000108494 001__ 108494
000108494 005__ 20230519145343.0
000108494 0247_ $$2doi$$a10.1016/j.cma.2020.113508
000108494 0248_ $$2sideral$$a121237
000108494 037__ $$aART-2021-121237
000108494 041__ $$aeng
000108494 100__ $$0(orcid)0000-0003-1835-2816$$aIrisarri, Diego
000108494 245__ $$aA posteriori error estimation and adaptivity based on VMS for the incompressible Navier–Stokes equations
000108494 260__ $$c2021
000108494 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108494 5203_ $$aIn this work an explicit a posteriori error estimator for the steady incompressible Navier–Stokes equations is investigated. The error estimator is based on the variational multiscale theory, where the numerical solution is decomposed in resolved scales (FEM solution) and unresolved scales (FEM error). The error is estimated locally considering the residuals that emerge from the numerical solution and the error inverse-velocity scales, t’s, associated with each type of residual. These error scales are provided in this paper, which have been computed a-priori solving a set of local problems with unit residuals. Therefore, the computational effort to predict the error is small and its implementation in any FEM code is simple. As an application, a strategy to develop adaptive meshes with the aim of optimizing the computational effort is shown. Numerical examples are presented to test the behavior of the error estimator.
000108494 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T32-20R$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2019-106099RB-C44
000108494 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000108494 590__ $$a6.588$$b2021
000108494 592__ $$a2.179$$b2021
000108494 594__ $$a10.3$$b2021
000108494 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b8 / 92 = 0.087$$c2021$$dQ1$$eT1
000108494 593__ $$aComputational Mechanics$$c2021$$dQ1
000108494 591__ $$aMECHANICS$$b9 / 138 = 0.065$$c2021$$dQ1$$eT1
000108494 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1
000108494 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b4 / 108 = 0.037$$c2021$$dQ1$$eT1
000108494 593__ $$aMechanics of Materials$$c2021$$dQ1
000108494 593__ $$aComputer Science Applications$$c2021$$dQ1
000108494 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108494 700__ $$0(orcid)0000-0001-7802-3411$$aHauke, Guillermo$$uUniversidad de Zaragoza
000108494 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000108494 773__ $$g373 (2021), 113508 [22 pp]$$pComput. methods appl. mech. eng.$$tComputer Methods in Applied Mechanics and Engineering$$x0045-7825
000108494 8564_ $$s1203895$$uhttps://zaguan.unizar.es/record/108494/files/texto_completo.pdf$$yPostprint
000108494 8564_ $$s1178070$$uhttps://zaguan.unizar.es/record/108494/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108494 909CO $$ooai:zaguan.unizar.es:108494$$particulos$$pdriver
000108494 951__ $$a2023-05-18-13:18:10
000108494 980__ $$aARTICLE