Adjusting the Neel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia
Financiación H2020 / H2020 Funds
Resumen: In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Neel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of similar to 1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g(-1), when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.
Idioma: Inglés
DOI: 10.1088/1361-6528/abc386
Año: 2021
Publicado en: Nanotechnology 32, 6 (2021), 065703 [11 pp]
ISSN: 0957-4484

Factor impacto JCR: 3.953 (2021)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 161 / 345 = 0.467 (2021) - Q2 - T2
Categ. JCR: PHYSICS, APPLIED rank: 51 / 161 = 0.317 (2021) - Q2 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 64 / 109 = 0.587 (2021) - Q3 - T2

Factor impacto CITESCORE: 6.2 - Engineering (Q1) - Materials Science (Q1) - Chemical Engineering (Q2)

Factor impacto SCIMAGO: 0.757 - Electrical and Electronic Engineering (Q1) - Chemistry (miscellaneous) (Q1) - Mechanics of Materials (Q1) - Mechanical Engineering (Q1) - Materials Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/734187/EU/Spin conversion, logic storage in oxide-based electronics/SPICOLOST
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-05-18-13:28:39)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-11-22, última modificación el 2023-05-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)