000108504 001__ 108504
000108504 005__ 20211122153226.0
000108504 0247_ $$2doi$$a10.1039/d0dt03326j
000108504 0248_ $$2sideral$$a122418
000108504 037__ $$aART-2020-122418
000108504 041__ $$aeng
000108504 100__ $$0(orcid)0000-0001-9340-5952$$aGuzmán, J.$$uUniversidad de Zaragoza
000108504 245__ $$a2-Pyridone-stabilized iridium silylene/silyl complexes: Structure and QTAIM analysis
000108504 260__ $$c2020
000108504 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108504 5203_ $$aIridium(III) complexes of the general formula [Ir(X)(κ2-NSiiPr2)2] (NSiiPr2 = (4-methyl-pyridine-2-yloxy)diisopropylsilyl; X = Cl, 3; CF3SO3, 5; CF3CO2, 6) have been prepared and fully characterized, including X-ray diffraction studies and theoretical calculations. The presence of isopropyl substituents at the silicon atom favours the monomeric structure found in complexes 3 and 5. The short Ir–Si bond distances (2.25–2.28 Å) indicate some degree of base-stabilized silylene character of the Ir–Si bond in 3, 5 and 6 assisted by the 2-pyridone moiety. However, the shortening of these Ir–Si bonds might be a consequence of the constrained 2-pyridone geometry, and consequently the silyl character of these bonds can not be excluded. A DFT theoretical study on the nature of the Ir–Si bonds has been performed for complex 3 as well as for four other iridium complexes finding representative examples of different bonding situations between Ir and Si atoms: silylene, base-assisted silylene (both with an anionic base and with a neutral base), and silyl bonds, using the topological properties of the electron charge density. The results of these studies show that the Ir–Si bonds in Ir–NSiiPr2 complexes can be considered as an intermediate between the base-stabilized silylene and silyl cases, and therefore they have been proposed as 2-pyridone-stabilized iridium silylene/silyl bonds.
000108504 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E42-20R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-099383-B-I00
000108504 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000108504 590__ $$a4.39$$b2020
000108504 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b8 / 45 = 0.178$$c2020$$dQ1$$eT1
000108504 592__ $$a0.98$$b2020
000108504 593__ $$aInorganic Chemistry$$c2020$$dQ1
000108504 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108504 700__ $$aBernal, A.M.
000108504 700__ $$0(orcid)0000-0002-7063-1292$$aGarcía-Orduña, P.$$uUniversidad de Zaragoza
000108504 700__ $$0(orcid)0000-0001-8054-2237$$aLahoz, F.J.$$uUniversidad de Zaragoza
000108504 700__ $$0(orcid)0000-0001-5823-7965$$aPolo, V.$$uUniversidad de Zaragoza
000108504 700__ $$0(orcid)0000-0002-0497-1969$$aFernández-Alvarez, F.J.$$uUniversidad de Zaragoza
000108504 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000108504 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000108504 773__ $$g49, 48 (2020), 17665-17673$$pDalton Trans.$$tDalton Transactions$$x1477-9226
000108504 8564_ $$s305060$$uhttps://zaguan.unizar.es/record/108504/files/texto_completo.pdf$$yPostprint
000108504 8564_ $$s2458547$$uhttps://zaguan.unizar.es/record/108504/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108504 909CO $$ooai:zaguan.unizar.es:108504$$particulos$$pdriver
000108504 951__ $$a2021-11-22-14:00:30
000108504 980__ $$aARTICLE