are integrated along the
flow column as follows
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zs∫
zb

∂x(τxx) dz =
∂

∂x

zs∫
zb

τxx dz − (τxx)s
∂zs
∂x

+ (τxx)b
∂zb
∂x

(2.18a)

zs∫
zb

∂y(τxy) dz =
∂

∂y

zs∫
zb

τxy dz − (τxy)s
∂zs
∂y

+ (τxy)b
∂zb
∂y

(2.18b)

zs∫
zb

∂z(τxz) dz = (τxz)s − (τxz)b (2.18c)

It is worth noting that, at the free surface and the bed interface, the
boundary conditions for the stress term can be expressed as

(τxz)s − (τxx)s∂x(zs)− (τxy)s∂y(zs) = τsx (2.19a)
−(τxz)b + (τxx)b∂x(zb) + (τxy)b∂y(zb) = −τbx (2.19b)

where τsx denotes the x−coordinate component of the wind action at the
free surface, which often is not taken into account in surface flow models,
whereas τbx represents the x−coordinate component of the boundary shear
stress at the bed interface, opposing to the flow movement. Furthermore,
the depth-averaged turbulent stresses along the flow column (Txx, Txy) are
defined as

Txx =
1

ρh

zs∫
zb

τxx dz Txy =
1

ρh

zs∫
zb

τxy dz (2.20)

allowing to rewrite the stress integral in (2.18) as

zs∫
zb

(
∂xτxx + ∂yτxy + ∂zτxz

)
dz =

∂

∂x
(ρhTxx) +

∂

∂y
(ρhTxy)− τbx (2.21)

Replacing (2.15), (2.17) and (2.21) into (2.11) and reordering terms, the
final expression for the depth-integrated momentum equation along the
x−coordinate for variable-density surface flows over movable beds can be
written as

∂(ρhu)

∂t
+

∂

∂x
(ρhu2 +

1

2
gρh2) +

∂

∂y
(ρhuv) = −gρh∂zb

∂x
− τbx

+
∂

∂x

(
ρh(Txx +Dxx)

)
+

∂

∂y

(
ρh(Txy +Dxy)

)
− (ρux)bNb

(2.22)

Following the same procedure to integrate (2.1c), the depth-averaged
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momentum equation along the y−coordinate can be written straightfor-
ward as

∂(ρhv)

∂t
+

∂

∂x
(ρhuv)+

∂

∂y
(ρhv2 +

1

2
gρh2) = −gρh∂zb

∂y
− τby

+
∂

∂x

(
ρh(Tyx +Dyx)

)
+

∂

∂y

(
ρh(Tyy +Dyy)

)
− (ρuy)bNb

(2.23)

2.1.2 Constitutive models for complex-rheology flows

So far, there is not a universal closure relation for representing the vis-
cous terms in complex non-Newtonian flows. Stresses in fluid-solid two-
phase flows include distinct contributions from pore-fluid shear stress, in-
tergranular collisonal and frictional stress and solid-fluid phases interac-
tions [63]. Constitutive formulations used for environmental sediment-
water mixtures are mainly derived from 3D general rheological models
which, assuming isotropic material and isochoric flow, allow to express the
stress tensor σ = σij (i, j = x, y, z) as

σ = −pI + τ = −pI + Φ1(I2D)D (2.24)

where p is the pressure, I is identity tensor, D ≡ Dij = 1
2(∂jui+∂iuj) (i, j =

x, y, z) is the rate of deformation tensor and φ1 is a scalar function of the
second invariant I2D = 1

2tr(D2) of the rate of deformation tensor D [116].
Therefore, the tensor

τ = Φ1(I2D)D (2.25)

accounts for the deviatoric component of the stress tensor σ in the material.
The function Φ1 depends on multiple factor, such as cohesive stress, pore-
fluid pressure or flow initial regime. The generalized viscoplastic model,
also called Herschel-Bulkley model, assumes dependence of Φ1 on the three
parameters: τ0 the cohesive-frictional strength, K a viscosity-type coeffi-
cient andm a parameter characterizing the rheological response of the mix-
ture [30, 122]. It is worth mentioning that the dimensions of viscosity-type
coefficient K depends on the m behaviour parameter. Therefore, the func-
tion Φ1 is expressed as

Φ1(I2D) =
τ0√
I2D

+ 2K
(
4I2D

)m−1
2 (2.26)

Considering simple shear state along the flow direction, the velocity
vector u throughout the flow column is expressed as

ux = U(z)nux uy = U(z)nuy uz = 0 (2.27)

where U(z) is the modulus of the bulk mixture velocity u and (nux, nuy)
are the components of the velocity unit vector nu. Therefore, the rate of
deformation tensor D and its second invariant I2D for simple shear states
can be expressed as
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D =

 0 0 1
2

dU
dz nux

0 0 1
2

dU
dz nuy

1
2

dU
dz nux

1
2

dU
dz nuy 0

 (2.28a)

I2D =
1

4

(
dU

dz

)2

(2.28b)

Replacing the simple-shear rate of deformation tensor (2.28a) into (2.25)
allows to define the deviatoric stress tensor as

τ =

 0 0 τ(z)nux
0 0 τ(z)nuy

τ(z)nux τ(z)nuy 0

 (2.29)

being τ(z) the shear stress along the flow direction, which depends on the
fluid rheology (2.26).

Newtonian fluids: For the Newtonian constitutive model, the cohesive-
frictional strength τ0 is null, K [Pa · s] is set to the dynamic viscosity of the
fluid µ and a behaviour parameter m = 1 is considered. The generalized
model (2.26) reduces to

Φ1(I2D) = 2µ (2.30)

and hence the shear stress along the flow direction in (2.29) for the Newto-
nian viscous model can be expressed as

τ(z) = µ
dU

dz
(2.31)

Linear viscoplastic fluids: A widespread non-Newtonian constitutive rela-
tion for geophysical surface flows in laminar regime is the Bingham model,
which considers a pure cohesive yield stress τ0 = τy for the flow initiation,
K = µB [Pa · s] the Bingham viscosity and a behaviour parameter m = 1.
The generalized model (2.26) reduces to

Φ1(I2D) =
τy

1
2

dU
dz

+ 2µB (2.32)

and the shear stress along the flow direction in (2.29) for the Bingham model
is

τ(z) = τy + µB
dU

dz
(2.33)

Frictional non-linear viscoplastic fluids: The frictional Herschel-Bulkley vis-
coplastic model neglects the cohesive effects on the yield stress τ0 and con-
siders a Coulomb-type linear relation between the effective normal stress
σe(z) and the shear stress, hence

τ0 = σe(z) tan δf =
[
ρg(zs − z)− P(z)

]
tan δf (2.34)
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where P(z) denotes de pore-fluid pressure and δf accounts for the effective
friction angle bewteen solid particles [63].

Estimation of the pore pressure distribution P(z) is a challenging task
for modeling multi-phase fluid-solid flows [55, 59, 63], although its effects
on the reduction of the intergranular shear stress seem to be demonstrated
[7, 8, 60, 85, 93]. The pore fluid pressure can be divided into a hydrostatic
component ph(z) plus a pore pressure excess pe(z), hence

P(z) = ph(z) + pe(z) (2.35)

where the hydrostatic component is calculated as ph(z) = ρfg(zs−z), being
ρf the density of the pore-liquid. Following [29, 74, 112], the pressure excess
can be idealized as a fraction of the hydrostatic pore pressure ph(z) and
expressed as

pe(z) = Eρfg(zs − z) (2.36)

being E a tunning coefficient which usually takes values from about 0.4 to
0.8 [61, 74].

Using (2.34) and considering a plastic viscosity K = µP [Pa · sm], the
generalized model (2.26) reduces to

Φ1(I2D) =
σe(z) tan δf

1
2

dU
dz

+ 2µP

(
dU

dz

)m−1

(2.37)

and the shear stress along the flow direction in (2.29) for the frictional
Herschel-Bulkley model is

τ(z) = σe(z) tan δf + µP

(
dU

dz

)m
(2.38)

2.1.3 Closure formulations for the depth-averaged flow resistance

The stress terms plays a key role in geophysical surface flow modelling,
specially when non-Newtonian behaviour is presented. This section is fo-
cused on the derivation of depth-integrated models for the flow resistance
which incorporate the bulk rheological behaviour of the mixture in motion
into the linear momentum conservation equations (2.22) and (2.23). Formu-
lation of depth-averaged models for the shear stress requires to integrate
the deviatoric stress tensor (2.25) throughout the flow column. This is not a
trivial problem since the structure of the flow along the vertical direction is
lost and only the averaged quantities are available.

From the above sections, assuming simple shear along the flow di-
rection implies the deviatoric stress tensor (2.29) depending on the flow
behaviour. Note that all the depth-averaged stress terms (Txx, Txy) and
(Tyx, Tyy) (2.20) are null, and the basal resistance term τb = (τbx, τby) (2.19b)
as

τbx = (τxz)b − (τxx)b
∂zb
∂x
− (τxy)b

∂zb
∂y

= τb nux (2.39a)

τby = (τyz)b − (τyx)b
∂zb
∂x
− (τyy)b

∂zb
∂y

= τb nuy (2.39b)
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where τb = τ(zb) is the shear stress at the basal interface along the flow
direction. In order to obtain a depth-averaged formulation for the basal
shear stress τb, the distributed shear stress function τ(z) must be integrated
along the flow column imposing linearity. This allows to obtain a veloc-
ity distribution along the vertical direction which depends on the material
rheology. The basal resistance τb must be expressed as a function of the
depth-averaged flow variables.

Turbulent Newtonian flows: Surface flows involving water or granular mix-
tures with low solid concentrations usually show a Newtonian behaviour
and most of the times occur in turbulent regime. Depth-averaged turbulent
formulations are expressed as a quadratic relation on the depth-averaged
velocity U =

√
u2 + v2 as

τb = ρghCfU
2 (2.40)

where Cf [L−2T 2] is a friction coefficient which takes the form

Cf =
n2
b

h4/3
(2.41)

for the Manning relationship, being nb [L−1/3T ] the Manning roughness
parameter, and

Cf =
1

hC2
z

(2.42)

for the Chezy equation, where Cz [L1/2T ] is the Chezy coeffcient.
Figure 2.1 shows the value of the basal resistance τb along the low direc-

tion using the Manning’s turbulent model, and its normalized value τb/ρgh,
for commom values of depth h and velocity U in environmental flows. The
material density is set to 2000 kg/m3 and the Manning’s roughness param-
eter is nb = 0.040 sm−1/3.

Figure 2.1: Basal resistance map in the h−U space for the Manning turbulent New-
tonian model.

Cohesive viscoplastic flows: The linear viscoplastic relation, also called Bing-
ham model, can be used to modelling laminar flows of cohesive materials.
Assuming simple shear stress, the flow structure consists of the two sep-
arate regions depicted in Figure 2.2. For z0 < z ≤ zs, the induced shear
stress along the flow direction τ(z) is lower than the yield strength τy, hence
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the velocity is constant throughout the plug region. In the lower region
(zb < z ≤ z0), the induced shear stress is larger than τy and the material is
sheared.

Figure 2.2: Velocity and stress distribution for the cohesive viscoplastic model.

The induced shear stress can be expressed as

τ(z) = τb

(
1− z − zb

h

)
(2.43)

and, using (2.33), the velocity derivative in the shearing region reads

dU

dz
=

1

µB
(τ(z)− τy) (2.44)

Replacing (2.43) into (2.44) and integrating throughout the shearing re-
gion zb < z ≤ z0 allows to obtain the velocity profile for the entire flow
column as

U(z) =


τb − τy
µB

(z − zb)−
τb

2µBh
(z − zb)2 if zb < z ≤ z0

U0 if z0 < z ≤ zs
(2.45)

being z0 the elevation of the shearing region and U0 the velocity of the plug
region, expressed as

z0 = zb + h

(
1− τy

τb

)
U0 =

τbh

2µB

(
1− τy

τb

)2

(2.46)

Integrating (2.45) throughout the flow column leads to a cubic equation(
τy
τb

)3

−
(

3 +
6µBU

τy h

)
τy
τb

+ 2 = 0 (2.47)

which relates the basal shear stress τb, the yield strength τy and the averaged
flow velocity U . Note that (2.47) can be rewritten as

2τ3
b − 3

(
τy + 2µB

U

h

)
τ2
b + τ3

y = 0 (2.48)

which can be analytically solved to obtain the basal resistance τb.
Figure 2.3 shows the value of the basal resistance τb along the low direc-

tion using the cohesive linear Bingham model for commom values of depth
h and velocity U in viscoplastic surface flows. The material density is set to
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2000 kg/m3 and the yield strength τy and Bingham viscosity µB are 2000Pa
and 100Pa · s respectively.

Figure 2.3: Basal resistance map in the h−U space for the cohesive Bingham model.

Frictional dilatant/pseudoplastic flows: The non-linear viscoplastic model with
a Coulomb-type yield stress can be used to modelling liquid-solid mixture
flows where the intergranular frictional stresses are important. If the pore-
pressure excess in (2.34) is considered linear, the yield stress distribution
can be estimated as

σe(z) tan δf =

[
ρgh

(
1− z − zb

h

)
− Pb

(
1− z − zb

h

)]
tan δf (2.49)

where Pb is the pore-pressure at the bed surface, and hence the constitutive
equation (2.38) can be rewritten as

τ(z) = τf

(
1− z − zb

h

)
+ µP

(
dU

dz

)m
(2.50)

being

τf =
(
ρgh− Pb

)
tan δf (2.51)

the value of the frictional yield stress at the basal surface (Figure 2.4).
Assuming the induced shear distribution (2.43), the velocity derivative

along the vertical direction can expressed as

Figure 2.4: Velocity and stress distribution for the generalized non-linear frictional
model.
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dU

dz
=

[
τb − τf
µP

(
1− z − zb

h

)]1/m

(2.52)

and integrating (2.52) leads to the velocity vertical distribution

U(z) =
m

m+ 1

(
τb − τf
µP

)1/m

h

[
1−

(
1− z − zb

h

)m+1
m

]
(2.53)

for the non-linear viscoplastic model. Note that the velocity at the free sur-
face can be expressed as

U(zs) ≡ Uh =
m

m+ 1

(
τb − τf
µP

)1/m

h (2.54)

Integrating (2.53) throughout the flow column leads to the depth aver-
aged velocity

U =
m+ 1

2m+ 1
Uh (2.55)

which allows to obtain the basal shear stress τb as

τb = τf +

(
2m+ 1

m

)m
µP

(
U

h

)m
(2.56)

Figure 2.5: Basal resistance behaviour for the generalized non-linear frictional
model (2.56).

It is worth mentioning that (2.56) represents a generalized depth-
integrated formulation for viscoplastic flows (Figure 2.5) which encom-
passes:

• Pseudoplastic behaviour for m < 1, reducing the apparent viscosity
as the induced shear rate increases. Taking m = 0.5 leads to

τb = τf +
(√

2µP γ̇
−1/2

)
γ̇ (2.57)

being γ̇ = 2U/h the macroscopic shear rate.
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• Linear viscoplastic behaviour for m = 1, with a linear relation be-
tween shear stress and shear rate following

τb = τf +

(
3

2
µP

)
γ̇ (2.58)

• Dilatant behaviour for m > 1, increasing the apparent viscosity as the
induced shear rate grows. Taking m = 2 leads to

τb = τf +

(
25

16
µP γ̇

)
γ̇ (2.59)

(a) Frictional pseudoplastic model m = 0.5 (2.57).

(b) Frictional viscoplastic model m = 1.0 (2.58).

(c) Frictional dilatant model m = 2.0 (2.59).

Figure 2.6: Basal resistance map in the h − U space for the frictional non-linear
Herschel-Bulkley model.

Figure 2.6 shows the value of the basal resistance τb along the flow di-
rection using the frictional non-linear Herschel-Bulkley model for common
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values of depth h and velocity U in surface flows, and using different val-
ues of the behavior exponent m. In this example, the material density is set
to 2000 kg/m3 and the plastic viscosity is µP = 100Pa · sm. To estimate the
frictional yield stress, the basal intergranular friction angle is δf = 10◦, the
pore-fluid density is ρf = 1000 kg/m3 and the pore pressure is considered
hydrostatic.

Frictional turbulent flows: Different hybrid formulations have been proposed
for granular turbulent flows where grain shearing dominate at low shear
rate. Based on (2.59), where the basal resistance increases proportionally
to U2, the Turbulent & Coulomb relationship uses the Manning approach
(2.41) to include the turbulent stresses into the basal resistance estimation
as

τb = τf + ρg
n2
bU

2

h1/3
(2.60)

Also, based on the same quadratic relation with the velocity, the
Voellmy model considers a Chezy-type relation (2.42) for including the tur-
bulent stresses in the basal resistance as

τb = τf + ρg
U

2

C2
z

(2.61)

The value of the basal resistance τb along the flow direction using the
Turbulent & Coulomb model is depicted in Figure 2.7 for common values
of depth h and velocity U in surface flows. In this case, the material den-
sity is set to 2000 kg/m3 and the Manning’s roughness parameter is nb =
0.040 sm−1/3. To estimate the frictional yield stress, the basal intergranular
friction angle is δf = 10◦, the pore-fluid density is ρf = 1000 kg/m3 and the
pore pressure for the frictional yield stress τf estimation (2.51) is considered
hydrostatic.

Figure 2.7: Basal resistance map in the h − U space for the Turbulent & Coulomb
model.

Frictional viscoplastic flows: An alternative formulation for laminar flows of
viscoplastic fluids with dominant grain shearing consists of replacing the
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cohesive yield stress τy in the Bingham formulation (2.48) with a Coulomb-
type term τf [107], leading to the Coulomb–viscous cubic equation

2τ3
b − 3

(
τf + 2µB

U

h

)
τ2
b + τ3

f = 0 (2.62)

for the basal resistance τb. Figure 2.8 shows the value of the basal resis-
tance τb along the flow direction using the frictional viscoplastic model for
common values of depth h and velocity U in viscoplastic surface flows. The
material density is set to 2000 kg/m3 with a plastic viscosity µB = 100Pa ·s.
To estimate the frictional yield stress, the basal intergranular friction angle
is δf = 10◦, the pore-fluid density is ρf = 1000 kg/m3 and the pore pressure
is considered hydrostatic.

Figure 2.8: Basal resistance map in the h−U space for the Coulomb–viscous model.

Cohesive turbulent flows: Combining yield strength, viscous term and turbu-
lent stresses leads to the quadratic formulation [68] for turbulent hypercon-
centrated flows with dominant cohesive stress at low shear rates. For this
additive model, the basal resistance can be expressed as

τb = τy +
k0

8
µB

U

h
+ ρg

n2
bU

2

h1/3
(2.63)

where µ is the plastic viscosity of the material and k0 is a resistance param-
eter. In the particular case of laminar flow in smooth, rectangular, wide
channels, k0 = 24 is usually suitable but it increases with roughness and
irregular channel geometry [109].

Figure 2.9: Basal resistance map in the h−U space for the cohesive–turbulent model.
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The value of τb using the cohesive–turbulent model is depicted in Figure
2.9 for common values of depth h and velocity U in surface flows. The
material density is set to 2000 kg/m3, the yield strength is τy = 2000Pa, the
plastic viscosity is µB = 100Pa · s and the Manning’s roughness parameter
is nb = 0.040 sm−1/3.

Table 2.1 summarizes the different formulations for the basal resistance
term τb in the depth-averaged momentum equations.

Formulation Basal resistance

Turbulent Newtonian τb = ρghCfU
2

Manning Cf =
n2
b

h4/3
Chezy Cf = 1

hC2
z

Cohesive Bingham 2τ3
b − 3

(
τy + 2µB

U
h

)
τ2
b + τ3

y = 0

Frictional dilatant/pseudoplastic τb = τf +
(

2m+1
m

)m
µP

(
U
h

)m
with τf =

(
ρgh− Pb

)
tan δf

Frictional turbulent τb = τf + ρghCfU
2

Frictional viscoplastic τ3
b − 3

(
τf + 2µB

U
h

)
τ2
b + τ3

f = 0

Cohesive turbulent τb = τy + k0
8 µB

U
h + +ρg

n2
bU

2

h1/3

Table 2.1: Depth-averaged basal resistance formulations.

2.1.4 Local projection of the gravity force

Local coordinate systems are used for mathematical modelling of surface
flows over steep slopes. Using the local bed-normal projection of the grav-
ity vector along the direction n [64], the volumetric force (2.9) in the plane
local coordinate system (x′, z′) (Figure 2.10) can be defined as

F ′x = −ρg sinϕb (2.64a)
F ′z = −ρg cosϕb (2.64b)

where ϕb is the bed-normal angle with the vertical, defined as

tanϕb = ∇zb · n = cos θ
∂zb
∂x

+ sin θ
∂zb
∂y

(2.65)

and n = (cos θ, sin θ)T is the unit directional vector.
On one hand, assuming hydrostatic pressure along the bed-normal

z′−coordinate, the corresponding momentum equation allows to define the
bed-normal pressure distribution as

∂p

∂z′
= −ρg cosϕb =⇒ p(z′) ≈ ρg cosϕb (z′s − z′) (2.66)
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Figure 2.10: Local bed-normal projection of the gravity vector along the direction n.

and, using z′s = zs cosϕb and z′ = z cosϕb, leads to

p(z) = ρg cos2 ϕb (zs − z) (2.67)

which expresses the bed-normal pressure distribution in terms of global
coordinates X = (x, y, z). Therefore, the integral of the pressure gradient
along the global x−coordinate (2.16) can be expressed as

−
zs∫
zb

∂p(z)

∂x
dz = − ∂

∂x

(1

2
g cos2 ϕb ρh

2
)

(2.68)

and similarly for the global y−coordinate.
On the other hand, the integrals of the volumetric forces along the global

x− and y−coordinates are approximated as

zs∫
zb

Fx dz ≈
z′s∫
z′b

F ′x dz′ cos θ ≈ −ρg sinϕb h
′ cos θ (2.69a)

zs∫
zb

Fy dz ≈
z′s∫
z′b

F ′x dz′ sin θ ≈ −ρg sinϕb h
′ sin θ (2.69b)

and, using (2.65) and h′ = h cosϕb, are expressed as

zs∫
zb

Fx dz = −ρg cos2 ϕb h (∇zb · n) cos θ (2.70a)

zs∫
zb

Fy dz = −ρg cos2 ϕb h (∇zb · n) sin θ (2.70b)
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Note that, along x−coordinate, the directional vector takes the value
n = (1, 0)T and (2.70a) reduces to

zs∫
zb

Fx dz = −g cos2 ϕb ρh
∂zb
∂x

(2.71)

Similarly, the directional vector is n = (0, 1)T along y−coordinate and
(2.70b) reads

zs∫
zb

Fy dz = −g cos2 ϕb ρh
∂zb
∂y

(2.72)

Therefore, using a locally-projected gravity vector, the depth-integrated
terms for the pressure and the external forces in the momentum equations
along the x− and y−coordinates, (2.1b) and (2.1c) respectively, can be ex-
pressed as

zs∫
zb

Fx dz −
zs∫
zb

∂p(z)

∂x
dz = − ∂

∂x

(1

2
gnρh

2
)
− gnρh

∂zb
∂x

(2.73a)

zs∫
zb

Fy dz −
zs∫
zb

∂p(z)

∂y
dz = − ∂

∂y

(1

2
gnρh

2
)
− gnρh

∂zb
∂y

(2.73b)

where gn = g cos2 ϕb denotes a reduced gravity value depending on the bed
slope [64].

2.2 Solid transport in the flow column

2.2.1 Depth-integrated solid transport equation

The bulk density of the mixture can be decomposed into the solid and liquid
fractions contributions as

ρ = ρfn+ ρsφ (2.74)

being ρf and ρs the density of the fluid and solid phases, respectively, φ
the volumetric solid-phase concentration and n = 1 − φ the volumetric
fluid-phase fraction or mixture porosity. The mixture linear momentum is
defined as ρu = ρfnuf + ρsφus, being uf the velocity of the pore-fluid and
us the advective sediment particle velocity. Therefore, the bulk velocity of
the mixture can be estimated as

u =
ρfnuf + ρsφus

ρ
(2.75)

The solid-phase transport process is governed by the following 3D time-
averaged mass-balance equation

∂(ρsφ)

∂t
+

∂

∂x
(usxρsφ) +

∂

∂y
(usyρsφ) +

∂

∂z
(uszρsφ) = 0 (2.76)
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where (usx, usy, usz) are the components of us.
Because the solid-phase velocity is not included in the dependent vari-

ables of the fluid dynamic system, and assuming that the sediment particles
are incompressible and non-porous, (2.76) is rewritten as

∂φ

∂t
+

∂

∂x
(uxφ) +

∂

∂y
(uyφ) +

∂

∂z
(uzφ) = ∇ ·

[
(u− us)φ

]
(2.77)

Furthermore, one can use (2.74) and (2.75) to rewrite the term on the
right hand side of (2.77) as

(u− us) =
ρf
ρ

(uf − us)(1− φ) =
ρf
ρ

qw (2.78)

being qw = (uf−us)(1−φ) the volumetric flux of pore-fluid per unit area of
mixture, also termed specific discharge or Darcy’s velocity in porous media
theory. Replacing (2.78) into (2.77) leads to

∂φ

∂t
+

∂

∂x
(uxφ) +

∂

∂y
(uyφ) +

∂

∂z
(uzφ) = ∇ ·

(ρf
ρ

qw φ
)

(2.79)

where the term on the right hand side accounts for the drag effects caused
by the liquid phase on the advective solid flux.

The transport equation (2.79) must also be integrated throughout the
entire flow column as

zs∫
zb

∂t(φ) dz +

zs∫
zb

∂x(uxφ) dz +

zs∫
zb

∂y(uyφ) dz +

zs∫
zb

∂z(uzφ) dz =

zs∫
zb

∇ ·
(ρf
ρ

qw φ
)

dz

(2.80)

and the Leibnitz’s rule is applied to each term on the left hand side as fol-
lows

zs∫
zb

∂t(φ) dz =
∂

∂t

zs∫
zb

φdz − (φ)s
∂zs
∂t

+ (φ)b
∂zb
∂t

(2.81a)

zs∫
zb

∂x(uxφ) dz =
∂

∂x

zs∫
zb

uxφdz − (uxφ)s
∂zs
∂x

+ (uxφ)b
∂zb
∂x

(2.81b)

zs∫
zb

∂y(uyφ) dz =
∂

∂y

zs∫
zb

uyφdz − (uyφ)s
∂zs
∂y

+ (uyφ)b
∂zb
∂y

(2.81c)

zs∫
zb

∂z(uzφ) dz = (uzφ)s − (uzφ)b (2.81d)
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The total solid phase being transported in the flow column is expressed
as

φh =

zs∫
zb

φdz (2.82)

defining φ as the dept-averaged volumetric solid concentration. Using (2.6),
(2.7) and (2.82), the solid phase flux integrals in (2.81) can be rewritten as

zs∫
zb

uxφdz = φhu+

zs∫
zb

ρ(ux − u)
(φ
ρ
− φ

ρ

)
dz = φhu− φhDsx (2.83a)

zs∫
zb

uyφdz = φhv +

zs∫
zb

ρ(uy − v)
(φ
ρ
− φ

ρ

)
dz = φhv − φhDsy (2.83b)

with (Dsx, Dsy) accounting for the depth-averaged dispersive flux due to
the non-uniformity of both the velocity and solid concentration profiles
throughout the flow column, and defined as

Dsx = − 1

φh

zs∫
zb

ρ(ux − u)
(φ
ρ
− φ

ρ

)
dz (2.84a)

Dsy = − 1

φh

zs∫
zb

ρ(uy − v)
(φ
ρ
− φ

ρ

)
dz (2.84b)

Therefore, replacing (2.82) and (2.83) into (2.81) and considering the
kinematic boundary conditions at both the bed interface (2.3) and free sur-
face (2.2), the depth-integrated equation for the solid phase in the flow col-
umn (2.80) reduces to

∂(φh)

∂t
+

∂

∂x
(φhu)+

∂

∂y
(φhv) = −(φ)bNb

+
∂

∂x
(φhDsx) +

∂

∂y
(φhDsy)

+

zs∫
zb

∇ ·
(ρf
ρ

qw φ
)

dz

(2.85)

where (φ)b denotes the solid concentration in the bed layer surface zb and
the last term on the right hand side accounts for the depth-integrated solid
flux associated to the drag exerted by the liquid phase on the solid parti-
cles. This term is directly related to the solid particles dilation rate, i.e. the
porosity creation in the flow column during the movement.

Furthermore, assuming that the volumetric solid concentration in the
bed layer is 1 − ξ with ξ denoting the bulk porosity of the bed layer, the
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solid mass conservation in the bed layer requires that

(1− ξ)∂zb
∂t

= (φ)bNb (2.86)

2.2.2 Dilation and pore-fluid pressure in densely-packed flows

The mass-balance equations for the solid and fluid phases in the mixture
read

∂n

∂t
+∇ · (ufn) = 0 (2.87a)

∂φ

∂t
+∇ · (usφ) = 0 (2.87b)

where n = 1−φ is the liquid volume fraction in the flow column or mixture
porosity. We define the local dilation rate of the solid-liquid mixture as the
divergence of the solid velocity ∇ · us, which is related by (2.87b) to the
temporal evolution of the solid volumetric concentration φ as

∇ · us = − 1

φ

dφ
dt

(2.88)

being dφ/dt = ∂φ/∂t+ us ·∇φ the material time derivative of the solid vol-
umetric concentration in a frame of reference which moves with the solid
velocity [57]. Therefore, positive dilation rates are related to porosity cre-
ation states in which pores enlarge within the flow column, whereas neg-
ative dilation rates are accompanied by the contraction of the solid phase
and, hence, increasing solid concentrations (Figure 2.11).

Figure 2.11: Dilation rate in (left) porosity creation states and (right) contraction
states.

Estimation of the dilation rate involves several steps. First, we assume
the dilatancy law

∇ · us = γ̇ tanψ (2.89)

as closure relation for the mechanical effects of the mixture movement on
the solid phase evolution, being γ̇ the macroscopic shear rate and ψ the
shear-induced dilatancy, a state-dependent property of the solid granular
materials which is usually expressed as an angle (−π/2 ≤ ψ ≤ π/2). For
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the sake of simplicity, we assume here that γ̇ tanψ is uniform along the flow
column, implying that also the dilation rate is uniform.

Considering a steady shearing state, i.e. γ̇ = const 6= 0, (2.88) and (2.89)
indicate that the solid grains divergence is also constant in time and hence
leads to unbounded evolution of the solid volumetric concentration φ. This
demonstrates that the shear-induced dilatancy ψ must evolve with the local
mixture conditions. Forterre & Pouliquen [40] and Pailha & Pouliquen [113]
suggested a linear dependency of tanψ on the difference (φ−φeq) as follows

tanψ = k1(φ− φeq) (2.90)

being k1 a positive calibration coefficient and φeq an equilibrium value of
the solid concentration which is balanced with the local stress and shear
rate. The effects of the stress and shear rate on the equilibrium solid con-
centration is assessed using the dimensionless ratio Nv between the charac-
teristic time for local grain rearrangement µ/σe and the characteristic time
for bulk shear deformation 1/γ̇ [43], being µ the pore-fluid viscosity and
σe the effective normal stress. Considering the characteristic effective stress
σe ≈ (ρ− ρf )gnh, the timescale ratio Nv can be expressed as

Nv =
µγ̇

(ρ− ρf )gnh
(2.91)

Note that Nv is the reciprocal of the friction number identified by [55] to
describe the stress state in debris flows. Since values of Nv vary from 0 in
static state to∞ for mature quasi-liquefied flows, a non-linear dependence
of φeq on Nv is included as

φeq = φcrit(1− k2 tanhNv) (2.92)

where k2 is a positive coefficient which requires calibration and φcrit is the
equilibrium solid concentration for the static state in which the stresses are
lithostatic [57]. It is worth noting that (2.92) implies that the equilibrium
solid concentration φeq reduces monotonically in response to decreasing
normal stresses and increasing shear rates but in a bounded range.

Second, adding (2.87a) and (2.87b) allows to relate the local dilation rate
to the volumetric flux of pore-fluid per unit area of mixture qw as

∇ · us = −∇ · (uf − us)n = −∇ · qw (2.93)

indicating that a positive dilation rate (porosity creation) is balanced by a
local influx of fluid that fills the enlarging pores, whereas a negative dilation
(porosity contraction) is accompanied by a local pore-fluid outflux leading
to a denser packed mixture (Figure 2.12).

Considering the Darcy Law

qw = −κ
µ
∇pe (2.94)

being κ the hydraulic permeability of the granular aggregate and pe the
excess of pore-fluid pressure over the hydrostatic value

Replacing (2.89) and (2.94) into (2.93) leads to

γ̇ tanψ =
κ

µ
∇2pe (2.95)
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Figure 2.12: Dilation rate and pore-fluid flux balance for (left) a porosity creation
state and (right) contraction state.

assuming that κ and µ are uniform. Invoking the shallow-flow scaling,
L >> H where L is the characteristic horizontal length of the flow and H
is the characteristic flow depth, indicates that ∂2/∂z2 >> (∂2/∂x2, ∂2/∂y2),
since ∂2/∂z2 scales with 1/H2 whereas (∂2/∂x2, ∂2/∂y2) scale with 1/L2

[57]. Therefore, the horizontal derivatives can be neglected and (2.95) re-
duces to

∂2pe
∂z2

=
µ

κ
γ̇ tanψ = const (2.96)

which can been integrated twice throughout the flow column leading to

pe(z) =
µ

2κ
γ̇ tanψ(z − zb)2 +A(z − zb) +B (2.97)

being A and B two integration constants.
We assume that the excess pore pressure at the flow free surface is null,

pe(z = zs) = 0, since the pore pressure is the atmospheric value. At the bed
surface, we impose that the excess pore pressure can be written as pe(z =
zb) = Ebρfgnh, being Eb a dimensionless parameter which expresses the
basal excess pore pressure as a fraction of the hydrostatic pressure value
at the bed level. Furthermore, at the bed surface, the specific discharge
qw is null since the solid and liquid phase velocities are assumed equal
(non-penetration condition) and hence, using (2.94), we impose ∂pe/∂z(z =
zb) = 0. Imposing these boundary conditions, we find that the excess pore
pressure along the flow column satisfies the quadratic expression

pe(z) =
µ

2κ
γ̇ tanψ(z − zb)2 + Ebρfgnh (2.98)

being the basal excess pore pressure parameter Eb

Eb =
−µh

2κρfgn
γ̇ tanψ (2.99)
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and the depth-averaged shear rate is estimated as γ̇ = 2|u|/h. Note that
(2.98) indicates that the value of the excess pore pressure depends on the
shearing-state of the flow and it is null, i.e. hydrostatic pore-fluid pressure,
for the lithostatic case.

In order to assess the behaviour predicted by (2.98) for the excess pore
pressure in a realistic mature dense-packed flow, we set µ = 10−3 Pa · s,
κ = 10−8m2 h = 10m, γ̇ = 6 s−1, φeq = 0.6, k1 = 0.05, ρf = 1000 kgm−3,
g = 9.81ms−2, ϕb = 15◦ and vary φ from 0.50 to 0.65. Figure 2.13 depicts
the normalised pore-fluid pressure P∗(z) defined as

P∗(z) =
P(z)

ρfgnh
=
ph(z) + pe(z)

ρfgnh
(2.100)

along the normalised flow depth z∗ = (z − zb)/h for the different solid
volumetric concentration considered.

Positive excess pore pressure pe values, i.e. a pore-fluid pressure P
higher than the hydrostatic value ph, are associated to negative dilatancy
values tanψ < 0 and hence to porosity contraction states. Contrarily, nega-
tive excess pore pressure pe values, i.e. a pore-fluid pressure P lower than
the hydrostatic value ph, denote positive dilatancy values tanψ > 0 associ-
ated to porosity creation states.

Figure 2.13: Pore-fluid pressure as a function of the solid volumetric concentration
φ.

The expression (2.98) estimates a behaviour for the excess pore-fluid
pressure which depends on the shear rate, with the hydrostatic pressure
corresponding to the lithostatic stress case. Figure 2.14 shows the reduc-
tion of the normalised pore-fluid pressure P∗(z) with increasing depth-
averaged shear rates γ̇ for an idealised case with the above parameters and
considering a positive dilatancy value φ = 0.65 > φeq.

Contrarily, Figure 2.15 shows the increment of the normalised pore-fluid
pressure P∗(z) with increasing depth-averaged shear rates γ̇ for the same
idealised case with a negative dilatancy value φ = 0.55 < φeq.

The excess pore pressure distribution estimated with (2.98) shows a sim-
ilar behaviour to that obtained by George & Iverson [43, 57]. However, here
the value of the basal pore-fluid pressure Pb is directly determined from the
local characteristics of the flow and mixture state as

Pb = (1 + Eb)ρfgnh (2.101)
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Figure 2.14: Pore-fluid pressure as a function of the shear rate γ̇ for a positive dila-
tancy state tanψ > 0.

Figure 2.15: Pore-fluid pressure as a function of the shear rate γ̇ for a negative dila-
tancy state tanψ < 0.

Iverson & George [57] also reported a quadratic expression for the pore-
fluid pressure but they require to solve an additional advection-diffusion
equation for the basal pore fluid pressure.

2.2.3 Deviatoric solid flux due to dilation effects

The last source term in the depth-averaged solid transport equation (2.85),
caused by porosity creation/contraction processes due to the shear-induced
dilation of the solid phase, mus be addressed now. It is repeated here as

zs∫
zb

∂

∂x

(
ρf
φ

ρ
qwx

)
+

∂

∂y

(
ρf
φ

ρ
qwy

)
+

∂

∂z

(
ρf
φ

ρ
qwz

)
dz (2.102)

being (qwx, qwy, qwz) the components of the specific solid discharge qw. Ap-
plying the Leibnitz rule



2.2. Solid transport in the flow column 35

zs∫
zb

∂

∂x

(
ρf
φ

ρ
qwx

)
dz =

∂

∂x

zs∫
zb

(
ρf
φ

ρ
qwx

)
dz (2.103a)

−
(
ρf
φ

ρ
qwx

)
s

∂zs
∂x

+
(
ρf
φ

ρ
qwx

)
b

∂zb
∂x

zs∫
zb

∂

∂y

(
ρf
φ

ρ
qwy

)
dz =

∂

∂y

zs∫
zb

(
ρf
φ

ρ
qwy

)
dz (2.103b)

−
(
ρf
φ

ρ
qwy

)
s

∂zs
∂y

+
(
ρf
φ

ρ
qwy

)
b

∂zb
∂y

zs∫
zb

∂

∂z

(
ρf
φ

ρ
qwz

)
dz =

(
ρf
φ

ρ
qwz

)
s
−
(
ρf
φ

ρ
qwz

)
b

(2.103c)

At the bed surface boundary zb we assume that the solid and liquid
phases move with the same velocity, leading to a nil specific discharge

(qwx, qwy, qwz)b = 0 (2.104)

whereas, at the flow free surface zs, the kinematic condition

(qwx)s
∂zs
∂x

+ (qwy)s
∂zs
∂y
− (qwz)s = 0 (2.105)

is imposed, which implies that the free surfaces for the solid and liquid
phases are the same at any moment and move with the flow free surface
zs = zs(t, x, y).

Replacing (2.104) and (2.105) into (2.103), and considering the Darcy
Law (2.94) relating the specific discharge qw to the excess pore pressure
gradient, the depth-averaged source term (2.102) can be rewritten as

− ∂

∂x

zs∫
zb

(
ρf
φ

ρ

κ

µ

∂pe
∂x

)
dz − ∂

∂y

zs∫
zb

(
ρf
φ

ρ

κ

µ

∂pe
∂y

)
dz (2.106)

transforming the non-conservative dilation source term [57] into a conser-
vative advective contribution to the solid phase flux (Lx,Ly). Hence, the
depth-averaged solid phase transport equation (2.85) now reads

∂(φh)

∂t
+

∂

∂x
(φhu+ Lx)+

∂

∂y
(φhv + Ly) = −(φ)bNb

+
∂

∂x
(φhDsx) +

∂

∂y
(φhDsy)

(2.107)

with (Lx,Ly) being the solid dilation flux depending on the pore-fluid pres-
sure gradient and defined as
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Lx =

zs∫
zb

(
ρf
φ

ρ

κ

µ

∂pe
∂x

)
dz (2.108a)

Ly =

zs∫
zb

(
ρf
φ

ρ

κ

µ

∂pe
∂y

)
dz (2.108b)

In order to obtain an expression for the depth-integrated (Lx,Ly) fluxes
and, for the sake of simplicity, we assume the approximation φ/ρ = φ/ρ
and uniform mixture permeability κ and pore-fluid viscosity µ. Applying
the Leibnitz rule to (2.108) leads to

zs∫
zb

(
ρf
φ

ρ

κ

µ

∂pe
∂x

)
dz = φ

ρfκ

ρµ

 ∂

∂x

zs∫
zb

pe dz − (pe)s
∂zs
∂x

+ (pe)b
∂zb
∂x


(2.109a)

zs∫
zb

(
ρf
φ

ρ

κ

µ

∂pe
∂y

)
dz = φ

ρfκ

ρµ

 ∂

∂y

zs∫
zb

pe dz − (pe)s
∂zs
∂y

+ (pe)b
∂zb
∂y


(2.109b)

and, considering the excess pore pressure distribution (2.98) throughout the
flow depth, the dilation contributions can be expressed as

Lx = φ
ρfκ

ρµ

(
∂Pe
∂x

+ Ebρfgh cosϕb
∂zb
∂x

)
(2.110a)

Ly = φ
ρfκ

ρµ

(
∂Pe
∂y

+ Ebρfgh cosϕb
∂zb
∂y

)
(2.110b)

where Eb is the basal excess pore pressure parameter defined in (2.99) and
Pe is the excess pore pressure integrated throughout the flow column,
which reduces to

Pe =

zs∫
zb

pe dz =
−µh3

3κ
γ̇ tanψ (2.111)

2.2.4 Net mass exchange between bed and flow layers

The net volumetric exchange Nb between the underlying bed layer and the
mixture flow column at the bed surface zb(t, x, y), appearing in (2.8), (2.22),
(2.23), (2.85) and (2.86), is modelled as the balance between the erosion and
the deposition vertical solid fluxes, Eb and Db respectively, leading to

Nb =
1

(φ)b
(Db − Eb) (2.112)
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Note that Nb includes solid and pore volumes whereas Eb and Db are
expressed in terms of solid volume, hence the solid volumetric concentra-
tion at the bed surface (φ)b must be included in (2.112). For the sake of
simplicity, the solid concentration at the bed surface zb is usually set to that
of the underlying bed layer (φ)b = 1− ξ.

The deposition rateDb is commonly related to the solid particles settling
velocity in the mixture ωsm and to the near-bed solid concentration in the
flow φz→zb . The near-bed solid concentration is not a dependent variable to
be solved, hence it is usually related to the depth-averaged solid concentra-
tion in the flow as φz→zb = αφ being α an adaptation or recovery coefficient.
Therefore, the vertical deposition flux can be expressed as

Db = αωsm φ (2.113)

The settling velocity of the solid particles ωsm in highly concentrated
mixtures is influenced by the presence of other solid particles. Furthermore,
in dense-packed mixtures with moderate plastic fine fractions in the flow
column such as muddy slurries, the particle settling velocity can be strongly
reduced by the development of internal yield stresses in the pore-fluid.
There exist several relationships in the specialised literature to estimate
the hindering effects of high solid concentration in the settling velocity.
Richardson & Zaki [124] proposed ωsm = (1 − φ)mωs, being ωs the settling
velocity of the sediment particles in clear water and m a hindering empir-
ical exponent depending on the Reynolds particle number (Rep = ωs ds/ν,
with ν the clear water kinematic viscosity) which usually takes values close
to m = 4. Therefore, for the sake of simplicity, we assume that the vertical
deposition rate Db in dense-packed mixtures is expressed as

Db = αd ωs φ (1− φ)4 (2.114)

where αd is a dimensionless parameter which requires calibration.
The erosion solid flux Eb is directly related to the turbulent fluctuation

of the volumetric solid concentration and flow velocity near the bed surface.
We assume that this near-bed erosion rate is at the capacity of the flow to en-
train solid material from the underlying bed layer, hence it is related to the
settling velocity of the particles in clear water ωs and the near equilibrium
concentration φ∗z→zb . The near-bed equilibrium concentration is related to
the depth-averaged equilibrium concentration φ∗ as φ∗z→zb = α∗φ∗, being
α∗ an adaptation coefficient under equilibrium conditions. When equilib-
rium solid transport states are reached, the adaptation coefficients α and α∗

coincide but in non-equilibrium states α∗ 6= α generally. Therefore, for the
sake of simplicity, we assume that the vertical erosion rate Eb is expressed
as

Eb = αeωs φ∗ (2.115)

where αe is a dimensionless empirical parameter which requires calibra-
tion. The capacity solid concentration φ∗ is usually computed as

φ∗ =
|q∗s|
h|u|

(2.116)
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where |q∗s| accounts for the value of the solid transport throughout the flow
column in capacity or equilibrium condition, which can be estimated using
the multiple empirical relationships from the local hydrodynamic variables
[144].

2.3 Bedload transport

2.3.1 Solid mass conservation in bedload transport

The bedload transport occurs in a thin top layer of the bed, between the
exchange interface ze = ze(t, x, y) separating the static and moving bed
layers and the top surface of the bed layer zb = zb(t, x, y). The solid mass
conservation at the bedload transport layer reads

∂(ρsφb)

∂t
+

∂

∂x
(ubxρsφb) +

∂

∂y
(ubyρsφb) +

∂

∂z
(ubzρsφb) = 0 (2.117)

where φb is the volumetric solid concentration and [ubx, uby, ubz] are the
components of the velocity of the solid particles ub in the bedload layer.
Considering that the solid and liquid phases move with the same velocity
ub in the transport layer, the kinematic boundary conditions at the ze and
zb surfaces can be expressed as

∂zb
∂t

+ (ubx)b
∂zb
∂x

+ (uby)b
∂zb
∂y

= (ubz)b (2.118)

∂ze
∂t

+ (ubx)e
∂ze
∂x

+ (uby)e
∂ze
∂y

= (ubz)e +Ne (2.119)

beingNe the volumetric exchange flux between the bedload transport layer
and the underlying static stratum along the z−coordinate. It is worth not-
ing that the net exchange flux between the bed layer and the flow is not
considered in (2.118), assuming that the suspended solid transport is negli-
gible.

The transport equation (2.117) is integrated along the bedload moving
or transport layer as

zb∫
ze

∂t(φb) dz +

zb∫
ze

∂x(ubxφb) dz +

zb∫
ze

∂y(ubyφb) dz +

zb∫
ze

∂z(ubzφb) dz = 0

(2.120)
and the Leibnitz’s rule is applied to each term as follows
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zb∫
ze

∂t(φb) dz =
∂

∂t

zb∫
ze

φb dz − (φb)b
∂zb
∂t

+ (φb)e
∂ze
∂t

(2.121a)

zb∫
ze

∂x(ubxφb) dz =
∂

∂x

zb∫
ze

ubxφb dz − (ubxφb)b
∂zb
∂x

+ (ubxφb)e
∂ze
∂x

(2.121b)

zb∫
ze

∂y(ubyφb) dz =
∂

∂y

zb∫
ze

ubyφb dz − (ubyφb)b
∂zb
∂y

+ (ubyφb)e
∂ze
∂y

(2.121c)

zb∫
ze

∂z(ubzφb) dz = (ubzφb)b − (ubzφb)e (2.121d)

The volumetric solid concentration in the transport layer is assumed
uniform and approximately the same as in the underlying static stratum,
φb ≈ 1− ξ with ξ denoting the bulk porosity of the bed layer. Therefore, the
solid mass integral in (2.121a) is expressed as

zb∫
ze

φb dz = (1− ξ)η (2.122)

where η = zb− ze is the bedload transport layer thickness. Accordingly, the
linear momentum integrals in (2.121b) and (2.121c) are reduced to

zb∫
ze

ubxφb dz = (1− ξ)η ub = qbx (2.123a)

zb∫
ze

ubyφb dz = (1− ξ)η vb = qyx (2.123b)

being (ub, vb) the components of the depth-averaged bedload velocity ub,
defined as

ub =
1

η

zb∫
ze

ubx dz vb =
1

η

zb∫
ze

uby dz (2.124)

and hence (qbx, qby) are the components of the bedload solid transport rate
qb along the x− and y−coordinates respectively.

Replacing (2.122) and (2.123) into (2.121), and considering the boundary
conditions at both the exchange interface (2.119) and the bed surface (2.118),
the depth-integrated transport equation for the bedload layer (2.120) is re-
duced to

(1− ξ)∂η
∂t

+
∂

∂x
(qbx) +

∂

∂y
(qby) = −(1− ξ)Ne (2.125)

The first term on the left hand side of (2.125) accounts for the solid mass
storage in the bedload transport layer whereas the term on the right hand
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side represents the net solid flux across the exchange interface separating
the static stratum and the moving bedload layer.

Furthermore, the solid mass continuity in the static underlying bed
layer, z ∈ (zr, ze) being zr the elevation of lower non-erodible stratum taken
as reference, requires that

(1− ξ)∂ze
∂t

= (1− ξ)Ne (2.126)

The volumetric exchange between the bedload transport layer and the
underlying static stratumNe is expressed by the balance between the depo-
sition flux η̇D and the entrainment flux η̇E as

Ne = η̇D − η̇E (2.127)

Finally, adding (2.125) and (2.126) leads to the continuity equation for
the solid mass in the bed layer

∂zb
∂t

+
1

1− ξ
∂

∂x
(qbx) +

1

1− ξ
∂

∂y
(qby) = 0 (2.128)

which estimates the bed elevation changes in flows with bedload transport.

Figure 2.16: Sketch of the bedload sediment transport.

The bedload transport rate qb = (qbx, qby), required in (2.125) and
(2.128), accounts for the volumetric solid discharge (excluding porosity) in-
tegrated in the bedload transport layer and needs a closure model which re-
lates the qb to the local flow features. The solid particles can be transported
under equilibrium (capacity or saturated) conditions or non-capacity (non-
equilibrium or unsaturated) conditions. The classical equilibrium approach
assumes that the actual sediment transport rate is equal to the capacity of
the flow to carry solid weight. This equilibrium bedload rate q∗b is only
determined by instantaneous local flow features and can be formulated
by different empirical closure relations found in literature [149]. On the
other hand, in non-capacity transport, the actual bedload rate is computed
through advection and mass exchange with the static erodible bed. Natu-
ral morphodynamical systems such as alluvial rivers are always changing
in time and space and hence absolute equilibrium states rarely exist in nat-
ural conditions. Therefore, intuitively, non-capacity approaches are more
suitable than models based on the equilibrium assumption since they ac-
count for the temporal and spatial delay of the actual sediment transport
rate with respect to its potential capacity. However, if the adaptation de-
lay is sufficiently small, equilibrium models can be also applied at least in
theory [144].
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Therefore, under equilibrium conditions η̇D = η̇E , (2.126) can be ne-
glected since ∂ze/∂t = 0 and (2.125) reduces to the widespread Exner equa-
tion

(1− ξ)∂zb
∂t

+
∂

∂x
(q∗bx) +

∂

∂y
(q∗by) = 0 (2.129)

for capacity bedload models [35] since ∂η∗/∂t = ∂zb/∂t, being η∗ the trans-
port layer thickness under capacity conditions and (q∗bx, q

∗
by) the compo-

nents of the capacity bedload rate q∗b along the x− and y−coordinates.

2.3.2 Entrainment and deposition rates for bedload transport

The derivation of the expressions used in this thesis for the bedload en-
trainment and deposition fluxes, η̇E and η̇D respectively used in (2.127), is
based on the grain-scale inertial analysis proposed by Charru [25] for the
exchange of solid particles between the static and moving bed layers in the
bedload transport process.

The particle deposition rate ṄD is related to the number of particles
N moving in the bedload transport layer and the characteristic deposition
time tD following

ṄD =
N
tD

[
Part. T−1

]
(2.130)

The characteristic time of the deposition process is controlled by grav-
ity and depends on the deposition velocity ωs and the particle diameter ds
following

1

tD
∝ ωs
ds

→ 1

tD
= kD

√
(ρs/ρf − 1)gds

ds
(2.131)

being kD a dimensionless deposition constant. Therefore, replacing (2.131)
into (2.130), the particle deposition rate can be expressed as

ṄD = kD
N
ds

√
(ρs/ρf − 1)gd3

s

ds
(2.132)

The number of particles in movement on a bed surface of area ∆A =
∆x∆y and which are affected by deposition in a time step tD is related to
the thickness of the bedload transport layer η as

N =
η∆A

d3
s/(1− ξ)

(2.133)

Using (2.133), the relation between the particle deposition rate ṄD and
the exchange flux due to deposition η̇D in a bed area ∆A is expressed as

η̇D =
ṄD d3

s

(1− ξ)∆A
(2.134)
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Therefore, replacing (2.132) and (2.133) into (2.134), the volumetric ex-
change flux between the moving and the static bed layers due to deposition
can be expressed as

η̇D = kD
η

ds

√
(ρs/ρf − 1)gd3

s

ds

[
LT−1

]
(2.135)

Similarly, in order to derive an expression for the volumetric entrain-
ment flux η̇E , we consider that the particle entrainment rate ṄE is related
to the number of static particles exposed to the flow actionNE and the char-
acteristic entrainment time tE :

ṄE =
NE
tE

[
Part. T−1

]
(2.136)

The number of particles which are exposed to the flow shear stress in a
surface of area ∆A = ∆x∆y and which can be incorporated to the moving
layer in a time step tE are placed on the top layer of the static sediment
column and hence

NE =
ds ∆A

d3
s/(1− ξ)

(2.137)

and replacing (2.137) into (2.136) leads to

ṄE =
(1− ξ)∆A
tE d2

s

(2.138)

The characteristic entrainment time tE for turbulent flow is proportional
to the inertial balance between the settling momentum of the sediment par-
ticles and the stress forces exerted by the flow on them:

1

tE
∝ ∆τ d2

s

ρsd3
s ωs

(2.139)

where ∆τ = |τb| − |τc| denotes a positive excess of boundary shear stress
|τb| over the critical value for the incipient motion of the solid particles |τc|.
Considering that |τb| and |τc| can be expressed in terms of dimensionless
Shields stress as

θ =
|τb|

(ρs − ρw)gds
(2.140a)

θc =
|τc|

(ρs − ρw)gds
(2.140b)

being θ and θc the boundary Shields stress and the corresponding Shields
stress value for the incipient motion respectively, (2.139) is rewritten as

1

tE
= kE

∆θ

ρs/ρf ds

√
(ρs/ρf − 1)gds (2.141)

being ∆θ = θ − θc a positive excess of boundary Shields stress over the
critical value for the incipient motion and kE a dimensionless entrainment
constant.
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The relation between the particle entrainment rate ṄE and the volumet-
ric exchange flux due to entrainment η̇E in a bed area ∆A is expressed as

η̇E =
ṄE d3

s

(1− ξ)∆A
(2.142)

and, replacing (2.138) and (2.141) into (2.142), the volumentric exchange
flux caused by entrainment is expressed as

η̇E = kE
∆θ

ρs/ρf

√
(ρs/ρf − 1)gd3

s

ds

[
LT−1

]
(2.143)

Note that, for the equilibrium case in which the entrainment and depo-
sition fluxes are equal (η̇E = η̇D), the relation N d2

s ∝ ∆θ is recovered. This
linear relation for the number of particles in the moving layer agrees with
the experimental observations reported by Luque & Beek [82] and Bagnold
[3], and is used to derive most of the classical solid transport rate in capacity
regime reported in literature.

2.3.3 Generalized non-capacity bedload rate

Closure relations found in literature were derived under capacity (equilib-
rium) conditions and can be generally written as

|q∗b| = c θm1 (∆θ)m2

√
(ρs/ρf − 1)gd3

s (2.144)

where |q∗b| denotes the bedload rate module under equilibrium conditions,
c is a constant dimensionless coefficient, m1 and m2 are two constant ex-
ponents, and ∆θ = θ − θc is the positive excess of Shields stress θ over the
critical Shields value for the incipient motion θc [100]. Values of c, m1, m2

and θc depends on the closure relation and are summarised in Table 2.2 for
some widespread bedload transport rate formula.

Formulation c m1 m2 θc

MPM [97] 8 0 3/2 0.047

Nielsen [108] 12 1/2 1 0.047

Fernández-Luque [82] 5.7 0 3/2 0.037

Wong [143] 3.97 0 3/2 0.0495

Smart [132] 4.2S0.6
0

h1/6

n
√
g 1/2 1 0.047

Wu [144] 0.0053 (∆θ)0.7

θ2.2c
0 3/2 0.030

Table 2.2: Coefficient c, m1, m2 and θc for different capacity solid transport rate
formulations (2.144). In the Smart formulation, the parameter S0 is the bed slope.

For the bedload transport process, the boundary shear stress at the bed
surface zb is assumed fully turbulent and is modelled using the Manning
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roughness parameter nb [TL−1/3] as |τb| = ρfgn
2
b |u|2/h1/3. Hence, from

(2.140), the boundary Shields stress θ reads

θ =
n2
b |u|2

(ρs/ρf − 1)dsh1/3
(2.145)

Replacing (2.145) into (2.144) for all the formulations in Table 2.2, it can
be demonstrated that |q∗b| ∝ h−1/2 |u|3 and hence a general formulation for
the solid transport rate based on the Grass law

|q∗b| = G(h, θ) |u|3 (2.146)

has been adopted by other authors [65, 86, 100]. The Grass formulation
(2.146) relates the equilibrium bedload sediment discharge with the depth-
averaged flow velocity by means of the factor G(h, θ) [T 2L−1] which repre-
sents the interaction between the flow and the bed layer and which depends
only on the flow characteristics.

Considering the expressions (2.135) and (2.143) for the entrainment and
deposition rates respectively of solid material from/to the underlying static
bed layer, the capacity approach for the bedload transport layer establishes
η̇D = η̇E) and hence the transport layer thickness under equilibrium condi-
tions η∗ can be expressed as

η∗ =
kE

ρs/ρf kD
∆θ ds (2.147)

Note that, in capacity state, the moving layer thickness depends only on
the Shields dimensionless stress excess ∆θ, the grain size ds and the relation
between the entrainment and deposition constants kE/kD. Furthermore,
combining the expressions for the entrainment and deposition rates, leads
to

η̇E
η̇D

=
1

η

kE
ρs/ρf kD

∆θds → η

η∗
=
η̇D
η̇E

(2.148)

indicating that values of the transport layer thickness η greater than the
equilibrium thickness η∗ are related to a net deposition flux from the mov-
ing layer to the static stratum (η̇D > η̇E), whereas values of the transport
layer thickness η greater than the equilibrium thickness η∗ lead to a net en-
trainment flux from the static layer to the transport layer (η̇D < η̇E).

From (2.123), the bedload discharge modulus is defined as

|qb| = (1− ξ) η |ub| (2.149)

and hence a direct proportionality between the transport layer thickness η
and the actual solid transport rate |qb| can be assumed. Therefore, using
(2.144), (2.147), (2.148) and (2.149), we derive a closure relation for the non-
capacity solid transport rate as

|qb| = c θm1 ∆θ(m2−1) ρs/ρf kD
kE ds

η
√

(ρs/ρf − 1)gd3
s (2.150)
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and hence the averaged velocity of the bedload transport layer |ub| is ex-
pressed as

|ub| = c θm1 ∆θ(m2−1) ρs/ρf kD
(1− ξ)kE

√
(ρs/ρf − 1)gd3

s

ds
(2.151)

Rewriting the non-capacity bedload rate (2.150) in the Grass law form,
the solid discharge in the transport layer can be expressed as

qb = G(h, θ, η) |u|2u (2.152)

where the bed-flow interaction parameter G becomes not only a function
of the water depth h and the dimensionless Shields stress θ, but it also de-
pends on the moving layer thickness η as

G = Γ1(h) Γ2(θ) Γ3(η) (2.153)

Table 2.3 summarises the expression of the non-capacity Grass interac-
tion factor G(h, θ, η) derived from some of the most common equilibrium
closure relations. Note that Γ3 is similar for all the relations, whereas Γ1

and Γ2 depend on the selected formulation.

Formulation Γ1(h) Γ2(θ) Γ3(η) θc

MPM n3
b

√
g

(ρs/ρf−1)
√
h

8
√

∆θ
θ3/2

ρs/ρf kD
kE

η
ds

0.047

Nielsen n3
b

√
g

(ρs/ρf−1)
√
h

12
θ

ρs/ρf kD
kE

η
ds

0.047

Fernandez-Luque n3
b

√
g

(ρs/ρf−1)
√
h

5.7
√

∆θ
θ3/2

ρs/ρf kD
kE

η
ds

0.037

Wong n3
b

√
g

(ρs/ρf−1)
√
h

3.97
√

∆θ
θ3/2

ρs/ρf kD
kE

η
ds

0.0495

Smart n2
b

(ρs/ρf−1)h1/3
S0.6

0
4.2
θ

ρs/ρf kD
kE

η
ds

0.047

Wu n3
b

√
g

(ρs/ρf−1)
√
h

0.0053
√

∆θ
θ2.2c θ3/2

ρs/ρf kD
kE

η
ds

0.030

Table 2.3: Non-capacity Grass interaction factor G for different solid transport rate
formulations.

This new generalised model for the non-capacity bedload transport
(2.152) requires to compute the thickness η of the moving layer using
(2.125), but it is able to account for the temporal and spatial delay of the ac-
tual sediment transport rate with respect to its potential capacity in highly
unsteady flows. Moreover, if time, flow local features and sediment avail-
ability are enough to develop steady states in the bedload transport pro-
cess, the entrainment and deposition rates (η̇E and η̇D respectively) tend to
be equal and the bedload rate recovers the common closure relation (2.144)
for equilibrium transport conditions. Therefore, the equilibrium state is a
particular case of the generalised non-capacity model where η = η∗.

In order to illustrate the temporal-spatial behaviour of the generalised
non-capacity bedload model (2.152), a simple idealised test is included here
considering the following flow conditions
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h|u|(t, x, y) = 2m2s−1 ∀t, ∀x

|u|(t, x, y) =


2m/s if t = 0 s, ∀x
4m/s if t > 0 s, 20m ≤ x ≤ 70m
2m/s if t > 0 s, otherwise

with ρs/ρf = 2.65, g = 9.81ms−2, ξ = 0.35, ds = 1mm, nb = 0.035 sm−1/3,
kE/kD = 20 and the MPM relation (see Table 2.3). Using (2.144), these local
flow features lead to a uniform bedload discharge at the initial time t = 0 s
and a stepped capacity transport rate |q∗b| for any t > 0 s, as depicted in
Figure 2.17.

Figure 2.17: Bedload transport rate evolution for classical capacity models.

The generalised non-capacity model introduces a temporal and spatial
delay of the actual transport rate with respect to the capacity value. Figure
2.18 shows the temporal evolution of the bedload rate |qb| in the spatial
domain computed using the non-capacity model (2.152), with (top) kE =
0.06 and (bottom) kE = 0.015. As time increases, the actual solid rate adapts
progressively to the capacity rate. Nevertheless, sudden spatial changes of
the local flow features, as occurs at x = 20m and x = 70m, need a length
for the actual transport rate to adapt to the equilibrium value even with
t→∞. Furthermore, it is worth noting that the temporal a spatial delay of
the non-capacity solid discharge respect to the corresponding equilibrium
state increases as the entrainment constant kE decreases.

To analyse the influence of the entrainment and deposition constants, kE
and kD respectively, in the non-equilibrium state of the bedload discharge,
the net exchange flux through the static-moving bed layers interface can be
calculated as Ne = η̇D − η̇E (2.127). Figure 2.19 shows the temporal evolu-
tion of the net exchange flux in the spatial domain with (top) kE = 0.06
and (bottom) kE = 0.015. A net entrainment flux η̇E > η̇D occurs for
20m ≤ x ≤ 70m since initially η < η∗ and the actual solid rate must in-
crease to reach the capacity value. As time increases and |qb| grows to |q∗b|,
the entrainment and deposition rates tend to balance and the net exchange
reduces. Contrarily, for x > 70m initially the bedload discharge is in equi-
librium but, as time increases and the upstream solid rate reaches the higher
capacity value, a net deposition exchange flux appears to recover the lower
equilibrium value downstream the step.

Previous non-capacity bedload models [33, 134, 144, 146] assumed a
spatial length Lb [L] for the adaptation of the actual bedload discharge to
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Figure 2.18: Bedload transport rate evolution for the generalised non-capacity mod-
els with (top) kE = 0.06 and (bottom) kE = 0.015.

its equilibrium state and calculated the net exchange flux as

Ne =
1

1− ξ
|qb| − |q∗b|

Lb
(2.154)

where Lb is a constant parameter which needs to be calibrated for each case.
Comparison of both methods to determine the entrainment-deposition net
flux Ne indicates that the proposed model assumes a dynamic value for the
adaptation length Lb which is scaled following

Lb ∝
√
θ

kE
ds (2.155)

According to (2.155), the reduction of the entrainment constant kE
leads to increasing dynamic adaptation length values and enhances non-
equilibrium bedload transport states (see Figures 2.18 and 2.19) . On the
other hand, the higher the Shields stress θ, the longer the distance that the
bedload discharge needs to reach its equilibrium state. Hence highly ero-
sive flows lead to higher values of the adaptation length Lb. This depen-
dency of the bedload adaptation length with the shear stress has not been
previously derived. Instead, most of the models assume a global constant
value based on the dominant bed form [144].

To analyse the influence of the Shields stress on the dynamic adapta-
tion of actual non-capacity bedload rate to the equilibrium state, we use
the above case but setting a entrainment constant kE = 0.025 and increas-
ing flow discharges h|u|(t, x, y) = [1, 2, 3, 4]m2s−1. For t = 0 s the flow is
uniform, with h = 1m along the whole spatial domain regardless of the
discharge, whereas for t > 0 s a steady step in the flow features is set be-
tween 20m ≤ x ≤ 70m which agrees |q∗b| = 2|q∗b|t=0 regardless of the flow
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Figure 2.19: Ned exchange fluxNe = η̇D− η̇E for the generalised non-capacity mod-
els with (top) kE = 0.06 and (bottom) kE = 0.015.

discharge. The shear stress at the bed surface, hence the Shields stress θ,
increases progressively with the flow discharge as θ = [1.18, 4.71, 10.6, 18.9]
respectively. Figure 2.20 shows the non-capacity bedload rate |qb| for
t = 100 s, normalised by the initial uniform equilibrium value |q∗b|t=0, along
the whole spatial domain. As the Shields stress at the bed surface increases,
the adaptation length increases and enhances the non-capacity state in the
bedload transport.

Figure 2.20: Normalised bedload transport rate for the generalised non-capacity
models with increasing Shields stresses θ.
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2.4 In Closing

In this chapter, we have derived the generalized two-dimensional system
of depth-averaged conservation laws for environmental surface flows of
water-sediment mixtures over movable bed conditions, as well as the es-
sential relationships for the system closure. Furthermore, four are the main
novelties presented in this chapter:

1. A new closure relation for the shear-induced pore-fluid pressure dur-
ing the movement of dense-packed solid-liquid mixtures has been ob-
tained and analyzed (Section 2.2.2).

2. Using this new pore pressure distribution, the effects of the sediment
particles dilation have been included into the depth-averaged solid
transport equation, leading to a novel formulation for the advective
solid fluxes which accounts for the shear-induced separation of the
solid a liquid phases (Section 2.2.3).

3. The mathematical model for the bedload transport has been reformu-
lated. A new closure relation for the mass exchange between the flow
and the underlying static stratum is proposed from a grain-scale iner-
tial analysis (Section 2.3.2).

4. Additionally, a novel generalized non-capacity model for the bedload
transport rate is proposed and compared with the classical capaci-
ty/equilibrium assumption (Section 2.3.3).
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Chapter 3

Two-dimensional model for
variable-density mud/debris
flows

The main goals of this chapter are:

• To derive a robust and accurate numerical scheme to solve variable-
density flows of water-sediment mixtures including the exchange of
material between the bed and the flow.

• To assess the effects that the shear-induced solid phase dilation phe-
nomenon has on the mobility and the spatial segregation of the solid
phase in rapid mixture flows.

• To compare the computational efficiency of CPU-parallelized and
GPU-based implementations of the numerical model when they are
faced to large-scale and long-term realistic mud/debris flow simula-
tions.

3.1 Governing equations

The depth-averaged 2D model for the variable-density multi-grain mixture
flows over non-uniform erodible beds involves the continuity equations for
the liquid-solid mixture mass (2.8), rewritten here as

∂(ρh)

∂t
+

∂

∂x
(ρhu) +

∂

∂y
(ρhv) =Mb (3.1)

and the conservation laws of the bulk linear momentum along the x− and
y− coordinates, (2.22) and (2.23) respectively, which can be expressed as

∂(ρhu)

∂t
+

∂

∂x
(ρhu2 +

1

2
gnρh

2) +
∂

∂y
(ρhuv) = −gnρh

∂zb
∂x
− τbx (3.2a)

∂(ρhv)

∂t
+

∂

∂x
(ρhuv) +

∂

∂y
(ρhv2 +

1

2
gnρh

2) = −gnρh
∂zb
∂x
− τby (3.2b)

being ρ the depth-averaged bulk density, h the vertical flow depth and (u, v)
the components of the depth-averaged flow velocity vector u, zb the bed
layer elevation, (τbx, τby) the components of the depth-averaged basal resis-
tance vector τb and Mb the net mass exchange between the flow and the
underlying bed layer. It is worth noting that the dispersive terms on the
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righ hand side have been neglected and a simple shear flow has been as-
sumed for the depth-integrated stress terms (see Section 2.1.3). The local
bed-normal projection of the gravity has been used here to integrate the
pressure and volumetric force terms (see Section 2.1.4) with gn = g cos2 ϕb,
being g the gravitational acceleration and ϕb the bed-normal angle respect
to the vertical axis [64].

The solid phase is exprese here in terms of a multi-grain mixture of wa-
ter and p = 1, . . . , N different sediment classes. Using (2.74), the bulk mix-
ture density ρ in the flow column is hence expressed as

ρ = ρw +
N∑
p=1

(ρs,p − ρw)φp (3.3)

where ρw is the pore-water density, and ρs,p and φp are the density and
depth-averaged volumetric concentration of the pth solid phase respec-
tively.

The depth-averaged transport equations (2.107) for the pth sediment
class reads

∂(hφp)

∂t
+

∂

∂x
(huφp + Lx,p) +

∂

∂y
(hvφp + Ly,p) = −(Db − Eb)p (3.4)

where (Lx,p,Ly,p) are the deviatoric fluxes associated to the shear-induced
dilation of the pth sediment class (see Section 2.2.3), which can be expressed
as a function of the pore-fluid pressure excess as

Lx,p = φp
ρwκ

ρµ

(
∂Pe
∂x

+ Ebρwgnh
∂zb
∂x

)
(3.5a)

Ly,p = φp
ρwκ

ρµ

(
∂Pe
∂y

+ Ebρwgnh
∂zb
∂y

)
(3.5b)

where Eb is the basal pore pressure excess parameter and Pe is the integral
of the pore pressure excess throughout the flow column. They can be esti-
mated as

Eb =
−µh

2κρwgn
γ̇ tanψ (3.6a)

Pe =
−µh3

3κ
γ̇ tanψ (3.6b)

being κ the hydraulic permeability of the granular aggregate, µ the pore-
fluid dynamic viscosity, tanψ the shear-induced dilatancy estimated as
in (2.90), and γ̇ = 2|u|/h the depth-averaged macroscopic shear rate for
simple-shear flow.

The shear induced dilatancy tanψ is calculated in this model using the
linear dependency (2.90) proposed by [40, 113] following

tanψ = k1(φ0 − φeq) (3.7)
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being k1 a positive calibration coefficient. The term φ0 =
∑N

p=1 φp is the
bulk solid concentration in the flow column and φeq an equilibrium value
of the solid concentration which implies null dilatancy. For the sake of sim-
plicity, a constant 0.4 ≤ φeq ≤ 0.8 is adopted in this work as a case depen-
dent parameter.

The net bed-flow exchange flux (Db − Eb)p in (3.4) accounts for the bal-
ance between the size-specific volumetric deposition and entrainment rates
(see Section 2.2.4). Therefore, the bulk mass exchange between the flow
and the bed layers, i.e. the termMb on the right hand side of (3.1), can be
expressed as

Mb = − ρb
1− ξ

N∑
p=1

(Db − Eb)p (3.8)

and the conservation equation (2.86) allows to solve the temporal-spatial
evolution of the non-uniform bed layer elevation

N∑
p=1

Fb,p (1− ξ)∂zb
∂t

=
N∑
p=1

(Db − Eb)p (3.9)

being ξ the porosity of the non-uniform bed layer and ρb the corresponding
bed layer bulk density, which is estimated here as

ρb = ρwCbw + (1− ξ)
N∑
p=1

Fb,p ρs,p (3.10)

where Fb,p denotes the fraction of the pth sediment class in the bed layer,
which is considered constant in time and space with

∑N
p=1 Fb,p = 1, and

Cbw is the pore-fluid content in the bed layer.

Figure 3.1: Main variables involved in the variable-density mixture flow over erodi-
ble bed.

Figure 3.1 shows a scheme with the main variables involved in the sys-
tem of equations used for modeling variable-density water-sediment mix-
ture flows over erodible beds. Additionally, some closure definitions are
required to complete the system. The bed porosity (3.11) is estimated here
using the Wu relation for non-uniform deposits [144]

ξ = 0.13 + 0.21
(

0.002 + 103
N∑
p=1

Fb,p ds,p

)−0.21
(3.11)
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being ds,p the characterisctic diameter of the pth sediment class in meters.
The deposition Db,p and erosion Eb,p rates for the pth solid phase are

estimated using

Db,p = αp ωs,p φp(1− φ0)4

Eb,p = αp ωs,p Fb,p
|q∗s,p|
h|u|

(3.12)

where αp is an empirical parameter representing the difference between the
near-bed concentration and the depth-averaged concentration for the pth
solid phase, |q∗s,p| accounts for the modulus of the specific solid transport
throughout the mixture column in capacity regime and ωs,p denotes the
specific settling velocity of the sediment particles in clear water, computed
here using the Zhang & Xie [151] formula as

ωs,p =

[(
13.95

ν

ds,p

)2

+ 1.09
ρs,p − ρw

ρw
g ds,p

]1/2

− 13.95
ν

ds,p
(3.13)

being ν the kinematic viscosity of water. For mud/debris flows in this the-
sis, solid and liquid phases are assumed generally well mixed along the
flow column hence αp = 1 is adopted, and the specific capacity solid flux
|q∗s,p| is calculated using the Wu [144] formula

|q∗s,p|

βT
√

(ρs,p/ρw)gd3
s,p

= 5.3 · 10−3

[(
np
nb

)1.5 θb,p
θc,p
− 1

]2.2

+ 2.62 · 10−5

[(
θw,p
θc,p
− 1

)
|u|
ωs,p

]1.74

(3.14)

being np = 1/21 d
1/6
s,p the Manning roughness parameter corresponding to

grain resistance of the pth class, nb the global Manning roughness parame-
ter, θc,p the critical Shields stress for the incipient motion of the pth sediment
class which must include the hiding/exposure mechanism in non-uniform
beds [32]. The term θb,p = τb/[(ρs,p − ρw)gds,p] is the specific Shields stress
corresponding to the basal resistance, θw,p = τw/[(ρs,p − ρw)gds,p] the spe-
cific Shields stress throughout the wetted perimeter, with τw accounting for
the pore-fluid turbulent shear stress within the mixture column. The pa-
rameter βT is a modification coefficient which is considered equal for all
the solid phases composing the mixture.

The basal shear stress vector in the momentum equations (3.2) is ex-
pressed as

τb = (τbx, τby) = τb nu (3.15)

being τb the basal shear stress modulus and nu the velocity unit vector
(see Section 2.1.3). To close the depth-averaged basal resistance term, the
relations show in Table 3.1 have been considered for this variable-density
mud/debris flow model, with τy [Pa] the cohesive yield strength, µB [Pa·s]
the dynamic viscosity and µP [Pa · s2] the plastic viscosity (m = 2) of the
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material. The frictional yield stress τf [Pa] is calculated using the Coulomb-
type relation

τf =
(
ρgnh− Pb

)
tan δf (3.16)

where Pb = (1 + Eb)ρwgnh [Pa] is the basal pore pressure, being Eb the
dimensionless shear-induced pore pressure excess parameter (3.6a).

Formulation Basal resistance

PT Pure Turbulent τb = ρg
n2
b

h1/3
|u|2

CB Cohesive Bingham 2τ3
b − 3

(
τy + 2µB

|u|
h

)
τ2
b + τ3

y = 0

CT Cohesive Turbulent τb = τy + 24
8 µB

|u|
h + ρg

n2
b

h1/3
|u|2

FD Frictional Dilatant τb = τf + 25
4
µP
h2
|u|2

FP Frictional Plastic 2τ3
b − 3

(
τf + 2µB

|u|
h

)
τ2
b + τ3

f = 0

FT Frictional Turbulent τb = τf + ρg
n2
b

h1/3
|u|2

Table 3.1: Depth-averaged basal resistance formulations for the mud/debris flow
model.

The resulting system is composed by 3 +N + 1 conservation equations
accounting for the mixture flow (3.1)–(3.2a)–(3.2b), the transport in the flow
of the N sediment classes (3.4) and the bed elevation evolution (3.9). Con-
sidering that the bulk density of the fluid-solid mixture is a function of the
total solid concentration, the dimensionless bulk density r can be expressed
by defining a new variable φχ, referred to as buoyant solid concentration

r =
ρ

ρw
= 1 + φχ with: φχ =

N∑
p=1

ρs,p − ρw
ρw

φp (3.17)

Using (3.17), the equations forming the system can be recast as five con-
servation laws and rewritten in vector form as

∂U

∂t
+∇ ·E(U) = Sb(U) + Sτ (U)−∇ · L(U) + Eb(U) (3.18)

where U is the vector of conserved variables

U =
(
rh, rhu, rhv, hφχ, zb

)T (3.19)
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and E(U) =
(
F(U),G(U)

)
are the convective fluxes along the X = (x, y)

horizontal coordinates respectively.

F(U) =


rhu

rhu2 + 1
2gnrh

2

rhuv
huφχ

0

 G(U) =


rhv
rhuv

rhv2 + 1
2gnrh

2

hv φχ

0

 (3.20)

It is worth noting that the dimensionless mixture density r and flow fea-
tures (h, u, v) are coupled in the conserved variables and convective fluxes
on the left hand side of (3.18).

The vector Sb(U) accounts for the momentum source term associated
to the variation of the pressure force on the bed interface, whereas Sτ (U) is
the momentum dissipation due to the basal resistance.

Sb(U) =


0

−gnrh∂zb∂x
−gnrh∂zb∂y

0
0

 Sτ (U) =


0

− τb
ρw
nux

− τb
ρw
nuy

0
0

 (3.21)

The term ∇ · L(U) involves the deviatoric sediment fluxes caused by
the shear-induced dilation of the solid phase and only affects to the fourh
equation. The bulk deviatoric flux L(U) =

(
Lx(U),Ly(U)

)
reads

Lx(U) =



0
0
0

N∑
p=1

ρs,p−ρw
ρw

Lx,p

0

 Ly(U) =



0
0
0

N∑
p=1

ρs,p−ρw
ρw

Ly,p

0

 (3.22)

The source term Eb(U) accounts for the bulk mass exchange between
the mixture flow and the bed layer.

Eb(U) =



− ρb
ρw(1−ξ)

N∑
p=1

(Db − Eb)p

0
0

−
N∑
p=1

ρs,p−ρw
ρw

(Db − Eb)p

1
1−ξ

N∑
p=1

(Db − Eb)p


(3.23)

This model is suitable for highly transient sediment-laden flows with
noticeable density gradients, as occurs is densely-packed mud/debris
flows over erodible steep beds. It will be referred to as vdMD (variable-
density mud/debris) model from now on.
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3.2 Finite Volume method for variable-density flows
with source terms

This section is devoted to the derivation of a new Finite Volume (FV) nu-
merical scheme for 2D variable-density multi-grain mixture flow consid-
ering net exchange mass flux between the mixture and the bed layer and
dilation of the solid phase. System (3.18) is time dependent, non linear and
contains mass and momentum source terms. Under the hypothesis of dom-
inant advection it can be classified as belonging to the family of hyperbolic
systems. In order to obtain a numerical solution, the spatial domain is di-
vided in computational cells using a fixed-in-time mesh and system (3.18)
is integrated in each cell Ωi. Applying the Gauss theorem leads to

d

dt

∫
Ωi

U dΩ +

∮
∂Ωi

E(U) · n dl =

∫
Ωi

Sb(U) dΩ +

∫
Ωi

Sτ (U) dΩ

−
∮
∂Ωi

L(U) · n dl +

∫
Ωi

Eb(U) dΩ

(3.24)

being E(U) · n the normal flux and n = (nx, ny) the outward unit normal
vector along the i cell boundary ∂Ωi. Assuming a piecewise uniform repre-
sentation of the conserved variables U at the cell Ωi, the integrated system
(3.24) can be expressed as

d

dt

∫
Ωi

U dΩ +
NE∑
k=1

(E · n)k lk =

∫
Ωi

Sb(U) dΩ +

∫
Ωi

Sτ (U) dΩ+

−
NE∑
k=1

(L · n)k lk +

∫
Ωi

Eb(U) dΩ

(3.25)

beingNE the number of edges for the i cell, (E · n)k the value of the normal
flux through the kth edge, lk the length of the edge (Figure 3.2).

Figure 3.2: Computational cells in (left) orthogonal and (right) triangular meshes.
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The left hand side of (3.18), also called homogeneous part, satisfies the
rotation invariant property [44]

∇ ·E(U) = R−1 ∇̂ ·E(RU) (3.26)

being ∇̂ = R∇ and R a rotation matrix which projects the global orthogo-
nal coordinates X = (x, y) into the local framework X̂ = RX = (x̂, ŷ) of the
kth cell edge (Figure 3.3). Assuming that (x̂, ŷ) correspond to the normal
and the tangential directions to the edge respectively, the rotation matrix
Rk and its inverse R−1

k are defined as

Rk =


1 0 0 0 0
0 nx ny 0 0
0 −ny nx 0 0
0 0 0 1 0
0 0 0 0 1


k

R−1
k =


1 0 0 0 0
0 nx −ny 0 0
0 ny nx 0 0
0 0 0 1 0
0 0 0 0 1


k

(3.27)
and the convective flux term in (3.25) satisfies the condition [138]

(E · n)k =
[
F(U)nx + G(U)ny

]
k

= R−1
k F(RkU) (3.28)

Using , the homogeneous left hand side of (3.25) can be expressed in the
local framework X̂ = (x̂, ŷ) as

d

dt

∫
Ωi

RkU dΩ +

NE∑
k=1

F(RkU) lk (3.29)

where F(RkU) denotes the homogeneous normal fluxes throughout the kth
cell edges expressed in the local framework.

Figure 3.3: Local coordinates at the kth cell edge.

The set of local conserved variables Û ≡ RkU at the cell edge is defined
as

Û ≡ RkU =
(
rh, rh û, rh v̂, hφχ, zb

)T (3.30)

where û = unx + vny and v̂ = −uny + vnx are the components of the flow
velocity û in the local framework, hence û = Rku, and the homogeneous
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flux vector F(Û)k ≡ F(RkU) is expressed as

F(Û)k ≡ F(RkU) =


rhû

rhû2 + 1
2gnrh

2

rhûv̂
hû φχ

0

 (3.31)

The value of the fluxes through the kth cell edge can be augmented
incorporating the non-conservative contribution of the momentum source
terms Sb and Sτ into the homogeneous normal fluxes F(Û)k [103]. The
bed-pressure term Sb is unconditionally invariant under rotation [21] and
can be included within the local framework (x̂, ŷ) using the spatial dis-
cretization ∫

Ωi

Sb(U) dΩ =

NE∑
k=1

R−1
k H(Û)k lk (3.32)

where H(Û)k = (0, H, 0, 0, 0)T , being

H = −gnrh∆zb (3.33)

the integrated value of the bed pressure at the kth cell edge [101] expressed
in the local framework (see Section 3.3.1).

The spatial discretization of the basal resistance integral is open to dif-
ferent possibilities since, contrarily to bed-pressure momentum source con-
tribution, the maintenance of the rotation invariant property is not straight-
forward for the 2D shear stresses. In Section 3.2.1, two different strategies
for the upwind discretization of the 2D basal resistance term at the cell
edges are presented. Summarizing here, both procedures allow to rewrite
the cell-centered integral of the the basal shear stress as a sum of edge-
contributions ∫

Ωi

Sτ (U) dΩ =
NE∑
k=1

R−1
k T(Û)k lk (3.34)

where T(Û)k is the integrated basal resistance throughout the kth cell edge,
expressed in the local framework (see Section 3.2.1).

Using (3.32) and (3.34), the local homogenous equation (3.29) can be
augmented with the momentum source contributions as

d

dt

∫
Ωi

RkU dΩ +
NE∑
k=1

F(Û)k lk =
NE∑
k=1

(
H(Û) + T(Û)

)
k
lk (3.35)

allowing to define an augmented numerical flux F(Û)
↓
k for the kth cell edge

defined as

F(Û)
↓
k =

(
F(Û)−H(Û)−T(Û)

)
k

(3.36)
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As the homogeneous convective fluxes, the deviatoric flux associated to
the dilation of the solid phase L(U) (3.22) also satisfies the rotation invari-
ant property

∇ · L(U) = R−1
k ∇̂ · L̂(RkU) (3.37)

being ∇̂ = Rk∇ and

L̂(RkU) =
(
L̂x(Û), L̂y(Û)

)
≡ L(RkX,RkU) (3.38)

Hence, the property (3.2) allows to express the solid phase dilation con-
tribution in (3.25) as

NE∑
k=1

(L · n)k lk =

NE∑
k=1

R−1
k L̂x(Û)k lk (3.39)

with

L̂x(Û)k =



0
0
0

N∑
p=1

ρs,p−ρw
ρw

L̂x,p

0

 (3.40a)

L̂x,p = φp
ρw κ

ρµ

(
∂Pe
∂x̂

+ Ebρwgnh
∂zb
∂x̂

)
(3.40b)

The deviatoric dilation flux can be included into the local framework
problem (3.35) as

d

dt

∫
Ωi

RkU dΩ = −
NE∑
k=1

(
F(Û)↓ + L̂x(Û)

)
k
lk (3.41)

where F(Û)↓k is the the augmented flux including the momentum source
terms (3.36) at the kth cell edge.

Furthermore, the net exchange flux term Eb(U) accounts for a vertical
mass exchange between the bed and the flow layers and hence its nature is
different from the other source terms on the right hand side of (3.25). For
the sake of simplicity, it is discretized in space as∫

Ωi

Eb(U) dΩ ≈ Ai Eb(Ui) = Bi (3.42)

where Ai id the discrete cell area.
Restoring (3.41) to the global coordinates X = (x, y) and replacing

(3.42), the integrated system (3.25) can be expressed as

d

dt

∫
Ωi

U dΩ = −
NE∑
k=1

R−1
k

(
F(Û)↓ + L̂x(Û)

)
k
lk + Bi (3.43)
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U at the i cell for the time t = tn

Un
i =

1

Ai

∫
Ωi

U(x, y, tn) dΩ (3.44)

where Ai is the cell area, Assuming a piecewise uniform representation of
the conserved variables U at the i cell for the time t = tn

Un
i =

1

Ai

∫
Ωi

U(x, y, tn) dΩ (3.45)

and using explicit temporal integration for the mass and momentum source
terms, the updating formulation for the conserved variables U at the each
cell is expressed as

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

R−1
k F↓k lk +

∆t

Ai
Bn
i (3.46)

being ∆t = tn+1 − tn the time step and

F↓k = F(Ûn
i , Û

n
j )↓k + L̂x(Ûn

i , Û
n
j )k (3.47a)

Bn
i = Ai Eb(Un

i ) (3.47b)

with the subscripts i and j denoting the left and right cells at the kth cell
edge, respectively.

Hence the resolution procedure needs to compute the numerical fluxes
F↓k at the cell edges. In the next section, we propose a new approximated
Riemann solver for variable-density flows based on the augmented Roe
solver (A-Roe) approach [103, 127, 138] for the formulation of those fluxes.

3.2.1 Edge-discretization of the basal resistance term

The numerical treatment of the basal shear stress source term has received
less attention in literature than the integration of the bed-pressure term but
involves a higher complexity, specially when dealing with non-Newtonian
flows. Most of the proposed schemes for non-Newtonian flows use cen-
tered integration techniques for the computation of the basal resistance at
the spatial cells [2, 12, 42, 81, 111], hence requiring implicit [148] or semi-
implicit [147] resolution to gain stability. In this Section, and following
the foundations proposed by Murillo & García-Navarro [102], two differ-
ent novel strategies for the discretization of the basal resistance source term
(3.34) are proposed, both allowing the explicit computation at the cell edges
of an basal resistance edge-contribution.

Integral approach for the edge-contribution

The contribution of the basal resistance to the momentum equation in the
integrated problem (3.25) is divided in subcell contributions associated to
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the cell edges as ∫
Ωi

Sτ (U) dΩ =

NE∑
k=1

R−1
k

∫
Ωk,i

Rk Sτ (U) dΩ (3.48)

where Ωk,i is the area of the i cell associated to the kth cell edge, satisfying∑NE
k=1 Ωk,i = Ωi. Assuming a piecewise representation of the conserved

variables at the cells, the integral of the basal resistance associated to each
edge can be expressed as∫

Ωk,i

Rk Sτ (U) dΩ = Rk Sτ (U)
1

2
dn,i lk (3.49)

being dn,i the normal distance from the center of the i cell to the edge. The
piecewise basal resistance vector projected into the local framework can be
rewritten as

Rk Sτ (U) = Sτ (Rk U) =


0

− τb
ρw

nu · n
− τb
ρw

nu · t
0
0

 (3.50)

where n = (nx, ny) and t = (−ny, nx) are the normal and tangential unit
vectors to the kth cell edge respectively. Replacing (3.49) and (3.50) into
(3.48) leads to the expression

∫
Ωi

Sτ (U) dΩ =

NE∑
k=1

R−1
k Sτ (Û)

1

2
dn,i lk =

NE∑
k=1

R−1
k T(Û)k lk (3.51)

used in (3.34) for the edge-discretization of the basal resistance term, with

T(Û)k = Sτ (Û)
1

2
dn,i (3.52)

Differential approach for the edge-contribution

The differential strategy is based on treating the friction source term as a
non-conservative momentum flux across the cell boundary. Assuming a
basal resistance flux matrix Q(U,D), depending on both the conserved
variables U and the integration-distance vector D = (0,∆x,∆y, 0, 0)T ,
which satisfies the condition

Sτ (U) = ∇ ·Q(U,D) (3.53)

the Gauss theorem can be used to rewrite the basal resistance contribution
at the cell as

∫
Ωi

Sτ (U) dΩ =

∫
Ωi

∇ ·Q(U,D) dΩ =

∮
∂Ωi

Q(U,D) · n dl (3.54)
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Therefore, a valid expression for the resistance flux matrix Q(U,D) is

Q(U,D) =
(

Qx(U,D) Qy(U,D)
)

=

=


0 0

− τb
ρw

nu · dc 0

0 − τb
ρw

nu · dc

0 0
0 0

 (3.55)

with nu = (nux, nuy) and dc = (∆x,∆y). Furthermore, (3.55) is invariant
under rotation

∇ ·Q(U,D) = R−1
k ∇̂ ·Q(RkU,RkD) (3.56)

with ∇̂ = Rk∇, allowing to express

Q(U,D) · n = R−1
k Qx(RkU,RkD) (3.57)

It is worth noting that, in this case, Qx(RkU,RkD) ≡ Qx(Û, D̂) =
Qx(U,D) due to the rotation invariance of the scalar product nu · dc [44].

Replacing (3.57) into (3.54) leads to the expression

∫
Ωi

Sτ (U) dΩ =
NE∑
k=1

R−1
k Qx(Û, D̂)k lk =

NE∑
k=1

R−1
k T(Û)k lk (3.58)

used in (3.34) for the edge-discretization of the basal resistance term, with

T(Û)k = Qx(Û, D̂)k =


0

− τb
ρw

nu · dc

0
0
0


k

(3.59)

3.2.2 Riemann solver for variable-density flows

The augmented numerical flux F↓k in the local framework X̂ = (x̂, ŷ) can
be computed solving the local equation (3.41) for the kth edge, separating
the left i cell and the right j cell. An approximate solution of (3.41) can
be obtained using a constant coefficient linear Riemann problem (RP) [138]
defined as

∂Û

∂t
+ J̃k

∂Û

∂x̂
= Ŝb + Ŝτ −

∂L̂x

∂x̂

Û(x̂, 0) =

{
Ûi = RkU

n
i if x̂ < 0

Ûj = RkU
n
j if x̂ > 0

(3.60)

where J̃k = J̃k(Ûi, Ûj) is a constant coefficient matrix which locally ap-
proximates the Jacobian of the non-linear RP, whereas Ŝb and Ŝτ are the
bed-pressure and basal resistance source terms in the local framework.
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Integrating the homogeneous left hand side of (3.60) over the discrete
space x̂i ≤ x̂ ≤ x̂j leads to the following constraint involving conservation
across discontinuities

δFk = J̃k δÛk (3.61)

where δÛk = Ûj−Ûi and δFk = F(Ûj)−F(Ûi) are the conserved variables
and the homogeneous fluxes increment at the kth edge, respectively.

It is worth noting that in (3.31), the convective flux for the bed evolu-
tion equation is null and that the mixture mass and momentum convective
fluxes do not depend on the bed level variable zb. Moreover, the influence
of the bed-pressure, basal resistance and deviatoric dilation flux terms on
the bed elevation does not exist. Hence, the bed evolution equation can be
discarded in (3.60) and the numerical flux for the bed elevation updating is
F↓{5}k = 0.

Using the Roe strategy [138], the approximate Jacobian J̃k reduces to a
4× 4 constant matrix defined as

J̃k =


0 1 0 0

1
2gnh̃(1 + r̃)− ũ2 2ũ 0 −1

2gnh̃r̃
−ũ ṽ ṽ ũ 0

−ũ φ̃χ
/
r̃ φ̃χ

/
r̃ 0 ũ


k

(3.62)

which satisfies (3.61) with the wall-averaged quantities

r̃ =
rihi + rjhj
hi + hj

(3.63a)

h̃ =
hi + hj

2
(3.63b)

ũ =
ûi
√
rihi + ûj

√
rjhj√

rihi +
√
rjhj

(3.63c)

ṽ =
v̂i
√
rihi + v̂j

√
rjhj√

rihi +
√
rjhj

(3.63d)

φ̃χ = r̃
φχi hi

√
rjhj + φχj hj

√
rihi

rihi
√
rjhj + rjhj

√
rihi

(3.63e)

The approximate matrix J̃k (3.62) is diagonalizable with four real eigen-
values

λ̃1,k = (ũ− c̃)k λ̃2,k = ũk λ̃3,k = (ũ+ c̃)k λ̃4,k = ũk (3.64)

where the averaged celerity c̃k is defined as

c̃k =

(√
1

2
gnh̃

(
1 + r̃ − φ̃χ

))
k

(3.65)
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Therefore, using the associated orthogonal basis of eigenvectors (ẽm)k
of J̃k, it is possible to build a matrix P̃k = (ẽ1, ẽ2, ẽ3, ẽ4)k

P̃k =


1 0 1 r̃

λ̃1 0 λ̃3 r̃ ũ
ṽ c̃ ṽ r̃ ṽ

φ̃χ
/
r̃ 0 φ̃χ

/
r̃ 1 + r̃


k

(3.66)

which satisfies

J̃k = (P̃Λ̃P̃−1)k Λ̃k =

 λ̃1 0
. . .

0 λ̃4


k

(3.67)

being P̃−1
k the inverse matrix of P̃k.

Following [138], the conserved variable gradient δÛk is projected on the
eigenvector basis in order to obtain the wave strength vectors Ãk as

Ãk = (α̃1, . . . , α̃4)Tk = P̃−1k δÛk −→ δÛk =
4∑

m=1

(α̃mẽm)k (3.68)

α̃1 =

[
(1 + r̃)c̃+ (1 + r̃ − φ̃χ)ũ

]
δ(rh)− (1 + r̃ − φ̃χ) δ(rhû)− r̃c̃ δ(hφχ)

2(1 + r̃ − φ̃χ)c̃

α̃2 =
δ(rhv̂)− ṽ δ(rh)

c̃

α̃3 =

[
(1 + r̃)c̃− (1 + r̃ − φ̃χ)ũ

]
δ(rh) + (1 + r̃ − φ̃χ) δ(rhû)− r̃c̃ δ(hφχ)

2(1 + r̃ − φ̃χ)c̃

α̃4 =
δ(hφχ)− φ̃χ/r̃ δ(rh)

1 + r̃ − φ̃χ

The bed-pressure and basal resistance momentun source terms on the
right hand side of (3.60) are integrated over the discrete space x̂i ≤ x̂ ≤ x̂j
as

x̂j∫
x̂i

Ŝb dx̂ = H(Ûi, Ûj) = Hk = (0, H2, H3, 0)T (3.69a)

x̂j∫
x̂i

Ŝτ dx̂ = T(Ûi, Ûj) = Tk = (0, T2, T3, 0)T (3.69b)

It is worth mentioning that the condition (3.69b), with Tk as in (3.52)
for the integral approach or (3.59) for the differential approach, must be
satisfied to guarantee the rotation invariance of the edge-discretized basal
resistance contribution. This is essential for avoiding the mesh dependence
introduced by other edge-discretization methods [102] for non-Newtonian
flows.
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Following [103], these momentum edge-contributions can be projected
on the eigenvector basis in order to obtain the source strength vectors as

(B̃b)k = (β̃b1, . . . , β̃b4)Tk = P̃−1k Hk −→ Hk =

4∑
m=1

(β̃bmẽm)k (3.70a)

(B̃τ )k = (β̃τ1, . . . , β̃τ4)Tk = P̃−1k Tk −→ Tk =
4∑

m=1

(β̃τmẽm)k (3.70b)

and the total source strength reads

B̃k = (β̃1, . . . , β̃4)Tk = (B̃b + B̃τ )k (3.71)

β̃1 =
−(H2 + T2)

2 c̃

β̃2 =
H3 + T3

c̃

β̃3 =
H2 + T2

2 c̃

β̃4 = 0

Note that this procedure allows to include the upwind contribution of
the real 2D bed-pressure and basal resistance source terms into the plane
RP at the cell edges.

One result of Roe’s linearization is that the approximate Riemann so-
lution consists of only discontinuities and hence Û(x̂, t) is constructed as
a sum of jumps or shocks. The approximated solution Û(x̂, t) is governed
by the celerities in Λ̃k and consists of four regions connected by 5 waves,
one of them a contact wave with null celerity accounting for the integrated
source term at x̂ = 0. Figures 3.4 and 3.5 show the wave strecture of the
approximate solution for subcritical and supercritical flow regimes respec-
tively. The intermediate states (blue regions) of the approximate solution at
the left and right side of the kth edge, Û−i and Û+

j respectively, are defined
as

Figure 3.4: Approximate solution for the local plane RP at the kth cell edge for sub-
critical regime.
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Figure 3.5: Approximate solution for the local plane RP at the kth cell edge for su-
percritical regime.

Û−i = lim
x̂→0−

Û(x̂, t) Û+
j = lim

x̂→0+
Û(x̂, t) (3.72)

Using (3.68) and (3.71), the reconstruction of the approximated solution
Û(x̂, t) at the left and right sides of the cell edge, Û−i and Û+

j respectively,
can be expressed as

Û−i = Ûi +
∑
m−

(γ̃mẽm)k

Û+
j = Ûj −

∑
m+

(γ̃mẽm)k
(3.73)

where γ̃m = α̃m − β̃m/λ̃m and the subscript m− and m+ under the sums
indicate waves travelling inward and outward the i cell [103]. Note that at
x̂ = 0 the solution includes a steady jump between the intermediate states
Û−i and Û+

j [78, 128] as a consequence of including the momentum source
terms into the local plane RP. This steady jump can be expressed as

Û+
j − Û−i =

4∑
m=1

( β̃m
λ̃m

ẽm

)
k

(3.74)

According to the Godunov-type method, it is sufficient to provide the
approximate solution at the intercell position x̂ = 0 in order to obtain the
augmented numerical fluxes F↓k throughout the edge (3.36). The numerical
flux at the left and right side of the kth cell edge can be estimated using an
approximate flux function F̂(x̂, t) as

F↓k(x̂→ 0−) = lim
x̂→0−

F̂(x̂, t) ≡ F↓−k (3.75a)

F↓k(x̂→ 0+) = lim
x̂→0+

F̂(x̂, t) ≡ F↓+k (3.75b)

Therefore, the approximated solution for the flux function F(x̂, t) can
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also be constructed by defining appropriate Rankine-Hugoniot (RH) rela-
tions across each moving wave. The solution of the approximate flux func-
tion provides the definition of the numerical fluxes at the left and right
sides, F↓−k and F↓+k respectively, of the kth cell edge

F↓−k = F(Ûi) +
∑
m−

(λ̃mγ̃mẽm)k

F↓+k = F(Ûj)−
∑
m+

(λ̃mγ̃mẽm)k
(3.76)

where the subscript m− and m+ under the sums indicate waves travelling
inward and outward the i cell.

Note that, when momentum source terms are incorporated into the Rie-
mann solver, it is no longer possible to define a unique value of the numeri-
cal flux at both sides of the cell edge. The relation between the approximate
fluxes F↓−k and F↓+k can be analyzed using the Rankine-Hugoniot (RH) re-
lation at x̂ = 0, which includes the steady contact wave accounting for the
momentum sources. The corresponding flux jump is given by

F↓+k − F↓−k =
4∑

m=1

(β̃mẽm)k = Hk + Tk (3.77)

The numerical flux vector F↓k (3.47) also incorporates the contribution
of the solid phase dilation at the cell edges L̂x(Ûi, Ûj)k ≡ L̂↓k (3.40). This
dilation contribution to the numerical solid flux at the cell edge is expressed
as

L̂↓k =
(

0, 0, 0, L̃k
)T (3.78)

being L̃k is the deviatoric solid flux related to dilation effects at the kth cell
edge.

Hence the numerical flux used in the updating formula (3.46) for the kth
edge is written as

F↓{1,...,4}k = F↓−k + L̂↓k

F↓{5}k = 0
(3.79)

Finally, in order to ensure the stability of the explicitly computed nu-
merical solution, the time step should be small enough to avoid the interac-
tion of waves from neighbouring Riemann problems. The dynamical lim-
itation of the time step at each k edge is addressed here assuming that the
fastest wave celerity corresponds to the absolute maximum of the eigenval-
ues of J̃k (3.62) as

∆tk =
min(Ai, Aj)

lk

[
max(|λ̃1|, |̃λ3|)

]
k

(3.80)

and the global time step ∆t = tn+1 − tn is limited using the Courant-
Friedrichs-Lewy (CFL) condition

∆t = CFL min
k

(∆tk) (3.81)
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with CFL < 0.5 for square orthogonal meshes and CFL < 1 for the trian-
gular mesh topology and 1D-mesh cases.

3.2.3 Decoupling of liquid and solid phases

The bulk conserved variables are updated to Un+1
i using (3.46) which incor-

porates explicitly the upwind contribution of the convective transport at the
cell edges F↓k (3.79) and the centered contribution of the net exchange be-
tween the flow and the bed layer Bi (3.47b). Now it is necessary to compute
separately the flow depth h and mixture density ρ at the next time tn+1.

From the values of the first and fourth bulk conserved variables,
U
{1}n+1
i and U

{4}n+1
i respectively, the updated values of depth and den-

sity can be directly calculated as

hn+1
i = U

{1}n+1
i −U

{4}n+1
i

ρn+1
i = ρw

U
{1}n+1
i

hn+1
i

(3.82)

Furthermore, in order to ensure solid mass conservation when dealing
with multi-grain mixture flows, the volume fraction of each pth sediment
class in the flow column (hφp)i must be updated separately as follows

(hφp)
n+1
i = (hφp)

n
i −

∆t

Ai

NE∑
k=1

(F sp )↓k lk −∆t (Db − Eb)np,i (3.83)

where (F sp )↓k is the numerical solid flux at the kth edge for each pth sediment
class composing the solid phase in the mixture and (Db−Eb)np,i is the class-
specific net exchange at the i cell between the flow and the underlying bed.

Then the volumetric concentration of the pth sediment class at the next
time step t = tn+1 is computed as

(φp)
n+1
i =

(hφp)
n+1
i

hn+1
i

(3.84)

3.3 Explicit integration of momentum source terms

The correct integration of the momentum source terms Hk (3.69a) and Tk

(3.69b) for the local plane RP associated to the kth cell edge ensures the
well-balanced property of the augmented Riemann solver [104]. This well-
balanced character ensures equilibrium in quiescent and steady states, as
well as avoids numerical oscillations in the solution when large momentum
sources appear, especially associated to the non-Newtonian basal resistance
[13, 106].

3.3.1 Well-balanced bed-pressure contribution

Following (3.32), the bed-pressure contribution in the local plane RP for the
kth cell edge Hk (3.69a) is discretized as

Hk =
(

0, H̃k, 0, 0
)T (3.85)
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being H̃k a suitable edge-averaged value accounting for the integrated bed-
pressure. In quiescent conditions ûi = ûj = 0 and assuming frictionless
flow, the momentum equation along the x̂−coordinate in the discrete local
RP (3.60) edge reduces to

1

2
gn(rjh

2
j − rih2

i ) = H̃k (3.86)

Under these conditions, there exist two different equilibrium configura-
tions which must be maintained [77, 88]. First, considering uniform density
ri = rj = r̃k, the flat free surface condition must be guaranteed

(∆zb + ∆h)k = 0 (3.87)

and second, considering uniform flow depth hi = hj = h̃k, the discrete
density jump must satisfy

(∆r)k = −2
r̃k

h̃k
(∆zb)k (3.88)

Imposing (3.87) and (3.88) into (3.86) leads to express the well-balanced
value of the integrated bed-pressure contribution as

H̃k = −gnr̃k h̃k (∆zb)k (3.89)

with r̃k and h̃k as defined in (3.63). Hence, the source strengths linked to
the bed-pressure contribution read

β̃b1 =
−H̃k

2 c̃k

β̃b2 = 0

β̃b3 =
H̃k

2 c̃k

β̃b4 = 0

Test 3.3.1.A: Quiescent equilibrium states with variable density

This idealized benchmark case with exact solution was initially pro-
posed by Leighton et al. [77] for ensuring the well-balanced character of
compressible shallow-flows in the presence of bed level variations and
adapted by Martínez-Aranda et al. [88] for variable-density water-solid
mixture flows. For a pure one-dimensional flow under quiescent equi-
librium (null velocity), frictionless conditions and null net exchange be-
tween the bed and the flow, the temporal derivatives of both the mixture
and the solid phase mass reduce to zero and the 1D momentum equation
becomes

1

2

d(rh2)

dx
= −rhdzb

dx
(3.90)
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which can be reordered as

h

r

dr

dx
+ 2

dh

dx
= −2

dzb
dx

(3.91)

In the generic solution of (3.91), density and flow depth are both variable
in space. Nonetheless, there exist two particular solutions interesting for
numerical models validation and easy to compute exactly: a) a variable-
depth solution with constant density and b) a variable-density solution
with constant depth. Following [77], here the bed level profile is defined
as

zb(x) = A

[
1− cos

2πx

L

]
(3.92)

being A the amplitude and L the length of the idealized 1D channel.
The depth-variable equilibrium equation leads to following conditions
for the suspended volumetric concentration and flow depth

φ(x) =
r0 − 1

χ
h(x) = h0 −A

[
1− cos

2πx

L

]
(3.93)

whereas the density-variable solution can be expressed as

φ(x) =
1

χ

(
r0 exp

[
2A

h0
cos

2πx

L

]
− 1

)
h(x) = h0 (3.94)

being r0 and h0 the reference values for the normalized mixture density
and the flow depth, respectively. The relation between the normalized
density r of the mixture and the solid concentration φ is given by r =
1 + χφ, being χ the normalized bouyant density of the solids.
In order to demonstrate the well-balanced charater of the proposed bed-
pressure upwind integration, a channel of L = 100m is discretized using
a 1D mesh of square cells with ∆x = 0.1m. Values A = 0.1m, h0 = 1m
and r0 = 1.8 are set, considering a unique sediment class with χ = 1.65.
The exact depth-variable and density-variable solutions are imposed as
initial conditions for the flow depth and the suspended concentrations.
The exhange flux between flow and the bed layer is neglected. The CFL
is 1.0 and the final simulation time is 1000 s.
Figures 3.6 and 3.7 show the comparison of the exact depth-variable and
density-variable solutions, respectively, with the corresponding numeri-
cal results at t = 1000 s. The depth and concentrations flow do not vary
along the simulation time for both exact solution cases. The exact quies-
cent equilibrium of the numerical solution is shown by the null velocity
values computed along the whole domain at t = 1000 s for both cases
(see Figures 3.6–right and 3.7–right). This demonstrates the well-balance
character of the proposed scheme for the simulation of variable-density
shallow-flows involving topography variations.
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Figure 3.6: Test 3.3.1.A – Exact variable-depth quiescent equilibrium and simu-
lation results at t = 1000 s: (left) flow depth and solid concentration and (right)

flow velocity.

Figure 3.7: Test 3.3.1.A – Exact variable-density quiescent equilibrium and simu-
lation results at t = 1000 s: (left) flow depth and solid concentration and (right)

flow velocity.

3.3.2 P-correction for the bed-pressure contribution

Despite the bed-pressure integration (3.89) ensures the balance of momen-
tum sources and convective fluxes at wet-wet cell edges, unbalanced inter-
mediate states of the approximate Riemann solution can appear at wet-dry
edges. These unbalanced states may lead to unphysical values of the cell-
averaged mixture mass and require a numerical fix. To illustrate this prob-
lematic, we considered the wet-dry quiescent equilibrium state at the kth
cell edge with

hi 6= 0 hj = 0
ûi = 0 ûj = 0

(3.95)
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Considering these wet-dry condition, the wall-averaged quantities take
the values

r̃k = ri, h̃k = hi/2, ũk = 0, ṽk = vi, φ̃χk = φχi (3.96)

From now on, the subscript k is suppressed for the sake of clarity. The
wave strengths for the linearised RP are

α̃1 = −rihi/2, α̃2 = 0, α̃3 = −rihi/2, α̃4 = 0 (3.97)

The homogeneous intermediate state for the mixture mass (rh)? is constant
throughout the edge and always positive. It can be calculated as

(rh)? = rihi + α̃1 = rjhj − α̃3 =
rihi

2
(3.98)

and hence the augmented intermediate states for the mixture mass at the
left and right side of the edge, (rh)−i and (rh)+

j respectively, read

(rh)−i = (rh)? − β̃b1/λ̃1 =
1

2
(rihi + ri∆zb) (3.99a)

(rh)+
j = (rh)? + β̃b3/λ̃3 =

1

2
(rihi − ri∆zb) (3.99b)

On the one hand, considering the quiescent condition (3.95) with ∆zb >
0, the intermediate state (rh)−i is always positive but (rh)+

j is negative for
∆zb > hi (red region in Figure 3.8–left), leading to unphysical negative
values of the cell-averaged mixture mass in the right dry j cell at the next
time step.

Figure 3.8: Quiescent intermediate states in wet-dry edges: (left) positive bed slope
case and (right) negative bed slope case.

On the other hand, assuming the quiescent wet-dry condition (3.95)
with (∆zb) < 0 causes always positive values at the right dry cell. Nev-
ertheless, the intermediate state (rh)−i is negative for |∆zb| > hi (see red re-
gion in Figure 3.8–right) and, hence, may cause unphysical negative values
of the cell-averaged mixture mass at the next time step if the initial water in
the i cell is small enough.

The non-quiescent conditions ûi 6= 0 in wet-dry edges can even lead to
more noticeable negative intermediate states. Furthermore, wet-wet edges
can also suffer from these positivity problems in the inner states of the
mixture mass approximate solution when the momentum sources are large
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enough. In order to prevent the unphysical values of the cell-averaged mix-
ture mass under any kind of dynamic conditions and bed-pressure momen-
tum source terms, a numerical fix for ensuring the positivity of the interme-
diate states in the approximate RP solution, called P-correction from now
on, is proposed in this thesis.

Considering the approximated solution reconstruction depicted in Fig-
ure 3.9 for the mixture mass at the kth cell edge under subcritical flow
regime, the intermediate state at the left side (rh)−i of the edge is expressed
as

Figure 3.9: Inner states for the mixture mass solution in edges with right-direction
subcritical flow.

(rh)−i = (rh)? − β̃b1

λ̃1

(3.100)

being

(rh)? = rihi + α̃1 = rjhj − α̃3 − α̃4r̃ (3.101)

the homogeneous intermediate state for the mixture mass at the edge re-
gion. Therefore, imposing positivity (rh)−i ≥ 0 leads to an upper-bound for
the integrated value of the bed-pressure contribution as

H̃k ≤ 2c̃ |λ̃1| (rh)? (3.102)

The cell-averaged value of the mixture mass at the right side of the kth
edge involves two different intermediate states of the approximate solu-
tion, (rh)+

j and (rh)++
j . In order to limit the bed-pressure contribution, it is

possible to define an averaged intermediate state for the homogeneous RP
at the right cell (rh)?j as

(rh)?j = rjhj − α̃3 −
λ̃4

λ̃3

α̃4r̃ (3.103)

and hence the averaged augmented intermediate state at the right side
(green region in Figure 3.9) reads

(rh)+
j = (rh)?j +

β̃b3

λ̃3

(3.104)
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Then, impossing positivity (rh)+
j ≥ 0 allows to determine the following

lower-bound for the bed pressure contribution as

H̃k ≥ −2c̃ λ̃3 (rh)?j (3.105)

which avoids negative cell-averaged values of the mixture mass at the next
time tn+1 = t+ ∆t.

In supercritical flow regime, the updated cell-averaged value of the mix-
ture mass does not depend directly on the bed-pressure contribution but
exclusively on the convective fluxes increment at the cell edge. However,
ensuring positive intermediate states of the approximate solution is possi-
ble by separating the RP at the cell edge into two zones: one from the edge
to the slower wave λ̃1 and other from that to the faster wave λ̃3 (see Figure
3.10). On one hand, the intermediate state (rh)+

j is achieved using the RH
condition throughout the contact wave at x̂ = 0 (3.74) as

Figure 3.10: Inner states for the mixture mass solution in edges with right-direction
supercritical flow.

(rh)+
j = (rh)i +

( β̃b1
λ̃1

+
β̃b3

λ̃3

)
(3.106)

and imposing positivity (rh)+
j ≥ 0 leads to an upper-bound for integrated

value of the bed-pressure contribution as

H̃k ≤ λ̃1 λ̃3 (rh)i (3.107)

On the other hand, the mean intermediate state (rh)++
j between the

waves λ̃1 and λ̃3 (green region in Figure 3.10) is obtained averaging (rh)++
j

and (rh)+++
j , and can be expressed as

(rh)++
j = (rh)?j +

β̃b3

λ̃3

(3.108)

with (rh)?j as in (3.103) and, imposing positivity (rh)++
j ≥ 0, allows to de-

termine a lower-bound for the bed-pressure contribution in supercritical
edges as

H̃k ≥ −2c̃ λ̃3 (rh)?j (3.109)
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Table 3.2 summarizes the P-correction procedure for the bed-pressure
momentum contribution H̃k in subcritical and supercritical flow edges. It
is worth noting that the above procedure is derived for edges with right-
direction flow ũk ≥ 0 but it can be straightforwardly extended to left-
direction flow ũk < 0.

Bound type Sucritical edge Supercritical edge

ũk < c̃k ũk > c̃k

Upper-bound H̃k ≤ 2c̃ |λ̃1| (rh)? H̃k ≤ λ̃1 λ̃3 (rh)i

Lower-bound H̃k ≥ −2c̃ λ̃3 (rh)?j H̃k ≥ −2c̃ λ̃3 (rh)?j

with:

(rh)? = rihi + α̃1 = rjhj − α̃3 − α̃4r̃

(rh)?j = rjhj − α̃3 − λ̃4/λ̃3 α̃4r̃

Table 3.2: Summary of the bed-pressure P-correction procedure for edges with right-
direction flow.

Test 3.3.1.B: Dambreak wet-dry advance over discontinuous bed

In order to demonstrate the capability of the proposed P-correction 3.2
to deal with flow advance over dry bed involving a step, ensuring con-
servation and stability, a channel 100m long is discretized using a 1D
mesh of square cells with ∆x = 0.1m. The initial flow and bed levels
are depicted in Figure (3.11) and quiescent state is considered for the ini-
tial flow velocity. A uniform normalized bulk density r0 = 1.8 is set at
the initial time, considering a unique sediment class with concentration
φ = 0.5 and density ρs = 2600 kg/m3. The exchange flux bewteen the
flow and the bed layer is neglected during the whole simulation, as well
as the effects of the solid phase dilation. The basal resistance contribu-
tion is also suppresed. The CFL is 1.0 and the final simulation time is
100 s.

Figure 3.11: Test 3.3.1.B – Initial conditions for test 3.3.1.B.
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Figure 3.12 shows the temporal evolution of the dambreak flow during
the first 10 seconds. The solutions with and without the P-correction
(solid blue and dashed orange lines, respectively) are compared. When
the P-correction is not applied, the appearance of unphysical negative
values in the mixture mass solution is addressed by limiting the time
step.
First, the behaviour of the solution with both methods at the left wet-
dry interface x = 10m is assessed. On the one hand, for the first stages
t < 6 s, the unbalance between the quiescent convective flux and the bed-
pressure contribution generates a small unphysical flux at the left wet-
dry interface when the P-correction is not applied (dashed orange line),
whereas a perfect quiescent balance is maintained with the P-correction
(solid blue line). On the other hand, for times t > 6 s, the rarefaction
wave of the dambreak reaches the left wet-dry interface and the unbal-
ance in the solution without the P-correction grows suddenly due to the
velocity at the right cell but the P-correction, generating a high slope in
the flow free surface. The solution using the P-correction is smooth and
the velocity increases progressively along the rarefaction region.
Second, at the right wet-dry interface, the dambreak wave progresses
over the negative bed step with different velocities for the solutions with
and without P-correction, specially at the first stages t < 1 s. This differ-
ence is mainly caused at the negative bed step x̂ = 70m, where the un-
balance between the homogeneous flux and bed-pressure source terms
if the P-correction is not applied generates a more marked discontinuity
in the flow depth and velocity. Moreover, the dambreak front seems to
show a lower numerical diffusion for the P-corrected solution.
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Figure 3.12: Test 3.3.1.B – Temporal evolution of the dambreak flow over step dry
bed: (left) flow free surface and (right) flow veloctiy. From top to bottom: t = 1 s,

t = 3 s, t = 6 s and t = 10 s.

Finally, it is worth mentioning that, if the P-correction is not applied,
the mixture mass positivity issues that appear at the wet-dry interfaces
are addressed by reducing the time step in order to maintain the mass
conservation error under a suitable upper-bound. Figure 3.13 shows
the time step size evolution during the dambreak simulation with and
without the P-correction. For each procedure, both the time step limita-
tion obtained from the Jacobian wave celerities λ̃m (solid red line) and
the maximum time step allowed for ensuring mixture mass positivity
(dashed blue line) are depicted. If the P-correction is applied, the time
step applied is time step associated to the Jacobian waves and the solu-
tion positivity is guaranteed without requiring additional time step lim-
itations. Contrarily, if the P-correction is not applied, the time step must
be reduced one order of magnitude mainly to deal with positivity prob-
lems at the left wet-dry interface x̂ = 10m. This affects considerably to
the numerical scheme performance, leading to a high efficiency loss.
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Figure 3.13: Test 3.3.1.B – Time step evolution for the dambreak flow over step
dry bed: (left) with P-correction and (right) with time step reduction procedures.

3.3.3 Enhanced basal resistance contribution

The explicit integration of the basal resistance term Tk (3.69b) is not
straight-forward and requires a careful treatment in order to avoid numer-
ical instabilities and additional time step restrictions even using the com-
mon hydraulic resistance formulations [13, 106] based on the Turbulent-
Newtonian model (see Table 2.1). These additional time step restrictions
can lead to a marked increase of the computational time required by the
model. The consequence is a reduction of the efficiency, regardless of how
the scheme is implemented (programming language, parallel computing,
available hardware, etc). When non-Newtonian flow behavior is consid-
ered the influence of the basal resistance contribution in the well-balanced
solution increases as the boundary shear stress magnitude grows consid-
erably. Moreover, under quiescent conditions, the basal resistance contri-
bution may not be null due to the existence of a frictional/cohesive yield
strength and the well-balanced behavior of the solution must be reexam-
ined.

Two different approaches for the upwind discretization of the resistance
terms (3.69b) in two-dimensional numerical models for variable-density
shallow-flows are described in Section (3.2.1). This section is devoted to
the correct explicit integration of the basal resistance contribution at the
cell edges using both approaches, paying especial attention to ensuring the
balance between homogeneous fluxes and momentum sources in order to
avoid numerical oscillations or additional time step restrictions.
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Integral upwind contribution

Using the integral approach (3.52) for the spatial discretization of the 2D
resistance contribution at the kth cell edge, the associated momentum con-
tribution Tk (3.69b) in the local plane RP is defined as

Tk = T(Ûi, Ûj) =


0

T̃n
T̃t
0
0


k

(3.110)

where (T̃n)k and (T̃t)k represent suitable values of the integrated basal re-
sistance contribution along the normal and tangential directions to the kth
cell edge.

Using (3.71), the source strengths linked to the basal resistance contri-
bution are expressed as

β̃τ1 =
−(T̃n)k

2 c̃k

β̃τ2 =
(T̃t)k
c̃

β̃τ3 =
(T̃n)k
2 c̃k

β̃τ4 = 0

(3.111)

Physically, while the bed-pressure momentum term can accelerate or
decelerate the flow depending on the directions of both the flow veloc-
ity and the bed slope, the basal resistance term should always act slowing
down the flow. In the extreme case, the non-Newtonian resistance contribu-
tion must stop the flow completely, maintaining the quiescent equilibrium
when the component of the gravitational force tangential to the bed surface
remains below the frictional/cohesive yield strength. Therefore, it is impor-
tant to stress first that the basal resistance contribution at the kth cell edge
should be opposite to the discharge and is hence defined as

(T̃n)k = −sgn(Fn)k

( τ̃b
ρw

|ũ|√
ũ2 + ṽ2

1

2
dn

)
k

(3.112a)

(T̃t)k = −sgn(Ft)k

( τ̃b
ρw

|ṽ|√
ũ2 + ṽ2

1

2
dn

)
k

(3.112b)

where (dn)k = dn,i+dn,j is the distance between the centers of the left i and
right j cells along the normal direction to the edge and (τ̃b)k = 1

2(τb,i + τb,j)
is the averaged bed shear stress at the kth cell edge, being τb,i and τb,j the
corresponding neighboring cell value computed using the formulations in
Table 3.1. Note that sgn(Fn)k and sgn(Ft)k in (3.112) denote the frictionless
discharge along the normal and tangential directions to the kth cell edge,
respectively.

Focusing on the normal direction to the k cell edge and assuming sub-
critical right-direction flow (see Figure 3.14), the inner state at the edge of
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the normal discharge including the homogeneous component and the bed-
pressure contribution (rhû)? remains constant at both sides of the edge and
reads

Figure 3.14: Inner states for the normal discharge solution in edges with right-
direction subcritical flow.

(rhû)? = rihiûi + α̃1λ̃1 − β̃b1 = rjhj ûj − α̃3λ̃3 − α̃4r̃ũ+ β̃b3 (3.113)

and hence sgn(Fn)k = (rhû)?. Including the basal resistance contribution
into (3.113) leads to the augmented normal discharge, which also remains
constant at both sides of the cell edge and can be expressed as

(rhû)↓ = (rhû)? − β̃τ1 = (rhû)? + β̃τ3 = (rhû)? +
T̃n
2 c̃

(3.114)

Therefore, imposing that the basal resistance contribution should not
change the direction of the frictionless normal discharge at the edge allows
to define the following limitation for the resistance source strengths

β̃τ1 =

{
−T̃n/(2 c̃) if (rhû)↓ (rhû)? > 0
(rhû)?b if (rhû)↓ (rhû)? ≤ 0

β̃τ3 = −β̃τ1

(3.115)

When the flow at the cell edge is supercritical, all the waves travel to
the right and the resistance source strengths do not affect the value of the
normal discharge at the cell edge (Figure 3.15). However, it is possible to
define an averaged inner state between the waves λ̃1 and λ̃3 for the right
j cell including both the homogeneous and the bed-pressure components
(rhû)?j as

(rhû)?j = rjhj ûj − α̃3λ̃3 −
λ̃4

λ̃3

α̃4r̃ũ+ β̃b3 (3.116)

and hence sgn(Fn)k = (rhû)?j . Including the basal resistance contribu-
tion into (3.116) leads to the averaged inner state for the normal discharge
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Figure 3.15: Inner states for the normal discharge solution in edges with right-
direction supercritical flow.

(rhû)+
j between the waves λ̃1 and λ̃3, which can be expressed as

(rhû)+
j = (rhû)?j + β̃τ3 = (rhû)?j +

T̃n
2 c̃

(3.117)

Therefore, imposing that the basal resistance contribution does not
change the direction of the frictionless inner value of the normal discharge
allows to obtain a limitation for the resistance source strengths in supercrit-
ical edges as

β̃τ3 =

{
T̃n/(2 c̃) if (rhû)+

j (rhû)?j > 0

−(rhû)?j if (rhû)+
j (rhû)?j ≤ 0

β̃τ1 = −β̃τ3

(3.118)

From now on, these limits over the basal resistance contributions are
called R-correction and can be straightforwardly extended to the case with
negative velocity (ũk < 0) at the kth cell edge.

Regarding the tangential component of the basal resistance contribu-
tion (T̃t)k, it is associated exclusively to the momentum source strength β̃τ2

(3.111) and hence to the wave λ̃2. Note that, due to the definition of the
eigenvector ẽ2 = (0, 0, c̃, 0)T (3.66), the wave λ̃2 only participates in the
approximate solution for the tangential discharge (rhv̂). Furthermore, the
tangential basal resistance contribution only affects to the averaged value
of the tangential discharge on the right cell since λ̃2 = ũ.

In order to correctly integrate explicitly the tangential basal resistance
component, we propose here the following procedure. First, assuming
right-direction subcritical flow at the edge (Figure 3.16), the averaged inner
value of the tangential discharge at the right j cell including the homoge-
neous, the bed-pressure and the normal resistance components (rhv̂)+

j is
defined as

(rhv̂)?j = rjhj v̂j − α̃3ṽ −
λ̃2

λ̃3

α̃2c̃−
λ̃4

λ̃3

α̃4r̃ṽ +
β̃b3 + β̃τ3

λ̃3

ṽ (3.119)

whereas, for supercritical right-direction edges 3.17, the averaged inner
state at the right cells includes all the waves and hence do not depend on
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Figure 3.16: Inner states for the tangential discharge solution in edges with right-
direction subcritical flow.

the bed-pressure and normal resistance source strengths, reading

Figure 3.17: Inner states for the tangential discharge solution in edges with right-
direction supercritical flow.

(rhv̂)?j = rjhj v̂j − α̃3ṽ −
λ̃2

λ̃3

α̃2c̃−
λ̃4

λ̃3

α̃4r̃ṽ −
λ̃1

λ̃3

α̃1ṽ

+
β̃b3 + β̃τ3

λ̃3

ṽ +
λ̃1

λ̃3

β̃b1 + β̃τ1

λ̃1

ṽ

= rjhj v̂j −
1

λ̃3

(α̃1ṽ + α̃2c̃+ α̃3ṽ + α̃4r̃ṽ)

= rjhj v̂j −
δ(rhv̂û)

λ̃3

(3.120)

Therefore, the direction of the tangential basal resistance contribution
is defined as sgn(Ft)k = (rhv̂)?j and the augmented tangential discharge in
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both edge types can be expressed as

(rhv̂)+
j = (rhv̂)?j +

λ̃2

λ̃3

β̃τ2

λ̃2

c̃

= (rhv̂)?j +
β̃τ2

λ̃3

c̃

= (rhv̂)?j +
T̃t

λ̃3

(3.121)

Imposing that the tangential basal resistance contribution does not
change the direction of the frictionless inner value of the tangential dis-
charge allows to obtain a R-correction for the tangential resistance strength
β̃τ2 in both subcritical and supercritical edges as

β̃τ2 =

{
T̃t/c̃ if (rhv̂)+

j (rhv̂)?j > 0

−λ̃3(rhv̂)?j/c̃ if (rhv̂)+
j (rhv̂)?j ≤ 0

(3.122)

This procedure can be straightforwardly extended to the case with neg-
ative velocity (ũk < 0) at the kth cell edge.

Differential upwind contribution

Using now the differential discretization strategy (3.59) for the spatial dis-
cretization of the 2D resistance contribution at the kth cell edge, the associ-
ated momentum contribution Tk is defined as

Tk = T(Ûi, Ûj) =


0

T̃
0
0
0


k

(3.123)

where (T̃ )k represents suitable values of the integrated basal resistance con-
tribution (3.69b) in the local plane RP at the kth cell edge and the source
strengths (3.71) linked to the basal resistance contribution are hence ex-
pressed as

β̃τ1 =
−T̃k
2 c̃k

β̃τ2 = 0

β̃τ3 =
T̃k
2 c̃k

β̃τ4 = 0

(3.124)

As in the integral approach, the basal resistance term should always
act slowing down the flow and, in the extreme case, should conserve the
quiescent equilibrium when the component of the gravitational force tan-
gential to the bed surface remains below the yield strength. Therefore, the
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basal resistance contribution at the kth cell edge should be opposite to the
discharge and is hence defined as

T̃k = −sgn(Fn)k

( τ̃b
ρw
|ñux∆x+ ñuy∆y|

)
k

(3.125)

where (∆x,∆y)k are the distance between the cell centers along the global
x− and y−coordinates, respectively. The averaged basal shear stress at the
kth cell edge is computed as (τ̃b)k = 1

2(τb,i + τb,j), being τb,i and τb,j the
corresponding values at the left i and right j cells computed using the for-
mulations in Table 3.1, and sgn(Fn)k denotes the direction of the frictionless
discharge throughout the edge. The components (ñux, ñuy)k of the unity
vector of the flow direction at the kth edge in the global framework (x, y)
are calculated as

(ñux)k =
1

2

 ui√
u2
i + v2

i

+
uj√
u2
j + v2

j


k

(3.126a)

(ñuy)k =
1

2

 vi√
u2
i + v2

i

+
vj√
u2
j + v2

j


k

(3.126b)

It is worth mentioning that, using the differential approach leads to an
estimation of the resistance force disconnected from the edge orientation
but only depending on the flow direction and the distance between cell
centers. Therefore, this procedure liberates the basal resistance force ex-
erted against the flow from the mesh topology.

In order to correctly integrate the basal resistance contribution using the
explicit upwind differential approach, the following R-correction procedure
is applied (see above section for details).

Subcritical flow

sgn(Fn)k = (rhû)?

β̃τ1 =

{
−T̃k/(2 c̃k) if (rhû)↓ (rhû)? > 0
(rhû)?b if (rhû)↓ (rhû)? ≤ 0

β̃τ3 = −β̃τ1

(3.127)

with (rhû)? as (3.113) and (rhû)↓ as (3.114).

Supercritical flow

sgn(Fn)k = (rhû)?j

β̃τ3 =

{
T̃k/(2 c̃k) if (rhû)+

j (rhû)?j > 0

−(rhû)?j if (rhû)+
j (rhû)?j ≤ 0

β̃τ1 = −β̃τ3

(3.128)

with (rhû)?j as (3.116) and (rhû)↓j as (3.117).
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Test 3.3.3.A: One-directional dambreak of a Bingham fluid

The aim of this synthetic test is to analyze the behavior of the integral
and differential procedures for the explicit upwind discretization of the
basal resistance term. Hungr [53] used the theory of roll waves in plastic
medium to derive an analytical 1D solution for the runout distance of
a plastic-type dambreak assuming null inertial forces, constant work of
the shear stress and parabolic free surface after the detention of the flow.
Considering an initial 30.5m high and 305m long dambreak over fixed
flat bed of a plastic fluid with constant ρ = 1835 kg/m3 density and c =
2390Pa shear strength, the runout distance reached by the wave front is
x = 1896m. Naef et al. [107] took this solution as benchmark test for their
one-dimensional model and approximated the plastic resistance using a
Bingham model with a yield strength τy = 1500Pa and a plastic viscosity
µB = 100Pa · s, obtaining a runout distance of x ≈ 1850m (although the
exact value was not provided).
For a pure one-dimensional RP, the integral and differential approaches
for the basal resistance discretization should exactly converge to the
same solution since

|(T̃n)k| =
τ̃b
ρw

∆x

|(T̃t)k| = 0
and |T̃k| =

τ̃b
ρw

∆x

Considering a 1D mesh of square cells with ∆x = 1m, CFL=1 and the co-
hesive Bingham resistance model (CB in Table 3.1) with ρ = 1835 kg/m3,
µB = 100Pa · s and τy = 1500Pa, the temporal evolution of the free
surface and velocity with the integral and the differential resistance inte-
gration strategies are shown in Figure 3.18. First, the solution obtained
with both strategies is exactly the same and, second, both approaches are
able to completely stop the flow with a final runout distance x = 1885m.
This demonstrates that both strategies offer good approximations of the
integrated basal resistance force acting against the flow and are able to
predict the stop-going mechanism in non-Newtonian flows.

Figure 3.18: Test 3.3.3.A – Temporal evolution of the flow depth and velocity
for the 1D plastic dambreak with the differential and integral approaches for the

discretization of the basal resistance.

In order to analyze the dependence of the integral and differential re-
sistance discretization on the mesh topology in 2D frameworks, this
one-directional benchmark test is simulated assuming a 10m wide
and 2500m long channel discretized using a 25000 cells orthogonal
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mesh, a 50000 cells triangle-structured mesh and a 50361 cells triangle-
unstructured mesh (Figure 3.19). The averaged edge length is lk ≈ 1m
for the three meshes, in order to use comparable mesh refinements. The
CFL is 0.5 for the orthogonal mesh and 1.0 for the triangular meshes.

Figure 3.19: Test 3.3.3.A – Topology of the 2D meshes: (a) orthogonal mesh, (b)
triangle structured and (c) triangle unstructured.

The results obtained with integral and differential approach are com-
pared with the method proposed by Murillo & García-Navarro [102] and
Juez et al. [64], which assumes

Tk =


0

− ũ

|ũ|
τ̃bn
ρw

dn

0
0
0


k

(3.129)

where (τ̃bn)k is the averaged basal shear stress normal to the kth cell
edge, which here is calculated solving the cubic Bingham equation

2τ̃3
bn − 3

(
τy + 2µB

|ũk|
h̃k

)
τ̃2
bn + τ3

y = 0

using the Roe-averaged value of the normal velocity and flow depth at
the cell edge, ũk and h̃k respectively. From now on, this procedure is
called normal-integrated discretization of the basal resistance contribu-
tion.
The final free surface after the detention of the one-directional dambreak
wave is plotted in Figures 3.20, 3.21 and 3.22. The normal-integrated
discretization dealing with non-Newtonian shear stresses [64, 102] in-
volves a high mesh dependence, since the quantity of resistance force ap-
plied against the flow is directly influenced by edge orientation respect to
the flow direction. The resistance force converges to the 1D-framework
value when orthogonal meshes oriented with the flow direction are used,
but shows important variations in triangular meshes depending on the
mesh topology (Figure 3.20).
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Figure 3.20: Test 3.3.3.A – Final profile for the one-directional plastic dambreak
using and the normal-integrated discretization of the basal resistance in differ-

ent 2D meshes.

Contrarily, the integral discretization of the basal resistance leads to
mesh-independent results in the 2D framework (Figure 3.21). However,
differences appear respect to the pure 1D-framework results. These dif-
ferences are directly related to the closed boundary edges at the channel
lateral sides, since it is required that these edges also insert a propor-
tional quantity of resistance force against the flow in order to converge
to the pure 1D-framework solution. However, in these edges the local
RP is not defined and hence the resolution requires the implementation
of special boundary conditions, which is not the scope of this thesis.

Figure 3.21: Test 3.3.3.A – Final profile for the one-directional plastic dambreak
using the integral discretization of the basal resistance in different 2D meshes.

Finally, the results with the differential approach for the discretization of
the basal resistance contribution show fully mesh-independence in the
2D framework (Figure 3.22) and also converging exactly to the solution
obtained in the pure 1D-framework.
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Figure 3.22: Test 3.3.3.A – Final profile for the one-directional plastic dambreak
using the differential discretization of the basal resistance in different 2D

meshes.

3.4 Shear-induced solid phase dilation contribution

The numerical flux vector at the cell edges F↓k (3.79) incorporates the bulk
contribution of the solid phase dilation L̂↓k =

(
0, 0, 0, L̃k

)T (3.78), being L̃k
the bulk deviatoric solid flux related to the dilation process at the kth cell
edge.

Using (3.40), the dilation solid flux L̃k at the edge is computed as

L̃k =


F
{pe}
k

N∑
p=1

ρs,p−ρw
ρw

(φp)i if F↓{1}k ≥ 0

F
{pe}
k

N∑
p=1

ρs,p−ρw
ρw

(φp)j if F↓{1}k < 0

(3.130)

where F↓{1}k is the first component of numerical flux vector (3.79) and F {pe}k

the volume flux associated to the gradients of pore pressure excess in the
mixture, which is approximated at the kth cell edge as

F
{pe}
k =

κ

r̃k µ

(
∆Pe
dn

+ Ẽbρwgnh̃
∆zb
dn

)
k

(3.131)

being dn the normal-distance between cell centers.
The discrete edge-gradient (∆Pe)k = Pe,j − Pe,i denotes the increment

of integrated pore pressure excess at the edge (3.6b), computed as

Pe,i =
−µh3

i

3κ
γ̇i (tanψ)i (3.132)

The term (Ẽb)k = 1
2(Eb,i + Eb,j) is the edge-averaged value of the basal

pore pressure excess parameter (3.6a), with

Eb,i =
−µhi

2κρwgn
γ̇i (tanψ)i (3.133)
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being γ̇i = 2
√
u2
i + v2

i /hi the approximated macroscopic shear rate and

(tanψ)i = k1

(
φ0,i − φeq

)
the dilatancy at the i cell, with φ0,i =

∑N
p=1(φp)i

the bulk solid concentration, φeq the equilibrium bulk solid concentration
and k1 a positive calibration constant.

Therefore, the first component of the numerical flux vector F↓{1}k ac-
counts for the mixture mass transference normal to the cell edge (3.79)

F↓{1}k = (rhû)↓k (3.134)

and, including the deviatoric dilation contribution (3.130), the numerical
solid flux at the kth edge for each pth sediment class composing the solid
phase in the mixture (F sp )↓k, used to update the class-specific volume frac-
tions in the flow column in (3.83), is hence computed as

(F sp )↓k =


[(rhû)↓k

r̃k
+ F

{pe}
k

]
(φp)

n
i if F↓{1}k ≥ 0[(rhû)↓k

r̃k
+ F

{pe}
k

]
(φp)

n
j if F↓{1}k < 0

(3.135)

including both the bulk mixture flow contribution and the deviatoric solid
dilation contribution to the class-specific numerical solid flux at the cell
edge.

Therefore, the shear-induced dilation of the solid phase creates a pore
pressure excess at the cells which modifies the solid flux at the cell edges
due to the deviatoric component F {pe}k (3.131), hence generating a segrega-
tion of the solid particles within the flow. Additionally, when a frictional-
based basal resistance formulation (FD, FB and FT models in Table 3.1)
is considered, the pore pressure excess changes the Coulomb-type yield
strength at the cells following

τf,i = (ρi − ρw)gnhi tan δf − Eb,iρwgnhi tan δf (3.136)

where tan δf is the frictional stability slope of the mud/debris material. The
first term on the right hand side represents the hydrostatic component of
the friction shear stress between solid grains whereas the second term ac-
counts for the basal frictional shear stress related to the shear-induced pore
pressure excess.

Test 3.4.A: 1D dambreak of a frictional fluid over a steep bed

In order to analyse the effects of the shear-induced solid phase dilation
on the flow dynamics, the one-dimensional dambreak of a granular fluid
over a rigid and dry step slope is simulated using a 1D mesh of 10000
square cells with ∆x = 0.5m. The bed slope is 5 % and the initial mate-
rial surface level is 30.5m for x ≤ 305m. The granular fluid is composed
of a mix of water (ρw = 1000 kg/m3) and one sediment class with density
ρs = 2518 kg/m3, characteristic diameter ds = 1mm and uniform initial
concentration φ = 0.55, leading to a uniform bulk density of the gran-
ular fluid ρ = 1835 kg/m3. The net exchange with the bed is neglected,
avoiding the entrainment from the bed and deposition of the solid phase.
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The permeability of the porous media and viscosity of the pore-fluid are
κ = 10−8m2 [57] and µ = 10−3 Pa · s respectively. A positive constant
k1 = 0.1 is also set for the dilatancy formula. In order to asses the ef-
fects of the shear-induced solid phase dilatancy over the flow dynamics,
the equilibrium solid concentration is varied to enable the three different
initial material states

Positive dilatancy: φeq = 0.50 tanψ > 0
Equilibrium state: φeq = 0.55 tanψ = 0
Negative dilatancy: φeq = 0.60 tanψ < 0

The basal resistance is considered pure frictional, hence τb,i = τf,i (3.136),
with a basal stability angle δf = 6◦ and discretized using the differential
approach (see Section 3.3.3). Figure 3.23 shows the temporal evolution
of the flow free surface for the equilibrium state tanψ = 0. The CFL is
set to 1 and the final time simulated is t = 100 s.

Figure 3.23: Test 3.4.A – Temporal evolution of the flow free surface for the equi-
librium state tanψ = 0.

First, the effects of the shear-induced solid dilation over the flow mo-
bility are analysed by neglecting the deviatoric term F

{pe}
k (3.131) in the

intercell solid flux (3.135), hence leading to L̃k = 0 (3.130). Figure 3.24
shows the runout distance of the flow at t = 100 s for the three material
states considered. For the equilibrium state, tanψ = 0, the pore pressure
is hydrostatic and the frictional basal resistance reduces to

τf,i = (ρi − ρw)gnhi tan δf (3.137)

Positive dilatancy states, tanψ > 0, are related to a solid concentration
larger than the equilibrium value φeq. Under this condition, the pore
pressure is smaller than the hydrostatic, leading to a negative basal pore
pressure excess factor Eb,i < 0 and increasing the frictional basal resis-
tance τf,i. Contrarily, negative dilatancy states (tanψ > 0) are associ-
ated to a solid concentration smaller than the equilibrium value and pore
pressures larger than the hydrostatic. Hence, for these states, the basal
pore pressure excess factor is positive Eb,i > 0 and reduces the frictional
basal resistance τf,i. When Eb,i = ri − 1, being ri = ρi/ρw the normalized
bulk density, the pore pressure balances the normal stresses within the
flow column and the material is fully liquefied with null frictional shear
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stress (τf,i = 0). Therefore, solid concentrations larger than the equilib-
rium value (dense packed mixtures) are associated to a lower flow mo-
bility whereas loose packed mixtures (liquefied slurries), with concen-
trations lower than the equilibrium value, are related to larger runout
distances.

Figure 3.24: Test 3.4.A – Runout distance at t = 100 s for positive dilatancy
tanψ > 0, equilibrium tanψ = 0 and negative dilatancy tanψ < 0 states.

Second, the effects of the shear-induced dilation on the solid phase dis-
tribution within the flow is analysed. In this case, the frictional basal
resistance is considered always hydrostatic 3.137 in order to have similar
runout distances regardless of the dilation state. Figure 3.25 depicts the
temporal evolution of the integrated pore pressure excess and the basal
pore pressure excess factor for the positive dilatancy tanψ > 0 simula-
tion. Note that the lowest integrated pore pressure excessPe corresponds
to the center/tail region of the flow wave whereas the lowest basal pore
pressure excess factor Eb are associated to the flow head region.

Figure 3.25: Test 3.4.A – Temporal evolution of (left) the integrated pore pres-
sure excess Pe and (right) the basal pore pressure excess factor Eb for positive

dilatancy tanψ > 0 states.

Contrarily, when the fluidized material undergoes negative dilation
states with tanψ < 0 (see Figure 3.26), the highest integrated pore pres-
sure excess Pe appears at the center region of the flow, but it is lower
at the tail and head regions of the flow. The basal pore pressure excess
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factor Eb reaches its maximum at the wave front and decreases progres-
sively along the center and tail of the dambreak wave.

Figure 3.26: Test 3.4.A – Temporal evolution of (left) the integrated pore pres-
sure excess Pe and (right) the basal pore pressure excess factor Eb for negative

dilatancy tanψ < 0 states.

It is worth noting that, regardless of the dilation state, the integrated
pore pressure excess reaches its maximum values for the first stages
of the dambreak flow and relaxes progressively with time as the flow
moves downstream. Nevertheless, the basal pore pressure excess factor
Eb shows a more persistent behaviour but increasing slightly as the flow
moves downstream. The spatial distribution of the solid phase within
the dambreak wave is a consequence of the balance between the gradi-
ent of the integrated pore pressure excess ∆Pe

dn
and the contribution of

the basal pressure excess Ẽbρwgnh̃∆zb
dn

, resulting in the deviatoric solid
flux (3.131). Figure 3.27 shows the solid phase distribution at t = 100 s
along the dambreak wave for the positive dilation, negative dilation and
equilibrium states.

Figure 3.27: Test 3.4.A – Spatial distribution of the solid concentration at t = 100 s
for positive dilatancy tanψ > 0, equilibrium tanψ = 0 and negative dilatancy

tanψ < 0 states.

For the equilibrium state, tanψ = 0, the pore pressure is hydrostatic
and the solid particles move with the mixture velocity. There not ex-
ist differences between the solid and liquid phases and hence the solid
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concentration remains constant, maintaining the initial uniform value.
When positive of negative dilation occur, pore pressure gradients appear
within the flow and hence the solid particles move with a velocity differ-
ent from the liquid phase velocity. Generally, the pore-fluid moves from
high pressure to low pressure zones. Therefore, the sediment fraction
in low pore pressure regions (φ0 >> φeq) undergoes a porosity creation
process, decreasing the solid concentration in those regions. Contrarily,
high pressure regions (φ0 << φeq) suffer an outlet liquid flow and the
solid phase undergoes a contraction process, hence increasing its con-
centration. Both dilation states lead to the bulk solid concentration φ0

converging to the equilibrium value φeq with time.
This simple reasoning explains the solid distribution shown in Figure
3.27. On the one hand, for positive dilation states (φ0 > φeq and
tanψ > 0), the lower pore pressure values at the center/tail region of
the dambreak wave (see Figure 3.25) lead to an incoming pore-fluid flux
from the wave head. Therefore, the solid concentration at the tail and
center zones slightly decreases φ0 → φeq, whereas the solid concentration
at the head undergoes a marked increase due to the lower flow depths.
On the other hand, for negative dilation states (φ0 < φeq and tanψ < 0),
the center/tail region of the dambreak wave shows higher pore pres-
sure values (see Figure 3.26) which create an outlet pore-fluid flux to the
wave head. Consequently, the solid concentration at the tail and center
zones slightly increases φ0 → φeq, decreasing the solid concentration at
the head considerably because of the lower flow depths.

3.5 Benchmark and application cases

3.5.1 Synthetic case MF1: 2D large-scale spreading of a cylindri-
cal non-Newtonian volume

The spreading of a cylindrical volume is one of the most extended bench-
marking test to analyze the behavior of 2D numerical models for frictional
flows [64, 119]. Using different mesh types helps to point out numerical
issues in the discretization of the homogeneous fluxes and source terms,
since the spreading wave must maintain the circular shape regardless of
the mesh topology and refinement. These discretization problems are fur-
ther aggravated in large-scale and long-term simulations. In order to an-
alyze the performance of both the integral and the differential approaches
for the discretization of the 2D basal resistance term, a quiescent semicir-
cular volume with initial height h0 = 25m and radius R0 = 100m of a
non-Newtonian material is considered. The two-dimensional flat-bed spa-
tial domain, with x = [−1200, 1200]m and y = [0, 1200]m, is discretized
using the three different meshes (see Figure 3.19) which have been summa-
rized in Table 3.3.

A uniform normalized bulk density r0 = 1.9 is set at the initial time,
considering a unique sediment class with concentration φ = 0.6 and den-
sity ρs = 2500 kg/m3. The exchange flux bewteen the flow and the bed
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Topology
Number
of cells

Number
of edges

Cell
area

Edge
length

Orthogonal (SQ) 115 200 231 120 25m2 5m

Triangle structured (TS) 230 400 346 320 12.5m2 ≈ 5m

Triangle unstructured (TU) 230 555 346 498 ≈ 12.5m2 ≈ 5m

Table 3.3: Synthetic case MF1 – 2D meshes considered for the spatial discretization.

layer is neglected during the whole simulation, as well as the effects of the
solid phase dilation. The basal shear stress is modeled using the frictional
dilatant rheology (FD) in Table 3.1, with plastic viscosity µP = 5Pa · s2 and
basal stability angle δf = 1◦. The pore pressure is considered hydrostatic
during the simulation. The CFL is set to 0.5 for the orthogonal (SQ) mesh
and 1.0 for both triangular (TS and TU) meshes. The final simulation time
is 150 s, enough to ensure that the spreading wave stops.

For the sake of clarity, the integral and differential approaches, as well
as the previous normal-integrated procedure [64, 88, 102], for the discretiza-
tion of the 2D basal resistance term are summarized here as

• (a) Normal-integrated resistance contribution:

Tk =


0

−sgn(ũ)
τ̃bn
ρw

dn

0
0
0


k

(3.138)

where (τ̃bn)k is the averaged basal shear stress normal to the kth cell
edge, which here is estimated as

(τ̃bn)k =
(
ρw(r̃ − 1)gnh̃ tan δf +

25µP

4 h̃2

√
ũ2 + ṽ2 |ũ|

)
k

(3.139)

using the Roe-averaged values of the normal and tangential velocity,
ũk and ṽk respectively, the flow depth h̃k and the normalized density
r̃k at the edge.

• (b) Integral resistance contribution:

Tk =



0

−sgn(Fn)
τ̃b
ρw
|ũ|/
√
ũ2 + ṽ2

1

2
dn

−sgn(Ft)
τ̃b
ρw
|ṽ|/
√
ũ2 + ṽ2

1

2
dn

0
0


k

(3.140)
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where (τ̃b)k = 1
2(τb,i+τb,j) is the averaged bed shear stress at the edge,

with the cell value estimated as

τb,i = (ρi − ρw)gnhi tan δf +
25µP
4h2

i

(u2
i + v2

i ) (3.141)

and sgn(Fn)k and sgn(Ft)k denote the frictionless discharge along the
normal and tangential directions to the kth cell edge, respectively.

• (c) Differential resistance contribution:

Tk =


0

−sgn(Fn)
τ̃b
ρw
|ñux∆x+ ñuy∆y|

0
0
0


k

(3.142)

where (τ̃b)k and sgn(Fn)k as those in the integral approach, (∆x,∆y)k
are the distance between the cell centers along the global x− and
y−coordinates, respectively, whereas the terms (ñux, ñuy)k represents
the components of the unity vector of the flow direction at the kth
edge in the global framework (x, y), calculated using (3.126).

Figure 3.28 shows the depth h with the orthogonal SQ mesh once the
flow totally stops. The dashed red line represents a perfect circle R =
1050m. The normal-integrated procedure (a) is highly mesh dependent and
tends to align markedly with the mesh main-directions x = 0 and y = 0.
This behavior was previously reported by [119] and [64] but it was erro-
neously attributed to an insufficient mesh refinement, although further re-
ducing the spatial discretization helps to slightly correct this undesirable
effect in short-term and small-scale simulations [119]. Nevertheless, this
large-scale numerical experiment shows that the alignment of the flow with
the mesh main-directions is directly related to the loss of the rotation invari-
ant property of the integrated basal resistance contribution. This loss of the
invariance under rotation of the flow is caused by the erroneous procedure
for including the 2D resistance term into the local plane RP at the cell edges.

Figure 3.28: Synthetic case MF1 – Final depth h (m) with the orthogonal SQ mesh:
(a) Normal-integrated, (b) Integral and (c) differential basal resistance contributions.

Both the integral (b) and differential (c) approaches derived in this the-
sis maintain approximately the circular shape for the spreading wave until
the flow detention, with as quite similar runout distance. However, the in-
tegral procedure shows slight alterations on the final flow depth aligned
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with the mesh main-directions. This small variation on the wave spread-
ing shape can be directly related to the estimation of the tangential basal
resistance along the main-directions x = 0 and y = 0. Note that the tangen-
tial resistance contribution in the local RP is associated to the characteristic
shear wave λ̃2 = ũ and at the main-direction edges ũ = 0 is satisfied, hence
the inner state of the tangential resistance remains undefined. It is worth
mentioning that, during the first stages of the spreading (t < 25 s), the
normal-integrated procedure (a) is able to maintain approximately the cir-
cular wave shape but, as time progresses, the differences on the discretized
resistance force depending on the mesh-flow alignment leads to an unphys-
ical spreading shape at the final time.

Figure 3.29 depicts the depth h with the triangle structured TS mesh af-
ter the flow totally stops. The dashed red line represents a perfect circle
R = 1050m. Again the normal-integrated procedure (a) tends to align with
the mesh main-directions (x = 0, y = 0 and |x| = |y|) whereas both the in-
tegral (b) and differential (c) approaches maintain the circular shape for the
spreading wave. Nevertheless, as with the orthogonal mesh, the integral
procedure shows slight variations on the final flow depth aligned with the
mesh main-directions.

Figure 3.29: Synthetic case MF1 – Final depth h (m) with the triangle structured TS
mesh: (a) Normal-integrated, (b) Integral and (c) differential basal resistance contri-

butions.

Regarding the triangular unstructured TU mesh (Figure 3.30), the three
strategies for the integration of the basal resistance contribution are able to
maintain the circular shape for the spreading wave since main-directions
do not exist for this mesh topology. However, a marked roughness appears
at the final free surface when the normal-integrated resistance strategy (a)
is used. This free surface roughness with triangle unstructured meshes was
also reported in [88, 102] and erroneously attributed to the depth data in-
terpolation between cell center and nodes in [64]. Contrarily, the integral
approach is able to avoid the free surface roughness and the differential
strategy reduces these small-scale irregularities considerably, demonstrat-
ing that it is again an undesirable effect of the normal-integrated procedure
for the integration of the 2D basal resistance vector.

The incorrect inclusion of the 2D basal resistance term into the local
plane RP at the cell edges leads to highly mesh dependent results, since
the quantity of integrated resistance force opposed to the flow movement is
greatly affected by the edges orientation. Figure 3.31–left depicts the tem-
poral evolution of the wave-front location along the diagonal line x = y
for the three integration strategies considered, whereas Figure 3.31–right
shows the final depth along the same line. For the first stages of the spread-
ing flow (t < 25 s), the runout distance is quite similar with the three mesh
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Figure 3.30: Synthetic case MF1 – Final depth h (m) with the triangle unstructured
TU mesh: (a) Normal-integrated, (b) Integral and (c) differential basal resistance

contributions.

topologies analyzed, regardless of the basal resistance integration strategy.
Only when the time-of-flow is large enough, thanks to the large-scale spa-
tial domain of this numerical case, important deviations on the runout dis-
tance start to appear with the normal-integrated strategy (a) which depend
on the mesh topology. These deviations are directly related to the orienta-
tion of the flow with the mesh main-directions and lead to different final
depth profiles for each of the mesh topologies considered.

Contrarily, both the integral (b) and differential (c) strategies for the 2D
basal resistance integration are able to maintain a runout distance evolution
similar for the three mesh topologies considered. Only at the final spread-
ing flow stages, slight deviations appear between the orthogonal SQ mesh
and the triangular TS and TU meshes and these deviations are probably
more associated to the different cell area (see Table 3.3) than to the orienta-
tion of the flow with the respective mesh main-directions. Therefore, both
new approaches offer quite similar results for final depth along the diago-
nal x = y line regardless of the mesh topology.

The comparison of the computational effort required for each integra-
tion procedure is summarized in Table 3.4. All the simulations are per-
formed using a OMP-parallelized C++ code, running in four Intel Core i7-
7700K CPU cores. Although differences in the required computational time
appear depending on the mesh topology, the three integration procedures
offer quite similar efficiency.

Topology
Normal-int.

procedure (a)
Integral

approach (b)
Differential
approach (c)

Orthogonal (SQ) 43.601 s 45.597 s 39.425 s

Triangle struct. (TS) 104.283 s 102.905 s 110.696 s

Triangle unstruct. (TU) 174.091 s 174.935 s 186.183 s

Table 3.4: Synthetic case MF1 – Computational time for the the three 2D basal resis-
tance integration strategies considered.

When a cohesive-type yield strength τy is involved in the rheology (CB
and CT formula in Table 3.1) the effects of the loss of the invariant property
of the 2D integrated resistance force lead to even more marked flaws in the
numerical solution. This occurs because the yield strength opposed to the
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(a) Normal-integrated resistance contribution.

(b) Integral resistance contribution.

(c) Differential resistance contribution.

Figure 3.31: Synthetic case MF1 – (left) Temporal evolution of the runout distance
and (right) final depth along the diagonal line x = y.

material movement does not depend on the flow depth h, as happens with
frictional-type stresses, but takes a constant shear stress value.

Figure 3.32 shows the final depth h for the spreading of a large-scale
quiescent semicircular volume with initial height h0 = 25m and radius
R0 = 100m of a cohesive Bingham fluid. The domain extension, mesh
topology and simulation setup are the same as in the above case with
a frictional-type material. The cohesive yield strength is 500Pa and the
dynamic viscosity of the material µB = 8Pa · s, with a bulk density
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ρ = 1900 kg/m3. Results for the orthogonal, triangle structured and trian-
gle unstructured mesh topologies are show with the three explicit upwind
methods considered for the discretization of the 2D basal resistance contri-
bution. The dashed red line represents a perfect circle R = 1050m.

(i) Orthogonal mesh.

(ii) Triangle structured mesh.

(iii) Triangle unstructured mesh.

Figure 3.32: Synthetic case MF1 – Final depth h (m) with the Cohesive Bingham rhe-
ology: (a) Normal-integrated, (b) Integral and (c) differential basal resistance contri-

butions.

On the one hand, in structured orthogonal and triangle meshes (see (i)
and (ii) in Figure 3.32), the loss of the invariance under rotation of the 2D in-
tegrated basal resistance force with the normal-integrated procedure (a) for
the Bingham rheology 3.129 is clear and even more marked than with the
frictional dilatant relation. The integral approach (b) maintains reasonably
well the circular shape but its flaws in cell edges perfectly aligned with the
flow direction are evident here, leading to slightly larger runout distance
along the mesh main-direction. Nevertheless, the differential approach (c)
maintains the well the semicircular shape of the wave spreading and only
an indiscernible asymmetry is observed.

On the other hand, in the triangular unstructured mesh (see (iii) in Fig-
ure 3.32), the three strategies for the explicit upwind discretization of the
2D basal resistance contribution maintain the circular shape of the spread-
ing wave. However, the normal-integrated procedure (a) shows an smaller
final runout distance and a marked roughness in the final free surface as
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a consequence of the dependence of the mesh direction of the integrated
resistance force. Both the integral (b) and differential (c) approaches show
perfect circular spreading shapes, smooth free surface and final runout dis-
tances in agreement with those obtained in the orthogonal and the triangu-
lar structured meshes.

Based on these results, it is possible to conclude that both the integral
(b) and differential (c) approaches represent a further improvement for the
explicit upwind integration of the non-Newtonian basal resistance contri-
bution in two-dimensional numerical schemes.

3.5.2 Experimental case MF2: USGS debris dambreak over rigid
steep bed

In this benchmark case, the proposed variable-density model including
the effects of the shear-induced solid phase dilation is validated using
data from large-scale experiment consisting on dambreak debris flows over
a step fixed bed. The experiment was carried out in the USGS large-
scale debris-flow flume and data from two repetitions, called run I (date
12/9/2006) and J (date 19/6/2007), were reported by Iverson et al. [60].
The USGS debris-flow flume is a straight rectangular concrete channel 95m
long, 2mwide and 1.2m deep with a vertical headgate placed 12.5m down-
stream the channel beginning, which retains the static debris fluid until the
experiment initial time. Figure 3.33 shows a schematic representation of the
USGS debris-flow flume for this fixed-bed experiments. All the longitudi-
nal distances s are referred to the headgate position taken along the exper-
imental flume floor. The channel has an 31◦ uniform slope until s = 74m,
where the flume begins to flatten following a catenary curve and evolving
to a 4◦ slope at s = 82.5m. Then, the flume debouches onto a 15m long,
8m wide and 2.4◦ slope concrete runout surface.

Figure 3.33: Experimental case MF2 – Sketch of the USGS debris dambreak experi-
ments.

The initial features debris aggregate were previously reported in [61].
The initial debris volume is 6m3 and is composed by a fully saturated mix-
ture of water and gravel, sand and mud grains with 60% bulk solid con-
centration. For the sake of simplicity, an unique bulk sediment class is
considered here, with an equivalent characteristic diameter ds = 6.9mm
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and solid density ρs = 2700 kg/m3, leading to an initially uniform bulk
density ρ = 2020 kg/m3. Table 3.5 shows the main parameter used in the
simulations for characterizing the debris mixture. The pore-fluid is consid-
ered clear water (ρw = 1000 kg/m3 and µ = 0.001Pa · s) and the uniform
porous-media permeability is set to κ = 10−8m2 [57]. In order to reduce
the number of setup parameters involved in the simulations, a constant
shearing-equilibrium concentration φeq = 0.65 is considered. This value is
slightly higher than the actual initial solid concentration, since an extra wa-
ter amount was added to the debris mixture before the experiment begin-
ning, but lower than the lithostatic deposition concentration φmax = 0.73
estimated with the Wu [144] empirical relation (3.11).

In the experiments, once the headgate was opened, the debris dambreak
wave accelerated over the uniform-slope rigid bed region of the flume until
it reached the catenary-slope zone and the runout surface where it stopped.
For each run of the experiment, Iverson et al. [60] tracked the wave-front lo-
cation during the flow advance using image techniques and video frames.
The wave-front velocity was also measured between s = 60m and s = 70m
from the video frames, as well as the final runout distance after flow deten-
tion. Moreover, video files of both experiments are available in https:
//pubs.usgs.gov/of/2007/1315/.

Debris volume 6m3

Initial solid concentration φ0 60 %

Debris water content 40 %

Bulk debris density ρ 2020 kg/m3

Solid particles diameter ds 6.9mm

Solid density ρs 2700 kg/m3

Shearing-equilibrium concentration φeq 0.65

Pore-fluid density ρw 1000 kg/m3

Pore-fluid viscosity µ 0.001Pa · s
Porous media permeability κ 10−8m2

Table 3.5: Experimental case MF2 – Characteristic values used for the simulation
setup

The simulations are performed using an unstructured triangular mesh
of 28 388 cells, with an averaged area of 200 cm2. The CFL is set to 0.95
and the total time simulated is 25 s. Simulations are performed using C++
code, running in one Intel Core i7-7700K CPU core. Furthermore, for the
sake of simplicity, the net exchange term of solid material between the bed
and the flow is neglected. Following [79], the basal resistance is modeled
using the frictional–turbulent FT closure in Table 3.1, setting a friction an-
gle for the solid phase δf = 40◦ and a Manning’s roughness parameter
nb = 0.018 sm−1/3 for the rigid flume bed. Note that these values for the
resistance estimation have not been calibrated but directly taken from the
original experimental data [61]. In order to analyze the influence of the
shear-induced pore pressure excess on the flow mobility, the dilatancy tanψ
of the fluidized material is controlled by varying the tuning parameter k1

in the range 0 ≤ k1 ≤ 0.15 (3.7).

https://pubs.usgs.gov/of/2007/1315/
https://pubs.usgs.gov/of/2007/1315/
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Figure 3.34 shows the depth of the debris deposit after the flow de-
tention (t = 25 s). Note that the distances are expressed in the horizon-
tal x−coordinate. The red rectangle at x ≈ 82m (s ≈ 93m) indicates the
wave front detention in the experimental runs. After the flow initialization,
the dambreak wave progresses downslope rapidly until reaches the runout
surface, where stops. Analysing the model behaviour, the debris material
is undergone to increasing shearing states as accelerates over the step chan-
nel. These shearing states are associated to positive pore pressures in the
throughout the flow column, since the fluidized material is initially under
a negative dilatancy state tanψ < 0. This pore pressure excess modifies the
basal resistance against the movement, as well as induces the segregation
of the solid phase along the dambreak wave. As the tuning parameter k1 is
increased from the equilibrium state k1 = 0 to the maximum dilation con-
sidered (k1 = 0.15), the mobility of the debris flow grows and leads to larger
runout distances. This enhanced mobility is explained by the reduction of
the frictional yield strength as the basal value of the positive pore pressure
excess increases.

Figure 3.34: Experimental case MF2 – 2D deposit depth h after the flow detention
(t = 25 s) with values of the dilatancy tuning parameter k1 = 0 (equilibrium), k1 =

0.05, k1 = 0.10 and k1 = 0.15 (maximum dilation).

Figure 3.35 shows the basal pore pressure excess factor Eb records as
the dambreak wave pass the probe section x = 56.6m (s = 66m). First,
the registered values of Eb increase with the the dilatancy tanψ. However,
the relation between the shear-induced basal pore pressure excess and the
hydrostatic basal pore pressure (only related to the flow depth h) is clearly
non-linear and non-monotone, showing a relative hysteresis phenomenon
regardless of the dilatancy parameter k1 > 0 considered.

Therefore, as the dilatancy tuning parameter k1 is increased, the posi-
tive basal pore pressure excess factor Eb also increases for equal values of
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Figure 3.35: Experimental case MF2 – Basal pore pressure excess factor Eb at the
probe section x = 56.6m (s = 66m) with values of the dilatancy tuning parameter
k1 = 0 (equilibrium), k1 = 0.05, k1 = 0.10 and k1 = 0.15 (maximum dilation).

flow density, depth and velocity, reducing the effective normal stress σe at
the bed-flow interface. This reduction of the effective normal stress leads
directly to the reduction of the basal frictional yield strength τf (3.136) and
hence to lower basal resistance stresses against the dambreak wave advance
over the step flume. Figure 3.36–(a) depicts the numerical wave-front lo-
cation along the experimental channel as time progresses, compared with
provided experimental data. As the dilatancy tuning parameter k1 is in-
creased, the acceleration of the front advance along the uniform-slope re-
gion of the flume also increases. Hence, the numerical wave-front location
tends to adapt to the observed data when the shear-induced pore pressure
is enhanced. Nevertheless, marked differences with the laboratory data ap-
pear along the runout region.

The acceleration of the dambreak advance is clearly observed in Fig-
ure 3.36–(b), where the numerical wave-front velocity has been depicted
against the experimental data. Iverson et al. [60] reported a unique front
velocity value at 60m < s < 70m of 12.5m/s for the experimental run
I and 7.1m/s for the experimental run J (grey rectangle) but the velocity
evolution can be derived from the experimental front location data. In-
creasing the dilation state of the fluidized material, i.e. increasing k1, leads
to a better prediction of the wave-front velocity compared with those of
the equilibrium state (tanψ = 0) simulation. Note that for k1 ∈ [0.10, 0.15]
the computed front velocity agrees with the experimental data all over the
dambreak progression along the constrained channel but differences arise
for the flow detention at the catenary and runout zones.

Figure 3.34 shows the 2D density distribution after the flow detention
at t = 25 s. As the dilatancy tuning parameter k1 is increased, the posi-
tive pore pressure excess also increases and leads to the segregation of the
solid phase throughout the dambreak wave. In the numerical simulations,
as the dambreak progresses along the constrained channel (s < 82.5m), a
fluidized wave head is predicted with a lower solid concentration and high
pore pressure excess which enhances the debris mobility. Once the main
dambreak wave reaches the runout surface, the velocity decreases and the
induced pore pressure excess dissipates at the flow head, increasing the fric-
tional stresses in the solid phase and stemming the wave-front finally. This
fluidized head becomes more marked as the dilatancy tuning parameter k1

is increased and can be observed in the video recording of the experiments.
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(a) Wave-front location.

(b) Wave-front velocity.

Figure 3.36: Experimental case MF2 – Temporal evolution of the dambreak wave-
front: (a) Time vs. Location and (b) Location vs. Velocity.

Nevertheless, although the main wave is stopped at the runout surface,
the movement of the material at the uniform-slope region continues gen-
erating rolling waves which reaches progressively the detention zone. Fig-
ure 3.38 shows the cross-section averaged value of the basal pore pressure
excess factor Eb at times t = 6, 12, 15 and 18 s for the simulation with
dilatancy tuning parameter k1 = 0.15. The fully-fluidized flow head is ob-
served for t = 6 s whereas the main wave detention occurs at t = 12 s
approximately. Secondary rolling waves associated to increments of the
shear-induced basal pore pressure are developed for 12 ≤ t ≤ 22 along
the constrained step channel and stop at the catenary region and at the be-
ginning of the runout surface, increasing the final deposit head in these
regions. These secondary rolling waves behind the main flow front are also
been observed in the video recording of the experiments. This behavior
is known as surge dynamics and is one of the mean features of the debris
flows, mainly associated to the appearance of non-uniform shear stresses
along the debris flow.
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Figure 3.37: Experimental case MF2 – 2D deposit density h after the flow detention
(t = 25 s) with values of the dilatancy tuning parameter k1 = 0 (equilibrium), k1 =

0.05, k1 = 0.10 and k1 = 0.15 (maximum dilation).

Figure 3.38: Experimental case MF2 – Longitudinal profile of the basal pore pressure
excess factor Eb at times t = 6, 12, 15 and 18 s for the simulation with dilatancy

tuning parameter k1 = 0.15

Finally, Figure 3.39 shows a 3D view of the final debris deposit features
for the simulation with dilatancy tuning parameter k1 = 0.15. It can be ob-
served the accumulation of the denser material at the catenary zone and at
the beginning of the runout surface, as well as the fluidized (lower density)
dambreak wave-front.
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Figure 3.39: Experimental case MF2 – 3D view of the final debris deposit features for
the simulation with dilatancy tuning parameter k1 = 0.15.

3.5.3 Experimental case MF3: USGS debris dambreak over erodi-
ble steep bed

In this section the model predictions are validated using experimental data
from large-scale dambreak debris flows over erodible bed. Eight differ-
ent experiments were carried out in the USGS large-scale debris-flow flume
(see Case 3.5.2 above for description of the facility). The available data,
reported by Iverson et al. [60], include the wave-front location along time,
the wave-front velocity at the end of the uniform-slope channel and the fi-
nal volume eroded from the bed. Moreover, the flow thickness and bed
deformation at different points were reported for two of the experiments.
Figure 3.40 shows a schematic representation of the USGS flume setup for
the erodible bed experiments. All the longitudinal distances s are referred
to the headgate position taken along the experimental flume floor.

The initial debris volume is composed by a fully saturated mix of wa-
ter and 56% gravel–37% sand–7% mud grains, called SGM mixture, where
mud refers to particles smaller than 0.0625mm [61]. Table 3.6 shows the
main parameter used in the simulation setup for characterizing the debris
mixture. For all the experiments, the equivalent volumetric bulk concen-
tration for the initial debris material is φ0 = 0.6 and the initial volume
stored upstream the headgate is 6m3. The flume rigid floor is covered from
s = 6m (x = 5.1m) to s = 53m (x = 45.4m) with a layer of partially
saturated SGM mixture with 12 cm uniform thickness.

In Table 3.7, the features of three sediment classes composing the SGM
mixture have been summarized. Note that the critical Shields stress for the
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Figure 3.40: Experimental case MF3 – Sketch of the USGS flume for erodible bed
experiments. Details of the equivalent horizontal distance, vertical ele-

vation and channel slope are also indicated.

Debris volume 6m3

Bulk solid conc. φ0 60 %

Debris water content 40 %

Bulk debris density ρ 2020 kg/m3

Plastic viscosity µB 1.66 Pa · s
Cohesive yield strength τy 393 Pa
Frictional stability angle δf 40◦

Manning’s rough. coeff. nb
Concrete: 0.018 sm−1/3

Erodible layer: 0.021 sm−1/3

Pore-fluid density ρw 1000 kg/m3

Pore-fluid viscosity µ 0.001Pa · s

Table 3.6: Experimental case MF3 – Characteristic of the initial debris material.

incipient motion θc,p has been graded using the Egiazaroff [32] hiding/ex-
posure function depending on the diameter ds,p and the relative bed frac-
tion Fb,p of each sediment class.

Sediment classes N 3
Sed. class type Fines Sand Gravel
Grain diameter ds,p 0.016 mm 0.4 mm 12 mm
Solid density ρs,p 2700 kg/m3 2700 kg/m3 2700 kg/m3

Debris initial conc. φp 0.042 0.222 0.336
Bed layer fraction Fb,p 0.07 0.37 0.56
Critical Shields stress θc,p 10.8575 0.4343 0.0212
Transport capacity
modification param. βT

0.3

Bed porosity ξ Depends on the test
Bed water content Cbw Depends on the test

Table 3.7: Experimental case MF3 – Sediment classes composing the SGM mixture.
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The porosity and water content of the erodible bed layer vary for each
experiment, leading to different entrainment rates and wave-front veloci-
ties. Table 3.8 shows the water content Cbw and the bed bulk porosity ξ of
the bed layer for each experiment taken from [60]. Furthermore, in order
to account for the reduction of the frictional basal resistance due to pore-
pressure in a simple way and following [79], the basal pore pressure excess
factor Eb used in these simulations is set to a value (constant in time and
space) between 0.5 and 0.8 depending on the bed water content of each
experiment.

The simulations are performed using an unstructured triangular mesh
of around 57000 cells, with an averaged area of 100 cm2. The CFL is set to
0.95 and the total simulated time is 25 s for each experiment. Simulations
are performed in a NVIDIA Tesla K40c device with a CUDA-C++ code,
whereas a Intel(R) Core(TM) i7-7700K @4.50GHz is used for the CPU-based
algorithm.

Test
Bed water

content
Bed bulk
porosity

Pore pressure
excess factor

Cbw (−) ξ (−) Eb (−)

A 0.282 0.51 1.70
B 0.257 0.46 1.67
C 0.253 0.48 1.65
D 0.244 0.43 1.62
E 0.227 0.39 1.60
F 0.220 0.43 1.58
G 0.183 0.42 1.56
D 0.148 0.49 1.55

Table 3.8: Experimental case MF3 – Features of the erodible bed layer for each ex-
perimental test.

As in the previous dambreak over rigid bed experiments, the wave-
front position was tracked using image techniques and video frames, as
well as the front velocity between s = 60m and s = 70m. For each ex-
periment, the entrainment from the erodible bed to the debris flow was
estimated by measuring the bed layer volume before and after the passage
of the dambreak wave. The flow thickness was measured at the control sec-
tions X1 s = 32m and X2 s = 66m for the test G and C using laser sensors
mounted above the flume. Furthermore, the bed degradation was also mea-
sured using scour sensor placed in the erodible bed at s = 13m, s = 23m,
s = 33m and s = 43m for tests G and C. Video files of all the experiments
are available in https://pubs.usgs.gov/of/2007/1315/.

First, a complete analysis of the numerical results obtained using four
different basal resistance closures from Table 3.1 is included herein for the
tests G and C. The behavior of the dambreak flow is analyzed using the
cohesive Bingham and turbulent rheology (CB and CT respectively) as well
as with the frictional turbulent and plastic formulations (FT and FP respec-
tively). Then, the results obtained by the rest of the experiments are also
reported.

https://pubs.usgs.gov/of/2007/1315/
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Experiment G

For test G, the lower part of Figure 3.41 shows the bulk debris density in
color scale and the upper part depicts the longitudinal profile of the specific
volumetric concentration for each sediment class in the mixture at t = 6 s
and t = 12 s using the frictional turbulent FT rheology. Note that the flow
depth in the 3D figure is multiplied by 5 to improve the visualization of the
debris wave shape.

As the dambreak wave progresses downstream, bed material is incor-
porated into the flow, increasing the solid phase volume in the debris and
hence its density. It is worth to mention that the coarse sediment fraction
dominates along the front and central regions of the debris wave, whereas
the finer sediment fraction shows higher concentrations along the tail zone.
This sorting of the different solid phases composing the flow mixture is typ-
ical of debris flow dynamics and mainly caused by the differences on the
solid phases velocity. However, in these simulation a unique velocity for
all the solid phases since the dilation effects are neglected. Therefore, this
sorting of the sediment classes obtained by the numerical model, although
correct, may be related to different bed entrainment rates for each sediment
fraction from the bed.

The temporal evolution of the flow free surface at the control sections
X1 (s = 32m) and X2 (s = 66m) with the four different depth-averaged
rheology relations for the basal resistance is depicted in Figure 3.42 in com-
parison with the measured data. Using the frictional turbulent FT formu-
lation, the wave-front arrival time to the first control section X1 is slightly
smaller than the observed data but predicts well the arrival of the wave
front to the second control section X2. Moreover, the peaks of the free sur-
face level corresponding to the wave head at both control section are also
reasonably well predicted. The simulation performed with the frictional
plastic FP relation predicts correctly the arrival time and wave head level
at the first control section X1 but, for the second control section X2, the
arrival time is larger and the peak of the free surface level higher than those
observed in the experiment. The cohesive Bingham CB formulation shows
a smaller arrival time at both control sections X1 and X2, indicating higher
flow velocities, whereas the wave head level is also well predicted in both
cases. Finally, The cohesive turbulent CT rheology shows a higher free sur-
face level peak and a smaller arrival time at the first control section X1,
whereas develops a double-wave flow structure at the second control sec-
tion X2.

The dambreak wave-front position is plotted against time in Figure
3.43–(a) for the four rheology formulations simulated. The cohesive Bing-
ham CB formulation shows higher wave-front velocities than those ob-
served for the flow advance along constrained channel, whereas the fric-
tional plastic FP closure relation predicts slower front velocities along this
region. The cohesive turbulent CT formula overestimates the wave-front
velocity at the first stages but the runout distance is smaller than that mea-
sured in the experiment. Only the frictional turbulent FT formulation is
able to correctly estimate the wave-front advance process. Furthermore,
bed degradation was not detected at any of the measurement section in the
experiment, indicating that the maximum scour depth was lower than 2-
3 cm. Figure 3.43–(b) shows the temporal evolution of the bed thickness at



3.5. Benchmark and application cases 111

(a) t = 6 s

(b) t = 12 s

Figure 3.41: Experimental case MF3 – Test G: 2D flow density and solid phase gra-
dation at t = 6 s and t = 12 s using FT resistance.

section X1 (s = 32m) for all the resistance formulations used. The deep-
est scour is computed using the frictional turbulent FT relationship (3.2 cm)
whereas the rest of basal resistance formula predict bed scours lower than
2.4 cm. This is in agreement with the data measured during the experiment.
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Figure 3.42: Experimental case MF3 – Test G: temporal evolution of the flow free
surface at (left)X1 : s = 32m and (right)X2 : s = 66mwith four different rheology

closures for the debris basal resistance.

(a) Front location evolution.

(b) Bed thickness evolution at X1.

Figure 3.43: Experimental case MF3 – Test G: temporal evolution of (top) the
dambreak wave-front location and (bottom) the bed thickness at X1 (s = 32m)

with four different rheology closures for the debris basal resistance.

Table 3.9 shows the Root Mean Square Error (RMSE) for the flow free
surface level (fsl) at the control sections X1 (s = 32m) and X2 (s = 66m),
as well as for the wave-front location, with the four different rheological
relationships simulated. The lowest RMSE is obtained with the frictional
plastic FP formulation for the free surface level at the control section X1,
whereas the frictional turbulent FT relation shows the best results for both
the free surface level at X2 and the temporal evolution of the wave-front
location. The computational time required by the GPU-based algorithm to
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complete the simulation is also reported in Table 3.9 for all the rheology for-
mulations, including the file input-output time. The computational effort is
quite similar with all the debris stress relationships, with the exception of
the frictional turbulent FT formula which requires a larger time to complete
the simulation.

RMSE RMSE Comp. time
Rheol. fsl:X1 fsl: X2 Front loc. Tesla k40c

(m) (m) (m) (s)

CB 4.46 · 10−2 3.92 · 10−2 5.97 21.43
CT 5.16 · 10−2 2.94 · 10−2 4.38 20.61
FP 1.81 · 10−2 4.05 · 10−2 3.55 21.73
FT 3.83 · 10−2 2.56 · 10−2 2.72 26.28

Table 3.9: Experimental case MF3 – Test G: RMSE for the flow free surface level at
the control sections (X1 andX2) and for the wave-front location, and computational

time required by the GPU-based algorithm.

Furthermore, the normalized wave-front speed S and the normalized
post-entrainment flow volume V defined as

S =
Smeasured (ms−1)

9.81 (ms−1)
V =

6 (m3) + Veroded (m3)

6 (m3)
(3.143)

with Smeasured the wave-front velocity measured at s ∈ [60m, 70m] and
Veroded the volume incorporated from the bed layer into the flow, are also
computed for all the rheology relationships and compared with the mea-
sured data. Table 3.10 shows the computed results and the relative error
with respect to those observed in the experiment. Although the best ap-
proximations to the measured wave-front speed S are obtained with the
frictional plastic FP resistance formulation, also the frictional turbulent FT
and cohesive turbulent CT relations show acceptable relative errors lower
than 10%. Moreover, only the frictional turbulent FT rheology reports
a suitable approximation for the normalized post-entrainment volume V
lower than 10% of the volume measured after the experiment.

Norm. speed S Norm. vol. V
Rheology Value Rel. error Value Rel. error

(−) (%) (−) (%)

Measured 0.85 - 1.36 -
Coh. Bingham CB 1.0036 +18.06 1.1082 -17.91
Coh. Turb. CT 0.7702 -9.17 0.9604 -33.30
Frict. Plast. FP 0.8492 -0.10 1.1083 -17.90
Frict. Turb. FT 0.9263 +8.90 1.3904 +2.99

Table 3.10: Experimental case MF3 – Test G: normalized wave-front speed S and
post-entrainment flow volume V with the four rheology closures simulated.
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In order to assess the performance of the GPU-based algorithm for the
computation of large-scale realistic debris/mud flow events, the compu-
tational time required with the above used mesh (taken as reference and
called MR) is compared with the computational time running in a CPU-
core, both including the file input-output time. All the computational times
are obtained using the frictional turbulent FT rheology. Moreover, the scal-
able acceleration of the GPU-based algorithm is assessed by comparing the
computational times using a mesh 5 times coarser than MR and referred to
as M1 (11500 cells), as well as with a mesh 4 times finer than MR (referred
to as M2), with 228000 cells approximately. The computational efforts re-
quired for the GPU-based and CPU-based versions of the algorithm with
the three considered meshes are reported in Table 3.11. Results show that,
for the reference mesh MR, the speed-up achieved by the GPU-based algo-
rithm with respect to the CPU-based version is 12. Furthermore, the perfor-
mance of the GPU-based algorithm increases as the mesh is refined and the
number of cells involved in the simulation is higher, with a speed-up near
27 for mesh M2.

Cells Cell Cells Comp. time Speed-up
Mesh number area increment Tesla k40c i7-7700K cpu/gpu

(−) cm2 (−) GPU (s) CPU (s) (−)

M1 11515 500 ∼ 1
5×MR 4.497 12.073 ×2.7

MR 57212 100 – 26.284 327.619 ×12.5
M2 227803 25 ∼ 4×MR 155.904 4206.670 ×26.9

Table 3.11: Experimental case MF3 – Test G: computational effort required by the
GPU-based algorithm with different mesh refinement level and speed-up with re-

spect to the CPU-based version.

Experiment C

Test C is simulated using the two more suitable basal resistance formula-
tions for the USGS debris flow experiments, the frictional plastic FP and
the frictional turbulent FT rheology closures. The lower part of Figure 3.44
depicts the bulk debris density and the upper part shows longitudinal pro-
file of the specific volumetric concentration of each sediment class at t = 6 s
and t = 12 s using the frictional turbulent FT rheology relation. In experi-
ment C the initial water content of the erodible bed was much higher than
that of experiment G, leading to an enhancement of the bed material en-
trainment into the debris. The numerical results show that, when the flow
progresses downstream and reaches the erodible bed, high concentration
of the coarser solid phase appears rapidly at the wave-front whereas the
volumetric concentrations of the finer solid phases reduce.

As in test G, the finer fraction gains importance along the tail of the
debris wave, although the volumetric concentration of the gravel fraction
continues being higher than those of the sand and silt fractions in the center
region of the flow (see Figure 3.44). Furthermore, after the main wave-front
reaches the runout zone and stops, secondary or roll waves are developed
along the tail of the debris flow. These roll waves are associated to the solid
phases sorting, with higher concentration of the coarse sediment class at
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(a) t = 6 s

(b) t = 12 s

Figure 3.44: Experimental case MF3 – Test C: spatial flow distribution at (a) t = 3 s
and (b) t = 12 s after the gate opening and using the TC friction.

the wave head and finer grained more-liquefied tails [63]. Roll waves move
downstream and also stop when they reach the runout zone.

The temporal evolution of the flow free surface at control sections X1
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(s = 32m) and X2 (s = 66m) has been depicted in Figure 3.45 in compar-
ison with the measured data. The wave-front arrival time to both control
sections is again well predicted using the frictional turbulent FT rheology,
as well as the wave head level at the control section X1. However, the
head level is slightly overestimated for the control section X2. Neverthe-
less, the frictional plastic FP formulation shows smaller arrival times and
overestimates the free surface elevation of the wave head at both control
sections, indicating higher flow velocities than those observed during the
experiment.

Figure 3.45: Experimental case MF3 – Test C: temporal evolution of the flow free
surface at (left) X1 : s = 32m and (right) X2 : s = 66m with different rheology

closures for the debris basal resistance.

The temporal evolution of the wave-front position is plotted in Figure
3.46–(a). The frictional plastic FP formulation shows much higher wave-
front velocities than those observed during the experiment, whereas the
frictional turbulent FT rheology relation predicts correctly the wave-front
advance. Furthermore, Figure 3.46–(b) shows the computed temporal evo-
lution of the bed thickness at s = 13m, s = 23m, s = 33m and s = 43m
with both rheology closures compared with the measured data. Both basal
resistance relations predict the rapid degradation of the bed layer, but the
frictional turbulent FT formula shows a bed thickness evolution which
agrees better with the measured data at all the control points.

In order to analyze the sensitivity of the model to some calibration pa-
rameters, additional simulations are performed taking the above results for
test C with the FT resistance formulation as reference. Considering that the
solid phase features and the experiment description shown in Tables 3.6, 3.7
and 3.8 are well-know from the original works [60, 61], the highest uncer-
tainty arises from both the basal pore pressure coefficient Eb and the trans-
port capacity modification parameter βT . The 20% reduction of the basal
pore pressure coefficient leads to a marked decrease of the wave propaga-
tion velocity whereas a 20% increment on Eb causes an increase of the wave
propagation velocity, as it is depicted in Figure 3.47–(a). On the other hand,
Figure 3.47–(b) shows that the variation of the transport capacity parameter
βT does not show a marked influence on the velocity propagation of the de-
bris dambreak wave . Therefore, when the frictional-type closures are used
for the basal resistance (see Table 3.1), a correct calibration of the the basal
pore pressure excess coefficient Eb is essential.
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(a) Front location evolution.

(b) Bed thickness evolution.

Figure 3.46: Experimental case MF3 – Test C: temporal evolution of (a) the dambreak
wave-front location and (b) the bed thickness at s = 13m, s = 23m, s = 33m and

s = 43m with FP and FT rheology closures for the debris basal resistance.

Complete set of experiments

As a main conclusion of the results shown above, the frictional-type rheol-
ogy formulations for the debris resistance (specially the frictional turbulent
FT) are considered more suitable to reproduce the USGS debris flume ex-
periments than the resistance closure relations based on a cohesive yield
strength. Furthermore, the FT relationship has also been used in other pre-
vious works to reproduce this set of experimental data [42, 79, 112, 147].
Therefore, the remaining six experiments are simulated using the FT rheol-
ogy to estimate the basal resistance along the debris flow.

Figure 3.48 shows the computed wave-front position against time for
all the tests carried out at the USGS flume, compared with the measured
front evolutions. The proposed model is able to predict reasonably well the
advance of the dambreak debris wave for most of the experiments. Nev-
ertheless, important differences appear in some cases, especially in tests H
and D where the model overestimates the velocity of the wave front at the
catenary and runout regions with respect to those observed in the corre-
sponding experiments.

Finally, Table 3.12 shows the normalized wave-front speed S between
s = 60m and s = 70m and the normalized post-entrainment flow volume
V , estimated as in (3.143), computed with frictional turbulent FT formula-
tion for the all the experiments carried out at the USGS debris flume, com-
pared with the measured data. The proposed model is able to correctly
estimate both dynamic data with relative errors lower than 20% for all the
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(a) Sensitivity to Eb.

(b) Sensitivity to the capacity modification parameter βT .

Figure 3.47: Experimental case MF3 – Test C: temporal evolution of the dambreak
wave-front location with (a) increasing basal pore pressure coeffcients Eb and (b)

increasing transport capacity modification parameter βT .

Figure 3.48: Experimental case MF3 – Temporal evolution of the dambreak wave-
front location with FT rheology for the all the USGS debris bambreak

over erodible bed experiments.

experiments, with the exception of the normalized wave-front velocity S
for the tests H and F which shows important differences between experi-
mental and computed values. Further developments of the physical model
could be required to improved these numerical results.
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Front vel. S Debris Vol. V
Test Meas. Sim. Error Meas. Sim. Error

(−) (−) (%) (−) (−) (%)

A 1.33 1.38 +4.5 3.05 2.73 -10.5
B 1.53 1.51 -1.6 2.59 2.64 +1.8
C 1.19 1.38 +17.5 2.27 2.61 +15.2
D 1.01 1.11 +10.0 2.20 2.21 +0.6
E 0.95 1.02 +7.2 2.24 2.18 -2.4
F 0.61 1.01 +67.0 1.52 1.63 +8.1
G 0.85 0.92 +8.9 1.36 1.39 +2.9
H 0.24 1.01 +324.5 1.56 1.48 -4.4

Table 3.12: Experimental case MF3 – Measured and computed normalized wave-
front speeds S and post-entrainment flow volumes V with FT rheology for the all

the USGS debris bambreak over erodible bed experiments.

3.5.4 Real-scale case MF4: Mine tailings dam failure in Brumad-
inho (Brasil)

The aim of this test is to assess the performance of the model for simulating
a real large-scale highly unsteady mud flow, comparing the obtained results
with the available field observations and gaining a better insight into the
behavior of this kind of violent flows. On 25th January 2019 (12:28 p.m.),
the Dam I at the C’orrego do Feijão Iron Ore Mine, located 9 km north-
east of Brumadinho in the state of Minas Gerais (Brazil), suffered a sud-
den catastrophic failure, resulting in an extremely violent mud flow which
traveled downstream more than 10 km and reached the Paraopeba River, a
major tributary of the São Francisco River. This disaster caused more than
260 deaths and important economic and environmental losses. The dam
consisted of 12 · 106m3 mining waste tailings with a height of 70 − 80m,
constructed over a period of 37 years in 10 raises and covering an area of
4.13 · 105m2. The initial failure extended across the face of the dam and
the slope collapse was complete in less than 10 seconds. Most of the dam
material flowed out of the dam in less than 5 minutes. The tailings in the
dam showed a sudden and significant loss of strength and rapidly became
a heavy liquid that flowed downstream at a high speed (about 120 km/h in
some zones). Based on the available videos, it is clear that the failure was
the result of static liquefaction within the materials of the dam [126].

Table 3.13 shows some of the features of the materials in the dam. Tail-
ings were composed by a mixture of water, sediments and heavy metals,
mainly iron (Fe) 264.9 mg/g, aluminum 10.8 mg/g, manganese 4.8 mg/g
and titanium 0.5 mg/g [141]. The size distribution consisted basically of a
mineral sand fraction (38%) and a fines fraction (62%), accounting for min-
eral silt-clay and metals particles. The water content before the failure was
estimated around 50% by volume with a specific weight of 22 − 26 kN/m3

[126].
Figure 3.49 shows an aerial image of the mine site after the dam col-

lapse, including the dam location and the original tailings elevation in me-
ters above sea level (m.o.s.l). The area affected by the mud was 3.3 · 106m2,



120 Chapter 3. Two-dimensional model for variable-density mud/debris flows

Dam capacity 12 · 106 m3

Dam area 4.13 · 105 m2

Solid concent. φ0 50%
Water content Cw 50%
Specific weight 22− 26 kN/m3

Size distr. Sand Fines
Rel. content 38% 62%
Heavy metals Fe Al Mn Ti
Weight conc. 264.9 mg/g 10.8 mg/g 4.8 mg/g 0.5 mg/g
Rel. content 87% 10% 1.7% 0.3%

Table 3.13: Real-scale case MF4 – Brumadinho’s dam and tailings features.

without including the original dam area, and reached the Paraopeba River
8.5 km downstream the dam.

Figure 3.49: Real-scale case MF4 – Aerial image of the area affected by the mud and
the computational domain used in the simulation.

In order to perform the simulations, a spatial domain of 10.396·106m2 is
discretized using a unstructured triangular mesh with 5.3 ·105 cells approx-
imately and slightly refined in the dam area. Four control cross-sections
are placed downstream of the dam at (CS-1) the mine stockpile area, (CS-2)
the railway bridge, (CS-3) the Alberto Flores road and (CS-4) the Alberto
Flores Gauge Station in the Paraopeba River. Furthermore, the base regime
water depth and velocities in the Paraopeba River before to the mud ar-
rival is assessed by a previous simulation (without considering the tailings
dam collapse) setting a constant clear water inlet of 45.6m3/s and uniform
flow conditions at the outlet boundary. The mean thalweg slope in the
Paraopeba River is S0 = 0.0025m/m. This previous simulation runs un-
til the solution converges to the base steady state. Numerical results show
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that the maximum water depth in the Paraopeba River before the dam col-
lapse is around 3.5m with a negligible sediment concentration at the outlet
boundary (lower than 2% by volume) and maximum flow velocities about
2.5m/s (see Figure 3.49).

Figure 3.50 shows the terrain elevation (1×1m DTM) previous to the
dam collapse. The thalweg elevation along the area covered by the mud
varies between 860m.o.s.l at the dam-toe and 720m.o.s.l at the Paraopeba
River, with an averaged longitudinal bed slope S0 = 0.0165m/m. The ini-
tial tailings depth at the dam is estimated by comparing the terrain eleva-
tion before and after the dam failure using 1×1m DTM’s.

Figure 3.50: Real-scale case MF4 – Terrain elevation before the dam collapse (1×1m
DTM).

Six different solid phases are set, including mineral sand, mineral silt,
iron (Fe), aluminum (Al), manganese (Mn) and titanium (Ti). A sum-
mary of the main parameters used in the simulation is shown in Table
3.14. The tailings mixture is considered fully saturated with an initial bulk
volumetric concentration of solids φ0 = 0.5, leading to a mixture den-
sity ρ = 2247.5 kg/m3. The specific initial volumetric concentration for
each solid phase φp is estimated from the available literature [126, 129,
141]. The deposition porosity ξp for each sediment class is estimated us-
ing the Wu [144] relation and the bulk value for the bed layer ξ is estimated
as a weighted mean. The hiding-exposure effects on the critical Shields
stress for the incipient motion each solid phase θc,p are estimated using the
Egiazaroff [32] formula.

As the mining tailings in the dam showed a low plasticity and high val-
ues of pore-fluid pressure [126] before the collapse, the frictional turbulent
FT rheology is set for the estimation of the basal resistance contribution
during the simulation. The land use along the area covered by mud was
mainly forest and agriculture, hence a uniform Manning’s roughness pa-
rameter nb = 0.065 sm−1/3 is used and the transport capacity modification
parameter is set to βT = 0.5 for all the solid phases. A stability angle δf = 5◦
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is estimated for the basal frictional resistance. The effect of the solid phase
dilation of the material segregation are neglected and the pore-fluid pres-
sure excess factor is set to the constant value Eb = 1.05. The simulated time
is 3hours from the dam collapse and the CFL is 0.95.

Initial mixt. density ρ 2247.5 kg/m3

Basal stab. angle δf 5◦

Manning’s roug. nb 0.065 sm−1/3

Pore-fluid dens. ρw 1000 kg/m3

Pore press. coeff. Eb 1.05
Sed. classes 6
Crit. Shields stress θc 0.030
Transp. cap. param. βT 0.5
Solid phase Sand Silt Fe Al Mn Ti
Diameter ds,p (mm) 0.4 0.075 0.075 0.075 0.075 0.075
Initial concent. φp 0.19 0.224 0.075 0.009 0.0015 0.0003
Solid dens. ρs,p (kg/m3) 2700 2700 7874 2700 7210 4506
Bed fraction Fb,p 0.38 0.62 0.0 0.0 0.0 0.0
Depos. porosity ξp 0.35 0.45 0.45 0.45 0.45 0.45
Crit. Shields stress θc,p 0.020 0.067 0.067 0.067 0.067 0.067

Table 3.14: CReal-scale case MF4 – Parameters used for the simulation of the dam
failure.

Figure 3.51 shows the mud flow depth (left) and velocity (right) at
t = 5min, t = 10min and t = 35min after the dam collapse. The numerical
results show that practically the whole initial tailing volume flows out of
the dam in the first 5 minutes after the dam collapse, as it was observed in
the available videos. The mud wave moves downstream with a computed
height larger than 25m and with velocities higher than 15m/s (54 km/h) in
some zones during the first minutes. Furthermore, the simulation results
indicate that the mud reaches the mining treatment plant and the stockpile
areas (CS-1), as happened during the real event. After this initial stage, the
numerical results show that the dambreak wave decreases its velocity at
t = 10min but the computed mud depth is still higher than 20m when the
wave-front reaches the railway bridge (CS-2). During the real event, the
mud wave impact caused the collapse of the railway bridge structure. As
the wave moves downstream, the velocity and depth of the mud reduce
progressively along the whole flow, not only in the wave-front. Numerical
results show that 35min after the event beginning, the mud wave-front is
close to the Alberto Flores road (CS-3) and the flow is practically stopped in
all zones. As it was observed during the real event, the simulation predicts
that the wave-front reaches the Paraopeba River, flowing into the riverbed
and creating a "dam" which increases progressively the upstream water
level at the Alberto Flores Gauge Station (CS-4) along the following hours.
The computed mud accumulation reaches 14.5m in some zones after the
flow deposition.

Figure 3.52 depicts the predicted temporal evolution of the mud wave-
front location and velocity along the thalweg each 2.5min during the first
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(a) t = 5min.

(b) t = 10min.

(c) t = 35min.

Figure 3.51: Real-scale case MF4 – (left) Mud flow depth and (right) flow velocity:
(a) t = 5min, (b) t = 10min and (c) t = 35min after the dam collapse.

hour of the flow. At the first stages, the averaged velocity of the wave-front
is around 50 km/h and it is progressively decreasing as the flow progresses
downstream until the wave-front reaches the Paraopeba River 43.5min af-
ter the dam collapse.

The predicted temporal evolution of the cross-section averaged flow
depth and the total volume discharge (m3/s) at the stockpile area (CS-1), the
railway bridge (CS-2) and the Alberto Flores road (CS-3) are plotted in Fig-
ure 3.53. For cross-section CS-1, the discharge shows a peak of 38000m3/s
with an average mud depth of 7.5m at t = 2.5min. However, the flow
has reduced its velocity considerably 10min after the dam failure and the
deposited mud depth along this cross-section is lower than 0.2m. In this
zone just downstream the dam-toe, the simulation predicts that the mud
wave erodes the original bed and gains mass and momentum during the
first stages of the flow. The predicted increment of the volume involved in
the flow is near 56% of the original mass due to entrainment from the erodi-
ble bed. Hence, when the flow reaches cross-section CS-2, the average flow
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Figure 3.52: Real-scale case MF4 – Temporal evolution of the wave-front until the
mud flow reached the Paraopeba River.

depth is near 12m although the discharge shows a lower peak (14000m3/s)
at t = 5min, caused by the reduction of the flow velocity. In this cross-
section CS-2, the movement of the mud is practically stopped 50min after
the dam failure. Nevertheless, the predicted temporal evolution of the flow
at cross-section CS-3 shows a more progressive depth increment with time
and a much lower discharge, needing more than 2hours after the dam fail-
ure before the mud is totally stopped.

Figure 3.53: Real-scale case MF4 – Temporal evolution of the cross-section averaged
flow depth and the total volume discharge at the stockpile area (CS-1),

the railway bridge (CS-2) and the Alberto Flores road (CS-3).

Figure 3.54 shows the predicted mud density distribution (top) and iron
solid phase volumetric concentration (bottom) for t = 60min after the dam
collapse. Generally, the flow density remains approximately constant and
higher than 2100 kg/m3 for the first stages of the flow. Then, the density
progressively reduces as the flow moves downstream, especially at the up-
stream region and at the boundaries of the area affected by mud, where
deposition of the solid phases dominates due to the lower velocities. In
the center of the channel at the downstream region, where a slight move-
ment of the flow continues even at t = 60min, the density shows important
variations with respect to the original mud density. Once the flow reaches
the Paraopeba River, the mud starts to mix with the "clear water" of the
Paraopeba River and the flow density decreases abruptly along the mixing
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interfaces. Spatial differences in the solid concentration are more marked
for the iron phase, since it is more affected by deposition due to its higher
density. Therefore, the iron volumetric concentration in the flow decreases
more rapidly than the mineral solid phases or the mixture bulk density in
the low velocity regions.

Figure 3.54: Real-scale case MF4 – Mud density (top) and iron volumetric concen-
tration (left) for t = 60min after the dam collapse.

The most important available observation during the real disaster is the
arrival of the mud wave to the Paraopeba River. Herein we compare some
observed data with the numerical results obtained by the model. At the
Alberto Flores road (CS-3), the height of the mud once the flow stopped
was estimated between 4-5 meters from published photographies. Figure
3.55–top shows the computed bed and flow free surface profiles at CS-
3 for t = 3hours. The maximum mud depth is 4.9m and agrees with
the observed data. Furthermore, the Alberto Flores Gauge Station in the
Paraopeba River, upstream the mud-river confluence, also offers interest-
ing data for comparison. This gauge station continuously recorded the free
surface level each 15min. During the real event, the mud flowing into the
river created a "dam" in the confluence region, which temporally increased
the free surface level in the Paraopeba River upstream the confluence region
until the water reached the maximum elevation of the "dam" and started to
flow over the mud. The observed temporal variation curve of the free sur-
face level at the Alberto Flores Gauge Station can not be compared directly
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with the numerical results obtained for the control cross-section CS-4, be-
cause of the different storage capacity upstream the confluence between the
simulation domain and the real river. However, two important conclusions
can be extracted from the recorded data. First, the river free surface level
at the gauge station started to increase 32 − 47min after the dam collapse,
capturing the arrival interval of the mud flow to the river. Second, the max-
imum level registered by the free surface was 5.11m above the base regime
level previous to the mud arrival, indicating the height of the mud "dam" at
the confluence region. Figure 3.55–bottom depicts the predicted temporal
evolution of the river water depth and discharge at the control cross-section
CS-4. The model is able to capture the arrival time of the mud flow to the
river (43.5min). Moreover, the maximum increment of the free surface level
at CS-4 is 4.06m, showing a reasonably agreement with the observed data.

Figure 3.55: Real-scale case MF4 – Top: Bed and mud level profiles at CS-3 for
t = 3hours. Bottom: Temporal evolution of the river water depth and

discharge at CS-4.

Table 3.15 shows a comparison of the observed and computed data
which can be extracted for this event. The model is able to correctly esti-
mate the mud volume released and the area affected by mud. Furthermore,
also the mud accumulation at the Alberto Flores road (CS-3) and the height
of the mud "dam" at the confluence region showed a reasonable agreement,
as well as the arrival time to the Paraopeba River (CS-4).

In order to assess the spatially distributed hazard level caused by the
dam collapse, the maximum mud flow depth and velocity are continuously
recorded at each computational cell during the whole simulation. Firstly,
Figure 3.56–left shows that the maximum mud depth occurs downstream
of the dam-toe and along the thalweg zone next to the stockpile area, with
mud depth values higher than 35m, but the flow depth is higher than 10m
at some time during the simulation practically until the flow reaches the
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Observed Computed
Released tailings volume (m3) 9.6 · 106 9.747 · 106

Affected area (m2) 3.3 · 106 3.604 · 106

Final mud elevation at CS-3 (m) ≈ 4− 5 4.9
Arrival time to CS-4 (min) 32− 47 43.5
Free surface increment at CS-4 (m) 5.11 4.06

Table 3.15: Real-scale case MF4 – Comparison of observed and computed data.

river. Secondly, the highest velocity is also computed downstream the dam-
toe with values higher than 100 km/h (see Figure 3.56–bottom). These re-
sults are also in agreement with the available observed data, since an ap-
proximated velocity of 120 km/h for the wave-front was estimated at the
first stage from the available videos of the dam collapse.

Figure 3.56: Real-scale case MF4 – Maximum mud depth (top) and velocity (bottom)
during the 3hours simulated after the dam collapse.

Finally, Table 3.16 shows the computational time required for simulating
the 3hours event using GPU-parallelization compared with the CPU-based
version of the code, both including the file input-output time. Simulations
are performed in a NVIDIA GeForce GTX 1080 Ti device with the GPU-
based code, whereas the Intel(R) Core(TM) i7-3820 @3.60GHz is used for
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the CPU-based algorithm. While the computational time for the CPU algo-
rithm was almost 2.5 days, the GPU algorithm required less than 1hour to
complete the simulation, representing a 61 speed-up. That means that for
achieving the GPU-parallelized code performance with a CPU-based algo-
rithm, a cluster with at least 76 CPU cores is required.

Comp.
domain

Number
of cells

Comp. time Speed-up
cpu/gpuGTX 1080 Ti i7-3820

(m2) (hours) (hours) (−)

10.396 · 106 529339 0.967 59.43 ×61.4

Table 3.16: Real-scale case MF4 – Computational times with GPU-based and CPU-
based algorithms.

3.6 In Closing

In this chapter, the system of 2D depth-averaged conservation laws (3.1)–
(3.2a)–(3.2b)–(3.4)–(3.9) for geophysical surface flows of multi-grain water-
sediment mixtures have been solved using a Finite Volume (FV) method
supplemented with an upwind resolution of the intercell numerical fluxes
based on the augmented Roe’s approach. This approach involves the bed-
pressure and non-Newtonian basal resistance momentum source terms into
the numerical fluxes at the cell edges. The system of equations is formu-
lated taking into account the net exchange flux between the underlying
erodible bed layer and the mixture flow, which leads to the temporal evo-
lution of the bed elevation. Furthermore, the effects of the shear-induced
solid phase dilation on the pore-fluid pressure have also been included into
the numerical fluxes solution. The resulting method demonstrated to be
robust, accurate and efficient even when it is faced to complex large-scale
and long-term debris flows.

The main novelties in this chapter are summarized as:

1. Two new strategies for the discretization of the 2D basal resistance
force into local plane Riemann problem at the intercell edges are
proposed here. These new methods, called respectively integral
and differential approaches, allow to separate the cell-centered non-
Newtonian shear stress force into upwind contributions to the lo-
cal numerical fluxes at the cell edges ensuring the rotation invariant
property of the integrated basal resistance term.

2. A new augmented Roe’s Riemann solver for variable-density multi-
grain flows is derived here. This solver allows the coupled upwind
computation of the mass and momentum numerical fluxes including
the density of the water-sediment mixture (Section 3.2.2). The ad-
dition of the bed-pressure momentum contribution into the local RP
ensures the well-balanced character of the numerical solution in qui-
escent and steady states (Section 3.3.1).

3. Based on the previous results, explicit integration procedures for the
upwind basal resistance contribution at the cell edges are derived.
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These procedures allow not only to compute the explicit edge-value
of the shear resistance contribution but also to limit its value in order
to avoid numerical oscillations. Also, the correct edge-discretization
of the basal resistance contribution ensures the non-dependence of the
solution on the mesh topology (Section 3.3.3).

4. The effects of the shear-induced solid phase dilation on the pore-fluid
pressure have been also included into the numerical model. Two im-
portant differences arrive here in comparison with previous models:
first, the shear-induced segregation of the solid material within the
flow is caused by a deviatoric contribution to the solid flux at the
edges which ensures that the continuity equations of the system main-
tain their conservative character; second, it is possible to estimate a
local value for the basal pore-pressure excess depending on the mix-
ture packed state. Therefore, under the same flow conditions, dense
packed mixtures are associated to a lower flow mobility whereas liq-
uefied slurries are related to larger runout distances (Section 3.4).
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Chapter 4

Two-dimensional models for
suspended sediment transport

The main goals of this chapter are:

• To derive robust and efficient numerical schemes to solve the two-
dimensional passive suspended sediment transport, including the
mass exchange with the underlying movable bed.

• To assess the effects of the decoupling of the flow depth and density
and the effects of the sediment concentration on the flow hydrody-
namics.

4.1 Governing equations

The 2D model for suspended sediment transport over non-uniform erodi-
ble beds is derived from the system of depth-averaged conservation laws
for variable-density mud/debris flows. Assuming equal velocity for the
solid and liquid phases, i.e. neglecting the solid phase dilation, leads to
the transport equation for the pth suspended sediment class (3.4) can be
simplified as

∂(hφp)

∂t
+

∂

∂x
(huφp) +

∂

∂y
(hvφp) = −(Db − Eb)p (4.1)

being φp the depth-averaged volumetric concentration of the pth sediment
class, h the vertical flow depth and (u, v) the components of the depth-
averaged flow velocity vector u. Furthermore, (Db − Eb)p is the balance
between the size-specific volumetric deposition and entrainment rates be-
tween the flow and the bed layer for the pth suspended sediment class, Db,p

and Eb,p respectively. Imposing a common solid density ρs for all the sedi-
ment classes being transported in the flow column, the bulk sediment-water
density can be expressed as

ρ = ρw(1− φ0) + ρsφ0 (4.2)

where ρw denotes the water density and φ0 =
∑N

p=1 φp is the bulk solid
concentration in the flow column.

Using (4.1) and (4.2) allows to extract the bulk solid-liquid density ρ
from conserved variables and convective fluxes on the left hand side of
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the conservation laws (3.1)–(3.2a)–(3.2b). Therefore, the resulting continuity
equation for the flow volume reads

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = −

∑N
p=1(Db − Eb)p

1− ξ
(4.3)

being ξ the bulk porosity of the non-uniform bed layer. The linear mo-
mentum conservation equations along the x− and y− coordinates can be
expressed as

∂(hu)

∂t
+

∂

∂x
(hu2 +

1

2
gh2) +

∂

∂y
(huv) = −gh∂zb

∂x
− τbx

ρ

− 1

2
g
h2

ρ

∂ρ

∂x
− uρ− ρb

ρ

∑N
p=1(Db − Eb)p

1− ξ
(4.4a)

∂(hv)
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(huv) +
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(hv2 +

1

2
gh2) = −gh∂zb
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τby
ρ
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g
h2

ρ

∂ρ

∂y
− vρ− ρb

ρ

∑N
p=1(Db − Eb)p

1− ξ
(4.4b)

being g the gravitational acceleration, zb the bed layer elevation, (τbx, τby)
the components of the depth-averaged basal resistance vector τb and ρb =
ρwξ + ρs(1 − ξ) the bulk density of the fully-saturated non-uniform bed
layer. Note that here, the projection of the gravity force along the vertical
direction is adopted under the hypothesis of small normal-bed angles.

Note that the decoupling of the flow depth h and density ρ causes the
appearance of two additional terms on the right hand side of the momen-
tum equations (4.4):

• The first one of these new momentum source terms accounts for ef-
fects of the bulk density gradients∇ρ on the water-solid mixture mo-
mentum.

• The second term assumes that the entrainment/deposition of material
from/to the bed layer also involves a momentum exchange between
the flow and the underlying bed stratum. As (ρ− ρb)/ρ < 0 since the
solid concentration in the flow is always lower than the deposition
package in the bed layer, positive bulk exchange rates (net deposition
when

∑N
p=1(Db − Eb)p > 0) lead to an increment of the flow momen-

tum. On the other hand, negative bulk exchange rates (net entrain-
ment if

∑N
p=1(Db − Eb)p < 0) involves a momentum reduction in the

movement.

The evolution equation for the non-uniform bed layer elevation reads

∂zb
∂t

=

∑N
p=1(Db − Eb)p

1− ξ
(4.5)
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Additionally, some closures are required here to complete the system.
The bed porosity ξ is estimated here using the Wu relation for non-uniform
deposits [144]

ξ = 0.13 + 0.21
(

0.002 + 103
N∑
p=1

Fb,p ds,p

)−0.21
(4.6)

where ds,p is the characterisctic diameter of the pth sediment class in me-
ters and Fb,p denotes the fraction of the pth sediment class in the bed layer,
which is considered constant in time and space with

∑N
p=1 Fb,p = 1.

In order to enable quantitative comparison with the vdMD model (re-
ported in the previous Chapter 3), the specific deposition Db,p and erosion
Eb,p rates for the pth sediment class are formulated here as

Db,p = αp ωs,p φp(1− φ0)4

Eb,p = αp ωs,p Fb,p
|q∗s,p|
h|u|

(4.7)

where αp is an empirical parameter representing the difference between the
near-bed concentration and the depth-averaged concentration for the pth
solid phase and |q∗s,p| accounts for the modulus of the specific solid trans-
port throughout the mixture column in capacity regime. For the sake of
simplicity, αp = 1 is adopted in this thesis. However, it is worth mentioning
that, contrarily to mud/debris flows, other environmental water flows usu-
ally show a marked variation of the sediment concentration along the flow
column. Hence, αp might be calibrated for realistic applications depending
on the features of the case. The term ωs,p denotes the specific settling veloc-
ity of the sediment particles in clear water, computed here using the Zhang
& Xie [151] formula (3.13).

The specific capacity solid discharge |q∗s,p| is calculated using the Wu
[144] formula for suspended sediment transport and reads

|q∗s,p|

βT
√

(ρs/ρw)gd3
s,p

= 2.62 · 10−5

[(
θp
θc,p
− 1

)
|u|
ωs,p

]1.74

(4.8)

being np = 1/21 d
1/6
s,p the Manning roughness parameter corresponding to

grain resistance of the pth class, θc,p the critical Shields stress for the incip-
ient motion of the pth sediment class which must include the hiding/ex-
posure mechanism in non-uniform beds [32], θp = |τb|/[(ρs − ρw)gds,p] the
specific Shields stress corresponding to the turbulent basal resistance and
βT a modification coefficient which is considered equal for all the sediment
classes.

For suspended sediment transport in natural water bodies, the compo-
nents of the shear resistance at the bed surface τb = (τbx, τby) are commonly
estimated using the quadratic pure turbulent relation in Table 2.1, repeated
here as

τbx = ρghCf |u|u
τby = ρghCf |u|v

(4.9)
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being Cf = n2
b h
−4/3 a friction coefficient and nb the bulk Manning’s rough-

ness parameter.
The resulting system is composed by the volume (4.3) and momen-

tum (4.4) conservation equations for the flow layer, supplemented with the
transport equation of the N sediment classes suspended in the flow (4.1)
and the bed level evolution equation (4.5). The equations forming the sys-
tem can be rewritten in vector form as

∂U

∂t
+∇ ·E(U) = Sb(U) + Sτ (U) + Sρ(U) + Eb(U) (4.10)

where U is the vector of conserved variables and E(U) =
(
F(U),G(U)

)
are the convective fluxes along the X = (x, y) horizontal coordinates re-
spectively, expressed as

U =
(
h, hu, hv, hφ1, . . . , hφN , zb

)T (4.11)
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2gh
2

huv
huφ1

...
hu φN

0


G(U) =



hv
huv

hv2 + 1
2gh

2

hv φ1

...
hv φN

0


(4.12)

The vector Sb(U) accounts for the momentum source term associated
to the variation of the pressure force on the bed interface, whereas Sτ (U) is
the momentum dissipation due to the basal resistance.

Sb(U) =



0

−gh∂zb∂x
−gh∂zb∂y

0
...
0
0


Sτ (U) =



0
−ghCf |u|u
−ghCf |u|v

0
...
0
0


(4.13)

The momentum contribution generated by the artificial density decou-
pling is contained in the source vector Sρ(U)

Sρ(U) =



0

−1
2g

h2

ρ
∂ρ
∂x

−1
2g

h2

ρ
∂ρ
∂x

0
...
0
0


(4.14)
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Finally, the source term Eb(U) accounts for the bulk mass and momen-
tum exchange between the water-sediment flow and the bed layer, and can
be expressed as

Eb(U) =



−
∑N

p=1(Db−Eb)p
1−ξ

uρ−ρbρ

∑N
p=1(Db−Eb)p

1−ξ

v ρ−ρbρ

∑N
p=1(Db−Eb)p

1−ξ
(Db − Eb)1

...
(Db − Eb)N∑N

p=1(Db−Eb)p
1−ξ


(4.15)

Normally, 2D models dealing with suspended sediment transport only
account for the density gradients when high solid concentration are ex-
pected, as in case of debris avalanches or muddy slurries. Some of these
variable-density models include the bulk density into the conservative vari-
ables and fluxes, as we did in the vdMD model (see previous Chapter 3),
but the common practice is to artificially decouple the flow depth h from
the bulk density ρ and to treat the density gradients as specific momentum
source terms, even for high sediment concentrations [12, 20, 42, 79, 112].

Two different models are proposed here for passive suspended sedi-
ment transport:

• vdPST (variable-density passive suspended transport) model: It
solves the complete system 4.10, including the density-gradient mo-
mentum source term Sρ(U) (4.14).

• udPST (uniform-density passive suspended transport) model: It
solves the system 4.10 but neglecting the density-gradient momen-
tum source term Sρ(U) (4.14).

4.2 Finite Volume method for passive suspended
transport

System (4.10) is time dependent, non linear and contains source terms. Un-
der the hypothesis of dominant advection it can be classified as belonging
to the family of hyperbolic systems. In order to obtain a numerical solu-
tion using a Finite Volume (FV) technique for the complete set of conserved
variables, the spatial domain is divided in computational cells using a mesh
fixed in time and system (4.10) is integrated in each cell using the Gauss
theorem. Assuming a piecewise uniform representation of the conserved
variables U at each computational cell Ωi for the time t = tn, the integrated
system of equations in the global framework X = (x, y) can be expressed
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for the i cell as

d

dt

∫
Ωi

U dΩ +

NE∑
k=1

(E · n)k lk =

∫
Ωi

Sb(U) dΩ +

∫
Ωi

Sτ (U) dΩ

+

∫
Ωi

Sρ(U) dΩ +

∫
Ωi

Eb(U) dΩ

(4.16)

where the surface integral in the second term has been already replaced by
a sum over the cell edges, being NE the number of edges for the i cell. The
term (E · n)k denotes the value of the normal flux through the kth cell edge,
n = (nx, ny) the outward unit normal vector to the edge and lk the length
of the edge.

The local framework for each kth cell edge is defined as X̂ = RkX =
(x̂, ŷ), where the rotation matrix Rk is

Rk =



1 0 0 0 . . . 0 0
0 nx ny 0 . . . 0 0
0 −ny nx 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1


k

(4.17)

As used before in Section 3.2, the rotation invariance property (3.26) of
the convective flux matrix E(U) can be used to rewrite the normal fluxes
throughout the edge [44, 138] as

(E · n)k =
[
F(U)nx + G(U)ny

]
k

= R−1
k F(RkU) (4.18)

being R−1
k the inverse of the rotation matrix. Hence the left hand side of

(4.16) is expressed in the local framework X̂ of the kth cell edge as

d

dt

∫
Ωi

RkU dΩ +
NE∑
k=1

F(RkU) lk (4.19)

with the set of local conserved variables Û ≡ RkU

Û ≡ RkU =
(
h, hû, hv̂, hφ1, . . . , hφN , zb

)T (4.20)

and the local homogeneous convective fluxes F(Û)k ≡ F(RkU)

F(Û)k ≡ F(RkU) =



hû
hû2 + 1

2gh
2

hûv̂
hû φ1

...
hû φN

0


(4.21)
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being û = unx + vny and v̂ = −uny + vnx the normal and tangential flow
velocities respectively.

The bed-pressure vector Sb(U) on the right hand side of (4.16) is uncon-
ditionally invariant under rotation [21] and can also be expressed within the
local framework X̂ = (x̂, ŷ) using the spatial discretization∫

Ωi

Sb(U) dΩ =
NE∑
k=1

R−1
k H(Û)k lk (4.22)

where

H(Û)k =



0
−gh∆zb

0
0
...
0
0


k

(4.23)

denotes the bed-pressure flux vector throughout the kth cell edge [103].
This allows to express the bed-pressure momentum source vector in the
local framework Ŝb as

Ŝb =
∂H(Û)k
∂x̂

=



0

−gh ∂zb
∂x̂

0
0
...
0
0


k

(4.24)

The basal resistance contribution on the right hand side of (4.16) is dis-
cretized using the differential approach (see Section 3.2.1) as∫

Ωi

Sτ (U) dΩ =
NE∑
k=1

R−1
k T(Û)k lk (4.25)

where T(Û)k is the integrated basal resistance throughout the kth cell edge,
expressed in the local framework

T(Û)k =



0
−ghCf |u| (û∆x̂+ v̂∆ŷ)

0
0
...
0
0


k

(4.26)

being (∆x̂,∆ŷ) the integration distances along the local x̂− and
ŷ−coordinates respectively. Hence, the basal resistance vector in the local
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framework Ŝτ reads

Ŝτ =
∂T(Û)k
∂x̂

=



0
−ghCf |u| û

0
0
...
0
0


k

(4.27)

Similarly to the bed-pressure source term, the density gradient vector
Sρ(U), also on the right hand side of (4.16), is unconditionally invariant
under rotation and hence it can be edge-discretized as∫

Ωi

Sρ(U) dΩ =
NE∑
k=1

R−1
k W(Û)k lk (4.28)

where W(Û)k is defined as

W(Û)k =



0

−1
2g

h2

ρ ∆ρ

0
0
...
0
0


k

(4.29)

and denotes the density-gradient fluxes at the kth cell edge expressed in
the local framework X̂ = (x̂, ŷ). This allows to express the density-gradient
momentum source vector in the local framework Ŝρ as

Ŝρ =
∂W(Û)k

∂x̂
=



0

−1
2g

h2

ρ

∂ρ

∂x̂
0
0
...
0
0


k

(4.30)

Using (4.19), (4.22), (4.25) and (4.28), both sides of (4.16) can be com-
bined for each kth cell edge. Excluding the exchange source term Eb(U),
the locally-integrated system is expressed as

d

dt

∫
Ωi

RkU dΩ+

NE∑
k=1

F(Û)k lk =

NE∑
k=1

H(Û)k lk +

NE∑
k=1

T(Û)k lk +

NE∑
k=1

W(Û)k lk

(4.31)
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This type of formulation (4.31) is oriented to define an augmented nu-
merical flux F↓−k for the i cell at the kth edge which incorporates the in-
tegrated bed-pressure H(Û)k, basal resistance T(Û)k and density-gradient
W(Û)k contributions into the homogeneous fluxes F(Û)k at the cell edge.

F↓k =
[
F(Û)−H(Û)−T(Û)−W(Û)

]
k

(4.32)

It is worth mentioning that the addition of the source term edge-
contributions to the homogeneous fluxes leads to the loss of the conserva-
tive character of the momentum flux but ensures the well-balance property
for steady states [103, 104].

Furthermore, the net exchange flux term Eb(U) on the right hand side
of (4.16) is discretized in space as a cell-centered term∫

Ωi

Eb(U) dΩ ≈ Ai Eb(Ui) = Bi (4.33)

where Ai is the discrete cell area.
Restoring the augmented flux (4.32) to the global framework X = (x, y)

and including the vertical exchange term (4.33), the integrated system (4.16)
is rewritten as

d

dt

∫
Ωi

U dΩ = −
NE∑
k=1

R−1
k F↓k lk + Bi (4.34)

Assuming a piecewise uniform representation of the conserved vari-
ables U at the i cell for the time t = tn

Un
i =

1

Ai

∫
Ωi

U(x, y, tn) dΩ (4.35)

and, using an explicit temporal integration for the mass and momentum
source terms, the updating formulation for the conserved variables U at
the each cell is expresed as

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

R−1
k F↓k lk +

∆t

Ai
Bn
i (4.36)

where ∆t = tn+1 − tn is the time step.
Hence the resolution procedure needs to compute the numerical fluxes

F↓k at the cell edges ensuring (4.32).
It is worth mentioning that in this decoupled formulation, the bulk den-

sity ρ (4.2) does not participated in the conservative part of the hydrody-
namic equations. Hence a reduced set of conserved variables Û′ including
only the hydrodynamic component of the system can be defined as

Û′ =
(
h, hû, hv̂

)T (4.37)

and the corresponding hydrodynamical convective fluxes F′(Û′)k are

F′(Û′)k =

 hû
hû2 + 1

2gh
2

hûv̂

 (4.38)
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where the superscript (·)′ indicates the first three equations of the locally-
integrated system (4.31), i.e. (·)′ ≡ (·){1,2,3}.

Hence, the evolution of the flow features (h, u, v) and the solid content
in the water column are totally decoupled. The sediment concentration
works as a passive solute transport which does not affect the flow move-
ment. Therefore, in order to compute the numerical fluxes at the cell edges,
the Reduced Godunov method proposed by Murillo et al. [105] is imple-
mented here forthe suspended sediment transport problem. Using this
method, the hydrodynamical intercell fluxes F

↓{1,2,3}
k for the kth cell edge

are upwind computed by solving the local plane Riemann problem (RP)
associated to the hydrodynamical variables U′ (4.37), expressed as

∂Û′

∂t
+
∂F′(Û′)

∂x̂
= Ŝ′b + Ŝ′τ + Ŝ′ρ

Û(x̂, 0) =

{
Û′i = Rk(U

′)ni if x̂ < 0

Û′j = Rk(U
′)nj if x̂ > 0

(4.39)

where i and j denote the left and right neighbouring cells to the kth edge
respectively. Then, the numerical fluxes for the passive solid transport of
the N different sediment classes, F

↓{3+1,...,3+N}
k , are derived from the hydro-

dynamical intercell discharge. The last component of the numerical flux
vector corresponding to the bed level intercell flux is set to F

↓{3+N+1}
k = 0.

4.2.1 Reduced Riemann solver for passive suspended transport

The mass and momentum numerical fluxes in (4.36) for the hydrodynam-
ical equations, referred to as F

↓{1,2,3}
k , are computed at each kth cell edge

by approximating the solution of the local plane RP (4.39). From now on,
as it is mentioned above, the superscript (·)′ indicates the hydrodynam-
ical components of the system , i.e. (·)′ ≡ (·){1,2,3}. Following the Rie-
mann weak-solution theory [103, 104], at each intercell edge the following
constant-coefficients linear RP is defined

∂Û′

∂t
+ J̃′k

∂Û′

∂x̂
= (S̃′b + S̃′τ + S̃′ρ)k

Û′(x̂, 0) =

{
Û′i = Rk(U

′)ni if x̂ < 0

Û′j = Rk(U
′)nj if x̂ > 0

(4.40)

where (S̃′b)k and (S̃′τ )k denote the edge-averaged bed-pressure and flow
resistance momentum contributions, (4.24) and (4.27) respectively, and
(S̃′ρ)k accounts for the density-gradient momentum source. The matrix
J̃′k = J′k(Û

′
i, Û

′
j) is the 3 × 3 constant coefficient Jacobian of the local hy-

drodynamical RP, defined as

J̃′k =

 0 1 0

gh̃− ũ2 2ũ 0
−ũṽ ṽ ũ


k

(4.41)



4.2. Finite Volume method for passive suspended transport 141

being the edge-averaged quantities defined as

h̃ =
hi + hj

2

ũ =
ûi
√
hi + ûj

√
hj√

hi +
√
hj

ṽ =
v̂i
√
hi + v̂j

√
hj√

hi +
√
hj

(4.42)

The three eigenvalues of J̃′k are

λ̃′1,k = (ũ− c̃)k < λ̃′2,k = ũk < λ̃′3,k = (ũ+ c̃)k (4.43)

with c̃k =

√
gh̃k the edge-averaged celerity of the surface waves. The basis

matrix P̃′k is constructed with associated eigenvectors ẽ′m,k

P̃′k = (ẽ′1, ẽ
′
2, ẽ
′
3)k =

 1 0 1

λ̃′1 0 λ̃′3
ṽ c̃ ṽ


k

(4.44)

The discrete gradients of the hydrodynamical conserved variables δÛ′k
are projected on the orthogonal basis of eigenvectors to obtain the wave
strength vector, Ã′k, as

Ã′k = (α̃′1, . . . , α̃
′
3)Tk = P̃′−1k δÛ′k (4.45)

where the wave strengths α̃′m are

Ã′k ≡



α̃′1 =
c̃− ũ

2c̃
δ(h)− 1

2c̃
δ(hû)

α̃′2 =
−ṽ
c̃
δ(h) +

1

c̃
δ(hv̂)

α̃′3 =
c̃+ ũ

2c̃
δ(h) +

1

2c̃
δ(hû)

(4.46)

The bed-pressure H̃k (4.23) and basal resistance T̃k (4.26) edge-
contributions are also projected on the orthogonal basis of eigenvectors to
obtain the source strength vector B̃′k as

B̃′k = (β̃′1, . . . , β̃
′
3)Tk = P̃′−1k

(
H̃k + T̃k

)
(4.47)

with

B̃′k ≡


β̃′1 = − 1

2c̃

(
H̃k + T̃k

)
β̃′2 = 0

β̃′3 =
1

2c̃

(
H̃k + T̃k

) (4.48)

where H̃k and T̃k are suitable values of the integrated bed-pressure and
resistance momentum contributions at the cell edge. They are computed
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here following (3.89) and (3.125), respectively, as

H̃k = −gh̃k(∆zb)k

T̃k = −sgn(Fn)k

(
g
n2
b

√
ũ2 + ṽ2

h̃1/3
(ũ∆x̂+ ṽ∆ŷ)

)
k

(4.49)

being sgn(Fn)k the sign of the frictionless normal discharge throughout the
cell edge (see Section 3.3.3).

Furthermore, the density-gradient edge-contribution W̃k (4.29) is pro-
jected on the orthogonal basis of eigenvectors to obtain an additional source
strength vector χ̃′k as

χ̃′k = (χ̃′1, . . . , χ̃
′
3)Tk = P̃′−1k W̃k (4.50)

with

χ̃′k ≡


χ̃′1 = − 1

2c̃
W̃k

χ̃′2 = 0

χ̃′3 =
1

2c̃
W̃k

(4.51)

where W̃k is a suitable value of the integrated density-gradient momentum
contributions at the cell edge, estimated as

W̃k = −1

2
g
h̃2
k

ρ̃k
(∆ρ)k (4.52)

being ρ̃k = (ρi + ρj)/2 the averaged flow density at the cell edge, with
ρi = ρw + (ρs − ρw)

∑N
p=1 φp,i the value of the flow density at the i cell.

Therefore, the hydrodynamical fluxes on the left and right sides of the
kth cell edge, F′↓−k and F′↓+k respectively, are computed as

F′
↓−
k = F′(Û′i) +

∑
m−

(λ̃′mα̃
′
mẽ′m)k −

∑
m−

(β̃′mẽ′m)k −
∑
m−

(χ̃′mẽ′m)k (4.53a)

F′
↓+
k = F′(Û′j)−

∑
m+

(λ̃′mα̃
′
mẽ′m)k +

∑
m+

(β̃′mẽ′m)k +
∑
m+

(χ̃′mẽ′m)k (4.53b)

where the subscript m− and m+ under the sums indicate waves traveling
inward and outward the i cell [90, 104].

The mass and momentum numerical fluxes in (4.36) for the hydrody-
namical equations, referred to as F

↓{1,2,3}
k , are hence obtained using (4.53a)

as

F
↓{1,2,3}
k = F′

↓−
k (4.54)

Therefore, the first component of the hydrodynamical flux vector ac-
counts for the flow volume transference normal to the cell edge, F

↓{1}
k =

(hû)↓k. The numerical solid flux at the kth edge for the pth suspended sedi-
ment class F

↓{3+p}
k is computed as

F
↓{3+p}
k ≡ (hûφp)

↓
k =

{
(hû)↓k (φp)

n
i if (hû)↓k ≥ 0

(hû)↓k (φp)
n
j if (hû)↓k < 0

(4.55)



4.2. Finite Volume method for passive suspended transport 143

and the numerical flux for the bed level evolution equation is set to

F
↓{3+N+1}
k = 0 (4.56)

Finally, in order to ensure the stability of the explicitly computed nu-
merical solution, the time step should be small enough to avoid the interac-
tion of waves from neighbouring Riemann problems. The dynamical lim-
itation of the time step at each k edge is addressed here assuming that the
fastest wave celerity corresponds to the absolute maximum of the eigenval-
ues of J̃k (4.41) as

∆tk =
min(Ai, Aj)

lk

[
max(|λ̃1|, |̃λ3|)

]
k

(4.57)

and the global time step ∆t = tn+1 − tn is limited using the Courant-
Friedrichs-Lewy (CFL) condition

∆t = CFL min
k

(∆tk) (4.58)

with CFL < 0.5 for square orthogonal meshes and CFL < 1 for the trian-
gular mesh topology and 1D-mesh cases.

4.2.2 Numerical approaches for suspended transport

In this chapter we propose two strategies for dealing with these decoupled
density gradients:

• udPST model: This approach does not take into account the momen-
tum contribution of the density gradient Sρ(U) (4.14). This is the
common practice in river and coast dynamics since it allows to use
widespread numerical solvers for the shallow clear water system of
equations without including important modifications in the numeri-
cal scheme. Therefore, the density-gradient source term Sρ(U) is ne-
glected in the system of equation (4.10) and, using (4.53) and 4.54, the
hydrodynamical intercell flux for this model are computed as

F
↓{1,2,3}
k = F′(Û′i) +

∑
m−

(λ̃′mγ̃
′
mẽ′m)k (4.59)

with γ̃′m = α̃′m − β̃′m/λ̃′m and the subscript m− under the sums indi-
cates waves traveling inward the i cell.

• vdPST model: It accounts for the decoupled momentum contribu-
tion of the density gradients Sρ(U) (4.14) into the system of equations
(4.10). The source term Sρ(U) is projected onto the eigenstructure of
the homogeneous Riemann problem at the intercell edges. Therefore,
using (4.53) and (4.54), the hydrodynamical intercell fluxes for this
model are computed as

F
↓{1,2,3}
k = F′(Û′i) +

∑
m−

(λ̃′mγ̃
′
mẽ′m)k −

∑
m−

(χ̃′mẽ′m)k (4.60)
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with γ̃′m = α̃′m − β̃′m/λ̃′m, the strength χ̃′m accounting for the density-
gradient momentum contribution (4.50) and the subscript m− under
the sums indicates waves traveling inward the i cell..

Regardless of the model selected for the hydrodynamical fluxes the in-
tercell edges, F

↓{1,2,3}
k , the numerical sediment fluxes at the edges F

↓{3+p}
k

are computed using (4.55) and, hence, the full set of conserved variables U
is updated using the formula (4.36).

Mathematically, the vdPST model (4.60) is suitable for highly sediment-
laden flows as none of the terms is neglected. Having simply reordered the
terms in the equations (4.10), this formulation might be considered equiv-
alent to the variable-density mud/debris (vdMD) model proposed in the
above Chapter 3. However, the fully-coupled numerical model keeps the
density ρ included into the homogeneous component of the RP. This al-
lows the sediment concentration to participate both in the complete eigen-
structure of the approximate RP and in the upwind discretization of the
bed-pressure and basal resistance source terms. However, a quantitative
comparison between the artificially decoupled models and the equivalent
fully-coupled models is not provided in the available literature.

Test 4.2.2.A: 1D mud dambreak over quiescent water reservoir

In order to assess the differences between passive-transport Models 1
(4.59) and vdPST model (4.60) respect to the fully-coupled model for
variable-density mud/debris flows (see Section 3.2), we propose here an
idealized test consisting of a 1D mud dambreak over a steep bed and
reaching downstream a quiescent clear-water reservoir. The initial mud
fluid (0m ≤ x ≤ 500m) is composed by water with 50% volumetric con-
centration of non-cohesive solid particles of ρs = 2650 kg/m3 and char-
acteristic diameter ds = 1mm, leading to a bulk density ρ = 1825 kg/m3.
The clear-water reservoir is placed downstream (2500m ≤ x ≤ 5000m),
with density ρw = 1000 kg/m3 and the water free surface has a constant
elevation. The initial conditions have been sketched in Figure 4.1.

Figure 4.1: Test 4.2.2.A: Initial conditions for the mud dam and the clear-water
reservoir.

The two proposed models for passive sediment transport, udPST and
vdPST models, are compared here with the vdMD model reported in the
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previous chapter. The basal resistance is estimated using the pure turbu-
lent Manning’s model, with a roughness parameter nb = 0.025 sm−1/3.
The exchange of material between the flow and the bed layer is neglected
(rigid-bed assumption), as well as the effects of the solid phase dilation
in the vdMD model. The spatial domain is discretized using a 1D-mesh
of 5000 square cells with ∆x = 1m. The simulated time is 10 min and
CFL=1.0 is set.

(a) t = 6min

(b) t = 8min

(c) t = 10min

Figure 4.2: Test 4.2.2.A: (lefft) free surface level and (right) flow velocity at (a)
t = 6min, (b) t = 8min and (c) t = 10min.

Figure 4.2 shows the flow surface level (left column) and depth-averaged
velocity (right column) for the 1D mud dambreak flow at the times
t = 6min, t = 8min and t = 10min with the three models analysed. Be-
fore the dambreak wave front reaches the downstream clear-water reser-
voir (t ≤ 6.5min), the usPST and vdPST models show exactly the same
results as the density remains constant along the flow and density gradi-
ents do not exist. The vdMD model shows slight velocity variations due
to the inclusion of the flow density in the characteristic wave-speeds, but
the differences with the passive-transport models are negligible.
Once the wave front reaches the clear-water reservoir at x = 2500m
(t > 6.5min), a sharp density gradient appears at the interface and
the usPST and vdPST models show important differences (see Figure
4.2–b). The height and speed of the wave generated in the reservoir
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are markedly lower when density gradients are not taken into account
(udPST model). Furthermore, differences on the generated wave (spe-
cially on the wave-front speed) also appears between the vdPST model
and the fully-coupled vdMD model, although they are less marked than
those between the usPST and vdPST models.
As the generated wave progresses downstream over the quiescent reser-
voir, the results of the usPST and vdPST models show higher differences
for both the wave height and speed 4.2–c). Furthermore, the differ-
ence on the generated wave speed between the vdPST model and the
fully-coupled vdMd model also increases, despite they are considered
as equivalent formulations in previous published works [12, 20, 42, 79,
112].

4.3 Benchmark cases

4.3.1 Synthetic case ST1: Large-scale long-term 1D dambreak
over erodible flat bed

The aim of this test is to study the influence of the suspended sediment in
the dynamics of dambreak waves for a relatively long channel and over a
comparatively long period rather than under the typical laboratory scales.
Here, the udPST (4.59) and the vdPST models (4.60) for passive suspended
transport are compared against the fixed-bed clear-water model reported
by Murillo & García-Navarro [103]. This idealized test for sediment trans-
port model was firstly proposed by Cao et al. [18] and revisited in several
works [20, 50].

The test consists of a one-dimensional large-scale long-term dambreak
over an erodible uniform flat bed. Initially the fluid is clear water. The
channel length is set to 50 km, the dam is initially located at x = 25 km, and
the initial water surface elevation is hL = 40m and hR = 2m on the left and
right sides, respectively. The movable flat bed is made of a uniform non-
cohesive sediment of diameter ds = 4mm and density ρs = 2650 kg/m3.
The friction term is modeled using the turbulent Manning’s relation and
assuming a constant value of the roughness coefficient nb = 0.03 sm−1/3.
The modification parameter for the capacity solid transport (4.8) is set to
βT = 10 to increase the morphodynamical changes. A single-row square-
cell mesh is used for the simulation with ∆x = 10m. The simulated time is
30 min and CFL=1.0 is set.

Figure 4.3–left shows the flow free surface evolution and bed evolution
at t = 1min, t = 5min, t = 10min and t = 30min after the dambreak start-
ing. The results obtained with the udPST and the vdPST models for passive
suspended transport are plotted against those of the fixed-bed clear-water
model. For the passive transport models, sediments can be exchanged with
the bed and transported as passive solutes, i.e. without directly influencing
the hydrodynamics of the flow. The udPST model incorporates the effects
of the sediment exchange as a cell-centered mass and momentum contribu-
tion. Moreover, the vdPST model also accounts for the density gradients,
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caused by the sediment concentration differences in the flow, as a momen-
tum source term. For the clear-water model, the bed layer is not eroded
and hence the suspended sediment concentration is always null. In order to
allow suitable comparisons, the three models are solved with the same nu-
merical scheme but incorporating the required restrictions to each model.

The bed mobility considerably affects the free surface evolution com-
pared to the fixed-bed clear-water case. The main differences are located at
the wave front, where the passive transport models predict generally higher
flow depths than the fixed-bed model, especially for the udPST model. This
can be significant for flooding prediction as the wavefront progresses faster
and with higher depths at long-term stages of the dambreak when bed mo-
bility is considered.

Figure 4.3: Synthetic case ST1 – Dambreak long-term hydraulics over mobile flat
bed: (left) flow free surface and bed surface and (right) depth-averaged
sediment concentration in the flow. Front top to bottom: t = 1min,

t = 5min, t = 10min and t = 30min.

Figure 4.3–right shows the volumetric sediment concentration at t =
1min, t = 5min, t = 10min and t = 30min after the dambreak start-
ing with both the udPST and vdPST models. As the dambreak wave pro-
gresses downstream, the mass exchange term incorporates into the flow a



148 Chapter 4. Two-dimensional models for suspended sediment transport

high quantity of sediment, leading to noticeable depth-averaged concen-
trations in the flow column as well as important changes in the bed ele-
vation. The sediment concentration shows a sharp increment separating
the wavefront from the middle reach of the dambreak wave, with values
higher than 40% for the wavefront compared with volumetric concentra-
tions lower than 0.05% at the middle reach. This sharp increment of the sus-
pended concentration between the central reach and the wavefront causes
a high density gradient in that region. When the passive transport vdPST
model is considered, this sharp density gradient leads to the appearance of
an intermediate shock wave in the flow surface upstream. However, the
passive transport udPST model, which does not take into account density
changes, is not able to predict this intermediate shock wave.

Regarding the dambreak wave propagation, the clear-water model pre-
dicts a larger wave front velocity for the short-term stages of the dambreak
flow than the movable bed models (see Figure 4.4–left). This is caused by
the flow momentum reduction associated to the sediment entrainment from
the bed layer (4.15), which is in agreement with the "self-adaptation" prin-
ciple in river dynamics [20]. However, as the dambreak progresses down-
stream and the sediment is incorporated into the flow column, the clear-
water model tends to underestimate the front velocity respect to the results
obtained with both the udPST and vdPST models. Furthermore, ignoring
the influence of density gradients in the flow momentum (passive trans-
port udPST model approach) leads to an overestimation of the front veloc-
ity propagation for long-term stages of the dambreak flow in comparison
with the passive transport vdPST model.

Figure 4.4: Synthetic case ST1 – Temporal evolution of the (left) wavefront position
and (right) flow free surface elevation at x = 35 km.

Figure 4.4-right shows the temporal evolution of flow free surface level
at x = 35 km, i.e. 10 km downstream the initial dam location, with the
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clear-water model and both the udPST and vdPST models. The flow level
increment caused by the intermediate density shock wave in the vdPST
model is unpredicted by the udPST and the clear-water models, with an
important drawback for the hazards determination against severe flooding.

Finally, Figure 4.5 depicts the dynamic computational time step evo-
lution along the simulation for the fixed-bed model, the passive-transport
udPST model and the passive-transport vdPST model. The time step is
closely related to the computational time required by the model to perform
simulations and hence to its efficiency. For times lower than 2min after the
dambreak starting, the fixed-bed model shows higher wavefront propaga-
tion velocities than the models considering bed mobility, leading to smaller
time steps. However, for the larger times (long-term stages) the models
incorporating the bed evolution into the equations requires smaller time
steps to ensure the computational stability due to the higher wavefront ve-
locity. Furthermore, as the passive transport udPST model overestimates
the progression of the wavefront, it also shows much smaller dynamical
time steps than the passive transport vdPST model. This leads to a loss
of computational efficiency for real-scale and long-term morphodynamical
computations.

Figure 4.5: Synthetic case ST1 – Time step evolution.

4.3.2 Synthetic case ST2: Large-scale long-term 1D dambreak
over non-uniform erodible beds

The aim of this idealized test is to assess the capability of the proposed
models to deal with non-uniform beds and to study the influence of the
mixture composition on the hydrodynamic behavior. The same large-scale
and long-term one-dimensional dambreak test described in the above sec-
tion is again used here but setting two different non-uniform sediment-
size distributions in the bed layer. Both non-uniform beds consist of a
mix of gravel (ds > 2mm), medium sand (ds = 1mm) and fine ma-
terial (ds = 100µm) weighted to maintain a constant median diameter
dm =

∑N=3
p=1 Fb,pds,p = 4mm. This equivalent median diameter allows to

compare the results with those obtained in the above section for uniform
bed. Table 4.1 shows the sediment-size distribution for both non-uniform
beds considered. Non-uniform bed A is composed mainly of medium
gravel with small fractions of coarse sand and fines and is assumed as a
coarse graded bed. In the non-uniform bed B, fine material and medium



150 Chapter 4. Two-dimensional models for suspended sediment transport

sand prevails over a small fraction of coarse gravel, hence it is considered
as a fine graded bed.

Bed A Bed B
Fines ds,1 = 100µm Fb,1 = 0.10 ds,1 = 100µm Fb,1 = 0.50
Sand ds,2 = 1mm Fb,2 = 0.10 ds,2 = 1mm Fb,2 = 0.25

Gravel ds,3 = 4.8625mm Fb,3 = 0.80 ds,3 = 14.8mm Fb,3 = 0.25
Medium diameter dm = 4mm dm = 4mm

Table 4.1: Synthetic case ST2 – Sediment-size distribution for non-uniform beds.

All the other parameters in simulations are set with the same values as
in the above section. Only the passive-transport vdPST model is tested in
this case, since the results are also applicable to the passive-transport udPST
model.

Figure 4.6: Synthetic case ST2 – Dambreak hydraulics over non-uniform bed: (left)
flow free surface and bed surface and (right) total solid concentration.
Front top to bottom, t = 5min, t = 10min, t = 20min and t = 30min.

Figure 4.6–left shows the flow free surface evolution and bed evolution
at t = 5min, t = 10min, t = 20min and t = 30min after the dambreak
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starting, with the non-uniform beds A and B. The results obtained in the
above section with uniform bed configuration are also depicted as refer-
ence. The non-uniform composition of the bed slightly affects the free sur-
face evolution compared with the uniform bed. The more marked differ-
ences are detected in the density-wave region at long-term stages for the
non-uniform bed B. The entrainment of fine materials from the bed to the
flow makes smoother the jump in density accompanying the wavefront,
which finally causes the appearance of the density-wave.

Figure 4.6–right shows the total volumetric concentration of solid phase
in the flow. The fine material is incorporated into the mixture in the up-
stream region of the dambreak wave, where the erosive flow energy is
lower, and hence it reduces the density difference between the wavefront
and the upstream region. Furthermore, the density peak associated to the
dambreak wavefront is reduced as the presence of fine materials in the bed
increases. The main consequence is that the density-wave is smeared.

Nevertheless, the bed level evolution shows more marked differences
than the free surface evolution, especially as the dambreak wave progresses
downstream (see Figure 4.6–left). For the coarser non-uniform bed A, the
bed level does not show significant deviations with respect to the uniform
bed case, but a slightly higher erosion can be identified at long-term stages.
The finer non-uniform bed B presents lower entrainment than the uniform
bed configuration at short-term stages. Nevertheless, a much more marked
erosion is detected at long-term stages as a consequence of the higher en-
trainment of fine material from the bed (Figure 4.7).

Figure 4.7: Synthetic case ST2 – Temporal evolution of the accumulated mass ex-
change between bed layer and flow.

Figure 4.8 depicts the volumetric concentration of each sediment size-
class in the mixture flow for both non-uniform bed configurations at t =
5min, t = 10min, t = 20min and t = 30min after the dambreak start-
ing. The free surface level has also been plotted for each case. The coarser
non-uniform bed A shows higher concentrations of the gravel fraction at
the wavefront during all the stages of the dambreak flow, which causes the
density jump between the wavefront and the upstream region. Contrar-
ily, the finer non-uniform bed configuration B presents a higher volumetric
concentration of sand material at the wavefront during the early stages of
the dambreak flow, whereas the fine material fraction prevails along the
whole dambreak flow at the long-term stages. Moreover, the volumetric
concentration of the finer fraction shows a progressive transition between
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the upstream region and the wavefront region, avoiding the appearance of
the marked density jump detected in the uniform bed case.

Figure 4.8: Synthetic case ST2 – Volumetric concentration of each sediment size-class
in the flow: (left) non-uniform bed A (right) non-uniform bed B. Front

top to bottom, t = 5min, t = 10min, t = 20min and t = 30min.

4.3.3 Synthetic case ST3: 2D mixing of different density currents

The main goal of this idealized two-dimensional test is to assess the ca-
pability of the passive-transport udPST model and vdPST model to cor-
rectly deal with mixing of flows with a different sediment concentration
and hence density gradients. In cases where two steady currents of equal
discharge and different density converge, the influence of the spatial den-
sity gradients should domain the hydrodynamics of the mixing region [47,
75], without the appearance of spurious oscillations or numerical instabili-
ties.

A symmetric confluence of two 565m long and 50m wide tributary
channels into a main channels of length 1600m and width 100m is consid-
ered. The center axis of the tributary channels forms a 45◦ angle with the x
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axis. A uniform longitudinal bed slope S0 = 0.0025 is set for the tributary
and main channels. Figure 4.9 shows a plane view of the test geometry.

Figure 4.9: Synthetic case ST3 – Sketch of the geometrical configuration.

The setup parameters for this synthetic two-dimensional test are sum-
marized in Table 4.2. The exchange term between the bed layer and the flow
is neglected, avoiding erosion and deposition of the solid material. The
basal shear stress in the flow is estimated using the pure turbulent Man-
ning’s formulation. The value of Manning’s roughness parameter is cali-
brated for allowing the flow to reach a slight supercritical uniform regime
(Fr = 1.15) along both the tributary and main channels.

Liquid density ρw 1000 kg/m3

Sediment classes N 1
Solid density ρs 2700 kg/m3

Grain diameter ds 0.4 mm
Manning’s roughness parameter nb 0.016 sm−1/3

Table 4.2: Synthetic case ST3 – Simulation setup parameters.

Constant discharge inflows qinlet = 10m2/s per unit width are set at
both inlets 1 and 2 during the whole simulation time (tend = 240min). The
temporal evolution of the solid phase volumetric concentration at inlet 1
φ1
inlet remains null, whereas at inlet 2 the solid phase volumetric concentra-

tion φ2
inlet varies with time following:

Inlet 1 :


q1
inlet 10m2/s for 0 ≤ t ≤ 240min

φ1
inlet 0.0 for 0 ≤ t ≤ 240min

Inlet 2 :


q2
inlet 10m2/s for 0 ≤ t ≤ 240min

φ2
inlet

{
0.0 if t ≤ 60min
0.3 if t > 60min

leading to a constant value of the inflow mixture density ρ = 1510 kg/m3

for inlet 2 for any time t > 60min. At the inlet boundaries only the specific
mass flow rate is imposed. The value of the flow depth, and corresponding
flow velocity, is computed by the numerical scheme applied at the bound-
ary cell, but not directly imposed. At the outlet boundary, any condition is
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imposed since the flow is supercritical. The spatial domain is discretized
using an unstructured triangular mesh with 23500 cells approximately. The
simulation starts form dry bed conditions and CFL=0.95 is set.

This case is simulated using the suspended transport udPST model and
vdPST model. It is expected that, at t ≤ 60min, a symmetric confluence
state is developed for both models since the sediment concentration is null
along both tributary channels. However, for larger times (t > 60min),
the density gradients created by the different inlet concentrations should
change the flow configuration at the confluence region with the vdPST
model, reaching a new non-symmetric steady state at t = 240min, whereas
the symmetry is maintained with the udPST model.

Figure 4.10 shows the flow depth and the Froude number contour lev-
els for the steady state reached at t = 240min with the passive transport
udPST model. Red colors indicate supercritical flow whereas blue colors
denotes subcritical regime. The flow at the tributary channels and in the
main channel is slightly supercritical, however the mixing of both flows
at the confluence region creates a subcritical flow zone which propagates
upstream creating hydraulic jumps in the tributary channels. Although in-
flows 1 and 2 have a different sediment concentration, and hence a different
density, the wave-structure in the tributary channels and in the main chan-
nel is totally symmetric since udPST model neglects the density-gradient
contribution the flow momentum.

Figure 4.10: Synthetic case ST3 – Steady state at t = 240min for the passive-
transport udPST model: (left) flow depth and (right) Froude number.

For the passive suspended transport vdPST model, the symmetric struc-
ture in the confluence region is broken due to the density gradients gen-
erated by the higher sediment concentration of the inflow 2. Figure 4.11
shows the flow depth and the Froude number contour levels for the steady
state reached at t = 240min. The hydraulic jump created by the presence
of the confluence in the tributary channel 2 moves downstream whereas
the hydraulic jump in the tributary channel 1 moves upstream. This is
caused by the denser inflow at the tributary 1. Furthermore, the wave-
structure downstream the confluence in the main channel shows also a
non-symmetric configuration, following a sequence of alternative diagonal
shock waves.

This behavior is directly caused by the inclusion of the density gradient
into the numerical fluxes at the intercell edges as a momentum source term.
This spatial density gradients modify the balance between homogeneous
fluxes and momentum source terms in the approximated solution, leading
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Figure 4.11: Synthetic case ST3 – Steady state at t = 240min for the passive-
transport vdPST model: (left) flow depth and (right) Froude number.

to a more realistic behavior of the scheme. This modification of the well-
balanced states can not be achieved by models which do not consider den-
sity into the system of conservation laws for highly sediment-laden flows
[20, 102, 112].

Figure 4.12 is a zoom view of the steady state velocity fields within the
confluence region at t = 240minwith (left) udPST model and (right) vdPST
model. The symmetric velocity pattern is broken when the density gradi-
ents created by the denser inflow 2 are included into the momentum equa-
tions. This leads to higher velocities at tributary channel 2 than those at
channel 1, and modifies the symmetric velocity patterns in the main chan-
nel downstream the confluence.

Figure 4.12: Synthetic case ST3 – 2D velocity fields at t = 240min with (left) udPST
model and (right) vdPST model.

The transient mixing of the inflows 1 and 2 is shown in Figure 4.13 for
the passive transport udPST model and vdPST model. The main transient
states occur during 60min ≤ t ≤ 70min. Differences can be appreciated
between the two numerical models. While the dense and the loose regions
are almost symmetric for the udPST model, the dense region is wider than
the loose region when the vdPST model is used. Therefore, the density
gradient also influences the transient mixing process, not only the balanced
steady state.

Finally, Figure 4.14 shows the mixing process along the main channel at
t = 240min with vdPST model. The sediment concentration profiles with
both udPST and vdPST models are shown at different cross-sections down-
stream the confluence region. The mass and momentum exchange between
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Figure 4.13: Synthetic case ST3 – 2D sediment concentration fields at t = 62min,
t = 63min, t = 64min and t = 65min. (left) udPST model and (right)

vdPST model.

different density flows tends to create a uniform cross-section density pro-
file downstream the confluence region. At x = 500m, a clear interface sep-
arating the denser flow from the clear water current appears. This mixing
interface is displaced towards the loose region when vdPST model is used,
whereas it remains at the main channel center with udPST model. The mix-
ing interface is less marked at x = 1000m as a consequence of the mo-
mentum exchange process whereas it practically disappears at x = 1800m.
However, a uniform cross-section volumetric concentration profile has not
been reached yet at the outlet boundary of the main channel..

Figure 4.14: Synthetic case ST3 – Sediment concentration along the main channel
at t = 240min with the vdPST model. Cross-section profiles for the
sediment volumetric concentration at x = 500m, x = 1000m and x =

1800m with the udPST model and vdPST model.
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4.4 In Closing

In this chapter, the system of 2D depth-averaged conservation laws for the
passive transport of multiple sediment classes has been solved using the
Finite Volume (FV) approach. This system is based on the artificial de-
coupling of the flow depth h and density ρ in order to allows the use of
widespread solvers designed for shallow clear-water problems. The sys-
tem of equations is formulated taking into account the net exchange flux
between the underlying erodible bed layer and the flow, as well as the ef-
fects of the density gradients in the flow hydrodynamics. The upwind inter-
cell numerical fluxes for the hydrodynamical component of the system are
solved using the augmented Roe’s approach, whereas the passive transport
of the different suspended sediment classes is achieved using a reduced
formulation for the intercell flux.

The main novelties in this chapter are summarized as:

1. Two different robust and efficient numerical models are proposed for
the resolution of the suspended sediment transport system. The first
one, referred to as udPST model, accounts for the mass and momen-
tum exchange between the bed layer and the flow, but does not in-
clude the effects of the sediment concentration in the flow dynamics.
The the second one, referred to as vdPST model, also includes the con-
tribution of the flow density gradients to the momentum equations as
a new source term which is upwind discretized.

2. Important differences have been found between the results provided
for udPST and vdPST models in different idealized benchmark tests.
These results indicates that, when high solid concentrations are ex-
pected in the flow, it is necessary to include the density-gradients mo-
mentum contribution in order to obtain reliable results.

3. Finally, vdPST model is usually considered equivalent to maintain the
flow density and the depth coupled in the conservative variables and
fluxes and, hence, used for variable-density mud/debris flows [12, 20,
42, 79, 112]. However, for highly transient problems with important
density gradients, the results obtained with vdPST model show dif-
ferences respect to the obtained with the fully-coupled vdMD model
described in the above Chapter 3.
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Chapter 5

Two-dimensional models for
generalized bedload transport

The main goals of this chapter are:

• To derive robust and accurate numerical schemes to solve the two-
dimensional bedload transport problem, including the presence of
finite-depth erodible layers.

• To assess the effects of the non-capacity bedload transport states in
the bed level evolution for highly transient erosive problems.

5.1 Governing equations

The depth-averaged model for the multi-grain bedload transport is derived
from the integration of the Navier-Stokes equations along the vertical di-
rection throughout the flow column assuming hydrostatic pressure distri-
bution and neglecting the changes on the bulk density caused by the solid
particles (Section 2.3). This simplifies the 2D mass (2.8) and momentum
conservation equations (2.22)–(2.23) for a clear-water shallow flow as

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (5.1a)
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being h the vertical flow depth, (u, v) the components of the depth-
averaged flow velocity vector u along the global x− and y−coordinates
respectively, zb the bed layer elevation, g the gravitational acceleration,
(τbx, τby) the components of the depth-averaged shear resistance at the bed
interface τb, and ρw the density of the fluid. Note that here, the projection of
the gravity force along the vertical direction is adopted under the hypothe-
sis of small normal-bed angles.

Furthermore, the mass conservation equation for the non-uniform bed-
load transport layer (2.128) is expressed as

∂zb
∂t

+
∂

∂x
(qbx) +

∂

∂y
(qby) = 0 (5.2)
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where (qbx, qby) are the components of the bulk bedload rate qb along the
global (x, y) horizontal coordinates respectively. For a multi-grain bed layer
composed by N different sediment classes, qb can be estimated as [66, 88,
144]

qb =
1

1− ξ

N∑
p=1

Fb,pGp|u|2u (5.3)

being ξ the bulk porosity of the bed layer,Gp a Grass-type factor accounting
for the interaction between the flow and the pth sediment class in the non-
uniform bed layer (see Section 5.3) and Fb,p the corresponding bed fraction,
which is considered constant in time and uniform in space with

∑N
p=1 Fb,p =

1. It is worth mentioning that here the volumetric effect of the porosity
in the bed level evolution is included into the bulk bedload discharge qb.
Note also that the vertical exchange between bedload layer and water is not
present in the equations.

Therefore, it is possible to express the horizontal components of the bulk
bedload rate qb = (qbx, qby) in (5.3) as

qbx =
1

1− ξ
G |u|2u

qby =
1

1− ξ
G |u|2v

(5.4)

with G =
∑N

p=1 Fb,pGp the bulk Grass-type interaction factor. Closure for
the Grass interaction factor Gp of each sediment class composing the non-
uniform bed layer is required here to complete the system. The estimation
of Gp based on the different empirical relations found in literature [144]
is detailed in Section (5.3), regardless of the capacity or the non-capacity
assumption is adopted for the bedload transport.

The shear resistance at the bed surface τb = (τbx, τby) is commonly es-
timated using the quadratic pure turbulent relation in Table 2.1, repeated
here as

τbx = ρwghCf |u|u
τby = ρwghCf |u|v

(5.5)

being Cf = n2
b h
−4/3 a friction coefficient and nb the bulk Manning’s rough-

ness parameter. The bulk porosity is estimated using the Wu [144] relation
for non-uniform deposits

ξ = 0.13 + 0.21
(

0.002 + 103
N∑
p=1

Fb,p ds,p

)−0.21
(5.6)

being ds,p the characteristic diameter of the pth sediment class in meters.
The equations forming the two-dimensional system (5.1)–(5.2) can be

rewritten in vector form as

∂U

∂t
+∇ ·E(U) = Sb(U) + Sτ (U) (5.7)
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where U is the vector of conserved variables

U =
(
h, hu, hv, zb

)T (5.8)

and E(U) =
(
F(U),G(U)

)
are the convective flux vectors along the (x, y)

horizontal coordinates respectively, expressed as

F(U) =


hu

hu2 + 1
2gh

2

huv
1

1−ξG|u|
2u

 G(U) =


hv
huv

hv2 + 1
2gh

2

1
1−ξG|u|

2v

 (5.9)

The vector Sb(U) accounts for the momentum source term associated
to the variation of the pressure force on the bed surface

Sb(U) =


0

−gh∂zb∂x
−gh∂zb∂y

0

 (5.10)

and can also be expressed using the non-conservative product

Sb(U) = Sx(U)
∂U

∂x
+ Sy(U)

∂U

∂y
(5.11)

where Sx(U) and Sy(U) are the non-conservative matrices

Sx(U) =


0 0 0 0
0 0 0 −gh
0 0 0 0
0 0 0 0

 Sy(U) =


0 0 0 0
0 0 0 0
0 0 0 −gh
0 0 0 0

 (5.12)

The source vector Sτ (U) denotes the momentum dissipation due to the
basal resistance

Sτ (U) =


0

−τbx/ρw
−τby/ρw

0

 (5.13)

5.2 Finite Volume method for the bedload transport
system

System (5.7) is time dependent, non linear and contains source terms. Un-
der the hypothesis of dominant advection it can be classified as belonging
to the family of hyperbolic systems. In order to obtain a numerical solution
using a Finite Volume (FV) technique, the spatial domain is divided in com-
putational cells using a mesh fixed in time and system (5.7) is integrated in
each cell Ωi using the Gauss theorem. Assuming a piecewise uniform repre-
sentation of the conserved variables U at the cells, the integrated system of
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equations for the i cell in the global framework X = (x, y) can be expressed
as

d

dt

∫
Ωi

U dΩ +

NE∑
k=1

(E · n)k lk =

∫
Ωi

Sb(U) dΩ +

∫
Ωi

Sτ (U) dΩ (5.14)

where the surface integral in the second term has been already replaced by
a sum over the cell edges, being NE the number of edges for the i cell. The
term (E · n)k denotes the value of the normal flux through the kth cell edge,
n = (nx, ny) the outward unit normal vector to the edge and lk the length
of the edge.

For each kth cell edge, the local framework is defined as X̂ = RkX =
(x̂, ŷ) and the rotation matrix Rk is

Rk =


1 0 0 0
0 nx ny 0
0 −ny nx 0
0 0 0 1


k

(5.15)

The rotation invariance property (3.26) of the convective flux matrix
E(U) can be used again to rewrite the normal fluxes through the edge [44,
138] as

(E · n)k =
[
F(U)nx + G(U)ny

]
k

= R−1
k F(RkU) (5.16)

being R−1
k the inverse of the rotation matrix, and hence the homogeneous

left hand side of (5.14) is expressed in the local framework X̂ of the kth cell
edge as

d

dt

∫
Ωi

RkU dΩ +
NE∑
k=1

F(RkU) lk (5.17)

Therefore, the set of local conserved variables Û ≡ RkU is defined as

Û ≡ RkU =
(
h, h û, h v̂, zb

)T (5.18)

and the local homogeneous convective fluxes F(Û)k ≡ F(RkU)

F(Û)k ≡ F(RkU) =


hû

hû2 + 1
2gh

2

hûv̂
1

1−ξG|u|
2û

 (5.19)

being û = unx + vny and v̂ = −uny + vnx the normal and tangential flow
velocities respectively.

The Jacobian matrix of the local flux vector F(Û)k is

Jk =
∂F(Û)

∂Û
=


0 1 0 0

gh− û2 2û 0 0
−ûv̂ v̂ û 0

−(ûa+ v̂b) a b 0


k

(5.20)
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with

−(ûa+ v̂b) ≡ ∂q̂b
∂h

=
−1

1− ξ
G3û(û2 + v̂2)

1

h
(5.21a)

a ≡ ∂q̂b
∂(hû)

=
1

1− ξ
G(3û2 + v̂2)

1

h
≥ 0 (5.21b)

b ≡ ∂q̂b
∂(hv̂)

=
1

1− ξ
G(2ûv̂)

1

h
(5.21c)

being q̂b = 1
1−ξG|u|

2û the bedload solid flux normal to the cell edge ex-
pressed in the local framework. It is worth noting that:

• First, the term a = ∂q̂b/∂(hû) (5.21b) is always positive and hence the
bed transport rate increases as the normal flow discharge grows;

• Second, when the bedload transport flux q̂b is computed by means of
empirical relationships, these derivatives require a suitable treatment
to ensure solid mass conservation across the cell edge, as it is detailed
in Section 5.3.

• Third, the Jacobian Jk (5.20) is a singular matrix since any flux deriva-
tive depends on the conserved variable zb. This might create problems
for the numerical resolution of the system based on the Jacobian ma-
trix eigenvalues [52]

The bed-pressure vector Sb(U) is unconditionally invariant under rota-
tion [21] and, hence, the cell-centered integral of bed-pressure source term
can be discretized within edge-contributions using∫

Ωi

Sb(U) dΩ =
NE∑
k=1

R−1
k H(Û)k lk (5.22)

where

H(Û)k =


0

−gh∆zb
0
0


k

(5.23)

denotes the bed-pressure flux vector at the kth cell edge [103]. The bed-
pressure momentum source vector (Ŝb)k along the normal direction to the
kth cell edge can be rewritten in the local framework X̂ = (x̂, ŷ) as

(Ŝb)k =
∂H(Û)k
∂x̂

=


0

−gh ∂zb
∂x̂

0
0


k

= Ŝ(Û)k
∂Û

∂x̂
(5.24)
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being Ŝ(Û)k the non-conservative matrix

Ŝ(Û)k =


0 0 0 0
0 0 0 −gh
0 0 0 0
0 0 0 0


k

(5.25)

The cell-centered basal resistance contribution in (5.14) is edge-
discretized using the differential approach (see Section 3.2.1) as∫

Ωi

Sτ (U) dΩ =

NE∑
k=1

R−1
k T(Û)k lk (5.26)

where T(Û)k is the integrated basal resistance at the kth cell edge, ex-
pressed in the local framework X̂ as

T(Û)k =


0

−ghCf |u| (û∆x̂+ v̂∆ŷ)
0
0


k

(5.27)

being (∆x̂,∆ŷ) the integration distances along the local x̂− and
ŷ−coordinates respectively. Hence, the basal resistance vector (Ŝτ )k along
the normal direction of the edge in the local framework reads

(Ŝτ )k =
∂T(Û)k
∂x̂

=


0

−ghCf |u| û
0
0


k

(5.28)

Using (5.22) and (5.26), the bed-pressure and basal resistance contribu-
tion can be included into the locally integrated system (5.17) for the kth cell
edge as

d

dt

∫
Ωi

RkU dΩ +
NE∑
k=1

F(Û)k lk =
NE∑
k=1

H(Û)k lk +
NE∑
k=1

T(Û)k lk (5.29)

The local system (4.31) allows to define an augmented numerical flux F↓k
for the i cell at the kth edge which incorporates the integrated bed-pressure
and basal resistance edge-contributions, H(Û)k and T(Û)k respectively,
into the homogeneous fluxes F(Û)k at the cell edge

F↓k =
(
F(Û)−H(Û)−T(Û)

)
k

(5.30)

Restoring the augmented flux (5.30) to the global framework X = (x, y),
the integrated system (5.14) is rewritten as

d

dt

∫
Ωi

U dΩ = −
NE∑
k=1

R−1
k F↓k lk (5.31)
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Assuming a piecewise uniform representation of the conserved vari-
ables U at the i cell for the time t = tn

Un
i =

1

Ai

∫
Ωi

U(x, y, tn) dΩ (5.32)

where Ai is the cell area, and using an explicit temporal integration for
the mass and momentum source terms, the updating formulation for the
conserved variables U at the each cell is expresed as

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

R−1
k F↓k lk (5.33)

where ∆t = tn+1 − tn is the time step.
Hence the resolution procedure needs to compute the numerical fluxes

F↓k at the cell edges ensuring (5.30). It is worth mentioning that the addi-
tion of the source terms to the homogeneous fluxes leads to the losing of the
conservative character for the momentum flux but ensures the well-balance
property for quiescent and steady states [103, 104]. The upwind computa-
tion of the intercell fluxes F↓k for the kth cell edge requires to solve the local
plane Riemann problem (RP) associated to (5.29), which can be written as

∂Û

∂t
+
∂F(Û)

∂x̂
= Ŝb + Ŝτ

Û(x̂, 0) =

{
Ûi = RkU

n
i if x̂ < 0

Ûj = RkU
n
j if x̂ > 0

(5.34)

where i and j denote the left and right neighbouring cells to the kth edge
respectively.

In this thesis, we propose two new approximated Riemann solvers
based on the augmented Roe solver (A-Roe) approach [91, 103, 138] to solve
(5.34) and to obtain the intercell numerical flux F↓k, leading to two different
FV methods for coupling flow and bedload transport.

5.2.1 Fully-coupled Riemann solver (FCM)

The fully-coupled strategy approximates the solution of the local plane RP
(5.34) at the kth edge, separating the left i cell and the right j cell, using a
constant coefficient linear RP [138] written as follows

∂Û

∂t
+ J̃k

∂Û

∂x̂
− S̃k

∂Û

∂x̂
= (S̃τ )k

Û(x̂, 0) =

{
Ûi if x̂ < 0

Ûj if x̂ > 0

(5.35)

where J̃k = Jk(Ûi, Ûj) is a constant coefficient matrix which approximates
the Jacobian of the non-linear RP, S̃k is the edge-averaged non-conservative
bed-pressure matrix defined in (5.25) and (S̃τ )k is the edge-averaged flow
resistance momentum term (5.28).
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Therefore, a pseudo-Jacobian matrix M̃k can be defined for the linear
RP at the kth cell edge coupling the Jacobian of the convective fluxes and
the non-conservative bed pressure variations as

M̃k = (J̃− S̃)k =


0 1 0 0

gh̃− ũ2 2ũ 0 gh̃
−ũṽ ṽ ũ 0

−(ũã+ ṽb̃) ã b̃ 0


k

(5.36)

Integration of (5.35) over the discrete space x̂ ∈ [x̂i, x̂j ], corresponding
to the kth cell edge, leads to the following constraint involving conservation
across discontinuities

δF(Û)k = M̃k δÛk (5.37)

where δÛk = Ûj − Ûi is the conserved variables increment, allowing to
estimate the constant coefficients of M̃k as

h̃ =
hi + hj

2

ũ =
ûi
√
hi + ûj

√
hj√

hi +
√
hj

ṽ =
v̂i
√
hi + v̂j

√
hj√

hi +
√
hj

ã =
1

1− ξ
G̃

(
û2
i + ûiûj + û2

j√
hihj

+
v̂iv̂j√
hihj

)

b̃ =
1

1− ξ
G̃

(
ûiv̂i + ûj v̂j√

hihj

)
(5.38)

being G̃ an averaged Grass-type interaction factor. For the sake of clarity,
and following [86, 100], a value G̃ = (Gi + Gj)/2 is adopted in this work,
although a more complex estimation of G̃ is proposed in [87].

The approximate matrix M̃k (5.36) is diagonalizable with four approxi-
mate real eigenvalues, λ̃m,k for m = 1, · · · , 4, resulting from the resolution
of the characteristic polynomial Pλ = det (M̃− λ̃I) = 0, being I the 4 × 4
identity matrix

Pλ = (ũ− λ̃)
[
−λ̃[(ũ− λ̃)2 − c̃2] + c̃2ã(λ̃− ũ)

]
= 0 (5.39)

where c̃ =

√
gh̃ is the averaged celerity of the infinitesimal waves. One

of the approximate eigenvalues λ̃m,k takes the value of the edge-averaged
normal velocity ũ, corresponding to the tangential shear wave in the RP
structure. The remaining three eigenvalues, referred to as A, B and C, can
be computed exactly applying the Cardano-Vieta formula to solve the roots
of the cubic polynomial Rλ = −λ̃[(ũ− λ̃)2− c̃2] + c̃2ã(λ̃− ũ) = 0, which can
be rewritten as

Rλ = λ̃3 + c1λ̃
2 + c2λ̃+ c3 = 0 (5.40)



5.2. Finite Volume method for the bedload transport system 167

with the coefficients

c1 = −2ũ

c2 = ũ2 − c̃2 − c̃2ã

c3 = c̃2ãũ

(5.41)

Therefore, A, B and C can be analytically computed [23] as

A = 2
√
−L cos(φ/3)− c1/3

B = 2
√
−L cos(φ/3 + 2π/3)− c1/3

C = 2
√
−L cos(φ/3 + 4π/3)− c1/3

(5.42)

where

L =
3c2 − c2

1

9
φ = arccos

(
R√
−L3

)
R =

9c1c2 − 27c3 − 2c3
1

54
(5.43)

Furthermore, the eigenvalues A, B and C of the sub-polynomial Rλ can
be analysed graphically as intersection of the cubic curve

f1(λ̃) = λ̃
[
(ũ− λ̃)2 − c̃2

]
(5.44)

representing the hydrodynamical component of the system, with the
straight line

f2(λ̃) = c̃2ã(λ̃− ũ) (5.45)

Considering right-going motion ũ > 0, regardless of subcritical or su-
percritical flow regime, the eigenvalues λ̃m,k can be sorted (Figure 5.1) as
follows

λ̃1,k = A < 0 < λ̃2,k = B < λ̃3,k = ũk < λ̃4,k = C (5.46)

(a) Subcritical regime. (b) Supercritical regime.

Figure 5.1: Graphical representation of the coupled eigenvalues for right-going flow
ũ > 0.

Similarly, for left-going flow ũ < 0, regardless of subcritical or super-
critical flow regime, the coupled eigenvalues are sorted (Figure 5.2) as

λ̃1,k = A < λ̃2,k = ũk < λ̃3,k = B < 0 < λ̃4,k = C (5.47)
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(a) Subcritical regime. (b) Supercritical regime.

Figure 5.2: Graphical representation of the coupled eigenvalues for left-going flow
ũ < 0.

and, in addition, it can be demonstrated that

λ̃1,k < (ũ− c̃)k λ̃4,k > (ũ+ c̃)k (5.48)

Therefore, it is possible to conclude that:

i) One of the eigenvalues has always opposite direction to the flow,
transporting information upstream, and the remaining three eigen-
values have the same direction as the flow;

ii) The maximum wave celerity in the coupled eigenstructure is higher
than the pure hydrodynamic wave celerity, reducing the actual stabil-
ity region of the local RP.

From now on, we consider right-going flow ũ > 0 for the sake of clarity
but the following results can be straightforwardly derived for left-going
flow ũ < 0. The associated orthogonal basis of eigenvectors (ẽm)k of M̃k is
used to built the matrix P̃k = (ẽ1, ẽ2, ẽ3, ẽ4)k as

P̃k =


1 1 c̃2b̃ 1

λ̃1 λ̃2 c̃2b̃ũ λ̃4

ṽ ṽ c̃2(ṽb̃− ũ) ṽ

(λ̃1 − ũ)2 − c̃2

c̃2

(λ̃2 − ũ)2 − c̃2

c̃2
−c̃2b̃

(λ̃4 − ũ)2 − c̃2

c̃2


k

(5.49)
which satisfies

M̃k = (P̃Λ̃P̃−1)k Λ̃k =

 λ̃1 0
. . .

0 λ̃4


k

(5.50)

being P̃−1
k the inverse matrix of P̃k.

One result of Roe’s linearization is that the approximate Riemann solu-
tion consists of only discontinuities and Û(x̂, t) is constructed as a sum of
jumps or shocks. The solution for Û(x, t) is governed by the celerities in Λ̃k

and consists of four regions connected by 5 waves, one of them a contact
wave with null celerity accounting for the integrated resistance source term
(Ŝτ )k at x̂ = 0. The intermediate states (blue regions) of the approximate
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solution at the left and right side of the kth edge, Û−i and Û+
j respectively,

are defined as

Û−i = lim
x̂→0−

Û(x̂, t)

Û+
j = lim

x̂→0+
Û(x̂, t)

(5.51)

and the numerical flux at the left and right side of the kth cell edge can be
estimated using an approximate flux function F̂(x̂, t) as

F↓k(x̂→ 0−) = lim
x̂→0−

F̂(x̂, t) ≡ F↓−k (5.52a)

F↓k(x̂→ 0+) = lim
x̂→0+

F̂(x̂, t) ≡ F↓+k (5.52b)

Following [138], the conserved variable differences δÛk and the inte-
grated resistance source terms T̃k (5.27) at the cell edge are projected on the
eigenvector basis in order to obtain the wave and source strength vectors,
Ãk and B̃k respectively leading to

Ãk = (α̃1, . . . , α̃4)Tk = P̃−1k δÛk −→ δÛk =
4∑

m=1

(α̃mẽm)k

B̃k = (β̃1, . . . , β̃4)Tk = P̃−1k T̃k −→ T̃k =
4∑

m=1

(β̃mẽm)k

(5.53)

The wave strengths α̃m are

Ãk ≡


α̃m =

W1
m

Dm
δ(h) +

W2
m

Dm
δ(hû) +

W3
m

Dm
δ(hv̂) +

W4
m

Dm
δ(zb) for m = 1, 2, 4

α̃3 =
ṽ

c̃2ũ
δ(h)− 1

c̃2ũ
δ(hv̂)

(5.54)
being the coefficientsWm and Dm:

W1
m = ũ

(
c̃2 − ũ2 +

∏
r 6=m

λ̃r

)
− ṽb̃

(
ũ2 − ũ

∑
r 6=m

λ̃r +
∏
r 6=m

λ̃r

)
W2
m = ũ

(
2ũ−

∑
r 6=m

λ̃r

)
W3
m = b̃

(
ũ2 − ũ

∑
r 6=m

λ̃r +
∏
r 6=m

λ̃r

)
W4
m = c̃2ũ

Dm = ũ
(
λ̃2
m − λ̃m

∑
r 6=m

λ̃r +
∏
r 6=m

λ̃r

)
(5.55)
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The source strengths β̃m can be expressed as

B̃k ≡


β̃m =

W2
m

Dm
T̃ for m = 1, 2, 4

β̃3 = 0

(5.56)

where the coefficientsW2
m and Dm are defined as in (5.55) and T̃ is the re-

sistance momentum contribution spatially integrated in the control volume
corresponding to the cell edge (5.27).

Using these projections, the reconstruction of the approximated solution
at the left and right sides of the cell edge [91], Û−i and Û+

j respectively, can
be expressed as

Û−i = Ûi +
∑
m−

(γ̃mẽm)k

Û+
j = Ûj −

∑
m+

(γ̃mẽm)k
(5.57)

where γ̃m = α̃m − β̃m/λ̃m and the subscript m− and m+ under the sums
indicate waves traveling inward and outward the i cell.

Therefore, the approximated solution for the flux function F(x̂, t) can
also be constructed by defining appropriate Rankine-Hugoniot (RH) rela-
tions across each moving wave. The solution of the approximate flux func-
tion provides the definition of the numerical fluxes at the left and right
sides, F↓−k and F↓+j respectively, of the kth cell edge following

F↓−k = F(Ûi) +
∑
m−

(λ̃mγ̃mẽm)k

F↓+k = F(Ûj)−
∑
m+

(λ̃mγ̃mẽm)k
(5.58)

Note that, when momentum source terms are incorporated into the Rie-
mann solver, it is no longer possible to define a unique value of the numer-
ical flux at both sides of the cell edge [128]. The relation between the ap-
proximate fluxes F↓−k and F↓+k can be analyzed using the Rankine-Hugoniot
(RH) relation at x̂ = 0. The corresponding flux difference is given by

F↓+k − F↓−k =
4∑

m=1

(β̃mẽm)k = T̃k (5.59)

The inward fluxes F↓−k provides the four component of the numerical
flux vector required in (5.33) for updating the conserved variables in the i
cell and hence

F↓k = F↓−k (5.60)

Finally, in order to ensure the stability of the explicitly computed nu-
merical solution, the time step should be small enough to avoid the inter-
action of waves from neighbouring RP’s. The dynamical limitation of the
time step at the kth edge is addressed here assuming that the fastest wave
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celerity corresponds to the absolute maximum of the eigenvalues of M̃k

(5.36)

∆tk =
min(Ai, Aj)

lk max
m

(|λ̃m,k|)
(5.61)

and the global time step ∆t = tn+1 − tn is limited using the Courant-
Friedrichs-Lewy (CFL) condition as

∆t = CFL min
k

(∆tk) (5.62)

with CFL < 0.5 for square orthogonal meshes and CFL < 1 for the trian-
gular mesh topology and 1D-mesh cases.

5.2.2 Approximate-coupled Riemann solver (ACM)

A second approach is addressed in this thesis to solve the numerical fluxes
F↓k (5.30) at intercell edges. This strategy consists of solving separately the
hydrodynamical equations (5.1) and the continuity equation for the bed
layer (5.2) at each time step. The mass and momentum numerical fluxes in
(5.33) for the hydrodynamical equations, referred to as F

↓{1,2,3}
k , are com-

puted approximating the local plane RP (5.34) at each kth cell edge by
means of a constant-coefficients linear RP defined as

∂Û′

∂t
+ J̃′k

∂Û′

∂x̂
= (S̃b + S̃τ )k

Û′(x̂, 0) =

{
Û′i = Rk(U

′)ni if x̂ < 0

Û′j = Rk(U
′)nj if x̂ > 0

(5.63)

where Û′ = (h, hû, hv̂)T is the reduced set of hydrodynamical conserved
variables, (S̃b)k and (S̃τ )k are the edge-averaged bed-pressure and flow
resistance momentum term, (5.24) and (5.28) respectively.

Following the above Chapter 4, the matrix J̃′k = J′k(Û
′
i, Û

′
j) is the 3× 3

constant coefficient Jacobian of the local hydrodynamical RP, defined as

J̃′k =

 0 1 0

gh̃− ũ2 2ũ 0
−ũṽ ṽ ũ


k

(5.64)

being the constant coefficients defined as in (5.38).
The three eigenvalues of J̃′k are

λ̃′1,k = (ũ− c̃)k < λ̃′2,k = ũk < λ̃′3,k = (ũ+ c̃)k (5.65)

with the associated eigenvectors ẽ′m,k matrix expressed as

P̃′k = (ẽ′1, ẽ
′
2, ẽ
′
3)k =

 1 0 1

λ̃′1 0 λ̃′3
ṽ c̃ ṽ


k

(5.66)

Following the procedure detailed above for the fully-coupled Riemann
solver, the discrete increments in the hydrodynamical conserved variables
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δÛ′k are projected on the orthogonal basis of eigenvectors to obtain the
wave strength vector, Ã′k, as

Ã′k = (α̃′1, . . . , α̃
′
3)Tk = P̃′−1k δÛ′k (5.67)

where the wave strengths α̃′m are

Ã′k ≡



α̃′1 =
c̃− ũ

2c̃
δ(h)− 1

2c̃
δ(hû)

α̃′2 =
−ṽ
c̃
δ(h) +

1

c̃
δ(hv̂)

α̃′3 =
c̃+ ũ

2c̃
δ(h) +

1

2c̃
δ(hû)

(5.68)

Similarly, the edge-integrated bed-pressure H̃k (5.23) and basal resis-
tance T̃k (5.27) contributions are also projected on the orthogonal basis of
eigenvectors to obtain the source strength vector B̃′k as

B̃′k = (β̃′1, . . . , β̃
′
3)Tk = P̃′−1k

(
H̃k + T̃k

)
(5.69)

with

B̃′k ≡


β̃′1 = − 1

2c̃

(
H̃ + T̃

)
β̃′2 = 0

β̃′3 =
1

2c̃

(
H̃ + T̃

) (5.70)

where H̃ and T̃ are the suitable values of the integrated bed-pressure and
resistance momentum contributions at the cell edge.

Therefore, the hydrodynamical fluxes at the left side of the kth cell edge
F
↓{1,2,3}
k are obtained using

F
↓{1,2,3}
k = F′

↓−
k = F(Û′i) +

∑
m−

(λ̃′mγ̃
′
mẽ′m)k (5.71)

where γ̃′m = α̃′m − β̃′m/λ̃′m and the subscript m− under the sums indicates
waves travelling inward the i cell. Finally, the hydrodynamical conserved
variables (h, hu, hv) in the (x, y) framework are updated using (5.33) and
the augmented intercell fluxes (5.71).

The numerical flux for the bed layer continuity equation (5.2), referred
as F

↓{4}
k , is computed separately at each time step by solving the following

approximated scalar RP [65, 91]

∂zb
∂t

+ λ̃b,k
∂zb
∂x̂

= 0

zb(x̂, 0) =

{
(zb)

n
i if x̂ < 0

(zb)
n
j if x̂ > 0

(5.72)

where a virtual bedload wave celerity λ̃b,k is defined as:

λ̃b,k =

(
δq̂b
δzb

)
k

(5.73)



5.2. Finite Volume method for the bedload transport system 173

Note that the scalar RP (5.72) is homogeneous and hence there does
not exist a jump between the left and right inner states of the approximate
flux function at x̂ = 0. Therefore, it is possible to compute the bedload
numerical flux at the k cell edge as

F
↓{4}
k =

{
(q̂b)

n
i if λ̃b,k > 0

(q̂b)
n
j if λ̃b,k < 0

(5.74)

and the morphodynamical conserved variable zb is also updated using
(5.33) with the intercell solid flux (5.74).

This separate formulation for the hydrodynamical and morphodynam-
ical components of the system, and the corresponding separate numerical
resolution, would lead to a decoupled model. It is known that totally de-
coupled schemes suffer from oscillations and instabilities in many flow con-
ditions [26]. Previous works [24, 65] defined a weakly-coupled strategy by
controlling the global numerical stability by means of the most restrictive
among the hydrodynamic eigenvalues (5.65) and the virtual bed load celer-
ity (5.73). This approach was useful but imposes an excessive time step
restrictions under a wide range of flow configurations [91].

In order to ensure the stability of this decoupled scheme without reduc-
ing the computational performance, even for fast bed evolution conditions,
a new strategy for the restriction of the time step is also proposed here.
This strategy leads to an "approximate-coupling" of the hydrodynamical
and morphodynamical components of the system. For each k cell edge,
the maximum time step is limited considering the characteristic eigenstruc-
ture of the coupled pseudo-Jacobian M̃k (5.36). Following [26], even with-
out calculating the exact eigenvalues λ̃m,k from the characteristic equation
Pλ = 0, their minimum and maximum values can be bounded into an ap-
proximated range [λ̃∗1, λ̃

∗
4]k using the mathematical properties of the char-

acteristic polynomial Pλ (5.39).
The eigenvalues A, B and C of the sub-polynomial Rλ (5.39) can be an-

alyzed graphically as intersection of a cubic curve f1(λ̃) (5.44) representing
the hydrodynamical component of the system, with a straight line f2(λ̃)
(5.45) accounting for the morphodynamic component. This is shown in Fig-
ure 5.3 considering right-going subcritical flow ũ > 0 but the procedure can
bed extended to supercritical conditions and left-going flow ũ < 0 without
loss of generality (see Figures 5.1 and 5.2).

Figure 5.3: Bounds for the time step limitation using AC method, considering right-
going flow ũ > 0 and subcritical regime.
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The lower and upper bounds, λ̃∗1 and λ̃∗4 respectively, can be estimated as
the intersection of the straight line f2(λ̃) (5.45) with two auxiliary straight
lines t1(λ̃) and t4(λ̃). These auxiliary straight lines are tangential to the
cubic function f1(λ̃) (5.44) at the points (ũ − c̃)k and (ũ + c̃)k respectively.
Hence, the upper and lower bounds are computed as

Lower bound: t1(λ̃) = f2(λ̃) ⇒ λ̃∗1,k =

(
(ũ− c̃) Θ1 − c̃2ãũ

Θ1 − c̃2ã

)
k

Upper bound: t4(λ̃) = f2(λ̃) ⇒ λ̃∗4,k =

(
(ũ+ c̃) Θ4 − c̃2ãũ

Θ4 − c̃2ã

)
k

(5.75)

being the parameter

Θ1 =
∂f1

∂λ̃

∣∣∣∣
λ̃=(ũ−c̃)k

(5.76)

the value of the first derivative of the cubic curve f1(λ̃) (5.44) at λ̃ = (ũ− c̃)k
and, similarly, the parameter

Θ4 =
∂f1

∂λ̃

∣∣∣∣
λ̃=(ũ+c̃)k

(5.77)

the value of the first derivative of f1(λ̃) (5.44) at λ̃ = (ũ+ c̃)k.
Finally, the limiting time step at kth cell edge is computed using

∆tk =
min(Ai, Aj)

lk max(|λ̃∗1,k|, |λ̃∗4,k|)
(5.78)

and the global time step ∆t = tn+1 − tn is limited using the Courant-
Friedrichs-Lewy (CFL) condition as

∆t = CFL min
k

(∆tk) (5.79)

with CFL < 0.5 for square orthogonal meshes and CFL < 1 for the trian-
gular mesh topology and 1D-mesh cases.

Test 5.2.A: 1D bed evolution with transient exact solution

The goal of this test is to assess the capability of both numerical schemes,
FCM and ACM, to converge to the exact solution of a transient bedload
transport problem. An exact solution for the 1D shallow water-bedload
system was proposed by Berthon et al. [6]. Considering a frictionless case
with uniform flow discharge q = hu and the Grass formulation for the
bedload discharge, qb = Agu

2uwithAg = 1
1−ξG = const, the 1D transient
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exact solution for system (5.1)–(5.2) can be expressed as:

u =

(
αx+ β

Ag

)2/3

h = q/u

z0
b ≡ zb(t = 0) = −u

3 + 2gq

2gu
+ γ

zb(t) = z0
b − αt

(5.80)

being α, β and γ constant parameters, g the gravity acceleration and z0
b

the initial bed elevation. For this test case, α = 0.005, β = 0.005, γ = 2,
q = 1m2/s and Ag = 0.01 s2/m are taken. Considering a 1D spatial
domain x = [0, 10]m, the transient exact solution (5.80) for both the free
surface elevation h+zb and the bed elevation zb at time t = 10 s is shown
in Figure 5.4.

Figure 5.4: Test 5.2.A – Initial conditions and exact solutions for the free surface
and bed elevations at t = 10 s. Numerical results with the fully-coupled method

(FCM) on the mesh M100 are also plotted.

In order to analyze the convergence of both numerical schemes (FCM
and ACM) to the exact solution, six one-dimensional square-cell meshes
are considered increasing the number of cells from the coarsest M100,
with 100 cells of edge length ∆x = 0.1m, to the finest M3200, with
3200 cells of edge length ∆x = 0.003125m. Constant flow and bedload
solid discharges, q = 1m2/s and qb = 0.005m2/s respectively, are set as
boundary conditions at the inlet section, whereas the normal flow depth
h = 0.5665m is imposed at the outlet boundary. The CFL is set to 1.0 for
all the simulations.
The computed results at t = 10 s for the free surface and bed elevations
using FCM on the mesh M100 have been depicted in Figure 5.4. The
convergence of the FCM and ACM method to the exact solution is an-
alyzed using the L1 and L∞ error norms. Figure 5.5–(a) shows the L1

norm for the water depth h and bed elevation zb with both FCM and
ACM, whereas Figure 5.5–(b) shows the L∞ error norm for h and zb. The
ACM solver obtains a smaller L1 norm than the FCM method, whereas
the values of the L∞ norm are similar for both numerical schemes.
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(a) L1 error norms

(b) L∞ error norms

Figure 5.5: Test 5.2.A – Convergence errors for h and zb with FCM and ACM
numerical methods

The values of the L1 and L∞ error norms for the water depth h and the
bed elevation zb have been summarized in Tables 5.6 and 5.7 for the FCM
and ACM schemes, respectively. The convergence order of both methods
between refinement steps has also been computed based on the error
norms values. Both the FCM and the ACM Riemann solvers are able to
converge to the exact solution with a similar convergence order.

FCM Water depth h
Mesh ∆x(m) L1 Order L∞ Order
M100 0.1 1.15E-2 - 1.36E-2 -
M200 0.05 5.99E-3 0.942 9.01E-3 0.592
M400 0.025 3.05E-3 0.973 5.02E-3 0.844
M800 0.0125 1.54E-3 0.987 2.58E-3 0.960
M1600 0.00625 7.74E-4 0.992 1.30E-3 0.986
M3200 0.003125 3.88E-4 0.994 6.53E-4 0.995

FCM Bed level zb
Mesh ∆x(m) L1 Order L∞ Order
M100 0.1 4.78E-3 - 1.36E-2 -
M200 0.05 2.23E-3 0.979 8.95E-3 0.611
M400 0.025 1.22E-3 0.991 4.97E-3 0.850
M800 0.0125 6.11E-4 0.998 2.55E-3 0.961
M1600 0.00625 3.06E-4 0.999 1.28E-3 0.986
M3200 0.003125 1.53E-4 1.000 6.46E-4 0.994

Figure 5.6: Test 5.2.A – Convergence analysis for FCM method.
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ACM Water depth h
Mesh ∆x(m) L1 Order L∞ Order
M100 0.1 2.78E-3 - 1.44E-2 -
M200 0.05 1.40E-3 0.988 9.33E-3 0.629
M400 0.025 7.03E-4 0.994 5.10E-3 0.870
M800 0.0125 3.52E-4 0.997 2.59E-3 0.975

M1600 0.00625 1.76E-4 0.997 1.31E-3 0.992
M3200 0.003125 8.87E-5 0.991 6.54E-3 0.996

ACM Bed level zb
Mesh ∆x(m) L1 Order L∞ Order
M100 0.1 2.79E-3 - 1.37E-2 -
M200 0.05 1.40E-3 0.994 8.87E-3 0.630
M400 0.025 7.03E-4 0.997 4.85E-3 0.870
M800 0.0125 3.52E-4 0.998 2.46E-3 0.975

M1600 0.00625 1.76E-4 1.000 1.24E-3 0.991
M3200 0.003125 8.83E-5 0.997 6.22E-4 0.996

Figure 5.7: Test 5.2.A – Convergence analysis for ACM method.

Test 5.2.B: 1D subcritical symmetric dambreak over erodible bed

This synthetic test aims at assessing the stability of both FCM and ACM
as the bedload transport component increases its importance. A friction-
less 1D symmetrical dambreak over erodible flat bed is considered with
the following initial conditions:

h(x, 0) =

{
1m if− 0.5 ≤ x ≤ 0.5
0.2m otherwise

u(x, 0) = 0m/s ∀x
v(x, 0) = 0m/s ∀x
zb(x, 0) = 1m ∀x

(5.81)

which allow subcritical flow (Fr = |u|/
√
gh < 1) during the whole test.

The bedload transport rate is calculated considering one sediment class
with porosity ξ = 0.40 and three different constant flow-bed interaction
factors: G = 0.001 s2/m (low interaction), G = 0.01 s2/m (medium in-
teraction) and G = 0.1 s2/m (high interaction). All the simulations are
performed using a one-dimensional square-cell mesh with ∆x = 0.01m
edge length and CFL = 1.The final time is t = 1.0 s for all the simula-
tions.
Figure 5.8 shows the free surface and bed elevation profiles at t = 0.1 s,
t = 0.3 s and t = 0.6 s with both FCM and ACM numerical schemes for
the low interaction G = 0.001 s2/m case. On both sides of the symmetric
dambreak, the solution is characterized by a frontal shock wave which
affects the flow and erodible bed layers, followed by a rarefaction wave
between the domain center and the front wave which creates a highly
eroded region. As the interaction factor G grows, the magnitude of the
sediment shock wave and the highly-eroded region increase, affecting
greatly the flow structure.
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Figure 5.8: Test 5.2.B – Subcritical dambreak evolution with ACM and FCM mod-
els for a constant Grass interaction factor G = 0.001 s2/m. From top to bottom:

t = 0.1 s, t = 0.3 s and t = 0.6 s

For low interaction G = 0.001 s2/m (see Figure 5.8), both methods re-
main stable and show quite similar solutions for the free surface and bed
elevation. As G increases, differences between the FCM and the ACM
schemes appear. For medium interaction factor G = 0.01 s2/m (Figure
5.9, although both schemes offer a stable behaviour, some differences
appear at the bed level profile as time progresses, especially at the tran-
sition between the shock wave and the rarefaction region.
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Figure 5.9: Test 5.2.B – Subcritical dambreak evolution with ACM and FCM mod-
els for a constant Grass interaction factor G = 0.01 s2/m. From top to bottom:

t = 0.1 s, t = 0.3 s and t = 0.6 s

When the value ofG is increased to 0.1 s2/m, representing a high interac-
tion between the flow and the bedload layer (see Figure 5.10), the ACM
scheme becomes oscillatory near the shock-rarefaction transition at the
first stages of the dambreak. As time progresses, these spurious oscilla-
tions grow and cause the ACM solution to lose its symmetric behaviour.
However, the FCM solution remains stable, smooth and symmetrical
even for these high interaction factor values. High values of bed-flow
interaction can appear locally in real-scale two-dimensional flows when
the bed shear stress increases over a certain threshold, leading to the fail-
ure of the ACM prediction at these regions.
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Figure 5.10: Test 5.2.B – Subcritical dambreak evolution with ACM and FCM
models for a constant Grass interaction factorG = 0.1 s2/m. From top to bottom:

t = 0.1 s, t = 0.3 s and t = 0.6 s

Although the solution obtained with the ACM scheme loses symmetry
and shows local spurious oscillations for high flow-bed interaction, the
proposed approximate-coupled time step limitation applied in the ACM
method demonstrates to improve greatly the stability of the scheme. Fig-
ure 5.11 shows the bed and flow levels at t = 0.6 s using the ACM scheme
compared with the results obtained if only the flow eigenvalues (5.65) are
taken into account for limiting the time step (totally decoupled scheme).
Low (G = 0.1 s2/m), medium (G = 0.1 s2/m) and high (G = 0.1 s2/m)
values for the Grass interaction factor are analyzed. For low and medium
interaction factors the ACM and the totally decoupled methods perform
almost similar in this synthetic test. However, if high interaction val-
ues are considered, the totally decoupled scheme fails catastrophically
and the solution loses the stability whereas the ACM method only shows
some local deviations from the FCM solution (see Figure 5.10). Although
in this synthetic case, the decoupled method only shows stability loss for
Grass factors of order G > O(10−1), the totally decoupled resolution can
fail in a wide range of flow conditions which involves medium or even
low bed-flow interaction [26].
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Figure 5.11: Test 5.2.B – Subcritical dambreak at t = 0.6 s with ACM and to-
tally decoupled models for (top) G = 0.001 s2/m, (center) G = 0.01 s2/m and

(bottom) G = 0.1 s2/m.

Furthermore, Table 5.1 shows the computational time required for both
numerical schemes to complete the simulation. The ACM method shows
a slightly smaller computational effort for low and medium flow-bed in-
teraction factor, since the FCM scheme requires more algebraical opera-
tions to compute the solution. Nevertheless, for high interaction factor,
the appearance of spurious oscillations in the ACM solution causes an
important loss of efficiency, whereas the FCM solver remains stable and
requires a much smaller computational time to perform the simulation.
The speed-up of the FCM solver is near 1.5 for high interaction factor
G = 0.1 s2/m test.

Inter. factor Comp. time (s) Speed-up
G(s2/m) ACM FCM ACM/FCM

0.001 0.501 0.513 0.98
0.01 0.522 0.549 0.95
0.1 0.933 0.633 1.47

Table 5.1: Test 5.2.B – Computation times for Test 5.2.B
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5.3 Extension to generalized bedload transport

Following Section 2.3.3, the generalized Grass interaction factor Gp for the
pth sediment class is calculated as a function of the flow depth h, the dimen-
sionless size-specific Shields stress θp at the bed interface and the bedload
transport layer thickness ηp as

Gp = Γ1(h) Γ2(θp) Γ3(ηp) (5.82)

Formulation Γ1(h) Γ2(θp) Γ3(ηp) θc

MPM [97] n3
p
√
g

(rp−1)
√
h

8
√

∆θp

θ
3/2
p

rp kD
kE

ηp
ds,p

0.047

Smart [132] n2
p

(rp−1)h1/3
4.2S0.6

θp

rp kD
kE

ηp
ds,p

0.047

Wu [144] (n3
pnb)3/4

√
g

(rp−1)
√
h

0.0053
√

∆θp

θ2.2c,p θ
3/2
p

rp kD
kE

ηp
ds,p

0.030

Table 5.2: Generalized Grass-type interaction factor Gp for transport rate formula-
tions.

Expressions for functions Γ1, Γ2 and Γ3 have been included in Table 5.2
for the empirical relations used in this chapter, but an extended list can be
found in Table 2.2 of the Section 2.3.3. Here, np = 1/21 d

1/6
s,p is the Man-

ning roughness parameter corresponding to the grain resistance of the pth
sediment class, rp = ρs,p/ρw is the specific solid/liquid density ratio for
the sediment particles, kD and kE are two positive constants associated to
the detention and entrainment exchange rates between the bedload trans-
port (moving) layer and the underlying static bed stratum, and θc is the
global threshold of the Shields stress for the incipient motion. In the Smart
[132] relation, the parameter S accounts for the bed slope along the sedi-
ment transport direction whereas nb denotes the bulk Manning roughness
parameter for the non-uniform bed layer in the Wu [144] relationship.

The Shields stress excess ∆θp for the pth sediment class is calculated as

∆θp =

{
θp − θc,p if θp > θc,p

0 if θp ≤ θc,p
(5.83)

being θp the specific dimensionless Shields stress, calculated using the ra-
tio between the turbulent shear force exerted by the flow on the sediment
grains at the top of the bed layer and the gravitational force as

θp =
n2
p |u|2

(rp − 1) ds,p h1/3
(5.84)

and θc,p is the critical Shields threshold for the incipient motion of the pth
sediment class, which here is graded from the global threshold θc including
the hiding/exposure mechanism in non-uniform beds using the Egiazaroff
[32] relation.

This generalized Grass-type model (5.82) for the bedload transport has
two important advantages compared with classical capacity models:
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• First, it allows the possibility to consider capacity or non-capacity hy-
pothesis for the bedload solid transport by only changing the expres-
sion to calculate the moving layer thickness ηp of each sediment class.
Assuming the capacity approach leads to an instantaneous adapta-
tion of the bedload transport rate to its capacity value and the specific
equilibrium transport thickness η∗p can be estimated as

ηp ≡ η∗p =
kE
rp kD

∆θp ds,p (5.85)

The non-capacity assumption requires to estimate the temporal evo-
lution of the bedload layer thickness by solving the transport equation
(2.125) for each pth sediment class as

∂ηp
∂t

+
1

1− ξ
∂

∂x
(Gp|u|2 u) +

1

1− ξ
∂

∂y
(Gp|u|2 v) =

− (η̇D − η̇E)p

(5.86)

where η̇D,p and η̇E,p are the detention and entrainment exchange
rates, respectively, between the bedload transport layer and the un-
derlying static stratum for the pth sediment size class. This equation
is added to the system 5.7 and solved separately at each time step, re-
gardless of using FCM or ACM Riemann solver for the computation
of the intercell numerical flux. The bed porosity effect is assumed
similar for all the sediment fractions composing the non-uniform bed
layer. Following (2.135) and (2.143), the detention and entrainment
rates can be expressed as

η̇D,p = kD
ηp
ds,p

√
(rp − 1)gd3

s,p

ds,p
(5.87a)

η̇E,p = kE
∆θp
rp

√
(rp − 1)gd3

s,p

ds,p
(5.87b)

• Second, using (5.3) and (5.82), the bulk thickness of the bedload trans-
port layer in non-uniform beds can be assumed as

η =
N∑
p=1

Fb,pηp (5.88)

When an underlying non-erodible stratum, i.e. a bedrock layer, is
reached during the erosion process, the unavailability of sediment
creates a special situation which is not considered by the classical bed-
load models but can be easily addressed with the proposed model.
Considering an erodible layer depth εb = zb − zR, being zR the non-
erodible layer elevation, if the transport (moving) layer thickness is
higher than the available erodible depth, i.e. η > εb, a non-capacity
state in the bedload transport appears. This leads to a reduction of the
actual solid discharge respect to its value for infinitely erodible layer
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conditions. This non-equilibrium state is addressed by means of the
reduction of the specific transport thickness ηp following

η′p = βR ηp (5.89)

being βR = εb/η a linear reduction coefficient and η′p the actual bed-
load layer thickness over the non-erodible stratum. Note that, using
(5.82), the reduction of the bedload thickness straightforwardly limits
the specific bed-flow Grass interaction factor Gp for the pth sediment
class. Hence, for a sediment unavailability situation (εb = 0), the gen-
eralized bedload model adapts to null solid discharge (Gp = 0) re-
gardless of considering capacity or non-capacity formulation.

5.3.1 Bedload updating with capacity and non-capacity ap-
proaches

Regardless of using FCM or ACM Riemann solver for the computation
of the intercell numerical flux, the updating procedure for transport layer
thickness depends on the assumption made for the bedload transport. As-
suming the capacity hypothesis, the cell-centered value of the transport
thickness for the pth sediment class at the next time step tn+1 is directly
computed using (5.85) as

ηn+1
p,i =

kE
rp kD

(∆θp)
n+1
i ds,p (5.90)

where (∆θp)
n+1
i is the non-dimensional Shields excess (5.83) at the i cell

computed with the conserved variables updated to time tn+1. From now
on, when the capacity formulation is used, the resulting model is referred
to as R-Cap.

On the other hand, the assumption of the non-capacity approach re-
quires to solve (5.86) for each sediment class at each time step using the
updating formula

ηn+1
p,i = ηnp,i −

∆t

Ai

NE∑
k=1

(F ηp )↓k lk −∆t (η̇D − η̇E)np,i (5.91)

being (F ηp )↓k the numerical flux at the kth intercell edge for the homoge-
neous transport equation of the pth sediment class and (η̇D− η̇E)np,i denotes
the cell-centered balance between the specific detention and entrainment
rates (5.87) at time tn.

To compute the numerical flux (F ηp )↓k for the pth sediment class at the
kth cell edge, the left hand side of the transport equation (5.86) is integrated
along the normal direction to the edge and the numerical flux at the intercell
interface is approximated using the linearized homogeneous RP [88]

∂ηp
∂t

+ λ̃η,k
∂ηp
∂x̂

= 0

ηp(x̂, 0) =

{
ηnp,i if x̂ < 0

ηnp,j if x̂ > 0

(5.92)
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where the virtual bedload wave celerity λ̃η,k is defined as

λ̃η,k =
∆
[
Gp(û

2 + v̂2) û
]
k

(1− ξ) ∆(ηp)k
(5.93)

being ∆(·)k = (·)nj − (·)ni and (û, v̂) the normal and tangential velocity to
the cell edge, respectively. Therefore, the intercell numerical flux for the
transport thickness of the pth sediment class is computed as

(F ηp )↓k =

{
1

1−ξ
[
Gp(û

2 + v̂2) û
]n
i

if λ̃η,k > 0
1

1−ξ
[
Gp(û

2 + v̂2) û
]n
j

if λ̃η,k < 0
(5.94)

Regardless of considering capacity or non-capacity formulation, the up-
dated value of the bedload thickness for the pth sediment class ηn+1

p,i is lim-
ited following (5.89) to ensure the adaptation of the bedload transport rate
to sediment unavailability conditions. Finally, the cell-centered value of the
bed-flow Grass interaction factor Gp for the pth sediment class at the next
time step tn+1 is computed using (5.82) as

Gn+1
p,i = Γ1(hn+1

i ) Γ2(θn+1
p,i ) Γ3(ηn+1

p,i ) (5.95)

with Γ1, Γ2 and Γ3 as in Table 5.2.
Therefore, the bulk Grass-type interaction factor G used to compute the

bedload transport rate q̂b normal to the kth cell edge in (5.19) varies spatially
as a function of the local flow features at the left and right cells. Following
[86, 87, 100], the discrete increment of the bedload solid flux throughout the
intercell edges can be split as

(δq̂b)k = δq̂−b (Gi, G̃, Ûi) + δq̃b(G̃, Ûi, Ûj) + δq̂+
b (G̃,Gj , Ûj) (5.96)

where

δq̂−b (Gi, G̃, Ûi) = q̂b(G̃, Ûi)− q̂b(Gi, Ûi)

δq̃b(G̃, Ûi, Ûj) = q̂b(G̃, Ûj)− q̂b(G̃, Ûi)

δq̂+
b (G̃,Gj , Ûj) = q̂b(Gj , Ûj)− q̂b(G̃, Ûj)

(5.97)

G̃ being the averaged bulk interaction factor at the kth cell edge.
Incorporating a non-uniform Grass interaction factor G into both the

fully- and approximate-coupled Riemann solvers requires to consider this
discrete solid flux splitting. Therefore, both corrector terms must be added
to the computation of the numerical intercell bedload flux at the left and
right sides of the cell edge, called δF∆

i and δF∆
j respectively. These cor-

rector terms account for the variation of the bulk Grass interaction factor
between the cell center value, Gi and Gj , and the averaged value G̃ used at
the edge [100]. The extended numerical fluxes at the left and right side of
the kth cell edge are therefore defined as

F⇒k = F↓−k + δF∆
i

F⇐k = F↓+k − δF∆
j

(5.98)
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where F↓−k and F↓+k are calculated using (5.58) in the FCM solver and (5.71)
plus (5.74) in the ACM solver, and the corrector term at the left δF∆

i and
right δF∆

j sides of the edge are computed as

δF∆
i =


0
0
0

1
1−ξ (G̃−Gi)(û2

i + v̂2
i ) ûi


k

δF∆
j =


0
0
0

1
1−ξ (Gj − G̃)(û2

j + v̂2
j ) ûj


k

(5.99)

This splitting of the bedload solid flux is directly controlled by the value
of the Grass interaction parameter G̃k at the intercell edge an hence it is di-
rectly linked to the Jacobian matrix eigenstructure. The corrector flux at the
left cell δF∆

i can be associated to the fastest wave travelling with negative
velocity, whereas the corrector flux at the right cell δF∆

j can be associated
to the fastest wave travelling with positive velocity. The Rankine-Hugoniot
conditions for the split corrector fluxes lead to

δF∆
i = λ̃1 δÛ∆

i

δF∆
j = λ̃4 δÛ∆

j

(5.100)

being δÛ∆
i and δÛ∆

j the contribution to the inner state of the approximate
solution associated to the corrector fluxes.

Regardless of using FCM or ACM approaches, the final updating for-
mula for the conserved variables U can be expressed as

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

R−1
k F⇒k lk (5.101)

Test 5.3.A: 1D transport of a finite-depth rectangular dune

The aim of this original test case is to study the influence of the non-
capacity assumption on the transport of a non-cohesive rectangular dune
over a non-erodible layer with a 0.1% positive slope. The effects of both
the deposition constant value and the relation between erosion and de-
position constants will be analyzed in detail using this erosive numeri-
cal test. The non-erodible layer with constant slope of 0.1 % is consid-
ered. The rectangular dune is placed at 20m < x < 40m and its initial
thickness is set to 1m. A constant inlet water discharge of qin = 5m2/s
is considered and the water depth at the outlet is set to the exact nor-
mal depth hout = 1.99526m. The Manning’s roughness coefficient is
nb = 0.02 sm−1/3 for both the sediment material and the non-erodible
layer. A unique sediment class is considered with the following features:
density ρs = 2650 kg/m3, particle diameter ds = 1mm, internal friction
angle δb = 35◦, porosity ξ = 0.4. The spatial domain is 100m long and
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is discretized using one-row square-cell mesh with ∆x = 1m. The FCM
solver is used for the computation of the intercell flux and CFL=1 is set.
The initial state for the sediment transport simulation was calculated de-
veloping the flow for static-bed conditions until steady state was reached
(Fig. 5.12). The initial flow regime was subcritical in the whole domain
except at x = 40m, where a supercritical point was reached due to the
chute. To compute the bed-load solid transport rate, the Meyer-Peter &
Müller [97] formulation was chosen (see Table 5.2). The deposition con-
stant was initially set to kE = 0.3 with a relation kE/kD = 10 according
to literature values [10, 38]. The initial value for active layer thickness η
was set to its value under equilibrium state η∗.

Figure 5.12: Test 5.3.A – Initial bed and steady-state free surface level for the
erosive simulations.

The temporal bed level evolution has been depicted in Fig. 5.13 consid-
ering capacity and non-capacity approaches. A visual comparison of the
bed profiles at different time shows the most noticeable differences be-
tween both approaches at the tail of the dune, where the Shields stress
excess ∆θ had the highest initial values and hence the adaptation length
was longer. As the dune moves downstream, the erosion and deposition
rates are high enough to allow a fast transition to equilibrium transport
conditions on the bedload layer and hence the capacity and non-capacity
solutions tended to approximate.

Figure 5.13: Test 5.3.A – Bed level evolution with kE = 0.3 and kE/kD = 10:
(top) capacity approach and (bottom) non-capacity approach.
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Calibration of the erosion and deposition rates, i.e. the net exchange flux
through the static-moving bed layers interface, is a key point in non-
capacity bed-load models and it has a huge influence on the numerical
results. A wide range of values for the erosion and deposition constants
can be found in literature [10, 25, 37, 73], leading to high uncertainty in
the numerical results obtained with non-capacity models. Usually, val-
ues for the erosion constant are of the order kE ∼ O(10−2, 101), whereas
the relation kE/kD varies from 2 to 30. Fig. 5.14 shows the bed level pro-
file at different times with the non-capacity approach, increasing kE from
0.3 to 1.0 and maintaining the ratio kE/kD = 10. Reduction of the erosion
constant kE leads to an increment of the equivalent bedload adaptation
length and hence to a transport rate more different from the equilibrium
value at the dune downward slope. This non-equilibrium state reduced
the solid transport rate at the head of the downward slope and increased
the transport rates at the toe with respect to the corresponding capacity
transport rates. This fact causes a high erosion effect downstream the bed
dune, where the flow regime changes from subcritical to supercritical.

Figure 5.14: Test 5.3.A – Influence of the deposition constant kE value: (left) bed
level and (right) solid transport rate at time (first row) t1 = 20 s, (second row)

t2 = 60 s, (third row) t3 = 120 s and (fourth row) t4 = 180 s.

Comparison of the erosion-deposition net exchange flux (see Fig. 5.15–
right) along the dune domain shows the highest non-equilibrium zones
at the upward and downward slopes of the rectangular dune for the first
stages of the bed movement. Negative values of η̇D− η̇E imply erosion of
the static layer taking place whereas positive values lead to aggradation
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of static bed layer. An important erosive net flux appears at the down-
ward slope of the dune associated to a strong shear-stress change (the
flow is changing from subcritical to supercritical regime) and to lower
values of the moving layer thickness (see Fig. 5.15–left).

Figure 5.15: Test 5.3.A –Influence of the deposition constant kE value: (left) nor-
malized moving layer thickness η/η∗ and (right) net exchange flux through the
static-moving layers interface with (first row) kE = 0.75, (second row) kE = 0.5,

(third row) kE = 0.4 and (fourth row) kE = 0.3.

Furthermore, two important points should be noted: first, as the bed
movement progresses with time, the imbalance between erosion and de-
position rates tends to disappear, which is in agreement with the non-
equilibrium assumption. Second, as the erosion constant kE decreases,
the imbalance between erosion and deposition rates at the downward
slope of the dune tends to become more marked and to extend in time,
demonstrating an agreement between the erosion-deposition formula-
tion proposed in this work and the classical approach for the net ex-
change flux adopted by other authors [114, 144].
Finally, Fig. 5.16 shows the transport layer thickness η computed with
the non-capacity formulation at different times along the dune profile. It
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is worth noting that the reduction of the relation kE/kD leads to a reduc-
tion of the moving layer thickness. However, as kE/kD decreases, the
non-equilibrium in the bedload transport state does not show noticeable
modifications.

Figure 5.16: Test 5.3.A – Influence of the erosion-deposition constants ratio
kE/kD : (first row) t1 = 20 s and (second row) t2 = 120 s with (left column)

kE = 0.75 and (right column) kE = 0.4.

5.4 Bed evolution control with finite-depth erodible
layers

This is a common issue in sediment transport numerical schemes dealing
with finite-depth sediment layers [24, 30, 37, 110, 130, 136], which requires
to control the numerical solution in order to ensure non-negative values of
the sediment mass, i.e. avoiding unphysical over-eroded cells where sed-
iment mass is numerically created leading to accuracy, conservation and
stability issues. A widely extended strategy [24, 110, 136] to deal with this
situation is to reduce the time step, ensuring in this way the positivity of
the cell averaged sediment thickness εb values but leading to an impor-
tant increase of the computational effort. In this thesis, in the framework
of the fully-coupled FCM scheme (see Section 5.2.1), a new reconstruction
strategy based on enforcing sediment thickness εb positivity on the inner
states of the approximate RP solution at the intercell edges is proposed.
This method, referred to as Active Control of the Sediment Thickness Positivity
(AC-STP) from now on, intents to avoid unphysical negative values of the
cell-averaged sediment mass and to preserve the time step obtained from
the Jacobian M̃k (5.36).

The available sediment thickness εb at time tn in the i cell is defined as

εnb,i = znb,i − zR,i (5.102)

where zR,i is the level of the underlying non-erodible rigid layer at the i cell,
which does not change in time. Considering right–direction flow ũk > 0 at
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the cell edge and (5.102), the cell-averaged solution at the next time in the
left i cell εn+1

b,i (Fig. 5.17) can be evaluated as

εn+1
b,i = εnb,i + |λ̃1|

lk
Ai

∆t(ε−b,i − ε
n
b,i) ≥ 0 (5.103)

being ε−b,i the inner state of the approximate solution for the sediment thick-
ness at the left cell of the kth cell edge (5.57), computed as

ε−b,i = εnb,i + γ̃1ẽ
{4}
1 + δε∆b,i (5.104)

being ẽ
{4}
1 the fourth component of the first eigenvector ẽ1 (5.49) and δε∆b,i

the sediment thickness increment due to the variation of the Grass factor
between cell-center i and the kth edge (5.100).

For the right j cell, the updated cell-averaged value of the sediment
thickness can be expressed as

εn+1
b,j = εnb,j + λ̃4

lk
Aj

∆t(ε+++
b,j − εnb,j)

+ λ̃3
lk
Aj

∆t(ε++
b,j − ε

+++
b,j ) + λ̃2

lk
Aj

∆t(ε+b,j − ε
++
b,j ) ≥ 0

(5.105)

being ε+b,j , ε
++
b,j and ε+++

b,j the inner states of the approximate solution for the
sediment thickness at the right cell of the kth cell edge (5.57), computed as

ε+b,j = ε++
b,j − γ̃2ẽ

{4}
2

ε++
b,j = ε+++

b,j − γ̃3ẽ
{4}
3

ε+++
b,j = εnb,j − γ̃4ẽ

{4}
4 − δε∆b,j

(5.106)

being ẽ
{4}
m the fourth component of the eigenvector ẽm (5.49) and δε∆b,j the

sediment thickness increment due to the variation of the Grass factor be-
tween cell-center j and the kth edge (5.100).

Figure 5.17: Inner states for the sediment thickness εb at the kth intercell edge.

The right cell-averaged approximate solution for the sediment thickness
(5.105) can be rewritten by defining an averaged inner state (εb)

+
j at the right

side of the edge as

(εb)
+
j = ε+++

b,j − λ̃3

λ̃4

γ̃3ẽ
{4}
3 − λ̃2

λ̃4

γ̃2ẽ
{4}
2 (5.107)
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and hence

εn+1
b,j = εnb,j + λ̃4

lk
Aj

∆t
(
(εb)

+
j − ε

n
b,j

)
≥ 0 (5.108)

The stability condition in (5.61)–(5.62) requires both |λ̃1| lkAi
∆t ≤ 1 and

λ̃4
lk
Aj

∆t ≤ 1. Hence, from (5.103) and (5.107), it is possible to derive the
conditions ε−b,i ≥ 0 (5.104) and (εb)

+
j ≥ 0 (5.107) to ensure positive averaged

solutions of the sediment mass at the left and right cells of the kth edge,
respectively.

Since the presence of a finite-depth erodible layer and its influence in the
bedload transport rate is mainly contained in the specific Grass interaction
factor Gp for each sediment class, the following limits are proposed for the
corrector sediment thickness increment δε∆b,i at the left side of the kth cell
edge

δε∆b,i ≥
[
δε∆b,i

]MIN
= −(εnb,i + γ̃1ẽ

{4}
1 ) (5.109)

and, similarly, for the corrector sediment thickness increment δε∆b,j at the
right side of the kth cell edge

δε∆b,j ≤
[
δε∆b,j

]MAX
= εnb,j −

1

λ̃4

(
λ̃4γ̃4ẽ

{4}
4

+ λ̃3γ̃3ẽ
{4}
3 + λ̃2γ̃2ẽ

{4}
2

) (5.110)

The following strategy is suggested:

a) If ε−b,i < 0 and (εb)
+
j > 0

1. δε∆b,i =
[
δε∆b,i

]MIN

2. δF∆
i =


0
0
0

λ̃1 δε
∆
b,i



3. δF∆
j =


0
0
0

(δq̂b)k −
4∑

m=1

(
λ̃mα̃mẽ

{4}
m

)
k
− λ̃1 δε

∆
b,i


4. δε∆b,j = δF

∆{4}
j /λ̃4

5. If δε∆b,j >
[
δε∆b,j

]MAX, reduce ∆t until (5.108) becomes true.
(5.111)
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b) If ε−b,i > 0 and (εb)
+
j < 0

1. δε∆b,j =
[
δε∆b,j

]MAX

2. δF∆
j =


0
0
0

λ̃4 δε
∆
b,j



3. δF∆
i =


0
0
0

(δq̂b)k −
4∑

m=1

(
λ̃mα̃mẽ

{4}
m

)
k
− λ̃4 δε

∆
b,j


4. δε∆b,i = δF

∆{4}
i /λ̃1

5. If δε∆b,i <
[
δε∆b,i

]MIN, reduce ∆t until (5.103) becomes true.

(5.112)

It is worth noting that the specific Grass interaction factor Gp for each
sediment class has already been reduced at cells by limiting the actual mov-
ing layer thickness η when a non-erodible stratum is reached. Therefore, the
step 5 of the above strategy is a guarantee for extreme cases and is rarely
needed. The above procedure is derived for edges with right-direction flow
ũk ≥ 0 but it can be easily extended to left-direction ũk < 0 edges.

5.5 Benchmark and application cases

5.5.1 Synthetic case BL1: 1D supercritical symmetric dambreak
over erodible bed

The goal of this synthetic test is to demonstrate the capability of both the
FCM and ACM schemes to deal with regime changes in the flow and to
asses their stability in these configurations. A frictionless 1D symmetri-
cal dambreak over erodible flat bed is considered with the following initial
conditions:

h(x, 0) =

{
50m if− 5 ≤ x ≤ 5
0.2m otherwise

u(x, 0) = 0m/s ∀x
v(x, 0) = 0m/s ∀x
zb(x, 0) = 10m ∀x

(5.113)

which allow the flow to change from subcritical (Fr = |u|/
√
gh < 1) at the

center of the domain to supercritical (Fr = |u|/
√
gh > 1) at the dambreak

wave fronts. The bedload transport rate is calculated considering one sed-
iment class with porosity ξ = 0.40 and a constant flow-bed iteration factor
G = 0.01 s2/m. The final time is t = 1.0 s for all the simulations. All the
simulations are performed using a one-dimensional square-cell mesh with
∆x = 0.1m edge length and CFL = 1.

Figure 5.18–left shows the free surface and bed elevation profiles at
t = 0.1 s, t = 0.3 s and t = 0.6 s for both FCM and ACM numerical schemes,
whereas the Froude number of the flow throughout the right side of the



194 Chapter 5. Two-dimensional models for generalized bedload transport

Figure 5.18: Synthetic case BL1 – Dambreak evolution with ACM and FCM models
for G = 0.01 s2/m: (left) bed and free surface levels and (right) Froude

number. From top to bottom: t = 0.1 s, t = 0.3 s and t = 0.6 s.

symmetric dambreak is depicted in Figure 5.18–right for both schemes at
the same times. At t = 0.1 s, the flow structure is characterized by a super-
critical shock wave which strongly affects the erodible bed layer, followed
by a transcritical rarefaction wave where the flow changes from subcriti-
cal to supercritical at x ≈ 5m. At t = 0.3 s, the transcritical region behind
the supercritical wave front increases and two critical points can be distin-
guished at x ≈ 3.5m and x ≈ 6.5m respectively, with a slightly subcritical
region between them. The appearance of two critical points in the flow
structure is a direct consequence of the high interaction between the flow
and the movable bed. As the dambreak progresses, this double critical-
point structure disappears and only one regime change is observed sepa-
rating the supercritical wave front and the rarefaction wave (x ≈ 9m) at
t = 0.6 s.

Both numerical methods demonstrate to be stable when dealing with
flow regime changes. However, the ACM shows spurious oscillations in
the water depth h and the bed level zb generated around the critical points.
Furthermore, the ACM scheme predicts a slower advance of the dambreak
wave front than that of the FCM scheme. This difference could be related to
a slower characteristic wave celerity for the flow motion, since the decou-
pled approach does not take into account the influence of the bed changes
in the Jacobian eigenvalues, contrarily to the FCM method. It is worth not-
ing that the predicted Froude numbers at the dambreak wave front are also
smaller for the ACM simulation (Fr ≈ 4) than that computed using the
FCM scheme (Fr ≈ 5).
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As in the previous subcritical dambreak case for high flow-bed inter-
action, although the solution obtained with the ACM scheme shows lo-
cal spurious oscillations, the ACM time step estimation improves greatly
the stability of the scheme. Figure 5.19 shows the bed and flow levels at
t = 0.6 s using the ACM scheme compared with the results obtained by the
totally decoupled strategy. Also in this test, involving a medium flow-bed
interaction factor (G = 0.01 s2/m), the totally decoupled scheme fails and
loses the stability, whereas the ACM method only shows local oscillation
and does not loss the solution symmetry.

Figure 5.19: Synthetic case BL1 – Dambreak at t = 0.6 s with ACM and totally de-
coupled models for G = 0.01 s2/m.

Inter. factor Comp. time (s) Speed-up
G(s2/m) ACM FCM ACM/FCM

0.01 0.737 0.540 1.36

Table 5.3: Synthetic case BL1 – Computational times.

Furthermore, the high interaction between the flow and the movable
bed leads to a slower computational time for the fully-coupled method
compared with the ACM scheme, even though the FCM method requires
more algebraical operations to compute numerical fluxes at the intercell
edges. The speed-up of the FCM solver against the ACM approach is near
1.4 for this test (see Table 5.3).

5.5.2 Synthetic case BL2: 2D supercritical symmetric dambreak
over erodible bed

The aim of this synthetic test is to assess the capability of both schemes to
deal with structured and unstructured meshes, regardless of the number
of edges of the cells. The idealized supercritical symmetric dambreak re-
ported above for synthetic test B (see 5.113) is considered here but over a
two-dimensional 50×10m domain discretized using three different kind of
mesh: an orthogonal square-cell mesh (SQ), a structured triangle-cell mesh
(TS) and an unstructured triangle-cell mesh (TU). Details of the the three
mesh topologies are shown in Figure 5.20 and their geometrical character-
istics have been reported in Table 5.4:

All the simulations are performed considering one sediment class with
porosity ξ = 0.40 and a constant flow-bed interaction factor G = 0.01 s2/m,
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Mesh Topology Cell type Number of cells Edge length (m)
SQ Orthogonal Square 50000 0.1
TS Structured Triangle 100000 ≈0.1
TU Unstructured Triangle 96561 ≈0.1

Table 5.4: Synthetic case BL2 – Mesh characteristics.

Figure 5.20: Synthetic case BL2 – Mesh topology: (top left) orthogonal square mesh
SQ, (top right) triangular structured mesh TS and (bottom) triangular

unstructured mesh TU.

as in the above synthetic test B. The final time is t = 1.0 s and the CFL is set
to 0.5 for the three meshes, in order to compare computational times.

Figure 5.21 shows a view of the free surface and bed elevation at t =
0.3 s using the FCM scheme on the three meshes. The color scale denotes the
free surface level and the bed changes magnitude respectively. Regardless
of the kind of mesh, the scheme is able to compute correctly the evolution
of the symmetric dambreak, with the same flow structure as in the above
one-dimensional Synthetic case BL1 5.5.1.

Figure 5.21: Synthetic case BL2 – View of the free surface and elevation and bed
changes with FCM at t = 0.3 s for (left) square mesh SQ, (center) tri-
angular structured mesh TS and (right) triangular unstructured mesh

TU.
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Furthermore, the longitudinal free surface and bed level profiles along
the right side of the symmetric dambreak (x > 0m) have been plotted
in Figure 5.22 as computed on the three meshes at t = 0.1 s, t = 0.3 s
and t = 0.6 s. The left column depicts the results obtained with the FCM
scheme, whereas the right column shows those predicted by the ACM ap-
proach. Regarding the FCM results, small differences appear in the free
surface and bed level depending on the mesh selected but these can be con-
sidered negligible and mainly related to the differences in the numerical
diffusion between the three mesh topologies. Contrarily, the ACM scheme
shows a more marked dependence on the mesh topology since the spuri-
ous oscillations observed in the above one-dimensional test B also appear
for the orthogonal square mesh SQ, whereas the higher numerical diffusion
associated to the triangular meshes (especially in the unstructured topology
TU) reduces this spurious oscillations. Therefore, differences in the solution
depending on the mesh topology arise with the ACM method, although
they can be considered small.

Figure 5.22: Synthetic case BL2 – Dambreak evolution with (left) FCM and (right)
ACM models for G = 0.01 s2/m considering square (SQ), triangular
structured (TS) and triangular unstructured (TU) meshes. From top to
bottom: (top row) t = 0.1 s, (center row) t = 0.3 s and (bottom row)

t = 0.6 s.

Table 5.5 shows the computational times required to complete the sim-
ulation with each mesh for both FV methods. The computational effort in-
creases for the triangular meshes TS and TU, especially for the unstructured
topology, with respect to the orthogonal square mesh SQ. This increment is
mainly caused by the larger number of cells for the triangular meshes TS
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and TU. Interestingly, despite the ACM scheme does not show important
spurious oscillations in the solution, its efficiency is lower than that of the
FCM method for all the mesh topologies tested. The speed-up of the FCM
is about 1.5 times that of the decoupled scheme.

Mesh Comp. time (s) Speed-up
Topology ACM FCM ACM/FCM

SQ 59.946 39.824 1.51
TS 236.939 159.088 1.49
TU 484.030 332.594 1.46

Table 5.5: Synthetic case BL2 – Computational times.

This loss of efficiency of the ACM is related to more restricted stability
conditions. Figure 5.23 shows the time step size for the FCM and ACM
schemes along the simulated time with the three meshes considered (SQ,
TS and TU). Moreover, for the approximate-coupled simulations, the global
time step limitations associated to both the hydrodynamical eigenvalues
λ̃′m,k (5.65) and the virtual bed celerity λ̃b,k (5.73) at the cell edges are also
depicted.

On the one hand, regardless of the mesh topology, the maximum time
steps allowed for the FCM method are slightly smaller than those obtained
considering only the hydrodynamical component of the flow because of the
influence of the movable bed in the local RP eigenstructure. On the other
hand, the ACM strategy leads to a more restricted time step limitation than
the FCM approach since, as the flow-bed interaction increases, the approxi-
mated bounds (λ̃∗1,k, λ̃

∗
4,k) (5.75) move away from the exact eigenvalues (see

Figure 5.3).
Nevertheless, the maximum time step associated to these approximated

bounds is several orders of magnitude higher than the time step limitation
derived from considering the virtual bed celerity λ̃b,k. Therefore, the usage
of the ACM strategy to limit the maximum time step ensures the stability of
the decoupled numerical scheme even for high flow-bed interaction prob-
lems and avoids unsuitable time step limitations associated to including the
virtual bed celerity λ̃b,k in the stability determination [65].
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Figure 5.23: Synthetic case BL2 – Time step restrictions during the supercritical
symmetric dambreak evolution for G = 0.01 s2/m considering (top)
orthogonal SQ, (center) triangle-structured TS and (bottom) triangle-

unstructured TU meshes.

5.5.3 Experimental case BL3: Dambreak over light-weight sedi-
ment flat bed

The aim of this benchmark test is to analyze the behavior of the capacity
(R-Cap) and non-capacity (R-NCap) bedload formulations in presence of
highly erosive unsteady flows. This experimental test [135] consists of an
idealized dam-break flow over a light-weight sediment flat bed made of
cylindrical PVC pellets, with equivalent diameter ds = 3.9mm, density
ρs = 1580 kg/m3, internal friction angle δb = 30◦ and porosity p = 0.42.
The experiment was carried out in a 6 m long and 0.25 m width. The flume
was uniformly filled to a height of 0.1 m over the flume floor with the light-
weight sediment. Breaking of the dam was reproduced by the downward
movement of a pneumatically actuated thin gate placed at the middle of
the flume. The initial water level was 0.35 m upstream the gate and nil
downstream. Once the gate was open and the dam-break wave progressed
downstream, an intense sediment transport process started instantaneously
caused by the high fluid velocity and the low sediment density. The tem-
poral evolutions of the free water surface, bed surface and static-moving
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bed layer interface were reported experimentally until 1.5 sec after the gate
opening each 0.25 sec.

For this case, the Manning roughness coefficient is estimated as nb =
0.028 s/m3. A deposition constant kD = 0.03 and a erosion constant kE =
0.2 are set. The actual transport rate has been estimated using a modified
version of the MPM model with the coefficient c = 16 in order to correctly
capture the influence of the low density of the erodible layer particles [150].
The simulations have been performed using the FCM method on a single-
row square-cell mesh with cell size ∆x = 0.01m and CFL = 0.95.

Fig. 5.24 shows the numerical results for the temporal evolution of the
free water surface, bed level and static-moving bed layers interface with the
equilibrium approach (left column) and the non-capacity approach (right
column). In general, a good agreement with measured data can be found
with both assumptions, especially at times greater than t = 0.50 s. For the
first stages after the gate opening (0 s < t ≤ 0.75 s) both models under-
estimate the thickness of the moving bed layer η (see Table 5.6 and Figure
5.25). This discrepancy can be generated by the marked vertical velocities
that appear at the first instants of the fluid movement [36] that can not be
captured by the depth-averaged model. However, the free water surface
and the bed level are well predicted (Table 5.6) and the propagation veloc-
ity of the dam-break wave is accurately captured (see Fig. 5.24).

Some differences between numerical results and observed data appear
at the gate region. This region is the most affected by vertical fluid velocities
at the first stages of the dam-break flow and suffers an intense erosion pro-
cess during the whole experiment. It is worth mentioning that the R-NCap
formulation is not able to improve the agreement of the computed static-
moving interface level zf and bed level zb with those observed experimen-
tally, over the results obtained using the R-Cap formulation. Nevertheless,
the prediction of the free water surface level (WSL) computed with the R-
NCap bedload transport formulation shows lower deviations respect to the
experimental data than the capacity results for all the dam-break stages.

RMSE
Formulation zf (m) zb (m) WSL (m) η (m)

Early stages: 0 s < t ≤ 0.75 s

Cap. 0.01668 0.01276 0.02032 0.02594
Non-Cap. 0.01961 0.01363 0.01472 0.02957

Later stages: 0.75 s < t ≤ 1.5 s

Cap. 0.00776 0.01689 0.01819 0.01692
Non-Cap. 0.00792 0.01782 0.01623 0.01469

Table 5.6: Experimental case BL3 – RMSE for the static bed layer elevation zf , bed
level zb, water surface level (WSL) and active bed layer thickness η with R-Cap and

R-NCap formulations.



5.5. Benchmark and application cases 201

Figure 5.24: Experimental case BL3 – Free water surface, bed level and static-moving
bed layers interface for (left column) equilibrium approach and (right
column) non-capacity approach at times t = 0.25 s, 0.5 s, 0.75 s, 1.0 s,

1.25 s and 1.5 s after the gate opening.

Fig. 5.25 shows the moving bed layer thickness distribution at three
different times during the dam-break wave propagation. Both approaches
underestimated η but the results can be considered reasonable, specially for
the later stages (Table 5.6). For the first stages, the sediment thickness com-
puted using the equilibrium model offer a better approximation to those
observed in laboratory than the result obtained with non-capacity model.
However, as time progresses and the fluid moves downstream, the non-
capacity model predicts better the active thickness distribution, with lower
RMSE for times larger than 0.75 s.

The net exchange flux η̇D − η̇E through the static-moving bed layers
interface shows a marked erosive non-equilibrium for the first stages of
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Figure 5.25: Experimental case BL3 – Moving bed layer thickness η with both equi-
librium and non-capacity approaches at times (top left) t = 0.5 s, (top

right) t = 1.0 s, (bottom left) t = 1.25 s and (bottom right) t = 1.5 s.

the wave advance (0 < t ≤ 0.75 s) at the whole dam-break wave do-
main (see Fig. 5.26-top). Nevertheless, as the flow moves downstream,
this net exchange flux tends to reduce generally, approaching progressively
the equilibrium state at t = 1.5 s. From that time there is null net ex-
change flux along the dambreak wave, except at both the wave-front and
the gate region, where flow changes from subcritical to supercritical condi-
tions. In these two regions marked erosive net exchange fluxes are main-
tained through the static-moving bed layers interface during the whole sim-
ulation time.

Note that in the region between the gate and the wave front, a quasi-
uniform net exchange flux appears for the later stages (0.75 s < t ≤ 1.5 s).
In this region, the relationship between the dimensionless bedload layer
thickness η d−1

s and the excess of Shields stress ∆θ also tends progressively
to near-equilibrium conditions, signaled by the fact that the slope of the
ηd−1

s /∆θ curve is reducing as the dambreak wave progresses (see Fig. 5.26-
bottom). Therefore, the slope of the η d−1

s /∆θ curve tends to be nil as near-
equilibrium states are progressively reached during the dam break wave
advance. It is worth mentioning that the capacity state is a particular case of
the generalized non-capacity formulation where the relation η∗ d−1

s /∆θ =
const = kE/(ρs/ρw kD) can be derived from (5.85).
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Figure 5.26: Experimental case BL3 – (Top) Net exchange flux through the static-
moving bed layers interface and (bottom) relationship between the di-
mensionless active layer thickness η d−1

s and the excess of Shields stress
∆θ at times t = 0.25 s, 0.5 s, 0.75 s, 1.0 s, 1.25 s and 1.5 s.

5.5.4 Experimental case BL4: Dike-breaking by overtopping flow

This experimental test case was carried out [137] in a straight rectangular
cross-section flume 35m long and 1m wide. A trapezoidal dyke was con-
structed in the middle of the flume with a non-cohesive sand of characteris-
tic diameter ds = 1.13mm (d30 = 0.52mm, d50 = 0.86mm, d90 = 3.80mm),
density ρs = 2650 kg/m3, internal stability angle δb = 30◦ and porosity
ξ = 0.22. The height over the non-erodible flume bed and crest width of the
dyke were 0.80 m and 0.30 m, respectively. A vertical plate was placed at
the middle of the crest in order to achieve horizontal water surface eleva-
tions upstream the dyke. In a first step, a constant discharge qinlet was set
at the flume inlet and the upstream reach was filled to a height of 3 cm over
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the dyke crest. Then, the plate was suddenly lifted up to allow overflow to
start, maintaining the constant inlet discharge.

The dyke surface evolution was recorded by photography. Tempo-
ral bed elevation data were provided at P1 = 15 cm, P2 = 65 cm and
P3 = 115 cm with distances measured from the midpoint of the dyke crest.
The temporal evolution of the discharge at the dyke crest and the upstream
reservoir level were also reported. Two different experiments, here referred
to as BL4.A and BL4.B respectively, have been used to test the proposed
model capabilities. The inlet discharge and the dyke upstream and down-
stream slopes, Su and Sd respectively, have been summarized in Table 5.7.
The Manning’s roughness coefficient was calibrated as nb = 0.15sm−1/3

[65]. The erosion and deposition constants, kE and kD respectively, used in
simulations for each benchmarking test are summarized in Table 5.7. The
FCM model is used here with both the capacity (R-Cap) and non-capacity
(R-NCap) formulations for the bedload transport rate. The mesh used is
again a single-row quadrilateral grid with cell size ∆x = 0.01m and the
CFL was set to 0.95.

Case qinlet (l/s) Su Sd kE kD
BL4.A 1.05 1V:3H 1V:5H 0.4 0.02
BL4.B 1.23 1V:3H 1V:3H 0.3 0.01

Table 5.7: Experimental case BL4 – Geometrical features and erosion-deposition con-
stants used in the simulations.

Case BL4.A

Figure 5.27 shows the numerical results, considering the capacity transport
assumption (R-Cap), for the temporal evolutions of both the reservoir level
and the discharge at the dyke crest with different empirical formulations
for the bedload transport rate. Measured data have also been plotted for
comparison. The Smart formulation offers the best results, especially for the
discharge at the dyke crest, but overestimates the erosion of the dyke at the
first stages after the overflow starting. On the other hand, both MPM and
Wu closure relations underestimate the bedload transport rate, resulting in
a slower evolution of the dyke surface and leading to a lower peak in the
discharge hydrograph.

The Smart closure relation has been chosen to study the influence of
the non-capacity approach (R-NCap) on the computed dyke surface evo-
lution. Figure 5.28 shows the numerical results considering both capacity
and non-capacity approaches for the temporal evolutions of the reservoir
water level and discharge at the crest. The obtained results have been plot-
ted against the measured data. The numerical results reported by Juez et al.
[65] with a weakly-coupled capacity model (WCM) have also been plotted
for comparison. Although the predicted peak in the discharge with R-NCap
formulation is lower than those observed in the laboratory, in general the
numerical results agree better with the measured data than those obtained
with both the R-Cap model and the WCM model reported by [65], improv-
ing the reservoir level and discharge predictions (Table 5.8).
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Figure 5.27: Experimental case BL4.A – Temporal evolution of the (top) reservoir
water surface level and (bottom) discharge at the dyke crest: measured

data compared to numerical results with R-Cap model.

Figure 5.28: Experimental case BL4.A – Temporal evolution of the (top) reservoir
water surface level and (bottom) discharge at the dyke crest with the

Smart bedload formula.

RMSE
Variable Capacity Non-Capacity Juez et al. [65]
WSLreserv (m) 0.03865 0.01279 0.02967
Qcrest (m3/s) 0.00755 0.00304 0.00499
zb1 (m) 0.04191 0.02543 0.03437
zb2 (m) 0.03573 0.01370 0.03275
zb3 (m) 0.01998 0.01583 0.01959

Table 5.8: Experimental case BL4.A – RMSE (case C1) for the reservoir level
WSLreserv , discharge at the dam crest Qcrest, and bed level at the probes P1 zb1,
P2 zb2 and P3 zb3, with capacity and non-capacity formulations. Also RMSE for the

results obtained with the WCM model Juez et al. [65] has been reported.
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Furthermore, the dyke bed surface evolution has been plotted in Figure
5.29 at probes P1, P2 and P3, considering the modified Smart-CBFS formu-
lation under capacity and non capacity conditions. The non-equilibrium
hypothesis is able to improve the agreement with bed evolution measured
data at all the probes (see Table 5.8). At the first stages after the overflow
starts, marked non-equilibrium states are obtained by the active layer thick-
ness η. Nevertheless, as time progresses, the bedload transport tends to
reach the equilibrium state and the active layer thickness approximates its
value under capacity conditions.

Figure 5.29: Experimental case BL4.A – Temporal evolution of the (top) dyke surface
elevation and (bottom) active bed layer thickness η at probes P1, P2 and
P3. The moving layer thickness has only been plotted for the first 60 sec

of simulation.

Case BL4.B

Case BL4.B represents a more challenging benchmark for numerical mod-
els. The steeper dyke downward slope leads to a more energetic overtop-
ping flow with elevated erosion rates and also involving stability failures.
As in the previous case BL4.A, the best agreement with observed data is
achieved with the bedload transport rate computed with the Smart closure
relation. Figure 5.30 shows the dyke surface at times t = 30 s and t = 60 s
after the overflow starts, whereas Figure 5.31 depicts the temporal evolu-
tions of the reservoir water level and discharge at the crest. Numerical re-
sults considering both equilibrium and non-capacity approaches have been
plotted against measured data. The equilibrium condition largely overesti-
mates the erosion of the dyke surface at the first stages after the flow starts,
leading to a rapid decrease in the reservoir level and reaching the peak of
the discharge hydrograph faster than observed in laboratory (Figure 5.31).

On the other hand, in general considering non-equilibrium conditions
improves the agreement between numerical results and measured data,
especially at the first stages after the gate opening. Despite the stability
failures observed at the downward dyke slope during the experiment, the
measured and computed dyke surfaces considering the non-equilibrium
hypothesis show a good agreement. The root-mean-square error for the
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Figure 5.30: Experimental case BL4.B – Measured and numerical dyke surfaces at
times (top) t = 30 s and (bottom) t = 60 s using Smart formulation,

with R-Cap and W-NCap models.

RMSE
Variable Capacity Non-Capacity
WSLreserv (m) 0.11240 0.03808
Qcrest (m3/s) 0.04469 0.01546
zb30 (m) 0.10873 0.06024
zb60 (m) 0.02792 0.03050

Table 5.9: Experimental case BL4.B – RMSE (case C2) for the reservoir level
WSLreserv , discharge at the dam crestQcrest, and bed level profiles at times t = 30 s

(zb30) and t = 60 s (zb60), with R-Cap and W-NCap models.

non-capacity results are lower for the dyke profile at time t = 30 s and
slightly higher for the time t = 60 s than those obtained with the capacity
bedload transport formulation (Table 5.9). Furthermore, the R-NCap model
improves both the reservoir level and the discharge at the dike crest predic-
tions. The root-mean-square error for the reservoir level prediction and the
discharge at the dyke crest are much lower with the R-NCap model than
those obtained considering the equilibrium hypothesis. However, the nu-
merical model considering non-capacity solid transport formulation is not
able to properly predict the magnitude of the hydrograph peak observed in
laboratory (Fig. 5.31).

Finally, Table 5.10 shows the CPU computational times for tests C1
and C2 using both capacity and non-capacity approaches and the modified
Smart-CBFS formula for the determination of the solid transport rate. Dif-
ferences in computational effort associated to the assumption of capacity or
non-capacity formulation can be considered negligible in both benchmark
tests.
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Figure 5.31: Experimental case BL4.B – Temporal evolution of the (top) reservoir wa-
ter surface level and (bottom) discharge at the dyke crest using Smart

formulation, with R-Cap and W-NCap models.

Comp. time (s)
Formulation Case BL4.A Case BL4.B
R-Cap 49.400 41.199
R-NCap 48.288 40.687

Table 5.10: Experimental case BL4.B – CPU computational times for cases BL4.A and
BL4.B with capacity and non-capacity formulations using the Smart bedload rate.

5.5.5 Experimental case BL5: Evolution of a trench over non-
erodible stratum

This experimental benchmark test aims to demonstrate the effectivity of the
proposed active control of the sediment thickness positivity method (AC-
STP) compared with the classical time step reduction method (TSR) to avoid
unphysical over-eroded regions without increasing the required computa-
tional cost. The experiments were carried out by Struiksma [136], consisting
in the propagation of a trench excavated in a uniform sand bed over a 3 m
long non-erodible layer made of a medium gravel (8-16 mm). The experi-
ments were performed in a straight rectangular cross-section flume with an
effective length of 11.5m and a width of 0.20m. The flume was filled with
uniform sand (ds = 0.45mm, ρs = 2650kg/m3, δb = 32◦ and ξ = 0.38) to
a height of 0.15 m above the flume concrete floor, covering also the non-
erodible layer. In a first step, a constant discharge was set at the flume
inlet and both water and sand were recirculated until uniform bed slope
was achieved. The water level was controlled by an adjustable tailgate at
the flume outlet. Once a steady bed slope was reached, a 2 m long and
0.04 m deep trench was excavated upstream the gravel layer. The flow was
restarted and this bed perturbation propagated downstream, disappearing
over the non-erodible layer exposing the gravel stratum and reappearing
downstream later. Struiksma [136] proposed a solid transport rate formula
qb = κu5 to reproduce the advance velocity of the trench, with κ being a
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tuning parameter which should be calibrated. Therefore an adapted ex-
pression to adjustG = κu2 has been derived for the proposed scheme. This
case has previously been used for benchmarking by Caviedes-Voullième et
al. [24], Dewals et al. [30], Ortiz et al. [110], and Struiksma [136] since it re-
produces a process of great interest and measured bed elevation data are
available.

Two different experimental tests are reproduced in this work, BL5.A and
BL5.B. The main difference between both experiments is that, in BL5.B, the
initial sand thickness over the non-erodible layer is lower than in the case
BL5.A and hence the gravel stratum is exposed longer. The erosion and
deposition constant are initially set to kE = 2 · 10−3 and kD = 1 · 10−5

respectively. The flow and sediment transport features used in simulations
for both tests have been reported in Table 5.11 whereas the initial profiles
for both the gravel and the erodible layers, as well as the water surface
elevation, are shown in Figure 5.32. The FCM model is used here with
both the capacity (R-Cap) and non-capacity (R-NCap) formulations for the
bedload transport rate. The mesh used is again a single-row quadrilateral
grid with cell size ∆x = 0.05m and the CFL was set to 0.95.

Case qinlet (l/s) qb,inlet (l/h) nb (s/m3) hout (m) κ (s4/m3)

BL5.A 9.2 7.0 0.019 0.338 0.00020
BL5.B 9.2 4.2 0.019 0.323 0.00022

Table 5.11: Experimental case BL5 – Main parameters used in the simulations for
each benchmarking case.

Figure 5.32: Experimental case BL5 – Initial bed and water surface elevations for
cases (top) BL5.A and (bottom) BL5.B.

Figure 5.33 depicts the temporal bed evolution for both cases and com-
pares the measured data (black points) with the numerical results ob-
tained considering non-capacity (point-dashed blue lines) and equilibrium
(solid blue lines) approaches. Numerical results obtained with the coupled
scheme reported by Martínez-Aranda et al. [86] are also shown (dashed red
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lines). This model uses the capacity approach for the transport rate deter-
mination and the over-erosion problems are controlled by reducing the dy-
namic time step to avoid cells with negative sediment thickness values (TSR
strategy). The time step reduction is limited to 10% of the value determined
by the original CFL condition hence solid mass conservation problems can
appear at cells where this reduction is not enough.

Figure 5.33: Experimental case BL5 – Bed level for (left column) case BL5.A at times
t = 1h, 2h, 3h, 4h, 5h, 6h and (right column) case BL5.B at times t =

1h, 2h, 4h, 6h, 8h, 10h.

The AC-STP method is able to reproduce the trench propagation pro-
cess over the non-erodible gravel stratum, considering both equilibrium
and non-capacity conditions. The non-capacity approach with kE = 2 ·10−3
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seems to introduce an extra-diffusion term on the numerical solution com-
paring with the equilibrium approach, although the trench propagation ve-
locity is similar and agrees with the observed data for both tests. The AC-
STP method avoids unphysical over-erosion and improves largely the pre-
diction of the trench propagation obtained with the scheme reported in [86]
using the TSR strategy (see Table 5.12).

RMSE zb (m)
Formulation Case BL5.A Case BL5.B
Capacity 0.00651 0.00685
Non-Capacity 0.00621 0.00654
Martínez-Aranda et al. [86] 0.00911 0.00847

Table 5.12: Experimental case BL5 – RMSE (cases BL5.A y BL5.B) for the bed level
evolution zb, with capacity and non-capacity formulations. Also RMSE for the re-

sults obtained with the Martínez-Aranda et al. [86] model has been reported.

Furthermore, most numerical models dealing with these cases [24, 30,
110] predict an excavated region downstream the gravel stratum which was
not observed in experiments. That excavated zone is also reproduced here
using the equilibrium model proposed by Martínez-Aranda et al. [86] with
the classical time-reduction (TSR) treatment for the non-erodible layer. The
present non-capacity formulation (kE = 2 · 10−3) is able to eliminate to-
tally this excavation for case BL5.A and to reduce it significantly for case
BL5.B. The solid transport qb over the gravel stratum is reduced as an effect
of the sediment unavailability using (5.89). This reduction interferes with
the equivalent non-equilibrium adaptation length, leading to a solid trans-
port rate smaller than the flow transport capacity downstream the gravel
stratum. Therefore, the solid transport rate at the downstream region is
lower with non-capacity formulation than that considering the equilibrium
hypothesis, therefore reducing the excavation.

Figure 5.34 shows the effects of the erosion constant kE on the evolu-
tion of the excavated region downstream the gravel stratum. Lower ero-
sion constant kE values lead to an increment of the equivalent adaptation
length Lb. The reduction of the physical solid transport rate applied in cells
where the theoretical moving layer thickness η is greater than the available
sediment thickness εb leads to a more stable propagation of the trench over
the gravel stratum and reduces the excavated region downstream. As the
erosion constant kE increases, the equivalent adaptation length decreases
and the non-equilibrium solid transport states caused by the appearance
of the non-erodible layer are also reduced. Hence, the non-capacity solu-
tion tends to approximate the equilibrium bed evolution profile (see Figure
5.34). With kE = 2 · 10−2 the non-capacity results practically agree with the
equilibrium prediction, demonstrating the sensitivity of the model to the
erosion-deposition constants calibration.

Finally, the positivity control mechanism for the sediment thickness
is triggered many times during simulations as the gravel stratum is suc-
cessively exposed and recovered during the trench advance. In order to
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Figure 5.34: Experimental case BL5 – Bed level for (top) case BL5.A at time t = 5h
and (bottom) case BL5.B at time t = 6h with non-capacity formulation.

demonstrate the effectiveness of the AC-STP method, additional simula-
tions were carried out considering the proposed model but using the classi-
cal TSR strategy to avoid unphysical over-eroded cells, using both equilib-
rium and non-equilibrium hypothesis. Figure 5.35 shows the bed profiles
for case BL5.A at t = 3h and case BL5.B at t = 4h. At these times, the whole
gravel stratum was exposed. The bed level predictions computed with ca-
pacity AC-STP and capacity TSR methods show small variations caused
by the different treatment of the non-erodible stratum. Similar small vari-
ations are found comparing non-capacity AC-STP and non-capacity TSR
methods. However, using the AC-STP method the numerical solution re-
mains stable and it is not necessary to reduce the time step to ensure the
sediment mass conservation or numerical stability (Figure 5.36), unlike us-
ing the TSR method [24]. Furthermore, the time step reduction strategy
demonstrates not to be able to avoid completely the over-erosion problems
without a marked reduction of the time step, leading to a higher compu-
tational effort for the simulations (Table 5.13). Moreover, as the time step
reduction is limited to avoid an excessive computational effort, solid mass
conservation errors appear in cells which require higher limitations to en-
sure positive sediment thickness values.

Comp. time (s)
Formulation Case BL5.A Case BL5.B
Capacity AC-STP 134.144 225.748
Capacity TSR 253.478 757.296
Non-Capacity AC-STP 133.528 232.663
Non-Capacity TSR 202.018 448.121
Martínez et al. TSR 463.105 921.838

Table 5.13: Experimental case BL5 – CPU computational times (cases BL5.A y BL5.B)
for capacity AC-STP, capacity TSR, non-capacity AC-STP and non-capacity TSR
models. Also the computational time for Martínez et al. TSR model [86] has been

reported.
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Figure 5.35: Experimental case BL5 – Bed level for (left) case BL5.A at time t = 3h
and (right) case BL5.B at time t = 4h using non-capacity AC-STP, non-

capacity TSR, capacity TSR and Martínez et al. TSR models.

Figure 5.36: Experimental case BL5 – Dynamic time step (left column) and solid
mass conservation errors (right column) for cases (top) BL5.A and (bot-
tom) BL5.B. Note that results are shown for every 20 time steps. For
the sake of clarity only results using capacity formulation have been

depicted.

5.5.6 Experimental cases BL6: Flood wave over an erodible bed
narrowing

In this experimental benchmark case, both the FCM and ACM numer-
ical schemes, using different capacity formulations, are faced to two-
dimensional highly erosive flow experiments. These new experiments were
carried out during the PhD period at the Laboratory of Fluid Mechanics of
the University of Zaragoza [92].

The experiments consist of a dambreak wave moving along a 3.25m
long and 24 cm wide flume over a 5 cm depth erodible flat bed made of
non-cohesive sand. The cross-section of the flume was modified by cre-
ating a 11 cm long and 13 cm wide narrowing using both 11 cm diameter
semi-circular (Case BL6.A) and 11×5.5 cm rectangular (Case BL6.B) pieces,
centered at 150 cm from the flume beginning, allowing the generation of
two-dimensional flow at the measurement region. The dambreak wave
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was triggered by lifting a pneumatic gate which separates the flume from
a 157 cm long and 81 cm wide upstream reservoir where the initial height
of the water was 8 cm over the dry flume floor. Downstream the flume,
a 275 cm long sediment trap stored the eroded material before a recovery
tank. A RGB-D sensor (Kinect, Microsoft, 2010) was used to perform instan-
taneous measurements of the 2D transient water surface height during the
wave propagation throughout the narrowing. This device records the dis-
tance to the water free-surface using an infrared light projection technique
with 30 Hz acquisition rate, 1.4 mm spatial resolution and 1-2 mm precision
approximately. After the dambreak wave, the 2D bed surface elevation was
also recorded using the same RGB-D sensor in order to determine the mor-
phodynamical changes generated by the flow. A skecth of the experiments
setup is shown in Figure 5.37.

Figure 5.37: Experimental cases BL6 – Experimental setup and initial conditions.

The erodible bed consisted of a mix of two uniform sand size-classes
with characteristic parameters shown in Table 5.14. The global bed porosity
was estimated as ξ = 0.34, the deposition and erosion constants are set to
kD = 0.02 and kE = 0.3 respectively, and the Manning resistance factor is
calibrated to nr = 0.012 at the fixed bed regions and nb = 0.026 throughout
the movable bed region.

Diameter Density Bed fraction Manning coeff.
ds(mm) ρs(kg/m

3) Fb,p(−) np(sm
−1/3)

Coarse sand 1.3 2650 0.5 0.0157
Fine sand 0.7 2650 0.5 0.0141

Table 5.14: Experimental cases BL6 – Erodible bed composition.

Mesh refinement calibration

In order to determine the mesh refinement level required to reduce the as-
sociated error maximizing the computational efficiency, a previous blind
study is performed using the semicircular narrowing geometry and five
different unstructured triangular meshes with different refinement levels
throughout the erodible bed region. Table 5.15 shows the geometrical char-
acteristics of the five meshes considered. It is worth noting that the base
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mesh MB is maintained unchanged at the upstream reservoir and the fixed
bed regions regardless of the refinement level at the movable bed region.

Mesh Base mesh Cell refinement features
Edge (cm) Area (cm2) Number of cells

MB - ≈ 4 ≈ 6.93 -
M1 MB ≈ 4.00 ≈ 6.93 5354
M2 MB ≈ 2.00 ≈ 1.73 8102
M3 MB ≈ 1.00 ≈ 0.533 16634
M4 MB ≈ 0.50 ≈ 0.108 64611
MR MB ≈ 0.25 ≈ 0.0271 224397

Table 5.15: Experimental cases BL6 – Geometrical features of the meshes considered
in the refinement study.

The simulations are performed using the FCM scheme, CFL=0.95 and
the capacity Meyer-Peter-Müller formulation to estimate the bedload solid
rate (see Table 5.2). The numerical results obtained with the different
meshes at t = 10 s are compared in terms of bed change error and computa-
tional efficiency in order to determine the optimal refinement level, taking
the finest mesh MR results as reference.

Figure 5.38–left shows the root mean square error (RMSE) for the bed
level zb obtained with the meshes M1, M2, M3 and M4 respect to the those
obtained with the reference mesh MR. Furthermore, Figure 5.38–right de-
picts the efficiency ratio between the RMSE for zb and the computational
time required by the model. The RMSE shows a uniform decrease with the
mesh refinement whereas the ratio tends to an asymptotic behavior. Based
on these results, the mesh M4 is selected for the simulation of the experi-
mental cases.

Figure 5.38: Experimental cases BL6 – Mesh refinement tests: (left) RMSE for the bed
level zb and (right) efficiency ratio RMSE/Computational time.

Case BL6.A: Semicircular narrowing

BL6.A considers the dambreak propagation along the flume with the semi-
circular narrowing geometry. The simulations are performed using both
the FCM and the ACM models. The Meyer-Peter-Müller and the Wu rela-
tionships are considered to estimate the bedload solid rate. The simulations
run until a time t = 25 s so that the bedload transport totally stops.

Figure 5.39 shows the two-dimensional water depth h fields measured
with the Kinect sensor at different times after the gate opening. The water
depth h is expressed in cm referred to the original flat bed. The dambreak
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wave front reaches the narrowing 1.6 s after the gate opening approxi-
mately. Initially, two water columns rise up near the narrowing walls (see
t = 1.8351 s image) caused by the impact of the wave front on the semicir-
cular walls. This violent impact leads to marked vertical accelerations in
the flow near the semicircular walls at the first stages after the wave arrival.
Then, these water columns disappear progressively (images t = 2.0355 s
and t = 2.3354 s) as the wave front moves downstream. A triangle-shaped
hydraulic jump appears upstream the narrowing and moves toward the
flume beginning, whereas the characteristic diamond structure is created
downstream the narrowing region (see t = 2.7695 s and t = 3.2035 s im-
ages).

Figure 5.39: Experimental cases BL6.A – Measured water depth h (in cm) over the
initial flat bed at different times after the gate opening.

The temporal evolution of the water depth over the initial flat bed com-
puted with the FCM is shown in Figure 5.40 using the MPM (left column)
and Wu (right column) relationships for the bedload transport rate estima-
tion. Results obtained with the ACM show a quite similar water depth
evolution. Both numerical models are able to predict the arrival time of
the wave front to the narrowing, as well as the appearance and evolution
of both the upstream hydraulic jump and the diamond structure down-
stream the narrowing region. Nevertheless, the appearance of marked ver-
tical acceleration during the first stages after the wave front arrival to the
narrowing region shows the limitations of both models (hydrostatic pres-
sure assumption), since they can not correctly predict the growth of the
water columns near the semicircular narrowing walls after the wave front
impact. Furthermore, the triangular shape of the upstream hydraulic jump
observed in the laboratory is not fully captured by the numerical models.

With respect to the influence of the bedload transport rate formulation
in the water depth temporal evolution, the simulation performed using the
Wu relationship shows a slightly slower wave front progression than that
performed using the MPM formula, as well as thinner diamond structures
downstream the narrowing. Furthermore, the triangular shape of the up-
stream hydraulic jump is also slightly better predicted using the Wu for-
mula than with the MPM relationship.

The temporal evolution of the water depth h over the initial flat bed
is extracted from the 2D water-surface Kinect measurements at different
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Figure 5.40: Experimental cases BL6.A – Computed water depth h (in cm) over the
initial flat bed with FCM solver, using (left column) MPM and (right
column) Wu bedload solid rate formulations. From top to bottom: t =

1.6 s, t = 1.8 s, t = 2.0 s, t = 2.3 s and t = 2.6 s.

gauge points: upstream the narrowing P1 (x = 140 cm, y = 12 cm), at the
center of the narrowing P2 (x = 150 cm, y = 12 cm), downstream the nar-
rowing P3 (x = 165 cm, y = 12 cm), and near the semicircular walls P4–right
(x = 144.5 cm, y = 6.5 cm) and P4–left (x = 144.5 cm, y = 17.5 cm). Figure
5.41 shows the measured water depth evolution at the considered gauge
points and the comparison with the data obtained from the numerical sim-
ulations using the FCM scheme. The numerical results obtained with the
ACM model are rather similar. In general, both the FCM and the ACM
schemes predict well the water depth tendency at all the gauge points con-
sidered, regardless of the empirical relationship used for the bedload rate
estimation, but some differences appear and should be commented. Up-
stream the narrowing (P1), both models predict a water depth increment
sharper than was measured in the laboratory. At the center of the nar-
rowing (P2), the numerical water depth evolution obtained with the MPM
formula for the bedload transport rate shows a sharp increment at t ≈ 8 s
which is not shown in the experimental data, whereas the numerical results
with the Wu relationship show a more acceptable behaviour. However, the
maximum water depth obtained with the Wu formula at this gauge point is
lower in the numerical simulations than in the experiments. Downstream
the narrowing (P3), both numerical schemes show again a sharper water
depth increase than in the experimental data. Near the narrowing walls
(P4–right and P4–left) the numerical results are in agreement with the mea-
sured water depth regardless of the formulation used for the bedload rate
computation.

Figure 5.42 depicts the bed changes measured in laboratory after the
bed layer was totally dry and the comparison with the numerical results
obtained at the end of the simulations. The bathymetry after the dambreak
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Figure 5.41: Experimental cases BL6.A – Experimental and numerical (FCM) water
depth evolution at (top–left) P1, (top–right) P2, (bottom–left) P3 and

(bottom–right) P4.

wave observed in the experiments is characterized by high erosion at the
center of the narrowing, especially near the semicircular walls, and by the
appearance of a marked diamond-shape deposition bar downstream the
narrowing. Both the fully-coupled and the approximate coupled models
are able to predict these characteristic structures in the bed layer level, re-
gardless of the empirical formulation selected for the bedload transport.
However, the length of the erosion region and the diamond-shape depo-
sition bar are better predicted with the Wu formula than using the MPM
relation, leading to lower RMSE for the global zb with the Wu expression
(see Table 5.16). Furthermore, the FCM scheme shows lower RMSE for zb
than the approximate–coupled method whereas, regarding the computa-
tional effort, the FCM method is slightly more expensive than the ACM
scheme (Table 5.16), although those differences are practically negligible.

Figure 5.42: Experimental cases BL6.A – (top row) Experimental bed elevation zb in
cm after the dambreak wave and numerical results: (center–left) FCM
with MPM bedload, (center–right) FCM with Wu bedload, (bottom–left)
ACM with MPM bedload and (bottom–right) ACM with Wu bedload.
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Solid transport RMSE zb (cm) Comp. time (s)
formulation ACM FCM ACM FCM

Meyer-Peter-Müller 0.5542 0.5407 1019.464 1068.815
Wu 0.4666 0.4517 1068.152 1109.912

Table 5.16: Experimental cases BL6.A – Root mean square error (RMSE) for the bed
elevation zb respect to the experimental data and computational effort of the FCM

and ACM methods.

Case BL6.B: Rectangular narrowing

Case BL6.B considers the dambreak propagation along the flume with the
rectangular narrowing geometry. The simulations are performed following
the same procedure and using the same parameters as in Case 1. Figure
5.43 shows the two-dimensional water depth h fields measured with the
Kinect sensor at different times after the gate opening. As in the previous
case, the wave reaches the narrowing 1.6 s after the gate opening and two
marked water columns rise up near the narrowing walls (see t = 1.8661 s
image) caused by the impact of the wave front, leading to marked vertical
accelerations in the flow near the narrowing walls at the first stages after
the front arrival. Then, these water columns evolve progressively (image
t = 2.0364 s) and create a hydraulic jump upstream the narrowing which
moves to the flume beginning (see t = 2.3364 s, t = 2.7705 s and t = 3.3699 s
images). For this case, the hydraulic jump is perpendicular to the flume
axis almost from the first stages. Also the characteristic diamond structure
appears downstream the narrowing region (image t = 3.3699 s) although
less noticeable than in Case 1.

Figure 5.43: Experimental cases BL6.B – Measured water depth h (in cm) over the
initial flat bed at different times after the gate opening.

The two-dimensional water depth h fields over the initial flat bed com-
puted with the FCM scheme at times t = 1.6 s, t = 1.8 s, t = 2.0 s, t = 2.3 s
and t = 2.6 s are shown in Figure 5.44, using the MPM (left column) and Wu
(right column) formulations for the bedload transport rate estimation. The
results obtained with the ACM shows a quite similar water depth evolution
hence they are not shown. Both schemes are again able to predict the ar-
rival time of the wave front to the narrowing, as well as the appearance and
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evolution of both the upstream hydraulic jump and the diamond structure
downstream the narrowing region. With respect to the influence of the bed-
load transport rate formulation in the water depth temporal evolution, the
simulation performed using the Wu relationship shows a slightly slower
wave front progression than that performed using the MPM formula, as in
previous Case 1.

Figure 5.44: Experimental cases BL6.B – Computed water depth h (in cm) over the
initial flat bed with FCM solver, using (left column) MPM and (right
column) Wu bedload solid rate formulations. From top to bottom: t =

1.6 s, t = 1.8 s, t = 2.0 s, t = 2.3 s and t = 2.6 s.

Figure 5.45 depicts the temporal evolution of the water depth h ex-
tracted from the two-dimensional Kinect measurements at the same gauge
points as in Case BL6.A: upstream the narrowing P1, at the center of the nar-
rowing P2, downstream the narrowing P3, and near the upstream corner of
the rectangular narrowing pieces P4–right and P4–left. Data obtained from
the numerical simulations using the FCM scheme are also plotted for com-
parison. Regardless of the empirical formulation chosen for the bedload
transport rate estimation, the proposed numerical schemes predict well the
water depth h at all the gauge points considered, with the exception of the
first stages after the wave front arrival at the gauge points P4 where the
vertical accelerations are again huge and hence the hydrostatic hypothesis
is not fully valid.

Figure 5.46 depicts the bed changes measured in laboratory after the
bed layer was totally dry and the comparison with the numerical results
obtained at the end of the simulations. The bathymetry after the dambreak
wave observed in the experiments is again characterized by high erosion
at the center of the narrowing, especially near to the upstream corner of
the narrowing walls, and by the appearance of a diffused diamond-shape
deposition bar downstream. Both the FCM and the ACM schemes are able
to predict these characteristic structures in the bed layer, regardless of the
empirical formulation selected for the bedload transport. Nevertheless, the
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Figure 5.45: Experimental cases BL6.B – Experimental and numerical (FCM) water
depth evolution at (top–left) P1, (top–right) P2, (bottom–left) P3 and

(bottom–right) P4.

erosion region is much more pronounced with the Wu bedload rate for-
mulation and also the length and shape of the deposition bar is better pre-
dicted. This leads to much lower RMSE for the numerical bed elevation zb
with the Wu expression compared with those obtained with the MPM for-
mula (see Table 5.17). Furthermore, the FCM scheme shows lower RMSE
for zb and computational times than the approximate–coupled method for
this experimental case.

Figure 5.46: Experimental cases BL6.B – (top row) Experimental bed elevation zb in
cm after the dambreak wave and numerical results: (center–left) FCM
with MPM bedload, (center–right) FCM with Wu bedload, (bottom–left)
ACM with MPM bedload and (bottom–right) ACM with Wu bedload.

Solid transport RMSE zb (cm) Comp. time (s)
formulation ACM FCM ACM FCM

Meyer-Peter-Müller 0.5597 0.5566 1099.344 1094.036
Wu 0.4457 0.4462 1158.093 1148.897

Table 5.17: Experimental cases BL6.B – Root mean square error (RMSE) for the bed
elevation zb respect to the experimental data and computational effort of the FCM

and ACM methods.
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5.5.7 Experimental case BL7: Dambreak over erodible bed in a
channel with a 90◦ bend

This experimental test was carried out at the UCL laboratory during the
PhD period and designed to benchmark transient bedload transport mod-
els. The experiment consists of a two-dimensional dambreak occurring
in a flume with a 90◦ bend and with an initial finite erodible 7.5 cm thick
layer. The experimental technique and the main results were published in
Meurice et al. [96]. Both the water free surface and the bed level were mea-
sured with different data-retrieval techniques. This data set is used to assess
the capabilities and limits of the capacity and non-capacity approaches for
bedload transport. The FCM model was used here for all the simulations.

The geometry of the flume and the position of the gauges used to record
the evolution of the water level are illustrated in Figure 5.47. The erodi-
ble layer was made of a uniform ds = 1.7mm non-cohesive sand Initially,
the water level of the reservoir was 26 cm above the non-erodible bed of
the flume (reference level). An aluminium gate separates the reservoir
from the upstream-reach of the flume and can be raised manually to simu-
late a quasi-instantaneous dambreak which progresses downstream over
the erodible flat bed. After 3.92m, the water wave-front will enter the
downstream-reach of the flume that is perpendicular (90◦ bend) to the first
one. This will lead the flow to show 2D and even 3D features. At the out-
let section of this downstream-reach, the water flows freely in a dissipation
reservoir.

Figure 5.47: Experimental case BL7 – (a) Plane view of the experimental flume and
position of the gauges G1 to G5 ; (b) Vertical cut taken along the longi-

tudinal axis of the first part of the flume.

Water levels were recorded continuously at five different points with
ultrasonic gauges and no less than thirty-four different runs were made.
Hereafter, the numerical results for the water surface elevation will be com-
pared with the aggregated experimental results at each gauge point. Bed
levels were recorded with two different techniques. The temporal evolu-
tion of the bed level at different cross-sections were recorded using laser
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profilometry, while photogrammetry techniques were applied to capture
the final topography after drainage of the channel. Hereafter, only the pho-
togrammetric results will be used to compare the experiments with the sim-
ulations because of their total spatial coverage of the flume. This last tech-
nique was used to reconstruct the topography consecutive to three different
experimental runs. The average topography was then calculated and is rep-
resented in Figure 5.48. This is the dataset that will be compared with the
numerical results as far as the bed level surface is concerned.

Figure 5.48: Experimental case BL7 – Final topography obtained after the channel
drainage using photogrammetry and averaged over the three experi-

mental runs available.

On the one hand, large accumulation regions appeared downstream the
inner corner, with a final bed elevation locally larger than 12 cm, and at
the outer corner stagnation zone. On the other hand, noticeable local ero-
sion was detected downstream the outer corner stagnation zone, as well
as at downstream-reach outlet where the rigid floor of the channel was
practically reached, if not completely. Furthermore, marked one-directional
dunes were found at the beginning of the flume upstream-reach. These bed
forms were created during the fist stages of dambreak wave advance and
progressively disappeared as they got closer to the corner region. It is worth
mentioning that a slightly eroded zone appeared close to the inner corner,
with a maximum erosion lower than 2 cm with respect to the original bed
level.

Water density ρw 1000 kg/m3

Solid density ρs 2650 kg/m3

Solid particles diameter ds 1.7mm

Manning’s roughness coeff. nb 0.0165 sm−1/3

Bed porosity ξ 0.44

Table 5.18: Experimental case BL7 – Setup of the simulations.
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Assessment of the capacity model

In order to assess the suitability of the capacity closure formulation for pre-
dicting the experimental observations, the simulations were performed us-
ing the FCM schmee with capcity formulation for the bedload rate, referred
to as R-Cap model from now on. The parameters summarized in Table 5.18
were set in all the simulations. Three diffierent capacity relationships were
used: MPM [97], Wu [144] and Smart[132] (see Table 5.2). A triangular un-
structured mesh with 36212 cells was used. The resolution varied across
the mesh. It was fixed at 50 cm and 5 cm in the reservoir and in the chan-
nel respectively, but was increased to 0.5 cm in the corner region in order to
capture the local transient structures of the flow. All the simulations lasted
180 s, even though the bed evolution occurred mainly during the first 20 s
and practically stopped after 120 s from the dam-break initiation. CFL=0.95
is set in all the simulations.

Figure 5.49 shows the temporal evolution of the water surface level (wsl)
at the gauge points measured during the experiment. The arrival time of the
dambreak wave-front is well predicted by the R-Cap model at the gauge
points placed at the upstream-reach of the flume (G1, G2 and G3, located
upstream the bend) and the three capacity formulations considered show
quite similar water surface evolutions. However, at the gauge points placed
downstream the bend (G4 and G5) the R-Cap model predicts a shorter ar-
rival time of the wave-front than those observed in laboratory. Further-
more, the temporal evolution of the water surface at these downstream-
reach gauge points shows differences depending on the capacity bedload
rate formulation, specially at the gauge point G5. Nevertheless, the tran-
sient flow structure is reasonably well predicted by all the numerical mod-
els.
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Figure 5.49: Experimental case BL7 – Water surface elevation wsl (cm) at the gauge
points G1, G2, G3, G4 and G5.
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In order to assess the performance of the different capacity closure re-
lations to predict the bed changes caused by the dambreak wave, the final
bed elevation obtained at the time t = 180 s are compared against the pho-
togrammetry measurements. Figure 5.50 shows 2D-maps of the bed eleva-
tion zb obtained with R-Cap and the different bedload rate closures at the
final time t = 180 s. Several common aspects should be pointed out:

• First, the three bedload capacity formulations are able to predict rea-
sonably well the bed degradation close to the outlet boundary. Con-
trarily, none of them are able to obtain the bed forms observed in the
experimental measurements at the upstream-reach of the flume.

• Second, generally, the MPM and the Smart relationships reproduce
well the main structures observed in the experiments for the final bed
elevation. However, the Wu formula leads to an overestimation of the
bedload transport rate and distorts the main features observed in the
measured topography (see Figure 5.48). The global RMSE error for
the final bd elevation zb is summarized in Table 5.19.

MPM Wu Smart
zb RMSE (cm) 1.02 1.46 1.05

Table 5.19: Experimental case BL7 – Global bed level zb RMSE
with R-Cap model and MPM, Wu and Smart for-

mulations.

However, none of the capacity formulations are able to predict ac-
curately the absolute accumulation of bed material observed in the
experiments downstream of the inner corner, nor the depth of the op-
posite eroded region.

• Third, the three considered capacity formulations show a noticeable
eroded zone close to the inner corner. Although slight erosion was
observed at the region in the laboratory, all the bedload formulations
overestimate the bed degradation in this zone as a consequence of
the formation and development of a vortex downstream of the inner
corner.
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Figure 5.50: Experimental case BL7 – Bed elevation zb 2D-maps at t = 180 s obtained
with R-Cap model and the MPM, Wu and Smart closures.

In order to identify quantitatively the performance of the capacity clo-
sures, numerical bed profiles taken along x = 6.34m (A), x = 6.77m (B)
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and y = 0.60m (C) were obtained for t = 180 s and compared against the
photogrammetry data in Figure 5.51.

Figure 5.51: Experimental case BL7 – Final bed level profiles along x = 6.34m, x =
6.77m and y = 0.60m with R-Cap model and the MPM, Wu and Smart closures.

Regarding the (A) profile, the MPM closure approximates better the ac-
cumulation region downstream the inner corner than the Wu and Smart
formulations. However, the depth of the over-eroded region at the inner
corner is similar for the three relationships. Eventually, the MPM closure
shows the lowest RMSE for the bed level zb along this profile (RMSE =
0.95 cm) whereas the Wu and Smart formulations show higher errors (see
Table 5.20).

The Wu closure performs slightly better than the MPM relation along
profile (B) (see Figure 5.51), with RMS errors of 1.43 cm and 1.45 cm respec-
tively. However, both formulations under-predicts the eroded depth down-
stream the outer corner. The Smart relation performs worse than the others
(RMSE=1.60 cm), especially at the erosion zone downstream the outer cor-
ner.

Finally, the three closures perform quite similarly along profile (C), with
an RMSE below 0.55 cm, and are able to predict the general trend of the bed
change, as it is shown in Figure 5.51. However, none of them are able to
approximate the formation of dunes in the inlet reach of the channel. The
formation of this kind of bed form is directly related to the vertical structure
of the flow near the bed surface [144] and is hence difficult to mimic using
depth-averaged bedload transport models.
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Profile
zb RMSE (cm)

MPM Wu Smart
(A) x = 6.34m 0.95 1.74 1.34
(B) x = 6.77m 1.45 1.43 1.60
(C) y = 0.60m 0.46 0.54 0.44

Table 5.20: Experimental case BL7 – Bed level zb RMSE for the profiles (A) x =
6.34m, (B) x = 6.77m and (C) y = 0.60mwith R-Cap model and the MPM, Wu and

Smart closures.

Application of the non-capacity model

The main feature of the R-NCap model is the progressive adaptation of the
bedload transport rate qb to the local flow conditions until the equilibrium
transport state is reached, contrarily to the capacity models that assume
instantaneous adaptation. The celerity of this adaptation is controlled by
the entrainment and detention constants kE and kD respectively, but also
depends directly on the dimensionless Shields stress excess ∆θ at the bed
interface [87]. This is one of the main differences between the proposed R-
NCap scheme and other non-equilibrium bedload models which assume a
constant value for the adaption length Lb [17, 115, 144] and computes the
entrainment rate as:

η̇E =
|q∗b|
Lb

(5.114)

where |q∗b| is the modulus of the equilibrium bedload rate (2.144).
Comparing both non-capacity approaches, it can be easily derived that,

for the Meyer-Peter & Müller [97] formulation, the equivalent adaptation
length applied by the R-NCap models scales with:

Lb =
8 rs ds
1− ξ

√
∆θ

kE
(5.115)

and hence the equivalent adaptation length increases at regions where the
boundary Shields stress excess is high. Furthermore, the smaller the en-
trainment constant kE , the larger the adaptation length Lb.

This property of the R-NCap model is used to improve the numerical
prediction at the inner corner region. One of the main flaws in the nu-
merical results obtained with the capacity R-Cap model is the appearance
of a marked over-eroded region near the inner corner. This over-eroded
zone was not observed in the experimental measurements. The simulation
shows that the marked erosion happens at the first stages of the dam-break
progress throughout the corner region, when a vortex was formed down-
stream of the inner corner. The right panel of Figure 5.52 shows the velocity
vectors at the corner region for the R-Cap simulation at t = 15 s. The forma-
tion of the vortex is clearly associated to the appearance of the over-eroded
zone.

Moreover, the changes on the flow direction at the inner corner region
lead to high bed Shields stresses which contribute to increase the erosion
within this region. The left panel of Figure 5.52 is a 2D-map of the max-
imum values of bed Shields stress excess ∆θ as computed by the R-Cap
model. The maximum ∆θ is around 1.0 in most of the channel but increases
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at the inner corner region until reaching a maximum value greater than 2.5,
leading to a high erosion in this zone.

Figure 5.52: Experimental case BL7 – Flow structure with the R-Cap model: (left)
2D map of the maximum ∆θ ; (right) zoom on the inner corner region. The velocity

vectors are superimposed with the bed elevation.

Considering the 2D-map of the maximum ∆θ recorded for the R-Cap
model and the features of the sediment used in this experiment, we ana-
lyzed the sensitivity of the R-NCap model by setting the entrainment and
detention constants, kE and kD respectively, to the values summarized in
Table 5.21. Therefore, four simulations using the R-NCap model were car-
ried out, varying entrainment constant from kE = 1.60 to kE = 0.05, but
maintaining the kE/kD ratio equal to 20. Note that, for all the simulations
T0 to T4, the relation between the characteristic thickness of the bedload
transport layer under equilibrium conditions and the sediment diameter
remains η∗/ds ≈ 9 since, according to (5.85), it only depends on both the
kE/kD ratio and the characteristic maximum value of the bed Shields stress
excess ∆θ.

Therefore, as kE decreases, the characteristic value of the equivalent
adaptation length increases from Lb ≈ 5 cm for case T1 to Lb ≈ 150 cm
for case T4. The increment on the adaptation length means that the spa-
tial and temporal delay between the actual bedload transport rate and its
capacity value becomes larger and hence, the non-equilibrium states are ac-
tivated. Note that these values for the η∗/ds ratio and the adaptation length
Lb only correspond to the inner corner region, where the bed Shields stress
is higher during the first stages of the dambreak wave. At other regions of
the channel, the equivalent Lb would be shorter and the η∗/ds ratio smaller.

Figure 5.53 shows the final topography at time t = 180 s. When R-
NCap model is applied, the adaption of the actual bedload solid rate to
the flow capacity at the inner corner region becomes non-instantaneous.
Hence, the appearance of the over-eroded zone is not only delayed in time
but also moves further downstream the inner corner. As kE decreases, the
non-capacity state at that region is enabled, until the formation of the over-
eroded zone is avoided. The other main features of the topography ob-
served in the laboratory are maintained, even if alterations in the bed level
zb results also occur at other regions of the channel.

Table 5.22 shows the global RMSE for the numerical topographies com-
puted with the R-NCap model with respect to the photogrammetric data
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Test Model
kE/KD KE ∆θ η∗/ds (5.85) Lb (5.115)

(-) (-) (-) (-) (cm)

T0 R-Cap 20 1.6 1.4 9.4 -
T1 R-NCap 20 1.60 1.4 9.4 4.8
T2 R-NCap 20 0.20 1.4 9.4 38.1
T3 R-NCap 20 0.10 1.4 9.4 76.1
T4 R-NCap 20 0.05 1.4 9.4 152.3

Table 5.21: Experimental case BL7 – Non-capacity setup for the analysis of the R-
NCap model behavior.

Figure 5.53: Experimental case BL7 – Bed elevation zb 2D-maps obtained with R-
NCap model at t = 180 s.

(Figure 5.48). The improvement of the global performance using the R-
NCap model is not marked but an optimal value for the entrainment con-
stant kE = 0.20 can be found, corresponding to test T2. Once again, the
difference between the models may look limited regarding this indicator,
because of the close results that they show before the bend (Figure 5.51(C)).

Test Global RMSE for zb (cm)
T0: R-Cap 1.02
T1: R-NCap kE = 1.60 1.01
T2: R-NCap kE = 0.20 0.98
T3: R-NCap kE = 0.10 1.02
T4: R-NCap kE = 0.05 1.15

Table 5.22: Experimental case BL7 – Global RMSE for the bed level zb with R-Cap
and R-NCap models.
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The final bed level zb computed with the R-NCap model was plotted
along profiles (A) and (B) in Figure 5.54. The results from the R-Cap model
and the photogrammetric data were also depicted for comparison pur-
poses. For the (A) profile, the activation of the non-equilibrium states led to
the avoidance of the over-eroded zone, but a spatial delay of the accumu-
lation zone was also predicted, as well as a reduction of the accumulation
height. Furthermore, the prediction of the bed slope at the outlet reach of
the channel is increasingly worse as kE decreases. Despite the gain of accu-
racy allowed by the non-capacity feature near the inner corner, these worse
and worse slope predictions lead to higher RMSE values for the R-NCap
model than for the R-Cap one along that profile (see Table 5.23).

Figure 5.54: Experimental case BL7 – Final bed level profiles along (A) x = 6.34m
and (B) x = 6.77m with R-NCap model. Experimental photogrammetric data and

results from the R-Cap model are also plotted.

For the (B) profile, the R-NCap model improves the prediction of the
bed slope in the channel outlet reach without affecting significantly other
regions (see Figure 5.54). This also improves the RMSE of the bed level zb
with respect to the photogrammetric data along this profile, in comparison
with the R-Cap model, as highlighted by Table 5.23. The best agreement is
given for kE ∈ [0.10, 0.20] with a ratio kE/kD = 20.

Test
zb RMS error (cm)

(A) x = 6.34m (B) x = 6.77m

T0: R-Cap 0.95 1.45
T1: R-NCap kE = 1.60 1.70 1.32
T2: R-NCap kE = 0.20 1.61 1.05
T3: R-NCap kE = 0.10 1.51 1.13
T4: R-NCap kE = 0.05 1.69 1.34

Table 5.23: Experimental case BL7 – Bed level zb RMS error for the profiles (A) x =
6.34m and (B) x = 6.77m with R-Cap and R-NCap models.
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5.6 In Closing

The numerical resolution of the bedload sediment transport system in non-
uniform beds, composed by the two-dimensional shallow water equations
and the mass conservation for the bed layer, have been implemented using
two different coupling strategies between the hydrodynamical and mor-
phodynamical components of the system. Both strategies for transient sim-
ulations are based on the Finite Volume Method (FVM) using the Roe’s ap-
proach for the computation of the numerical fluxes between neighbouring
cells. Both resolution strategies have been implemented into the same CPU-
based computational kernel and hence a realistic comparison of the range
of applicability and efficiency of both method can be performed without
the influence of external factors.

The main novelties in this chapter are summarized as:

1. The first strategy, called FCM, is based on the full coupling of the
2D shallow water and bedload transport equations, leading to a new
formulation for the intercell numerical fluxes which includes the bed
elevation zb into the resolution of the approximated local Riemann
problem (RP) at the edges. New explicit expressions have been pro-
vided for the wave and source strengths. The stability region of this
method is controlled by the eigenvalues of the approximate Jacobian
matrix at each intercell edge.

2. An alternative approximate-coupled strategy, called ACM, is pro-
posed based on solving independently the shallow water and the bed
transport equations at each time step but controlling the maximum
time step allowed by means of an approximation of the bounds of the
coupled Jacobian matrix eigenvalues. This method allows simpler ex-
pressions for the numerical fluxes at the edges than those of the FCM
and the approximate-coupled time step limitation improves the sta-
bility of the scheme.

3. Furthermore, the non-equilibrium bedload transport concepts devel-
oped in Section 2.3 Chapter 2 have been used to propose a new 2D
numerical model able to deal with highly unsteady flows and par-
tially non-erodible bed layers. Based on a generalized non-capacity
bedload transport model, the proposed transport rate formulation al-
lows to limit the physical solid flux at cells in regions where the total
sediment thickness εb hinders the development of equilibrium tates
in the solid transport.

The capability of both FCM and ACM schemes to deal with structured
and unstructured meshes, regardless of the number of edges of the cells, has
been demonstrated using a idealized and experimental benchmark tests.
Both schemes were able to predict with an acceptable accuracy the bed
changes and the flow structures. Both model have shown a almost similar
performance in terms of efficiency, robustness and accuracy. It is worthy to
state that decoupled or weakly-coupled strategies (such as ACM scheme)
for the bedload transport system of equations, which are widespread be-
cause of their simple implementation, can only guarantee non-oscillatory
results when the bed-flow interaction is very small. Otherwise, the ACM
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scheme loses its accuracy and robustness. Furthermore, for highly ero-
sive flows the FCM scheme demonstrated to be more efficient in terms of
computational effort than the approximate-couple strategy, one of the key
points for realistic bedload transport application.

Finally, when non-capacity model is applied, the adaptation of the
actual bedload solid rate to the flow carrying capacity becomes non-
instantaneous and the appearance of bed changes is delayed in time and
space. As the equivalent adaptation length is increased, the non-capacity
states are promoted. In general, better predictions can be obtained with
moderate values of the non-equilibrium parameters. Even though the non-
capacity approach can improve the model performance in regions with
complex transient processes, it requires a careful calibration of the non-
equilibrium parameters.
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Chapter 6

Conclusions and relevant
contributions

In this thesis, the numerical modeling of geophysical surface flows involv-
ing sediment transport is addressed using a comprehensive strategy: be-
ginning with the derivation of proper shallow-type mathematical models,
following by the development of robust and accurate numerical schemes
within the Finite Volume (FV) framework and ending with the implemen-
tation of efficient HPC algorithms. This integrated approach is required
to the development of Efficient Simulation Tools (EST) for environmental
processes involving sediment transport with realistic temporal and spatial
scales.

Concerning the mathematical modelling, the generalized 2D system
of depth-averaged conservation laws for environmental surface flows of
water-sediment mixtures over movable bed conditions have been derived,
starting from the general 3D Navier-Stokes equations. This is a funda-
mental step to understand the physical consequences of the mathematical
shallow-type simplification. From the mathematical modelling approach,
the fluidized material in motion is contained in a flow layer consisting of a
mixture of water and multiple solid phases. This flow layer usually moves
rapidly downstream steep channels and involves complex topography. The
liquid-solid material can be exchanged throughout the bottom interface
with the underlying static bed layer, hence involving also a transient bottom
boundary for the flow layer. These features lead to an increasing complex-
ity for the mathematical simplification of sediment transport surface flows,
which can not be entirely understood without a careful treatment. Further-
more, this derivation stage allows to obtain essential relationships for the
closure of the shallow-type system, as the depth-averaged non-Newtonian
basal resistance (see Section 2.1.3).

All these processes involve multiple relations between the variables but,
probably, the most challenging and unknown is the development of pore-
fluid pressure. When the solid particles are transported throughout the en-
tire flow column, the liquid and solid phases in the flow column might have
different velocities and hence might lead to the solid phase segregation and
the development of non-hydrostatic pressures in the pore-fluid. For the
first time, a closure relation for the shear-induced pore-fluid pressure dis-
tribution during the movement of dense-packed solid-liquid mixtures has
been obtained and analyzed in Section 2.2.2. This pore pressure affects the
effective normal stress along the flow column, leading to a modification of
the frictional shear stress between solid particles respect to the hydrostatic
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condition and changing the basal resistance, hence affecting the flow mo-
bility. Moreover, using this new pore pressure distribution, the effects of
the sediment particles dilation have been included into the depth-averaged
solid transport equation, leading to a novel formulation for the advective
solid fluxes which accounts for the shear-induced separation of the solid a
liquid phases (Section 2.2.3).

When the solid particles are transported only in a thin layer near the
bed interface, the bedload transport is the dominant process. The mathe-
matical model for the bedload transport has been reformulated. A new clo-
sure relation for the mass exchange between the flow and the underlying
static stratum has been proposed from a grain-scale inertial analysis (Sec-
tion 2.3.2). Additionally, a novel generalized non-capacity model for the
bedload transport rate has been proposed and compared with the classi-
cal capacity/equilibrium assumption (Section 2.3.3). This new generalized
model for the non-capacity bedload transport requires to compute the bed-
load transport thickness, but it is able to account for the temporal and spa-
tial delay of the actual sediment transport rate with respect to its potential
capacity in highly unsteady flows.

The 2D shallow-type system of equations for variable-density multi-
grain water-sediment flows have been solved using a Finite Volume (FV)
method supplemented with an upwind resolution of the intercell numeri-
cal fluxes based on the augmented Roe’s approach (see Section 3.2.2). This
approach maintains coupled the flow depth and density in the conservative
variables and fluxes, allowing the bulk sediment concentration to partici-
pate in the eigenstructure of the local Riemann problem at the cell edges.
Also, the bed-pressure momentum source term has been included into the
numerical fluxes at the cell edges by their projections into the RP eigen-
structure. The main consequence is a robust and accurate computation of
the intercell fluxes even involving highly transient density interfaces, as
well as the well-balanced character of the solution is ensured in quiescent
and steady states. Moreover, an adaptive numerical fix for the correct treat-
ment of the wet-dry front has been reported in Section 3.3.1. This model
for variable-density mud/debris flows over non-uniform erodible bed has
been referred to as vdMD model.

Two new strategies for the discretization of the 2D basal resistance force
into local plane Riemann problem at the intercell edges have been derived
in Section 3.2.1. These new methods, called respectively integral and dif-
ferential approaches, allow to separate the cell-centered non-Newtonian
shear stress force into edge-contributions to the local numerical fluxes at
the cell edges ensuring the rotation invariant property of the integrated
basal resistance term. Based on the previous results, the non-Newtonian
basal resistance momentum source term has been also projected into the
RP eigenstructure at the cell edges. Corresponding explicit integration pro-
cedures for the upwind basal resistance contribution at the cell edges have
been derived in Section 3.3.3). These procedures allow not only to com-
pute the explicit edge-value of the shear resistance contribution but also
to limit its value in order to avoid numerical oscillations and ensuring the
non-dependence of the solution on the mesh topology.

The effects of the shear-induced solid phase dilation on the pore-
fluid pressure have been also included into the EST for variable-density
mud/debris flows. Two important differences arise here in comparison
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with previous models available in literature: first, the shear-induced segre-
gation of the solid material within the flow is caused by a deviatoric contri-
bution to the solid flux at the edges which ensures the continuity equations
of the system maintain their conservative character; second, it is possible
to estimate a local value for the basal pore-pressure excess depending on
the mixture packed state. Therefore, under the same flow conditions, dense
packed mixtures are associated to a lower flow mobility whereas liquefied
slurries are related to larger runout distances (see Section 3.4).

Finite Volume (FV) models have also been developed for the resolution
of passive suspended transport of multiple sediment classes. Two different
robust and efficient numerical models have been proposed for the resolu-
tion of the suspended sediment transport system. Both of them are based
on the artificial decoupling of the flow depth and density in order to allows
the use of widespread solvers designed for shallow clear-water problems.
The first one, referred to as udPST model, accounts for the mass and mo-
mentum exchange between the bed layer and the flow, but does not include
the effects of the sediment concentration in the flow dynamics. The the sec-
ond one, referred to as vdPST model, also includes the contribution of the
flow density gradients to the momentum equations as a new source term
which is upwind discretized. The intercell fluxes for the hydrodynamical
component of the system have been built using the augmented Roe’s ap-
proach, whereas the passive transport of the different suspended sediment
classes is computed using a reduced formulation in both models. Impor-
tant differences have been found between the results provided by udPST
and the vdPST models in different idealized benchmark tests. These re-
sults indicate that, when high solid concentrations are expected in the flow,
it is required to include the density-gradients momentum contribution in
order to obtain reliable results. Often, the vdPST formulation is used for
the simulation of variable-density mud/debris flows. However, for tran-
sient problems with noticeable density gradients, the results obtained with
vdPST model show differences respect to those obtained with the variable-
density vdMD model described in the Chapter 3.

The numerical resolution of the bedload sediment transport system
in non-uniform beds has been implemented using two different coupling
strategies between the hydrodynamical and morphodynamical compo-
nents of the system. Both strategies for transient simulations are based
on the FV framework and use the Roe’s approach for the computation of
the numerical fluxes between neighbouring cells (see Section 5.2). The first
strategy, called FCM, is based on the full coupling of the 2D shallow wa-
ter and bedload transport equations, leading to a new formulation for the
numerical fluxes which includes the bed elevation into the resolution of
the local RP at the edges. An alternative approximate-coupled strategy,
called ACM, is proposed based on solving independently the shallow wa-
ter and the bed transport equations at each time step but controlling the
maximum time step allowed by means of the coupled Jacobian eigenval-
ues. This method allows simpler expressions for the numerical fluxes at
the edges than those of the FCM and the approximate-coupled time step
limitation improves the stability of the scheme. The capability of both FCM
and ACM schemes to deal with structured and unstructured meshes has
been demonstrated, predicting with an acceptable accuracy bed changes
and flow structures in benchmark tests. It is worth to state that decoupled
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or weakly-coupled strategies (such as ACM scheme) for the bedload trans-
port system, which are widespread because of their simple implementation,
can only guarantee non-oscillatory results when the bed-flow interaction is
very small. Otherwise, the ACM scheme loses its accuracy and robustness.
Furthermore, for highly erosive flows the FCM scheme demonstrated to be
more efficient in terms of computational effort than the approximate-couple
strategy, one of the key points for realistic bedload transport application.

Finally, the non-equilibrium bedload transport concepts have been used
to propose a new 2D numerical model able to deal with highly unsteady
flows and partially non-erodible bed layers. Based on a generalized non-
capacity bedload transport model, the proposed transport rate formulation
allows to limit the physical solid flux at cells in regions where the total sed-
iment thickness hinders the development of equilibrium states in the solid
transport. When non-capacity model is applied, the adaptation of the actual
bedload solid rate to the flow carrying capacity becomes non-instantaneous
and the appearance of bed changes is delayed in time and space. As the
equivalent adaptation length is increased, the non-capacity states are pro-
moted. In general, better predictions can be obtained with moderate val-
ues of the non-equilibrium parameters. Even though the non-capacity ap-
proach can improve the model performance in regions with complex tran-
sient processes, it requires a careful calibration of the non-equilibrium pa-
rameters.
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Capítulo 6

Conclusiones y contribuciones
destacadas

En esta tesis, el modelado numérico de los flujos superficiales geofísicos que
involucran transporte de sedimentos se aborda utilizando una estrategia
integral: comenzando con la derivación de modelos matemáticos de tipo
superficial adecuados, seguido por el desarrollo de esquemas numéricos
robustos y precisos dentro del marco de los métodos de Volúmenes Finitos
(FV) y terminando con la implementación de algoritmos de computación de
alto rendimiento (HPC) eficientes. Este enfoque integrado es necesario para
el desarrollo de Herramientas Eficientes de Simulación (HES) para proce-
sos ambientales que involucran transporte de sedimentos con escalas tem-
porales y espaciales realistas.

En cuanto a la modelización matemática, se ha derivado el sistema bidi-
mensional generalizado de leyes de conservación promediadas en profun-
didad para los flujos superficiales ambientales de mezclas de agua y sedi-
mentos en condiciones de lecho móvil, a partir de las ecuaciones generales
3D de Navier-Stokes. Este es un paso fundamental para comprender las
consecuencias físicas de la simplificación matemática de tipo superficial
(’shallow-type’). Desde el enfoque de modelado matemático, el material
fluidificado en movimiento está contenido en una capa de flujo que consiste
en una mezcla de agua y múltiples fases sólidas. Esta capa de flujo general-
mente se mueve rápidamente aguas-abajo a lo largo de canales empinados
e involucra una topografía compleja. El material líquido-sólido se puede
intercambiar a través de la interfaz inferior con la capa del lecho estático
subyacente, lo que implica también un frontera inferior transitoria para la
capa de flujo. Estas características conducen a una complejidad creciente
para la simplificación matemática de los flujos superficiales con transporte
de sedimentos, que no pueden entenderse por completo sin un tratamiento
cuidadoso. Además, esta etapa de derivación permite obtener relaciones
esenciales para el cierre del sistema de ecuaciones, como la resistencia basal
no-Newtoniana promediada en profundidad (ver Sección 2.1.3).

Todos estos procesos involucran múltiples relaciones entre las variables
pero, probablemente, el más desafiante y desconocido es el desarrollo de la
presión del fluido intersticial. Cuando las partículas sólidas se transportan
a través de toda la columna de flujo, las fases líquida y sólida en la columna
de flujo pueden tener diferentes velocidades y, por lo tanto, pueden con-
ducir a la segregación de la fase sólida y al desarrollo de presiones no
hidrostáticas en el fluido poroso. Por primera vez, una relación de cierre
para la distribución de presión de fluido intersticial inducida por cizal-
lamiento durante el movimiento de mezclas sólido-líquidas densamente
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empaquetadas ha sido obtenida y analizada en la Sección 2.2.2. Esta pre-
sión de poro afecta la tensión normal efectiva a lo largo de la columna de
flujo, lo que lleva a una modificación del esfuerzo cortante por fricción en-
tre las partículas sólidas con respecto a la condición hidrostática y cambia la
resistencia basal, afectando así la movilidad del flujo. Además, utilizando
esta nueva distribución de presión de poro, los efectos de la dilatación de
las partículas de sedimento se han incluido en la ecuación de transporte de
sólidos promediados en profundidad, lo que lleva a una formulación nove-
dosa para los flujos sólidos advectivos que explica la segregación de la fase
sólida inducida por cizallamiento (Sección 2.2.3).

Cuando las partículas sólidas se transportan solo en una capa delgada
cerca de la interfaz del lecho, el transporte de carga de fondo es el proceso
dominante. Se ha reformulado el modelo matemático para el transporte de
carga de fondo. Se ha propuesto una nueva relación de cierre para el in-
tercambio de masa entre el flujo y el estrato estático subyacente a partir de
un análisis inercial a escala de grano (Sección 2.3.2). Además, se ha prop-
uesto un nuevo modelo generalizado para la tasa de transporte de fondo en
condiciones de no-capacidad y se ha comparado con el supuesto clásico de
capacidad/equilibrio (Sección 2.3.3). Este nuevo modelo generalizado para
el transporte de carga de fondo en condiciones de no-capacidad requiere
calcular el espesor de la capa de carga de fondo, pero es capaz de tener en
cuenta el retraso temporal y espacial de la tasa de transporte de sedimentos
real con respecto a la capacidad potencial en flujos muy transitorios.

El sistema de ecuaciones 2D de tipo superficial para flujos de densi-
dad variable con múltiples clases de sedimentos se ha resuelto utilizando
un método de Volúmenes Finitos (VF) complementado con una resolución
’upwind’ de los flujos numéricos entre celdas basado en el enfoque au-
mentado de Roe (ver Sección 3.2.2). Este enfoque mantiene acoplada la
profundidad y la densidad del flujo en las variables y flujos conservativos,
lo que permite que la concentración de sedimentos participe en la estruc-
tura de valores/vectores propios del problema de Riemann (PR) local en
los bordes de la celda. Además, el término fuente de presión de lecho se
ha incluido en los flujos numéricos en los bordes de la celda mediante su
proyección en la base de vectores propios del PR. La consecuencia princi-
pal es un cálculo robusto y preciso de los flujos entre celdas, incluso cuando
interfaces de densidad altamente transitorias están involucradas, así como
asegurar el carácter bien-equilibrado de la solución en estados de reposo
y estacionarios. Además, en la Sección 3.3.1 se presenta de una corrección
numérica adaptativa para el correcto tratamiento de frentes seco-mojado.
Este modelo para flujos de lodo/detritos de densidad variable sobre lecho
erosionable no-uniforme se ha denominado modelo vdMD.

En la Sección 3.2.1 se han derivado dos nuevas estrategias para la dis-
cretización de la fuerza de resistencia basal 2D en el problema de Riemann
(PR) local en los bordes entre celdas. Estos nuevos métodos, denomina-
dos enfoques integrales y diferenciales respectivamente, permiten separar
la fuerza de esfuerzo cortante no-Newtoniano centrada en la celda en con-
tribuciones de borde que se añaden a los flujos numéricos locales en los bor-
des de la celda, lo que garantiza la propiedad de invarianza ante rotación
del término de resistencia basal integrado. Con base en los resultados an-
teriores, el término de fuente de resistencia basal no-Newtoniana también
se ha proyectado en la estructura de vectores propios del PR en los bordes
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de la celda. Los correspondientes procedimientos de integración explíci-
tos para la contribución de la resistencia basal ’upwind’ en los bordes de la
celda se han derivado en la Sección 3.3.3). Estos procedimientos permiten
no solo calcular el valor de la resistencia en los bordes de las celdas de forma
explícita, sino también limitar su valor para evitar oscilaciones numéricas
y garantizar la no dependencia de la solución con la topología de la malla
computacional.

Los efectos de la dilatación de la fase sólida inducida por el cizal-
lamiento sobre la presión del fluido intersticial también se han incluido
en la HES para flujos de lodo/detritos de densidad variable. Aquí sur-
gen dos diferencias importantes en comparación con los modelos anteri-
ores disponibles en la literatura: primero, la segregación inducida por ciza-
llamiento del material sólido dentro del flujo es causada por una contribu-
ción desviadora al flujo sólido en los bordes que asegura que las ecuaciones
de continuidad del sistema mantienen su carácter conservativo; en segundo
lugar, es posible estimar un valor local para el exceso de presión de poro
basal dependiendo del estado de empaquetamiento de la mezcla. Por lo
tanto, bajo las mismas condiciones de flujo, las mezclas densamente em-
paquetadas se asocian a una menor movilidad de flujo mientras que las
lechadas licuadas se relacionan con mayores distancias recorridas (ver Sec-
ción 3.4).

Se han desarrollado también modelos de Volúmenes Finitos (VF) para la
resolución del transporte pasivo en suspensión de múltiples clases de sed-
imentos. Se han propuesto dos modelos numéricos diferentes, robustos y
eficientes para la resolución del sistema de transporte de sedimentos en sus-
pensión. Ambos se basan en el desacoplamiento artificial de la profundidad
y densidad del flujo para permitir el uso de esquemas numéricos generalis-
tas diseñados para problemas de aguas claras poco profundas. El primero,
denominado modelo udPST, tiene en cuenta el intercambio de masa y mo-
mento entre la capa del lecho y el flujo pero no incluye los efectos de la con-
centración de sedimentos en la dinámica del flujo. El segundo, denominado
modelo vdPST, también incluye la contribución de los gradientes de den-
sidad de flujo a las ecuaciones de cantidad de movimiento como un nuevo
término fuente discretizado ’upwind’. Los flujos en el borde las celdas para
las componentes hidrodinámicas del sistema se han construido utilizando
el método de Roe aumentado (ARoe), mientras que el transporte pasivo de
las diferentes clases de sedimentos en suspensión se calcula utilizando una
formulación reducida en ambos modelos. Se han encontrado diferencias
importantes entre los resultados proporcionados por los modelos udPST
y vdPST en diferentes tests de referencia. Estos resultados indican que,
cuando se esperan altas concentraciones de sólidos en el flujo, se requiere
incluir la contribución de los gradientes de densidad en las ecuaciones de
cantidad de movimiento para obtener resultados confiables. A menudo,
la formulación vdPST se usa para la simulación de flujos de lodo/detri-
tos de densidad variable. Sin embargo, para problemas transitorios con
gradientes de densidad importantes, los resultados obtenidos con el mod-
elo vdPST muestran diferencias con respecto a los obtenidos con el modelo
vdMD de densidad variable descrito en el Capítulo 3.

La resolución numérica del sistema de transporte de sedimentos por
carga de fondo en lechos no-uniformes se ha implementado utilizando dos
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estrategias de acoplamiento diferentes entre las componentes hidrodinámi-
cas y morfodinámicas del sistema. Ambas estrategias para simulaciones
transitorias se basan en el marco FV y utilizan el enfoque de Roe para el cál-
culo de los flujos numéricos entre celdas vecinas (consulte la Sección 5.2).
La primera estrategia, denominada FCM, se basa en el acoplamiento com-
pleto de las ecuaciones 2D de transporte de carga de lecho y aguas poco
profundas, lo que lleva a una nueva formulación para los flujos numéricos
que incluye la elevación del lecho en la resolución del RP local en los bor-
des. Se propone una estrategia alternativa de acoplamiento aproximado,
denominada ACM, basada en resolver de forma independiente las ecua-
ciones de aguas someras y transporte de lecho en cada paso de tiempo, pero
controlando el paso de tiempo máximo permitido mediante los valores pro-
pios propios del Jacobiano acoplado. Este método permite expresiones más
simples para los flujos numéricos en los bordes que los del FCM y la lim-
itación del paso de tiempo acoplado aproximado mejora la estabilidad del
esquema. Se ha demostrado la capacidad de los esquemas FCM y ACM
para lidiar con mallas estructuradas y no estructuradas, prediciendo con
una precisión aceptable cambios de lecho y estructuras de flujo en pruebas
de referencia. Cabe señalar que las estrategias desacopladas o débilmente
acopladas (como el esquema ACM) para el sistema de transporte de carga
de lecho, que están muy extendidas por su simple implementación, solo
pueden garantizar resultados no oscilatorios cuando la interacción lecho-
flujo es muy pequeña. De lo contrario, el esquema ACM pierde su pre-
cisión y solidez. Además, para flujos altamente erosivos, el esquema FCM
demostró ser más eficiente en términos de esfuerzo computacional que la
estrategia de par aproximado, uno de los puntos clave para una aplicación
realista de transporte de carga de fondo.

Finalmente, los conceptos de tasa de transporte de fondo en condiciones
de no-equilibrio se han utilizado para proponer un nuevo modelo numérico
2D capaz de lidiar con flujos altamente transitorios y capas de lecho par-
cialmente no erosionables. Basado en el generalizado modelo de transporte
de carga de fondo en no-capacidad, la formulación de la tasa de transporte
propuesta permite limitar el flujo de sólidos físicos en las celdas en regiones
donde el espesor total del sedimento dificulta el desarrollo de estados de
equilibrio en el transporte de sólidos. Cuando se aplica el modelo de no-
capacidad, la adaptación de la tasa de sólidos de carga de lecho real a la
capacidad de transporte de flujo se vuelve no instantánea y la aparición de
cambios de lecho se retrasa en el tiempo y el espacio. A medida que au-
menta la longitud de adaptación equivalente, se promueve la aparición los
estados de no-capacidad. En general, se pueden obtener mejores predic-
ciones con valores moderados de los parámetros de no-equilibrio. Aunque
el enfoque de no-capacidad puede mejorar el rendimiento del modelo en re-
giones con procesos transitorios complejos, requiere una calibración cuida-
dosa de los parámetros de desequilibrio.
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Appendix A

High-performance
computational algorithms

In this thesis, GPU-based algorithms have been implemented for the differ-
ent numerical schemes detailed in the previous sections, using the NVIDIA
CUDA Toolkit and the C++ language. Figure A.1 shows a scheme of the
general GPU-based algorithm used for the 2D sediment-laden numerical
algorithms. The preprocess step and CPU-GPU memory transfer are im-
plemented to run on one CPU core, whereas the time loop computation
is accelerated using GPU. However, some tasks inside the time loop are
controlled yet by the CPU, such as the time advance control, the boundary
conditions application and the output data dump. Therefore, it is neces-
sary to transfer information from/to the GPU at each time-step. While the
computational effort required for the time and boundaries transference is
considerably smaller than that of each kernel function, in order to dump
the intermediate output information, all the variables in the domain must
be transferred from GPU device to CPU host.

Figure A.1: Scheme of the GPU-accelerated algorithm.
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In order to obtain efficient GPU-accelerated codes dealing with unstruc-
tured meshes, some of the strategies proposed by [70, 71] have been im-
plemented. The CUDA toolkit allows that all the processed elements can
be distributed by threads and blocks of threads. Each thread uses its own
thread index to identify the element to be processed, launching several ex-
ecution threads at the same time (parallel computation). As computing
GPU devices are well designed to work efficiently with ordered informa-
tion, the variables needed for computation are stored in the GPU memory
as structures of arrays (SoA), improving the spatial locality for memory ac-
cesses. Only the kernel functions, which require a higher computational
effort, have been implemented to run on the GPU device. Some tasks in the
GPU kernel are optimized using the CUBLAS library included in CUDA.
The memory transfer between the CPU host and the GPU device has been
reduced as much as possible for each time step.

Furthermore, a CPU-based version of the numerical algorithms has also
been implemented using the shared-memory parallelization in C++. In this
strategy, a number of CPUs work on the same physical address space [49].
Although transparent to the user, the translation of the different numerical
schemes detailed in the previous sections into efficient algorithms is not an
easy task. These algorithms consist of some sequential/dependent parts,
which can not be parallelized, and some others that can be run indepen-
dently one each other and which are included into parallel regions. To de-
termine parallel regions some directives for the compiler must be declared
at the code. In this thesis OpenMP (Open Multi-Processing) [9] is used for
shared-memory directives. Figure A.2 shows a scheme of the general GPU-
based algorithm used for the 2D sediment-laden numerical schemes.

Figure A.2: Scheme of the CPU-based algorithm.
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Finally, for all the tests presented in this thesis, the CPU-based ver-
sion of the code were run on a Intel(R) Core(TM) i7-3820 @3.60GHz and
a last generation Intel(R) Core(TM) i7-7700K @4.50GHz, whereas the GPU-
based code was tested using two devices: a medium-grade NVIDIA Tesla
K40c and a NVIDIA GeForce GTX 1080 Ti. GPU’s technology is contin-
uously growing and the devices are fastly improving regarding the num-
ber of computation cores, speed on the data transfer and efficiency of the
CUDA Toolkit. Therefore, it is expected that the performance of the GPU-
accelerated algorithms may increase markedly running in last generation
NVIDIA GPUs.
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