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SUMMARY 

The absorption of water and solutes by plant leaves has been recognised since more 

than two centuries. Given the polar nature of water and solutes, the mechanisms of 

foliar uptake have been proposed to be similar for water and electrolytes, including 

nutrient solutions. Research efforts since the XIX Century focussed on characterising the 

properties of cuticles and applying foliar sprays to crop plants as tool for improving crop 

nutrition. This was accompanied by the development of hundreds of studies aimed at 

characterising the chemical and structural nature of plant cuticles from different species 

and the mechanisms of cuticular and, to a lower extent, stomatal penetration of water 

and solutes. The processes involved are complex and will be affected by multiple 

environmental, physico-chemical and physiological factors which are only partially clear 

to date. During the last decades, there is growing evidence that water transport across 

leaf surfaces of native species may contribute to water balances (absorption and loss) 

at an ecosystem level. Given the potential importance of foliar water absorption for 

many plant species and ecosystems as shown in recent studies, the aim of this review is 

to first integrate current knowledge on plant surface composition, structure, wettability 

and physico-chemical interactions with surface-deposited matter. The different 

mechanisms of foliar absorption of water and electrolytes and experimental procedures 

for tracing the uptake process are discussed before posing several outstanding 

questions which should be tackled in future studies.      
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INTRODUCTION 

Plant surfaces have a key role in protection against biotic and abiotic stress factors such 

as water loss (Schuster et al., 2017; Kane et al., 2020), excess UV radiation (Krauss et al., 

1997; Liakoura et al., 1999) or insect and pathogen attack (Gorb and Gorb, 2017; Ziv et 

al., 2018). The surface of organs with primary growth is covered with an epidermis which 

may contain modified cell structures such as stomata or trichomes (Javelle et al., 2011). 

The outermost surface of epidermal cells is meant to be covered by a lipid-rich cell wall 

part named cuticle (Riederer and Müller, 2006). Aerial organs such as leaves (Tanaka et 

al., 2004; Kosma et al., 2010), fruits (Buda et al., 2009; Veličković et al., 2014), stems 

(Shumborski et al., 2016), flowers (Mazurek et al., 2017; Somaratne et al., 2017) or 

developing organs (Ingram and Nawrath, 2017) are covered with a cuticle, as shown in 

Figure 1. The cuticle is generally located at the external, periclinal, epidermal cell wall, 

but can also be found in anticlinal walls (Javelle et al., 2011), stomatal chambers 

(Wullschleger and Oosterhuis, 1989) and guard cell walls as shown in Figure 1 c to f.   

Box 1. Summary  

 Plant leaves from several species can absorb water and solutes 

as demonstrated in hundreds of agronomic and 

ecophysiological studies  

 Plant surfaces have been found to be chemically and 

structurally heterogeneous and this affects wetting and foliar 

absorption of water and solutes 

 Recent foliar water absorption studies performed in different 

areas of the world, provide evidence for the widespread 

occurrence of this phenomenon which can contribute to plant 

water economy      

 The main foliar water and solute absorption pathways can be 

related to stomata, the cuticle, trichomes, veins and other 

epidermal structures but the mechanism are still not fully 

characterised 

 The process of foliar absorption of water and chiefly solutes 

has been extensively examined since more than one century 

and experimental methods are prone to artefacts and 

misinterpretation 
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The structure and composition of plant surfaces, together with the capacity of leaves 

to absorb water and solutes, have been a matter of scientific interest for more than two 

centuries (Kannan and Chamemel, 1986; Fernández and Eichert, 2009; Fernández et al., 

2016). On the other hand, several studies evaluated leaf cuticular transpiration (e.g., 

Kerstiens, 2006; Schuster et al., 2017) and nutrient leaching (e.g., Tukey, 1970; Sohrt et 

al., 2019). While absorption, transpiration and leaching of water and/or solutes are 

associated with transport phenomena across plant surfaces, their potential relationship 

is still unknown, and has not been considered in a holistic way likely due to experimental 

constraints. It can be reckoned that the bidirectional transport of water and solutes in 

the cuticle may follow a similar pathway, but for modelling such process it will be 

necessary to gain a better understanding of cuticle structure and composition, also 

regarding the surface of veins, bundle sheath extensions or trichomes.   

In recent years, the contribution of foliar water uptake to water economy in native 

species of different world ecosystems is becoming a topic of raising interest for plant 

physiologists and ecologists (e.g., Munné-Bosch, 2010; Dawson and Goldsmith, 2018; 

Guzmán-Delgado et al., 2018, 2020; Berry et al., 2019; Holanda et al., 2019; Schreel and 

Steppe, 2020). When critically reading most of the existing foliar fertilization studies, it 

it is possible to recognise the great response variability, limited trial reproducibility and 

lack of detail on key factors affecting foliar absorption processes, such as the prevailing 

environmental conditions during trial development (Fernández and Eichert, 2009). Foliar 

fertilisers are increasingly used worldwide, but their efficacy may vary because of many 

constraints related to the complex physico-chemical, physiological and environmental 

factors affecting the rate of foliar absorption of solutions (Fernández and Eichert, 2009). 

Hundreds of foliar permeability studies were carried out since more than one century 

but they still not enable the optimisation of foliar treatments due to major knowledge 

gaps. The situation is well reflected with the popular “spray and pray” saying which may 

be extrapolated to the overall foliar water absorption scenario as: “wait for fog, dew or 

rain and pray”. In the case of foliar water absorption experiments, the lack of awareness 

on plant surface composition and structure is particularly astonishing, together with 

basically ignoring the exiting foliar penetration literature. The mechanisms of foliar 

absorption of different species have been evaluated following various experimental 

approaches in many studies carried out since more than one century. This review is 
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hence focussed on providing an overview of the state-of-the-art on plant surface 

structure, chemical composition, wettability and permeability to water and solutes, 

considering methodological approaches and future perspectives. A broader approach 

considering the potential relationship between foliar water absorption and transpiration 

has been avoided, because it would require a great degree of speculation due the lack 

of integrative studies, but this is however an important aspect which should be born in 

mind for future foliar water and solute transport investigations.   

THE CUTICLE AS OUTERMOST STRUCTURE COVERING AERIAL PLANT ORGANS 

In general, all aerial plant surfaces such as leaves, stems, flowers or fruits with primary 

growth are covered with a cuticle (Jeffree, 2006; see Figure 1 as an example) which 

serves many protecting roles against biotic and abiotic stress factors as described above. 

Interestingly, the occurrence of a cuticle covering the cap of Arabidopsis thaliana roots 

has been recently shown (Berhin et al., 2019) which suggests that the cuticle is not only 

be present in aerial plant organs. The barrier properties of the cuticle against stress 

factors will be linked to its structure and chemical composition at the micro- and nano-

scale level, but ii is difficult to establish a clear association between these factors due to 

multiple experimental constraints.   

A main feature of the cuticle is that it is generally rich in lipids, such as waxes, cutin 

and/or cutan polymers, and may also contain minor phenolic and mineral element 

amounts (Guzmán-Delgado et al., 2016; Segado et al., 2016; Lara et al., 2019; Philippe 

et al., 2020a). Waxes may be present on the cuticle surface (epicuticular) or embedded 

in it (intra-cuticular; Domínguez et al., 2011). However, there is controversy on the 

contribution of epi- versus intra-cuticular waxes as main barrier for preventing 

transpiration losses (Jetter and Riederer, 2016; Zeisler-Diehl et al., 2018; Zhang et al., 

2020), and it could be reckoned that this may vary e.g., depending on species, organs or 

environmental conditions. Cutin is a polyester formed by C16 and/or C18 hydroxi-fatty 

acids formed in epidermal cells (Yeats and Rose, 2013; Philippe et al., 2020b; Segado et 

al., 2020) abundantly found in the cuticle of aerial organs of many plant species. 

However, an alternative insoluble and non-saponifiable compound named cutan has 

been found to occur in the leaf and fruit cuticle of various species (e.g., Schmidt 

Schönherr, 1982; Villena et al., 1999; Johnson et al. 2007; Guzmán-Delgado et al., 2016) 
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which has been recently classified according to its degradability after gradual chemical 

treatment (Leide et al., 2020). An important role of phenolics in cuticle structure, 

biomechanics and function has been described in several studies (Karabourniotis and 

Liakopoulos, 2006; Domínguez et al., 2009). Based on von Mohl'͑s (1842, 1847) 

hypotheses, the cuticle has been traditionally understood as a lipid-rich layer which is 

independent from the epidermal cell wall underneath. However, recent studies showed 

the presence of cell wall polysaccharides in the leaf cuticle of several species (Guzmán 

et al., 2014a,b; Hama et al., 2017, 2019) and also in tomato fruit cuticles (Karabourniotis 

and Liakopoulos, 2006; Segado et al., 2016, 2020; Phiilippe et al., 2020a). The cuticle 

may be hence interpreted as a specialised part of the primary cell wall, somehow 

analogous to a lignified secondary or a suberized cell wall (Niklas et al., 2017).   

The relationship between cuticular structure and chemical composition is unclear to 

date and its analysis is not easy to approach. Experimental difficulties for assessing this 

relationship stem from the fact that the cuticle is a composite membrane made of 

compounds with hydrophilic (i.e., chiefly polysaccharides) and hydrophobic (mainly 

waxes and cutin) components and functional groups which are heterogeneously 

arranged also at the nano-scale level (Fernández et al., 2016). The fine structure of 

cuticle cross-sections observed by transmission electron microscopy (TEM) has been 

analysed in various studies which attempted to gain insight into the link between 

chemical composition and structure (e.g., Wattendorff and Holloway, 1980, 1982; 

Mérida et al., 1981; Krüger et al., 1996; Guzmán et al., 2014a,b). Proper observation of 

this part of the epidermal cell wall is not simple, and TEM tissue preparation processes 

like fixation or staining may influence the degree of contrast and occurrence or electron 

lucent or dense areas in samples, and also the risk of artefacts (Krüger et al., 1996). An 

example of cuticle cross-sections of different organs and epidermal structures is 

provided in Figure 1, where a Quercus Ilex leaf trichome (a) a rose petal (b), the guard 

cells and stomatal pores of leaves of Cucumis sativus and Ulmus minor (c-f). are shown 

in TEM micrographs prepared as described by Guzmán et al. (2014a). Observation of the 

thin cuticle covering the trichome, the rose petal or guard cells (Figure 1) requires higher 

magnification for examining its fine structure. Chiefly in the cuticle of the holm-oak 

trichome and flower petal, a reticulate pattern can be observed, with the presence of 

polysaccharides as electron-dense areas and pectin as a dark continuous zone often 
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visible underneath the cuticle (see the trichome in Figure 1a, as an example). Recently, 

Schreel et al. (2020) analysed the structure of Fagus sylvatica leaf trichomes in relation 

to their capacity to absorb water. In a low magnification TEM micrograph of a thin-

section having folds which are artefacts looking like dark pores, trichome surfaces were 

surprisingly interpreted to by covered with pectin as the outermost cuticular layer, a 

substance known to form hydrogels (Zwieniecki et al., 2001). Pectin is an important 

primary cell wall and middle lamella constituent (Bidhendi et al., 2020) which has also 

been detected in plant cuticles (Guzmán et al., 2014b; Segado et al., 2016). However, 

Schreel et al. (2020) suggested the occurrence of pectin as outermost cuticle chemical 

constituent and this will have to be verified in future plant surface characterisation 

studies. When analysing the composition of cuticular waxes of trichomes compared to 

epidermal pavement cells of Arabidopsis leaves and stems, Hegebarth et al. (2016) 

determined variations in wax chemical composition and chain length distribution. In 

Figure 1a, an irregular deposition of lipids (electron translucent areas with grey to white 

colours in TEM micrographs) in the cuticle covering a holm-oak trichome is observed 

providing evidence for the chemical and structural heterogeneity of this epidermal cell 

wall part.   

PLANT SURFACE COMPOSITION AND STRUCTURE AFFECTS WETTABILITY AND 

PERMEABILITY  

Plant surfaces have been found to have a major degree of topographical heterogeneity 

as potentially provided by micro-scale roughness (e.g., presence of trichomes, papillae 

or encrypted stomata) and/or nano-scale roughness associated with epicuticular waxes 

or cuticular folds (Koch et al., 2008; Koch and Barthlott, 2009; Barthlott et al., 2017). 

While plant surface roughness has been assessed in few studies (e.g., Chowdhury et al., 

2005; Bediaf et al., 2015), the distribution of chemical compounds in cuticle surfaces is 

unknown and both factors will affect contact phenomena with e.g., surface deposited 

water, aerosol particles or microorganisms (Fernández and Khayet, 2015). Interest on 

leaf wettability as affected with epicuticular wax composition and structure or the 

addition of surface-active agents (surfactants) dates back to the 1940s (Ebeling, 1939; 

Fogg, 1947; Holloway, 1969a,b; Rentschler, 1971). Structural observations of leaves of 
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highly water repellent Nelumbo nucifera and other species (Barthlott and Neinhuis, 

1997; Neinhuis and Barthlott, 1997; Barthlott et al., 1998), triggered the development 

of wettability studies focussing on biomimetics (Barthlott et al., 2017).      

Water or aqueous solutions deposited as e.g., rain, foliar sprays, fog or dew will 

interact with the surface of leaves, leading to potentially high or low contact angles, in 

addition to drop adherence or repellence (Fernández et al., 2017), as summarised in 

Figure 2. Provided that there is adherence of liquid drops to the surface of leaves, the 

resulting contact angles will be due to the combination of surface chemistry and 

structure, as noted above. Lower contact angles of water or agrochemical sprays will 

increase the area of contact between the liquid and the leaf surface and potentially 

favour the process of foliar absorption, as shown for Dracaena draco leaves 

(Jura‑Morawiec and Marcinkiewicz, 2020). On the contrary, surfaces having high contact 

angles and even drop repellence like the adaxial leaf side of wheat (Fernández et al., 

2014b) or Nelumbo nucifera (Barthlott and Neinhuis, 1997) will have no chance for foliar 

penetration to occur, unless a surfactant for lowering the surface tension of water is 

added to the formulation (Fernández and Eichert, 2009). This implies that wettability 

(i.e., measured as the contact angle of drops of a liquid with a solid surface) is a 

prerequisite for foliar penetration to take place (Figure 2). Two water condensation 

mechanisms may be expected to occur in leaves in response to dew or fog exposure, 

namely, film-wise condensation or drop-wise condensation (Fernández et al., 2014a). 

Drop condensation mechanisms will also depend on leaf surface chemical composition 

and roughness, low surface free energy (hydrophobic) materials forming discrete liquid 

droplets (Miljkovic and Wang, 2013), especially on highly unwettable surfaces with low 

contact angle hysteresis (Ahlers et al., 2019; Cha et al., 2020). Thereby, water 

condensation of dew or fog may be expected to occur as films in rather wettable 

surfaces and hydrophilic areas or as drops in unwettable leaf surfaces (Figure 2). Hence, 

leaf water condensation can contribute to fog harvesting and water delivery to the roots 

(Ebner et al., 2011; Konrad et al., 2015, Rosado and Holder, 2013).  

The importance of leaf wetting has also been considered in few ecophysiological 

studies that assessed how foliar deposition of fog (Hanba et al., 2004; Yokoyama et al., 

2019) or sprinkler irrigation (Urrego-Pereira et al., 2013) affected the rate of 

photosynthesis and transpiration, as recently discussed by Binks et al. (2020). The 
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process of stomatal uptake is however complex and heterogeneous (Eichert et al., 

2008), as described below. In summary, while adequate wetting preliminary favours the 

process of absorption as described in Figure 2, it does not ensure that water and 

electrolyte solutions may cross the plant epidermis, as discussed in the following 

paragraphs.    

FOLIAR ABSORPTION PATHWAYS FOR WATER AND SOLUTES  

For approaching the transport of water and solutes across plant surfaces, the 

importance of thermodynamic aspects related to the affinity or not between cuticle /cell 

wall constituents and diffusing substances such as water or electrolytes, should be 

preliminary considered. While all molecules will be subjected to van der Waals 

(dispersive or apolar) forces, water and solutes which have significant non-dispersive 

(including polar) and hydrogen (H)-bonding interactions, will have affinity for cell wall 

polysaccharides and no or limited affinity for lipids present in the cuticle (Khayet and 

Fernández, 2012). This will be taken into account when discussing about foliar water and 

solute uptake mechanisms in the sections below. Nonetheless, additional factors such 

as cuticle and/or cell wall porosity, nano-structure or length of the diffusion pathway 

will affect transport phenomena across plant surfaces, but these aspects are difficult to 

characterise experimentally and remain unclear so far.  

The absorption and subsequent utilisation and/or accumulation of atmospheric 

water by aerial plant organs (chiefly leaves) have been reported specially for xerophytes, 

halophytes and species subjected to temporary drought (Stone et al., 1950; Munné-

Bosch et al., 1999; Limm et al., 2009; Eller et al., 2013; Wang et al., 2016; Jura‑Morawiec 

and Marcinkiewicz, 2020). However, few more specific investigations evaluated the 

contribution of various foliar epidermal structures to the uptake of surface-deposited 

water, such as hydatodes (Martin and von Willert, 2000), scales (Wang et al., 2016) but 

chiefly trichomes (Grammatikopoulos and Manetas, 1994; Papini et al., 2010; Fernández 

et al., 2014a; Pina et al., 2016; Li et al., 2018a,b; Li et al., 2019, Schreel et al., 2020). For 

example, Li et al. (2018a,b; 2019) evaluated the absorption of foliar-applied zinc (Zn, 

with no surfactant)) provided as Zn-sulphate and Zn-nanoparticles, by synchrotron-

based X-ray fluorescence microscopy and nanoscale secondary ion mass spectrometry. 

They observed an accumulation of foliar-applied Zn in some glandular trichomes of 
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soybean (Glycine max), but not in the 7 different types of glandular and non-glandular 

trichomes found in tomato (Solanum lycopersicum) leaves (Li et al., 2018a). In the case 

of Zn foliar application to sunflower (Helianthus annuus), Zn absorption was chiefly 

associated with non-glandular trichomes which often occurred in bundle sheath 

extensions that further enabled Zn transport to the vascular bundles (Li et al., 2019). 

Recently, Schreel et al. (2020) gained evidence for the absorption of water and solutes 

by beech (Fagus sylvatica) leaf vein trichomes using Synchrotron-based micro-

tomography. When analysing the anatomical features of leaves of 12 xeromorphic 

species and 5 mesomorphic species, Fahn (1986) observed that the base of the 

trichomes occurring in xeromorphic species was stained with Sudan IV, indicating that 

cell walls were cutinised. By contrast, trichomes of leaves of the mesic species analysed 

appeared to have a primary cell wall which may enable water movement out of the 

trichomes, unlike the apoplastic barrier occurring in cutinised cell walls of xeromorphic 

trichomes (Fahn, 1986). Similarly, Fernández et al. (2011) observed that the base of 

peach fruit trichomes was cutinised, such highly pubescent fruit surface being highly 

unwettable by water drops. The occurrence of extremely hydrophilic (e.g., Benz and 

Martin, 2006; Grammatikopoulos and Manetas, 1994; Schreel et al., 2020) or 

hydrophobic (Fernández et al., 2011) trichomes has been shown in few plant species 

and organs. Kim et al (2017) discussed about the importance of water absorption and 

wettability of trichomes and trichome clusters for cacti survival. By carrying out leaf 

wettability measurements and trichome structure observations, they concluded that 

trichomes and trichome clusters can contribute to fog and dew collection, with the 

subsequent absorption of water prior to evaporation. Future studies should hence 

analyse the structure and composition of trichomes and trichome surfaces at various 

scales, and their influence on water and solute transport, surface wettability and water 

adherence or repellence, as evaluated by some authors (Brewer et al., 1991; Smith and 

McClean 1989; Fernández et al., 2014a, 2017). For example, a different degree of 

wettability and potential water and solute transport capacity may be expected for 

glandular versus non-glandular trichomes, and dead compared to alive trichome cells 

(Karabourniotis et al., 2020)  

On the other hand, the surface of veins and minor venations like bundle sheath 

extensions, may be chemically and structurally different to other leaf lamina areas, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved 

having also different rates of wettability and bidirectional transport of water and 

solutes. To assess this hypothesis and using beech as model species, Bahamonde et al. 

(2018) estimated the wettability, surface free energy and permeability to 150 mM 

calcium (Ca) chloride of vein versus green lamina areas, by depositing 3 µl drops with a 

micro-syringe. Veins of beech and Quercus petraea leaves were found to have lower 

contact angles with water, and evidence for foliar Ca absorption was only gained after 

the deposition of Ca-chloride drops on to the veins of beech. This suggests that beech 

leaf veins are chemically and structurally different to the rest of the leaf lamina, and that 

this tissue is more permeable to water and solutes that other epidermal zones. This may 

also occur with bundle sheath extensions of heterobaric leaves which can enable the 

transport of water and solutes (Wylie, 1943, 1952), and contribute to water economy 

(Nikolopoulos et al., 2002). The transport of foliar-applied Zn in sunflower after trichome 

absorption was observed via bundle sheath extensions (Li et al., 2019), and trichomes 

often occur in this minor leaf venation of some species (e.g., in Quercus ilex; Fernández 

et al., 2014a). 

Cuticular absorption pathways for water and solutes  

As discussed in the previous section, aerial plant surfaces of organs with primary growth 

are meant to be covered with a cuticle, and recent studies showed the presence of cell 

wall polysaccharides as major chemical constituents (Guzmán et al., 2014a, Segado et 

al., 2016; Hama et al., 2017; Phiilippe et al., 2020a). The cuticle from different species, 

organs or developmental stages may have different degrees of lipidisation in qualitative 

and quantitative terms (Fernández et al., 2016), as observed in Figure 1. Before 

considering the permeability of the plant cuticle to water and solutes, it must be 

highlighted its cell wall nature as noted before. The primary cell wall is structurally 

formed by cellulose fibrils embedded in a hydrated matrix of pectin, hemicellulose and 

proteins (Cosgrove, 2016). Considering the cuticle as a modified cell wall (Niklas et al., 

2017), potentially variable amounts of lipids (which are chiefly apolar) and 

polysaccharides (which provide non-dispersive/ polar and H-bonding interactions) may 

be found e.g., in different species, developmental stages organs, or epidermal structures 

(Fernández et al., 2016). The permeability of the cell wall or the cuticle to water and 

solutes is the product of their solubility, which is a thermodynamic parameter reflecting 
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the interactions between the diffusing compound/s and the cuticle/cell wall, and their 

diffusivity through the cuticle/cell wall matrix. Diffusivity is a kinetic parameter 

associated with the molecular size of the compound and the structure of the matrix 

(Fernández et al., 2016, Khayet and Fernández, 2012). To date the structure and 

chemical heterogeneity at the nanoscale is poorly understood and this hinders the 

development of models for the proper prediction of cuticular permeability. However, 

the cuticle can be considered a dense membrane (Fernández et al., 2016) which 

excludes the occurrence of micro-pores or continuous pores, as hypothesized by some 

researchers (Schönherr, 1976, 2006; Riederer, 2006; Tredenick et al., 2017). Chiefly 

based on trials carried out with isolated cuticles from few plant species, it has been 

suggested that polar substances and water penetrate via different mechanisms to those 

of rather apolar compounds, such as many herbicides, insecticides or fungicides 

(Schreiber, 2006; Schreiber and Schönherr, 2009), an idea which was however 

challenged by Fernández and Eichert (2009).  

The process of diffusion of water and solutes in the cuticle is still not fully 

characterized and has been related to the occurrence of “aqueous pores” (Schönherr, 

2006). The existence of these cuticular pores has never been microscopically observed 

and has been questioned by various authors (e.g., Aponte and Baur, 2014; Fernández et 

al., 2016; Riederer, 2006). An alternative hypothesis could be that water and solute 

cuticular transport may be associated with polar functional groups of cuticular chemical 

constituents (chiefly hydrophilic polysaccharides; Chamel et al., 1991; Fernández et al., 

2016; Reina et al., 2001; Riederer, 2006). Several studies showed that water sorption to 

polar functional groups increase the volume of the cuticle leading to swelling, and that 

this may be associated with transport mechanisms (Arand et al., 2010; Chamel et al., 

1991; Luque et al., 1995; Riederer, 2006). The processes of cuticle swelling or shrinkage 

may be influenced by environmental variables, such as relative humidity (RH) and 

temperature (Figure 3). Another factor which may affect the process of transport of 

water and solutes across the cell wall or the cuticle, is solution pH, as recently shown by 

Aponte and Baur (2018). Increased water permeability and cation exchange capacity 

above pH 3 (the isoelectric point of cuticles described by Schönherr and Hubert (1977), 

may enable the attraction of water molecules, with formation of hydration shells which 

may ultimately lead to cuticular transport (Aponte and Baur, 2018). It must be however 
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noted that the existing cuticular water sorption studies have been exclusively developed 

with cellulase- and pectinase-isolated cuticles which may lead to artefacts and 

misleading interpretations (Fernández and Eichert, 2009; Fernández et al., 2016). Hence, 

it can be probably expected that the state of hydration of the cuticle of intact organs 

may have been seriously underestimated to date. The major influence of cuticle 

hydration on water and solute transport across the cuticle following a tortuous pathway, 

has been referred to as a “dynamic aqueous continuum” (Beyer et al., 2005; or “dynamic 

polar continuum” (Fernández et al., 2017). An important feature of cuticle transport of 

chiefly apolar (lipophilic) or rather polar (hydrophilic) compounds is size selectivity 

(Aponte and Baur, 2014). Molecular size constraints for diffusion may be linked to 

molecular spacing and thermodynamic interactions between cuticular constituents and 

the diffusing chemicals. For the leaf and fruit cuticle of few species, size limits of 0.3 to 

4.8 nm diameter have been indirectly estimated as diffusion threshold, for hydrophilic 

(e.g., water or nutrient sources) or rather hydrophobic (e.g., herbicides or fungicides) 

substances (Beyer et al., 2005; Eichert and Goldbach, 2008; Luque et al., 1995; Popp et 

al., 2005; Schönherr, 1976). However, the cuticle of some epidermal surface areas may 

be chemically and structurally irregular (as observed in trichomes and trichome scars of 

the Quercus ilex adaxial leaf sides, Fernández et al., 2014a), favouring the penetration 

of water and solutes as shown to occur in underground hypocotyl tissues of mung bean 

(Vigna radiata; Aponte and Baur, 2014). The hypocotyl underground surface was more 

hydrophilic and permeable to water and solutes than a cuticle, being also less size-

limiting and maybe closer to a primary cell wall. The limiting size threshold for the 

diffusion of molecules was found to be 1.5 nm (Aponte and Baur, 2014) which is within 

the range reported for plant cuticles, as described above.  

Transport of water and solutes through stomata 

For many decades, the role of stomata in the processes of foliar water and solute uptake 

had been a subject of controversial debate. Initially, it was assumed that solutions may 

enter stomata spontaneously by infiltration, i.e. by mass flow through open stomata. 

This view was supported by a multitude of studies indicating that the presence, density 

or degree of aperture of stomatal pores affected penetration rates of foliar-applied 

substances (e.g. Schönherr and Bukovac, 1978; Eichert et al., 1998; Eichert and 
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Goldbach, 2008, Burkhardt et al., 2012). The possibility of spontaneous infiltration of 

leaves by aqueous solutions, however, would imply that leaves bearing stomata on their 

adaxial (i.e., upper) surface should be regularly infiltrated by water during precipitation 

events. From an ecophysiological viewpoint, it is clear that infiltration of the leaf 

mesophyll by precipitation events must be prevented, because this would limit 

photosynthesis due to the restricted diffusion of CO2 in water as compared to air 

(Brewer et al., 1991). The argumentation against spontaneous infiltration of stomata 

was substantiated by Schönherr and Bukovac (1972), who hypothesised that the specific 

architecture of stomata prevents capillary infiltration of aqueous solutions. They 

(Schönherr and Bukovac 1972) emphasised that stomatal infiltration of foliar-applied 

solutions may only occur after exerting external pressure, or by adding to the solution 

certain kind of surfactants (Field and Bishop, 1988; Zabkiewicz et al., 1993)  

Meanwhile, it became evident that the apparent contradiction between theory 

(“infiltration of stomata by mass flow is impossible”) and experimental evidence (“foliar 

uptake of solutes is promoted by the presence, density or degree of aperture of 

stomata”) was caused by the misconception of the underlying physical mechanisms of 

stomatal penetration. While solute uptake by infiltration of solutions assumes that 

solutes penetrate stomata together with the (aqueous) solvent, solute transport by 

diffusion may take place independently of the solvent. It was shown that solutes and 

even small nano-particles most probably penetrated the stomatal pore by diffusion 

along the surface of guard cells (Eichert et al., 2008; Eichert and Goldbach, 2008). It was 

demonstrated that this stomatal penetration pathway may enable much faster 

penetration rates of ionic solutes as compared to cuticular penetration (Eichert et al., 

2008), and even be the exclusive pathway for certain substances, such as nano- particles 

(Eichert and Goldbach, 2008).    

Diffusion of water-soluble solutes requires the existence of an aqueous diffusion 

medium. The diffusion of foliar-applied solutes along the surface of guard cells thus 

indicates the presence of liquid water lining the cell surface. It is known that the surface 

of guard cells is, like ordinary epidermal cells, covered by a cuticle (Wullschleger and 

Oosterhuis, 1989) which in combination with surface roughness (see Figures 1c and d, 

for a smooth versus a rough guard cell surface), may prevent the presence of substantial 

amounts of liquid water in the stomatal pore (see Figure 3). However, it was shown that 
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not all stomata contribute to the uptake of foliar-applied solutes (Eichert and Burkhardt, 

2001; Eichert et al., 2008; Eichert and Goldbach, 2008). Therefore, it was concluded that 

external processes may increase the wettability of the guard cell surface of individual 

stomata, “activating” them for solute transport (Eichert and Burkhardt, 2001; Eichert et 

al., 2008; Fernández and Eichert, 2009; Burkhardt et al.,2012). Different processes were 

proposed to be involved in the activation of individual stomata for the diffusive 

exchange of matter across leaf surfaces, namely: presence of bacteria (Eichert et al., 

2008) or fungal hyphae (Burgess and Dawson, 2004), epistomatal mucilage (Westhoff et 

al., 2009) and hygroscopic particles (Burkhardt et al., 2012; Basi et al., 2014).  

The occurrence of water films onto the surface of guard cells may not only enable the 

exchange of solutes, but also of liquid water between the leaf surface and the 

mesophyll. This process may account for the uptake of water by the foliage, as described 

in recent ecophysiological studies (see above). Water movement into the leaves requires 

that the gradient of water potential is directed into the leaf interior, i.e., that the 

atmosphere is (almost) saturated with water vapour and/or that, due to precipitation or 

spray treatment, water drops are temporarily present onto the leaf surface. The 

pathways of foliar water uptake under such conditions are still not understood, and 

recently it was speculated that leaves may absorb water by “reverse transpiration”, i.e., 

by diffusion of water vapour through stomata into the leaf interior (Vesala et al., 2017, 

Binks et al., 2019; Guzmán-Delgado et al., 2020).  On the other hand, movement of liquid 

water as water films present in stomatal pores will probably also result in substantial 

uptake rates. Moreover, contrary to reverse transpiration, this mechanism will also be 

available when the atmosphere is under-saturated with water, as long as liquid drops 

are present onto the leaves. This is a typical scenario during precipitation events and 

after foliar spraying with fertilisers or water-based agrochemical solutions or emulsions. 

In this situation, the retained drops are “over-saturated” with water and hence 

evaporation will start. However, as long as the evaporation process continues, water 

may enter the leaves in liquid form by diffusion either in stomatal water films or through 

the cuticle.   
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TECHNIQUES FOR TRACING WATER AND SOLUTE FOLIAR ABSORPTION 

In the last decades, several approaches have been developed with the aim of 

characterising the pathways of foliar uptake of water and solutes. For example, a 

method for assessing foliar water uptake based on immersing leaves (with the petiole 

sealed with paraffin) in water for 60 minutes, and measuring water potentials before 

and after immersion, has been used in some studies (e.g., Goldsmith et al., 2013; Gotsch 

et al., 2015). This procedure has various potential drawbacks because leaves will never 

be naturally exposed to an aqueous environment. Processes ultimately leading to 

uncontrolled water uptake by immersed leaves, such as stomatal opening, leaching of 

mineral elements and soluble compounds (Guzmán-Delgado et al., 2016), or cuticle 

component alterations (Kitamura, 2011) may occur, leading to artefacts and misleading 

ecological conclusions. Besides studying water uptake on a quantitative basis, the 

identification of pathways for foliar water uptake has been the main focus of many 

studies. A broad range of methods and experimental setups have been deployed and 

adapted to changing concepts and hypotheses. Generally, the identification of the exact 

location of entry points of substances into leaves requires the visualisation of the 

process. Therefore, different imaging methods have been utilised, most of them based 

on radiolabelled or fluorescent tracers or the precipitation and visualisation of insoluble 

salts within the penetration route.  

Tracing foliar uptake: challenges and drawbacks 

There are three main challenges in the development and application of a suitable 

methodology for the purpose of tracking mechanisms of foliar uptake (see also 

Fernández and Eichert, 2009): Firstly, for the unequivocal identification of penetration 

pathways, the studied substance must be “caught in the act”, i.e., while still in the 

process of movement within the leaf surface. Secondly, because many imaging 

techniques require the use of easily detectable tracers as substitutes for target 

substances, such as fertilisers or agrochemicals, it has to be ensured that the physico-

chemical properties of the selected tracers match those of the substances under 

consideration. Thirdly, it has to be made sure that the employed detection method itself 

does not change the nature of the leaf surface and the penetration pathways.  
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When evaluating the existing body of literature on the subject of penetration 

pathways, it becomes clear that most of the published studies did not fully take into 

account the abovementioned requirements. The first prerequisite, the detection of the 

substance directly in its uptake route, is particularly difficult to be fulfilled. This is mainly 

caused by technical limitations due to the low spatial resolution of visualisation 

procedures. This applies to auto-radiographic methods, which have been frequently 

used in the 1950s and 1960s (e.g. Barrier and Loomis, 1957; Franke 1964). Furthermore, 

these methods required complex sample preparation steps and usually long exposure 

times. Like all optical microscopy methods, conventional fluorescence microscopy has a 

limited resolution of 0.5 µm, hence hampering the exact localisation of tracers. The 

problem is furthermore aggravated by the fact that fluorescent tracers tend to outshine 

their surroundings, making the exact localisation of the tracer very difficult (Fernández 

and Eichert, 2009).  

The second prerequisite is of exceeding relevance in studies based on fluorescent 

tracers. These compounds are quite large organic molecules, many of them, such as 

fluorescein, bear acidic groups and thus pH-dependent charges (Martin and Lindqvist, 

1975). As a consequence, these molecules may be present in different chemical forms 

at the same time and change their speciation depending on environmental conditions. 

Due to their relatively high molecular mass and molar volume, their suitability as proxies 

for small ions such as metal cations, may be limited because the diffusion of larger 

molecules is more strongly affected by the size-limiting constraints of the penetration 

routes in the cuticle than smaller compounds (Schönherr and Schreiber, 2004). This is of 

particular relevance for the visualisation of pathways for foliar water uptake (see section 

below). 

The third prerequisite, i.e., that the detection method itself must not affect the 

penetration pathways, is an important drawback of many experimental approaches. In 

many studies foliar uptake was studied with isolated cuticles which were mounted in 

diffusion chambers for evaluating the rate of solute penetration (Schönherr, 2006). 

Apart from the fact that only few species can be used for leaf cuticle isolation and 

diffusion experiments, this approach is additionally restricted to leaf surfaces without 

stomata. Hence, these studies neglect the possible contribution of the stomatal uptake 

pathway. Furthermore, it is likely that the process of cuticle isolation, which is based on 
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the enzymatic separation from the epidermal cell wall using cellulase and pectinase, will 

alter cuticular barrier properties (Fernández and Eichert, 2009). Considering that our 

view on the nature and composition of the cuticle is currently changing (see above), this 

risk is becoming even more evident. If the entire cuticle is viewed as a modified cell wall 

(Fernández et al., 2016), applying enzymes decomposing cell wall components will 

probably have tremendous effects on the barrier properties of the obtained isolated 

cuticles.  

Another group of methods immanently bearing the risk of artefacts relies on the 

formation of precipitates as indicators of foliar penetration pathways. In the 1960s a 

series of studies aimed at visualizing structures which were called “ectodesmata” (e.g., 

Franke, 1967). The experiments were based on the visual detection of silver (Hg) 

precipitates (Schönherr and Bukovac, 1970) after external application of HgCl2. The 

procedure of visualisation was rather complex involving the treatment of leaves with 

concentrated acids and ethanol, followed by a range of washing steps. Such intensive 

leaf chemical handling may substantially affect the chemical composition, structure and 

barrier properties of leaf surfaces which may be significantly altered during treatment. 

Moreover, it was later shown that the formation of Hg precipitates did not indicate the 

location of penetration pathways, but only the occurrence of areas in the cuticles 

inducing the reduction of Hg ions (Schönherr, 2006). A similar method using AgCl 

precipitates as indicators of penetration pathways was employed for example by 

Schreiber et al. (2006) and more recently by Schreel et al. (2020). Here, Ag+ ions were 

applied externally (as AgNO3) and after reaction with Cl- ions the resulting precipitates 

were thought to indicate the penetration pathway of Ag+ ions as proxies for metallic 

cations. Apart from the risk of Ag toxicity, it is very likely that the precipitation of AgCl 

rather indicates locations with high native concentrations of Cl- in the leaf surface, e.g. 

in the vicinity of stomata or in trichomes, than preferential sites of Ag+ uptake 

(Fernández and Eichert, 2009).  A general drawback of precipitation methods is the fact 

that the growth and formation of precipitates within the treated leaf tissues which may 

affect their structural integrity (Fernández and Eichert, 2009). Initialisation of 

precipitation may form crystallisation nuclei resulting in attraction and accumulation of 

large quantities of precipitates. The associated volume increase may finally cause 

mechanical damage to the leaf structure and confound the results. 
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The ultimate challenge of tracking water uptake routes 

In the past, transport of water out of leaves by stomatal and/or cuticular transpiration 

has been intensively studied. The opposite direction of water transport, however, i.e., 

foliar water uptake has been largely neglected for a long time and considered to be 

important only under certain conditions. Meanwhile, foliar water uptake is receiving 

more and more attention in ecophysiological research, and is currently considered to be 

important not only for certain species and arid habitats, but rather a phenomenon of 

global importance (Berry et al., 2019).  

In the literature, there seems to be no clear agreement on the routes of water 

transport in the cuticle. Whereas some researchers assumed that water is exclusively 

transported following the very same route(s) of hydrophilic solutes, i.e., in stomata 

(Burkhardt, 2010) and pathways in the cuticle called “aqueous pores” or similar 

(Schönherr, 1976), others assumed that water may also diffuse in the cuticle 

independently of these specific polar pathways (Schreiber, 2005). At first sight, it might 

appear strange that water could (also) be transported in a route separate from water-

soluble compounds. However, considering the different physico-chemical features of 

both substances, the occurrence of at least partially-separated routes appears likely. The 

water molecule is small and neutral, whereas water-soluble solutes are much bigger, 

often charged, and surrounded by a hydration shell consisting of several water 

molecules. Hence, even small ions, such as metal cations, are much bigger than water 

molecules due to the water molecules present in their surrounding hydration shell. It is 

therefore likely that water molecules may indeed access the so-called lipophilic 

pathway, while larger and/or neutral substances are excluded from this route. Some 

authors assumed that this lipophilic pathway is the most important (Schreiber et al. 

2001) or even the only relevant route (Schönherr, 2000) for water movement in the 

cuticle. It can be hence hypothesised that regardless of their polar and apolar 

components (note that all compounds will be subjected to van der Waals interactions 

as described above), molecules and ions may diffuse in the chemically and structurally 

heterogeneous cuticle, following a tortuous pathway but these mechanisms should be 

analysed in future studies. 
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Bearing this in mind, it becomes evident that attempts to track cuticular water uptake 

routes by following the penetration routes of ionic or fluorescent tracers (e.g. Schreel et 

al., 2020) are a priori foredoomed. Both hydrated metallic ions and fluorescent tracers 

are much bigger than water molecules, and many of the fluorescent tracers are also 

ionic, excluding them from pathways available for small, neutral water molecules. 

Therefore, the routes of tracer uptake across leaf surfaces may not provide any sort of 

evidence for the concomitant routes of water uptake. Moreover, water uptake by 

reverse transpiration, i.e. by uptake of water vapour, is an uptake pathway which is 

exclusively available for water but not for the dissolved tracers.  

Tracing foliar uptake: conclusions 

Any attempt to elucidate the routes of foliar uptake requires profound knowledge, both 

about the properties, availability and constraints of the diffusing pathway(s) and of the 

physico-chemical nature of the permeating substance. It is very important to be aware 

of the fundamental difference between properties of the solvent, which is usually water, 

and the solute, which may be more or less apolar or polar, be ionic or neutral, and 

considerably differ in terms of molecular size. It is of extreme importance to take into 

account that the degree of polarity of a given compound has to be evaluated on a 

continuous scale. In this context, any black or white approach is prone to fail. This is 

important, for example, for some fertilisers such as urea and boric acid, which are both 

rather small, neutral molecules and may thus penetrate the cuticle to a substantial 

degree by the same pathway as lipophilic compounds. The same applies to foliar water 

uptake. In contrast to many of the substances which are supplied as aqueous solutions, 

water molecules themselves acting as a solvent, are very small and uncharged. This leads 

to the rather counterintuitive conclusion that water may also have access to the so-

called lipophilic penetration pathway, whereas solutes may be excluded from this route.  

CONCLUDING REMARKS AND OUTSTANDING QUESTIONS 

The absorption of water and solutes by the foliage has been demonstrated in many 

studies, and recent research efforts point towards its ecological significance for plant 

ecosystems (e.g., Dawson and Goldsmith, 2018; Schreel and Steppe, 2020). The 

potential of leaves to absorb chemicals applied in liquid form has been actually exploited 
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in agriculture since more than one century, and foliar nutrient sprays are commonly 

used in commercial agriculture fertilisation programs worldwide (Fernández and 

Eichert, 2009). However, knowledge on the composition and structure of plant surfaces 

and the mechanism of foliar absorption is still fragmentary and requires a proper 

understanding of the physico-chemical principles involved as preliminary requisite. 

Owing to the manifold constraints and great potential for the occurrence of 

experimental artefacts and misleading interpretations when analysing plant surfaces 

and their permeability to water and solutes, an array of questions remain open.  For 

coming up with solid permeability models it will be necessary to know the actual nano-

scale chemical and structural arrangement of cuticular and cell wall components and 

how may they vary in different surface structures such as guard cells, trichomes or veins.  

How may plant surfaces vary in chemical and structural terms during plant ontogeny and 

how they may be affected by different environmental conditions and stress factors? 

How are the mechanisms of foliar penetration of water and solutes through intact 

cuticles, stomata, trichomes, veins, hydatodes, scales or other epidermal structures? 

Which pathway may be relatively more important, for example, for each species or stage 

of development? Which new approaches and technologies may be used for assessing 

plant surface composition, structure barrier properties and permeability to water and 

solutes?  What is the actual significance of foliar water absorption for plant ecosystems 

worldwide? How do leaf surface micro- and nano- roughness and chemical composition 

affect the mechanisms of condensation of dew or fog?  How do environmental 

conditions affect plant surface structure, chemical composition and the mechanisms of 

absorption of water and solutes? 

In summary, more knowledge on the physico-chemical properties of plant surfaces is 

required for assessing the process of foliar absorption of water and solutes, a 

phenomenon which has been evaluated in many studies but that it is difficult to trace 

and prone to experimental artefacts.    
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Box 2. Open Questions 

 What is the nano-scale chemical and structural arrangement of 

cuticular chemical components? 

 What is the actual significance of foliar water absorption for plant 

ecosystems worldwide?  

 How are the mechanisms of foliar penetration of water and solutes 

through cuticles, stomata, trichomes, veins and other epidermal 

structures of e.g., different species or developmental stages, and 

which pathway may be relatively more important?  

 Which additional technologies may be used for assessing plant 

surface composition, structure and barrier properties?  

 How do environmental conditions affect plant surface structure, 

chemical composition and the mechanisms of absorption of water 

and solutes? 
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Figure Captions 

 

Figure 1. Examples of the characteristics of different plant surfaces covered with a 

cuticle.  

Transmission electron micrographs of cross-sections of: (a) adaxial leaf trichome of a 

Quercus ilex leaf, (b) cuticular folds on the adaxial surface of a rose petal, (c, e) Cucumis 

sativus leaf stoma with a smooth and thin cuticle covering the surface of the stomatal 

pore and guard cells (e), and (d, f) Ulmus minor stoma having rough guard cell and 

stomatal pore surfaces due to the occurrence of cuticular folds (d). GC, Guard cell; SC, 

stomatal cavity; CW, cell wall; C, cuticle    

 

Figure 2. Effect of plant surface wettability on water and solute surface interactions and 

foliar absorption potential.  

 

Figure 3. Pathways for the penetration of hydrophilic solutes across leaf surfaces.  

Water (blue) may be deposited on to the cuticle (a, b) or stomata (c), enabling the 

diffusion in to the leaf interior of hydrophilic solutes. At low relative humidity (RH), 

water in the cuticle is present mostly in the inner regions adjacent to the epidermal cells, 

whereas in the outermost regions only little water is sorbed (a). Only if RH is high or 

underneath a drop of liquid water, the cuticle absorbs enough water from the outer side 

to create continuous aqueous connections crossing the cuticle (b). In some stomata, 

water clusters may be present and form thin water films creating diffusion pathways for 

the penetration of solutes by diffusion (c). Since RH within the stomatal pores is 

generally increased by transpiration, these stomatal water films may exist at lower 

external RH and in the absence of liquid water drops on the leaves     
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