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Abstract 

A series of gold(I) and silver(I) derivatives with N- or S-donor ligands derived from 2-

anilino-pyridine has been synthesised and characterised. The mononuclear structure of 

[Au(L1)(PPh3)](TfO) (1a) and [Au(L2)(PPh3)](TfO) (1b) was confirmed by X-Ray 

diffraction studies, as well as the dinuclear structure in the case of [Ag(TfO)(L1)]2 (4a). 

Most of the complexes are cytotoxic against a model of colorectal adenocarcinoma (Caco-

2 cell line) and breast adenocarcinoma cancer cell lines (MCF-7). [Au(L1)(PPh3)](TfO) 

(1a) was able to induce caspases 8 and 3 activation, loss of mitochondrial membrane 

potential and ROS-dependent cell death on Caco-2 cells upon 24h incubation. In addition, 

the gold complex 1a produced a significant inhibition of the redox enzyme thioredoxin 

reductase as well as 20S proteasome. However, the silver(I) analogue 

[Ag(TfO)(L1)(PPh3)] (2a) induced cell death independent of inhibition of thioredoxin 

reductase and 20S proteasome, triggered ROS-independent apoptosis mediated by 

caspase 8 and 3 activation and loss of mitochondrial membrane potential, which points to 

different mechanism of action for both derivatives, dependent on the metal center. 
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1. Introduction 

The use of platinum-based anticancer drugs in chemotherapy is accompanied with the 

presence of side-effects such as gastrointestinal and hematological toxicity in addition to 

drug-resistance phenomena.1-2 In order to circumvent these drawbacks new metallodrugs 

have been designed based in non-platinum metals, such as ruthenium or gold.  

Gold complexes interact with cellular proteins3-5 instead of DNA, the main target of the 

platinum-based complexes, which suppose an important advantage in order to overcome 

the limitations found in platinum derivatives. Consequently, gold compounds are an 

interesting alternative to platinum-based drugs. Thus, a huge amount of gold derivatives, 

mainly gold(I) complexes, has been tested against different types of cancer cells.6-14 In 

addition to gold, other metals such as silver are emerging as potential anticancer agents.15-

23 

Silver complexes have been used as antimicrobial agents for many years24-27 mainly in 

the form of inorganic salts or complexes, such as silver nitrate28 and silver sulfadiazine. 

The latter is a sulfonamide based derivative introduced in 196829 and  is used as one of 

the most effective topical burn-treatment,30 thanks to its antibacterial properties.31 

Although silver is not an endogenous element, its toxicity in humans seems to be quite 

low. The body can tolerate the presence of silver in low doses without any toxic effects;32 

consequently this low toxicity constitutes one of the greatest advantages of silver 

derivatives over other metallodrugs. 

The mechanism of the anticancer activity of the silver derivatives is not well established, 

however, several possible targets have been identified. Thus, some examples have exerted 

antiproliferative effects by inhibition of the activity of the redox enzyme thioredoxin 

reductase (TrxR),33 by non-covalent interaction with DNA34 (interactions as π−π stacking 

contacts),35 by topoisomerase I inhibition36 or by LOX (lipoxygenase) inhibition 

activity.34 In general, silver complexes induce cell death via apoptosis and depolarisation 

of the mitochondrial membrane potential.37 

Although the mechanism of action of silver derivatives has not been fully clarified, it 

involves the release of the silver ion inside the cell that disrupts its function.38 

Consequently the choice of the ligands that can strongly coordinate the metallic center 

and facilitate the slow release of Ag+ is essential. With this idea, a significant amount of 

silver complexes with a great variety of ligands has been designed for potential 



pharmaceutical usage.16, 18-19, 21 Thus, silver N-heterocyclic carbene (NHC) complexes 15, 

17, 22-24,39 constitute the group with the largest number of examples of Ag(I) compounds 

with biological properties, mainly due to their strong coordination to the metallic center 

and their increased stability. Apart from Ag-NHC derivatives, silver coordination 

compounds with a high number of different ligands (carboxylic acids ligands;40 

phosphines;41-42 aminoacids ligands;43 N-donor ligands;44-45 S-donor ligands46 and mixed 

ligands, such as N,O-,47-48 N,S-,49 P,O-donor ligands50) have been recently described as 

potential anticancer silver-based complexes. 

With this background, we describe here the synthesis of new heterocyclic N- and N,S-

donor ligands derived from 2-anilinopyridine containing also thiophene or pyridine 

moieties. The choice of the anilino moiety is based on the properties exhibited by 

heterocyclic systems and molecules based on this unit.51-52 Furthermore, the easy 

functionalisation with pyridine of thiophene, the latter a five-membered aromatic sulfur-

containing heterocycle encountered in many therapeutically active agents, may confer to 

these ligands interesting biological properties.53-54 Additionally, coordination to silver 

and gold metallic centers may enhance those properties. New mononuclear silver 

derivatives, their gold analogs and dinuclear Ag(I) complexes have been described and 

their biological activity evaluated against Caco-2 and MCF-7 cancer cells. Redox 

enzymes thioredoxin reductase and glutathione reductase (GR) as well as 20S proteasome 

have been investigated as likely targets of selected gold(I) and silver(I) complexes. 

Moreover, measurement of reactive oxygen species (ROS) and cell death studies have 

been performed.  

2. Results and Discussion 

2.1. Synthesis of ligands and complexes.  

The reaction of 2-anilinopyridine with 4-chlorocarbonylpyridine or 2-

chlorocarbonylthiophene in the presence of NEt3, in order to neutralise the HCl generated, 

affords the corresponding ligands L1 (R = 4-pyridine) and L2 (R = 2-thiophene) after 

amide bond formation (Scheme 1).  

The addition of both ligands to a freshly prepared solution of [Au(OTf)(PPh3)] or to a 

solution of [Ag(OTf)(PPh3)] leads to the formation of the phosphane gold(I) complexes 

[AuL(PPh3)]TfO (L = L1, 1a and L2, 1b) and the phosphane silver(I) derivatives 

[Ag(OTf)L(PPh3)] (L = L1, 2a and L2, 2b, scheme 1) 



The asymmetric sulfonyl stretching frequencies characteristic of ionic triflate group55 are 

observed in the IR spectra of both gold complexes (1a-b), which is corroborated in their 
19F{1H} NMR with a singlet centered at -80 ppm. However, silver derivatives (2a-b) 

exhibit a downfield signal in their 19F{1H} NMR spectra at around -78 ppm, characteristic 

of a coordinated triflate ligand and the absence of the band in the region of 1260 cm-1, 

attributed to ionic TfO in their IR spectra. 

A downfield displacement of the pyridine resonances next to the carbonyl moiety is 

observed in the 1H NMR spectra of complexes 1a and 2a, which is in accordance with 

the coordination of the AuPPh3 moiety through the N atom of that pyridine. Ligand L2 

has replaced such pyridine by a thiophene unit, which signals remain unchanged after 

gold coordination in complexes 1b and 2b. Instead, the resonances of the pyridine 

molecule of the amine are shifted downfield, due to the coordination of the metallic center 

through its N atom.  

The 31P{1H} NMR spectra of the gold derivatives display a singlet centered at around 30 

ppm, which points to the presence of a unique AuPPh3 fragment. In the case of silver 

complexes, their 31P{1H} NMR spectra show a broad signal at room temperature, that 

split into two doublets at 200 K, due to the coupling of the phosphorus atom with silver 

isotopomers (109Ag and 107Ag). 

The addition of two equivalents of [Ag(OTf)(PPh3)] to ligands L1 and L2 lead to the 

preparation of the dinuclear phosphane silver(I) derivatives 3a and 3b (scheme 1). The 

NMR data of these complexes are in accordance with the coordination of two AgPPh3 

fragments to both pyridine units in 3a and to the pyridine and thiophene molecules in 3b. 

Likewise, the occurrence of two sets of two doublets in the 31P{1H} NMR spectra at 200 

K in 3b is in agreement with two different phosphorus environment as a consequence of 

the coordination of the AgPPh3 fragments to the pyridine and thiophene rings through the 

N and S atom, respectively. However, only two doublets are observed in 3a pointing to a 

similar coordination environment since two pyridine rings are coordinated to the AgPPh3 

units. In addition, complex 3a, display two set of doublets with lower intensity, centered 

at 10.9 ppm, that corresponds to [Ag(PPh3)2]+ moiety, which appears in solution along 

the time.  
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The reaction of AgOTf with L1 or L2 in 1:1 and 1:2 molar ratios affords the dinuclear 

[Ag2(OTf)2L2] (L = L1, 4a; L2, 4b) and the mononuclear [Ag(OTf)L2] (L = L1, 5a; L2, 

5b) derivatives, respectively (scheme 1). Coordination of the AgOTf fragment to both 

pyridine molecules in 4a and to pyridine and thiophene units in 4b is evidenced by the 

corresponding NMR downfield displacements and by X-ray analysis in the case of 4a. 

On the other hand, 1H NMR of complex 5a displays solely displacements in the acyl 

pyridine resonances and 5b in the pyridine ring of the amine, in accordance with the 

proposed structure depicted in scheme 1.  

All the complexes have been completely characterized by NMR studies, IR spectra, 

elemental analysis and mass spectra and in the particular cases of L1, L2, 1a, 1b and 4a, 

additional X-ray analysis corroborated the proposed structures. The experimental data 

point to a monodentate coordination of the ligands to the metallic centers of gold or silver 

Scheme 1. i) [M(OTf)(PPh3)] (M = Au, 1a-b; M = Ag, 2a-b), ii)  2 [Ag(OTf)(PPh3)], iii) AgOTf, 
iv) ½ AgOTf 



through the N-atom of the ligands, except in the cases of the dinuclear derivatives 3b and 

4b, where additional coordination to the S atom of ligand L2 justify the dinuclear 

structure. 

2.2. X-Ray diffraction analyses 

Molecular structures of L1, L2 and complexes 1a, 1b and 4a have been confirmed 

by X-ray crystallographic studies. L1 and L2 crystallise in the monoclinic space 

group P21/c with one molecule by asymmetric unit. The molecular structures are 

shown in Figure S1 (supplementary material) and confirm the nature of the 

compounds. The bond lengths and angles within then are as expected. 

The structure of complex 1a is shown in Figure 1a. The coordination of the AuPPh3 

fragment takes place to the N atom of the acyl pyridine group, with an Au-N and Au-P 

bond distances of 2.077(5) Å and Au1 P1 2.2371(16) Å, respectively. The geometry 

around the gold center is slightly distorted from linearity with a P-Au-N angle of 

174.46(15)º. The molecules are associated in the lattice due to the presence of 

intermolecular interactions of the gold center with the oxygen atom of the carbonyl group, 

Au1···O1 3.003 Å, in addition to hydrogen-bonding interactions with one of the phenyl 

groups of the PPh3 ligand, with a distance acceptor-donor O1···H-C36 of 3.278 Å  (Figure 

1b).  

 
a)       b) 

Figure 1. a) Molecular structure of the cation of complex 1a. Hydrogens have been omitted for 

clarity. b) View of the intramolecular interactions in complex 1a. 

The molecular structure of complex 1b has also been established by X-ray diffraction and 

is shown in Figure 2. In contrast to complex 1a the coordination of the gold atom takes 

place to the pyridine ring of the 2-anilinopyridine in complex 1b and not to the sulfur 



atom of the thiophene, corroborating the poor nucleophilicity of this moiety. The Au-N 

and Au-P distances are similar to those in complex 1a, 2.083(5) Å and 2.2398(16) Å, 

respectively. The geometry of the gold center is also linear, N-Au-P angle of 175.21(14)º. 

In this case in probably because the presence of a bulkiest sulfur atom there are not short 

intermolecular distances in the molecule. 

 

 

The structure of complex 4a was also measured but the data obtained, although it allows 

the determination of the molecular structure, is of low quality and consequently not 

accurate parameters can be obtained. However, the molecule shown in Figure 3 confirms 

the nature of the compound, presenting an interesting three dimensional polymer, in 

which there are a dinuclear silver unit with the ligand bonded to the silver through both 

pyridine groups as bridging ligand. Additionally, the silver atoms bond the oxygen of the 

carbonyl group and one of the triflare anion forming the 3D network. 

  

Figure 3. Molecular structure of 4a showing the basic dinuclear unit and the further contacts 

with other oxygen atoms.  

Figure 2. Molecular structure of 1b, showing the cation. Hydrogens have been omitted for clarity.  



The stability of the free ligand and complexes was analyzed by UV-vis absorption 

spectroscopy in PBS solution (pH = 7.4). Solutions suitable for spectrophotometric 

analysis were prepared by diluting dimethylsulfoxide (DMSO) mother solutions of the 

complexes with PBS buffer. The resulting solutions were monitored over 24 h at 37 ºC. 

The spectra of the free ligands and their corresponding complexes (figure S32) show an 

intense absorption band at ca. 210 nm and one lower energy absorption band with low 

intensity around 260 nm, which could be assigned as π→π* intraligand transitions. These 

bands remain without any changes in shape or displacement in the absorbance maximum 

(none apparent red- or blue shift) in all the new derivatives, in addition to lacking of 

absorbance at around 500 nm in the case of gold compounds, over 24 h, implying a 

substantial stability of the chromophore under physiological conditions. 

2.3. Biological studies 

2.3.1. Antiproliferative effect of gold(I) and silver(I) complexes  

The anticancer effect of gold(I) and silver(I) complexes was evaluated on two cell lines: 

Caco-2, a model of colorectal adenocarcinoma and MCF-7, an estrogen receptor-positive 

breast carcinoma model. Cell culture was incubated 72h with a range of concentration of 

each complex and IC50 values were obtained. The antiproliferative effect of both ligands 

was also tested and two reference drugs -cisplatin and auranofin- were included as 

positive controls. All calculated IC50 are shown on Table 1.  

Table 1. IC50 (μM) values of gold(I) and silver(I) derivatives as well as the free ligands 
and two reference drugs -cisplatin and auranofin- as positive control on Caco-2, MCF-7 
and differentiated Caco-2cells upon 72h incubation. Selectivity Index values are also 
shown. Results are expressed as mean ± SE of at least three determinations. on after 72h 
incubation.  

Compound 
IC50 (μM) Selectivity Index 

Caco-2 MCF-7 
Differentiated 
Caco-2 cells Caco-2 MCF-7 

L1 >100 17.45 ± 8.16 125.76 ± 13.43 1.26 7.21 

[Au(L1)(PPh3)](TfO) (1a)  2.23 ± 0.21 0.46 ± 0.56 39.40 ± 23.39 17.67 85.65 

[Ag(TfO)(L1)(PPh3)] (2a)  5.52 ± 1.89 7.22 ± 0.69 9.44 ± 2.12 1.71 1.31 

[Ag2(TfO)2(L1)(PPh3)2] (3a)  0.25 ± 0.10 4.10 ± 0.44 10.88 ± 2.82 43.52 2.65 

[Ag(TfO)(L1)]2 (4a)  7.50 ± 3.14 >100 48.74 ± 10.01 6.50 - 

[Ag(TfO)(L1)2] (5a)  10.22 ± 5.02 15.60 ± 1.08 120.51 ± 11.52 11.79 7.73 

L2 48.54 ± 13.32 12.48 ± 5.32 124.29 ± 7.50 2.56 9.96 



[Au(L2)(PPh3)](TfO) (1b)  3.75 ± 0.41 3.53 ± 0.52 13.53 ± 0.02 3.61 3.83 

[Ag(TfO)(L2)(PPh3)] (2b)  7.11 ± 0.92 6.71 ± 0.01 10.23 ± 4.02 1.44 1.52 

[Ag2(TfO)2(L2)(PPh3)2] (3b)  14.41 ± 2.61 7.43 ± 0.49 39.65 ± 19.06 2.75 5.34 

[Ag(TfO)(L2)]2 (4b)  1.32 ± 0.47 2.65 ± 0.32 55.40 ± 1.43 41.97 20.91 

[Ag(TfO)(L2)2] (5b) 4.22 ± 2.00 0.90 ± 0.11 80.26 ± 26.90 19.02 89.18 

Cisplatin 8.9 ± 0.7656 7.6 ± 2.9657 - - - 

Auranofin 1.80 ± 0.10 0.77 ± 0.05 6.21 ± 0.44 3.45 8.06 
 

Most of the evaluated complexes display higher toxicity in comparison to cisplatin in 

terms of IC50, except complex 4a which has no antiproliferative effect on MCF-7 cell 

line. Moreover, IC50 of complex 1a on both cancer models is comparable to those obtained 

with auranofin, suggesting that 1a might be a promising antitumor agent.  

Although both gold(I) complexes tend to show greater antiproliferative effect than each 

silver(I) complex analysed, complex 3a displayed the lowest IC50 value, which suggests 

it might be the most promising agent. However, this compound evolves to an equilibrium 

of species in DMSO solution, amongst which [Ag(PPh3)2]TfO was identified. Therefore, 

the observed anticancer effect might be caused by a mix of molecules instead of a single 

one and the complex was not considered on further assays.  

When comparing the antiproliferative effect of series 1a-5a and 1b-5b, results showed on 

Table 1 suggest minor influence of the ligand L1 or L2 on the biological activity of the 

final metallodrug. However, some exceptions have been observed: complex 1a displays 

higher antiproliferative effect than 1b on MCF-7 cell line; complex 4a has no effect on 

MCF-7 cells, whereas 4b does; finally, 5b shows greater anticancer effect toward both 

cell lines than its counterpart 5a.  

The free ligands displayed considerably antiproliferative effect against MCF-7 cells, 

however, only L2 showed moderate activity against Caco-2 cells. However, coordination 

to the metallic center resulted in a significant increase of the antitumor activity, which 

might suggest that the observed effect depends on both the ligand and the metal. This 

statement is especially relevant for 1a-5a series on Caco-2, since the lack of 

antiproliferative effect of L1 highlights the key role of gold or silver on the biological 

activity of the metallodrug. We found no significant differences when comparing IC50 

values of the free ligands and the new complexes due to the great statistical errors 

obtained upon IC50 calculation of such free ligands. These data suggest that coordination 



of the metallic center with the corresponding ligand results in an increase of the antitumor 

potential compared to the free ligand as well as in an improvement of the reproducibility. 

The significant antiproliferative effect displayed by most of the tested complexes as well 

as the free ligands L1 and L2 on MCF-7 cell line was somehow atypical in comparison 

to previous results obtained by some of us when comparing the effect of selected gold(I) 

complexes on Caco-2 and MCF-7 cells. In our experience, gold(I) complexes usually 

show greater anticancer activity on our colorectal adenocarcinoma model rather than on 

the breast adenocarcinoma one.58-59 Similar results have been observed by other authors.60 

In a previous work, we found that the alkynyl gold(I) complex [Au(L)PPh3] (L = 2-(4-

bromophenyl)-3-(prop-2-ynyloxy)-4H-chromen-4-one) was able to inhibit 

cycloocygenase-2 (COX-2) activity; since that isoform is not expressed on MCF-7 cells,61 

the tested complex showed higher antiproliferative effect on other cancer models that 

actually expressed that enzyme.58 Given that in our present study we found the opposite 

effect, we hypothesised that our metallic derivatives might interact with a molecular target 

found on MCF-7 line but not on Caco-2. As MCF-7 is an estrogen receptor-positive breast 

adenocarcinoma model, firstly we decided to evaluate the effect of selected complexes 

on an estrogen receptor-negative MDA-231 cell line to determine their effect on a 

different subtype of breast adenocarcinoma. As can be observed on Table 2, both gold(I) 

complexes studied, [Au(L1)(PPh3)](TfO) (1a) and [Au(L2)(PPh3)](TfO) (1b),  displayed 

significant (p<0.05) anticancer activity when compared to the free ligands L1 and L2 

respectively, which suggest that the observed effect is mainly a direct consequence of 

coordination to the metallic center. Complex 1a showed a similar behaviour on both 

breast adenocarcinoma models, thus suggesting that its anticancer effect might be 

independent of estrogen-receptor expression. On the other hand, the IC50 value of 1b was 

ca 13 times higher on MCF-7 than on MDA-231 cells. Therefore, this complex might be 

selective for estrogen receptor-positive breast adenocarcinoma cells. It is interesting to 

highlight that coordination ligand L2 has no effect on MDA-231 cells, thus it is feasible 

to assume that the observed effect on this cancer model is due to the presence of the gold 

atom.  

 

 



Table 2. IC50 (μM) values of gold(I) complexes as well as coordination ligands on MDA-231 cells 
upon 72h incubation. Results are expressed as mean ± SE of at least three determinations. *p<0.05 
vs free ligand.  

Compound IC50 (μM) 

L1 5.69 ± 0.11 

[Au(L1)(PPh3)](TfO) (1a)   0.78 ± 0.20* 

L2 154.09 ± 0.01 

[Au(L2)(PPh3)](TfO) (1b)   0.27 ± 0.05* 
 

In order to evaluate the effect of our complexes on a non-cancerous model, we calculated 

IC50 values after 72h incubation on differentiated Caco-2 cells, which can be used as a 

gastrointestinal barrier model.62 Furthermore, we obtained Selectivity Index (SI) using 

these data and the previous IC50 values calculated on cancer models as previously was 

described by Badisa et al.63 As is shown in Table 1, some of the evaluated complexes 

displayed higher SI values than the reference drug auranofin, thus suggesting that their 

clinical use might be safer. In addition, the ligands L1 and L2 showed lower SI values 

than the positive controls and most of the tested complexes. Therefore, although both 

molecules have previously showed certain antiproliferative effect, they must be discarded 

as potential anticancer agents due to their likely low selectivity.  

Considering all data showed on Table 1, complexes 1a and 2a were selected for further 

assays to determine their likely mechanism of action and kind of cell death triggered upon 

treatment on Caco-2 cancer cells. Since the unique difference between those complexes 

was the presence of a gold or silver atom, this would also lead us to perform an in-depth 

comparison of the anticancer effect based on both metallic centers. 

2.3.2. Cell death studies 

Caco-2 cells were incubated 48h with the IC50 of both complexes 1a and 2a and apoptotic 

populations were analyzed with double annexin V-FITC and propidium iodide staining 

by flow cytometry. According to Figure 4, neither of the analyzed complexes induced an 

increase in necrotic population. Instead, upon treatment with complex 1a a 4.4-up fold on 

early apoptotic population and a 7-up fold on late apoptotic population were observed. 

Similarly, the silver complex 2a triggered a 7.7-up fold on early apoptotic cells along 

with a 3.6-up fold on late apoptotic cells. Taken together, these results suggest that both 



gold(I) and silver(I) complexes are able to induce apoptosis on Caco-2 cells, although the 

gold-containing derivative seems to trigger cell death faster than the silver(I) counterpart.  

 
Figure 4. Analysis of the type of cell death induced on undifferentiated Caco-2 cells after 
48h incubation with A) DMSO (negative control); B) [Au(L1)(PPh3)](TfO) (1a) (IC50); C) 
[Ag(TfO)(L1)(PPh3)] (2a) (IC50). Percentages of alive, necrotic, early apoptotic and late 
apoptotic cells are indicated.  

Other apoptotic biomarkers were determined in order to confirm results showed on Figure 

4. Since this kind of cell death usually depends on caspases activation,64-65 we analysed 

caspase 8 and executioner caspase 3 activation upon 48h of treatment with complexes 1a 

and 2a respectively. We found a significant increase in activation of both caspases (Figure 

5A and 5B), which might be in accordance with the increase in apoptotic populations 

previously observed (Figure 4).  

Caspase 8 activation suggests that the tested complexes are able to trigger extrinsic 

apoptosis. Most of the studies performed in regard to the anticancer activity of gold(I) 

derivatives have focused on their capacity to induce intrinsic apoptosis; however, some 

authors have reported that auranofin is also able to trigger cancer cell death via extrinsic 

apoptosis.66-67 Given that extrinsic apoptosis depends on cell death receptors activation, 

it remains unclear the mechanism by which auranofin induces this pathway. However, 

since some authors have noticed that aberrant ROS levels could elicit cell death receptors 

activation,68 it has been proposed that the pro-oxidant effect of this metallodrug might be 

responsible of caspase 8 activation as a consequence. On the other hand, no evidences 

have been found in regard to further silver(I) complexes able to induce caspase 8 

activation to date. To our knowledge, this might be the first report of a silver-containing 

drug that triggers extrinsic apoptosis on a colorectal cancer model.  

Lastly, cell cycle distribution upon 48h of incubation with both complexes 1a and 2a was 

studied. Cell cycle arrest might be indicative of DNA damage and is usually considered 



as an apoptotic biomarker as well.69-70 Treatment with both complexes induced cell cycle 

arrest on G1 phase (Figure 5C); gold(I) derivative 1a triggered a more pronounced arrest 

than its silver(I) counterpart, which is in accordance with the data previously obtained 

which suggest that 1a might be faster than 2a in regard to its cell death induction capacity.  

 
Figure 5. Analysis of apoptosis biomarkers on Caco-2 cells after 48h incubation with complexes 
1a and 2a (IC50). A) Measurement of caspase 8 activation. *p<0.05 vs negative control. B) 
Measurement of caspase 3 activation. *p<0.05 vs negative control. C) Cell cycle analysis. 
Percentages of cells on each phase are included. Panel 1: negative control (DMSO-treated cells). 
Panel 2: complex 1a. Panel 3: complex 2a.  

2.3.3. Gold(I) complex 1a and silver(I) complex 2a disrupts mitochondrial function 

In order to determine the effect of both 1a and 2a complexes on mitochondrial function, 

we analyzed mitochondrial integrity in terms of changes in the mitochondrial membrane 

potential (Δψ). After 48h incubation with IC50 value of gold(I) and silver(I) derivatives 

respectively, we noticed a significant loss on Δψ (Figure 6A). Given that loss of 

mitochondrial membrane potential might be related to mitochondrial dysfunction and 

aberrant ROS production, we then measured ROS levels after 24h incubation with both 

metallodrugs. A significant (p<0.05) increase in this parameter was found only upon 

treatment with the gold complex 1a (Figure 6B).  



Cancer cells have a quite delicate redox balance, and redox homeostasis disruption has 

been proposed as a promising anticancer approach.71 In light of results showed on Figure 

6B, we evaluated the role of ROS on cell death triggered by complexes 1a and 2a using 

the ROS scavenger N-acetyl-cysteine (NAC). Pre-treatment of Caco-2 cells with NAC 

resulted in a partial recovery of cell viability decrease induced by complex 1a, but no 

modification of cell viability was detected in the cell culture treated with the silver 

derivative 2a (Figure 6C). Given that we have previously observed that our silver-

containing drug did not disturb redox homeostasis (Figure 6B), this result was not 

unexpected. Therefore, our results suggest that the silver(I) complex 2a might trigger 

ROS-independent apoptosis on Caco-2 cells. Given that pro-oxidant chemotherapeutic 

agents might damage non-cancer tissues as well, novel drugs able to induce ROS-

independent cell death are currently of great interest,72 thus [Ag(TfO)(L1)(PPh3)] (2a) 

might be strongly considered as a future anticancer drug.  

It is also noticeable that treatment with complex 2a resulted in a greater loss of Δψ than 

its gold(I) counterpart and might be related to its mechanism of action. According to data 

from Eloy et al., silver(I) complexes might accumulate on mitochondria and induce 

mitochondrial dysfunction as a consequence, leading to the release of AIF (Apoptosis-

Inducing Factor) and cell death via apoptosis. Moreover, authors reported that 

mitochondrial dysfunction was not accompanied by redox balance disruption,73 which is 

in accordance with our current findings.  

On the other hand, pre-treatment with NAC did not fully recovered Caco-2 cells incubated 

with the gold(I) complex 1a, which suggest that ROS generation might be a part of its 

mechanism of action, and a ROS-independent cell death mechanism is also involved.  



 

Figure 6. Effect of complexes 1a and 2a on mitochondrial integrity and ROS levels of Caco-2 
cells. A) Analysis of mitochondrial membrane potential after 48h incubation with 1a and 2a 
(IC50). *p<0.05 vs negative control. B) Measurement of ROS levels after 24h incubation with 1a 
and 2a (IC50). *p<0.05 vs negative control. C) Percentage of cell viability after 24h with 1a and 
2a (IC50) in presence or absence of NAC (1h, 30 mM). *p<0.05 vs negative control. #p<0.05 vs 
lack of NAC.  

2.3.4. Gold(I) complex inhibits TrxR and 20S proteasome 

Redox enzyme thioredoxin reductase (TrxR) is one of the main targets of gold(I) 

derivatives, given the affinity between the gold atom and the selenocysteine residue 

located on the active site of the protein.3 Therefore, we measured TrxR activity on Caco-

2 cell lysates after 24h incubation with complex 1a. We also performed TrxR enzymatic 

activity assay upon 24h incubation with silver-containing complex 2a, since some authors 

have reported that silver(I) might be able to inhibit this redox enzyme.74 As can be 

observed on Figure 7A, treatment with the gold derivative 1a resulted in a significant 

(p<0.05) decrease in TrxR activity, whereas no changes were observed upon treatment 



with the silver compound 2a. Inhibition of TrxR might be related to the increase in ROS 

levels found upon treatment with complex 1a (Figure 7B). In line with this, the lack of 

TrxR inhibition after treatment with 2a might be in accordance with the absence of redox 

homeostasis disturbances and the consequent ROS-independent cell death triggered by 

the silver(I) complex.  

In order to determine whether complex 1a was able to selectively inhibit TrxR or might 

interact with further redox enzymes, we analyzed glutathione reductase (GR) activity on 

Caco-2 cell lysates upon 24h incubation with 1a. In addition, GR activity was measured 

on Caco-2 cells treated with complex 2a to compare the effect of both metallodrugs. 

Whereas incubation with gold derivative 1a resulted in no modifications of GR activity, 

which suggests that this complex might act as a selective TrxR inhibitor, treatment with 

silver(I) complex 2a leaded to a great increase in glutathione reductase activity (Figure 

7B). Cancer cells might increase GR expression and/or activity as a chemoresistance 

mechanism in order to avoid cell death.75 However, our results show how the strong 

increase in GR activity could break the redox equilibrium by modifying the mitochondrial 

potential and activating the caspases that lead to apoptosis.  

 
Figure 7. Effect of 24h of treatment with complexes 1a and 2a (IC50) on redox enzymes in Caco-
2 cells. A) Measurement of thioredoxin reductase activity (TrxR). *p<0.05 vs negative control. 
B) Measurement of glutathione reductase (GR). *p<0.05 vs negative control. 

Selective TrxR inhibition and the subsequent increase in ROS levels might not be the 

only mechanism of action of 1a according to results showed on Figure 6C, since pre-

treatment with the ROS scavenger NAC did not fully recover cell viability. Therefore, we 

hypothesized a likely inhibition of proteasome as a further molecular target, which was 

feasible according to previous research.76-77 We measured 20S proteasome activity on 



Caco-2 cells treated for 24h with complexes 1a and 2a respectively. Incubation with the 

gold(I) complex 1a resulted in a significant (p<0.05) decrease of chymotrypsin-like 

activity, thus suggesting that 1a is able to inhibit 20S proteasome as well as TrxR (Figure 

8). Taken together, our results suggest that [Au(L1)(PPh3)](TfO) (1a) might act as a 

multitarget anticancer complex.  

Contrarily, treatment with the silver(I) derivative 2a triggered an increase in 

chymotrypsin-like activity, which discards a likely inhibition of proteasome protease 

capacity as mechanism of action. On the other hand, this unexpected finding might be 

related with the previously discussed increase in GR activity upon treatment with 2a, 

since it has been reported that an increase in proteasomal activity might lead to an 

overexpression of glutathione reductase along with other antioxidant enzymes.78  

 
Figure 8. Determination of proteasomal chymotrypsin-like (CT-like) activity on Caco-2 cells 
upon 24h treatment with complexes 1a and 2a (IC50). *p<0.05 vs negative control. 

3. Conclusion 

Herein we have described and characterized two heterocyclic ligands derived 2-anilino-

pyridine, together with the two families of mononuclear gold(I) and mono- and dinuclear 

silver(I) derivatives. Both gold-containing complexes [Au(L1)(PPh3)](TfO) (1a) and 

[Au(L2)(PPh3)](TfO) (1b) displayed great antiproliferative activity toward a model of 

colorectal adenocarcinoma (Caco-2 cell line) and two breast adenocarcinoma cancer cell 

lines (MCF-7 and MDA-231). Furthermore, the complex [Au(L1)(PPh3)](TfO) (1a) 

induced caspases 8 and 3 activation, loss of mitochondrial membrane potential and ROS-

dependent cell death on Caco-2 cells upon 24h incubation. Regarding to its mechanism 

of action, the complex exhibits a significant inhibition of redox enzyme thioredoxin 



reductase as well as 20S proteasome. On the other hand, silver complexes also showed 

good cytotoxic activity and the effect of the silver(I) analogue [Ag(TfO)(L1)(PPh3)] (2a) 

on Caco-2 cells was evaluated. This derivative triggered ROS-independent apoptosis 

mediated by caspase 8 and 3 activation and loss of mitochondrial membrane potential. 

However, cell death is not mediated either by inhibition of the enzyme thioredoxin 

reductase or 20S proteasome; instead, the silver-containing drug might disrupt 

mitochondrial function and increase in the activity of the GR according to our current 

data. Further studies will be needed to validate this hypothesis. In conclusion, we have 

observed that these new gold(I) and silver(I) complexes might not be able to interact with 

the same molecular targets, thus triggering different modes of cell death.  

Trying to evaluate the structure activity relationship in these compounds we may 

conclude that although ligand L1 is less active than L2, their complexes are more active 

in general and within then those bearing gold and triphenylphosphine are the most active. 

The silver complexes do not show a clear tendency because of for L1 the dimeric species 

with tryphenylphosphine exhibit excellent activities in both cell lines, however for L2 the 

complexes bearing two ligands coordinated to the metallic center are the most active. 

4. Experimental section. 

General. Solvents were used as received without purification or drying. The starting 

material [Ag(OTf)(PPh3)]79, [Au(OTf)(PPh3)] was obtained by reaction of [AuCl(PPh3)] 

with Ag(OTf) in dichloromethane and used “in situ”. All other reagents were 

commercially available and used without further purification. 1H, 13C{1H}, 19F, and 
31P{1H}, including 2D experiments, were recorded on a Bruker Avance 400 or a Bruker 

ARX 300 spectrometers. Chemical shifts (δ, ppm) were reported relative to the solvent 

peaks in the 1H, 13C spectra or external 85 % H3PO4 or CFCl3 in 31P or 19F spectra. IR 

spectra were recorded in the range 4000−200 cm−1 on a Perkin-Elmer Spectrum 100 

spectrophotometer on solid samples using an ATR accessory. C, H, and N analyses were 

carried out with a Perkin-Elmer 2400 Series 2 microanalyzer. Mass spectra were recorded 

on a VG Austopec, with the ESI technique. 

4.1. Synthesis of the ligands {(4-pyCO)N(Ph)(py)} (L1) and {(2-(C4H4S)CO)N(Ph)(py)} 

(L2). To a dichloromethane solution (10 mL) of 2-anilinopyridine (0.3404 g, 2 mmol) 

under argón atmosphere was added NEt3 (0.2626 g, 2.6 mmol) and 4-

chlorocarbonylpyridine (0.3560 g, 2 mmol) or 2-chlorocarbonylthiophene (0.2932 g ,2 

mmol). The reaction was stirred for 24h at room temperature. The solution was washed 



with a saturated solution of NaHCO3 and then washed with dichloromethane (3x20mL) 

and dried with anhydrous MgSO4. Then the solution was filtered through Celite and the 

solution was reduced to minimum volume under vacuum. The addition of n-hexane 

afforded a white solid which was filtered of and washed with n-hexane. 

{(4-pyCO)N(Ph)(py)} (L1). White solid in 56% yield. 1H NMR (400 MHz, (CD3)2CO, 

25ºC) δ (ppm) = 8.50 (m, 2H, H2’’,6’’); 8.27 (m, 1H, H6’); 7.82 (m, 1H, H4’); 7.42 (m, 1H, 

H3’); 7.36 (m, 4H, H3’’,5’’, Ph); 7.29 (m, 3H, Ph); 7.22 (m, 1H, H5’) ppm. 13C{1H} NMR 

(100 MHz, (CD3)2CO): δ(ppm) = 156.6 (C2’); 150.6 (C2’’,6’’); 149.5 (C6’); 145.3 (C1); 

143.1 (C4’’); 139.1 (C4’); 130.0 (C2,6); 128.9 (C4); 127.9 (C3,5); 123.1 (C3’); 122.8 (C3’’,5’’); 

122.4 (C5’) ppm. IR: ν(C=O) 1652 cm-1. Elemental analysis calcd. (%) for C17H13N3O 

(275.30): C, 74.17; H, 4.76; N, 15.26; found: C, 74.04; H, 4.26; N, 15.41. MS(ESI+): 

[L1+H]+ m/z = 276 (100%); [2L1+Na]+ m/z = 573 (45%). 

{(2-(C4H4S)CO)N(Ph)(py)} (L2). White solid in 52% yield. 1H NMR (400 MHz, 

(CD3)2CO, 25ºC) δ (ppm) = 8.38 (m, 1H, H6’); 7.85 (m, 1H, H4’); 7.62 (dd, 1H, JH-H = 5.0; 

1.2 Hz, H5’’); 7.51 (m, 1H, H3’); 7.42 (m, 2H, H2,6); 7.33 (m, 3H, H3,4,5); 7.27 (m, 1H, 

H5’); 6.91 (m, 1H, H4’’); 6.82 (dd, 1H, JH-H = 3.8;1.2 Hz, H3’’) ppm. 13C{1H} NMR (100 

MHz, (CD3)2CO): δ(ppm) = 150.1 (C6’); 139.3 (C4’); 133.4 (C3’’); 132.6 (C5’’); 130.4 

(C2,6); 129.8 (C4); 128.5 (C3,5); 128.2 (C4’’); 123.4 (C3’); 123.2 (C5’) ppm. IR: ν(C=O) 

1655 cm-1. Elemental analysis calcd. (%) for C16H12N2OS (280.34): C, 68.55; H, 4.31; N, 

9.99; S, 11.44; found: C, 67.84; H, 4.21; N, 9.92; S, 10.87. MS(ESI+): [L1+H]+ m/z = 276 

(100%); [2L1+Na]+ m/z = 573 (45%). MS(ESI+): [L2+H]+ m/z = 281 (100%). 

4.2. Synthesis of the complexes [Au(L)(PPh3)](OTf) (L1, 1a; L2, 1b). To a 

dichloromethane solution (10 mL) of [AuCl(PPh3)] (0.1484 g, 0.3 mmol) was added 

[Ag(OTf)] (0.0848 g, 0.33 mmol). After 45min of stirring protected from light, the white 

solid (AgCl) was filtered through Celite and the solution was added to dichloromethane 

solution (10 mL) of L1 (0.0743 g, 0.27 mmol) or L2 (0.0757 g, 0.27 mmol). The reaction 

was stirred for 2h at room temperature. Then the solution was reduced to minimum 

volume under vacuum. A white solid was obtained and washed with n-hexane. 

[Au(L1)(PPh3)](OTf) (1a). White solid in 91% yield. 1H NMR (400 MHz, (CD3)2CO, 25ºC) δ 

(ppm) = 8.86 (d, 2H, JH-H = 5.8 Hz, H2’’,6’’); 8.32 (m, 1H, H6’); 7.90 (m, 1H, H4’); 7.82 (d, 2H, 

JH-H = 6.0 Hz, H3’’,5’’); 7.65 (m, 15H, PPh3); 7.49 (d, 1H, JH-H = 8.1 Hz, H3’); 7.43 (m, 2H, 

Ph); 7.35 (m, 3H, Ph); 7.31 (m, 1H, H5’) ppm. 19F{1H} NMR (100 MHz, (CD3)2CO): 

δ(ppm) = -80.1 (s). 31P{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = 29.9 (s). 13C{1H} 



NMR (100 MHz, (CD3)2CO): δ(ppm) = δ: 152.5 (C2’’,6’’); 149.9 (C6’); 142.2 (s); 135.2 (d, 

6C, JC-C = 13.7 Hz, PPh3); 133.6 (m, 3C, PPh3); 130.6 (d, 6C, JC-C = 12.1 Hz, PPh3); 130.3 

(C2,6); 129.0 (C4); 128.7 (C3,5); 128.1 (s); 125.8 (C3’’,5’’); 123.6 (s, C3’ or C5’) ppm. IR: 

ν(C=O) 1653 cm-1, νas(SO3) 1261; νs(CF3) 1220; νas(CF3) 1143; νs(SO3) 1030. Elemental 

analysis calcd. (%) for C36H28AuF3N3O4PS (883.63): C, 48.93; H, 3.19; N, 4.76; S, 3.63; 

found: C, 48.33; H, 2.96; N, 4.38; S, 3.24. MS(ESI+): [L1+H]+ m/z = 276 (100%); [M-

OTf]+ m/z = 734 (17%); [Au(PPh3)2]+ m/z = 721 (65%). 

[Au(L2)(PPh3)](OTf) (1b). White solid in 60% yield. 1H NMR (400 MHz, (CD3)2CO, 

25ºC) δ (ppm) = 9.09 (m, 1H, H6’); 8.48 (td, 1H, JH-H = 7.9; 1.7 Hz, H4’); 7.94 (m, 2H, 

H3’,5’); 7.66-7.44 (m, 21H, H5’’+PPh3); 6.81 (dd, 1H, JH-H = 3.9; 1.2 Hz, H3’’); 6.76 (m, 

1H, H4’’) ppm. 19F{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = -80.1 (s). 31P{1H} NMR 

(100 MHz, (CD3)2CO): δ(ppm) = 30.1 (s). 13C{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) 

= δ: 164.51 (s, 1C, C=O); 156.9 (s); 152.6 (C6’); 145.3 (C4’); 142.3 (s); 137.5 (s); 135.0 

(d, 6C, JC-C = 13.6 Hz, PPh3); 134.7 (C3’’); 134.3 (C5’); 133.5 (m, 2C, PPh3); 131.0 (C2,6); 

130.5 (d, 6C, JC-C = 12.1 Hz, PPh3); 129.7 (C4); 129.1 (C3,5); 128.5 (C4’’); 127.6 (C3’); 

126.0 (C5’) ppm.. IR: ν(C=O) 1631 cm-1, νas(SO3) 1257; νs(CF3) 1225; νas(CF3) 1150; 

νs(SO3) 1029. Elemental analysis calcd. (%) for C35H27AuF3N2O4PS2 (888.67): C, 47.30; 

H, 3.06; N, 3.15; S, 7.22; found: C, 47.8; H, 2.93; N, 3.62; S, 6.94. MS(ESI+): [L2+H]+ 

m/z = 281 (8%); [Au(PPh3)2]+ m/z = 721 (100%). 

4.3. Synthesis of the complexes [Ag(OTf)(L)(PPh3)] (L1, 2a; L2, 2b). To a 

dichloromethane solution (10 mL) of [Ag(OTf)(PPh3)] (0.1557 g, 0.3 mmol) was added 

L1 or L2 (0.3 mmol). After 45min of stirring protected from light at room temperature, 

the solution was reduced to minimum volume under vacuum. A white solid was obtained 

and washed with n-hexane. 

[Ag(OTf)(L1)(PPh3)] (2a). White solid in 52% yield. 1H NMR (400 MHz, (CD3)2CO, 

25ºC) δ (ppm) = 8.66 (m, 2H, H2’’,6’’); 8.34 (m, 1H, H6’); 7.89 (m, 1H, H4’); 7.55 (m, 17H, 

H3’’,5’’+PPh3); 7.48 (d, 1H, JH-H = 8.1 Hz, H3’); 7.39 (m, 2H, Ph); 7.33 (m, 4H, H5+Ph) 

ppm. 19F{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = -77.9 (s). 31P{1H} NMR (100 MHz, 

(CD3)2CO, 203 K): δ(ppm) = 13.7 (2d, J109Ag-P = 762.8 Hz, J107Ag-P = 661.0 Hz, AgPPh3) 

ppm. 13C{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = δ: 156.3 (s); 151.8 (C2’’,6’’); 149.9 

(C6’); 142.6 (m); 139.7 (C4’); 134.8 (d, 6C, JC-C = 15.8 Hz, PPh3); 132.1 (3C, PPh3); 131.4 

(d, 3C, JC-C = 41.4 Hz, PPh3); 130.2 (m, 6C, PPh3); 130.2 (C2,6); 128.9 (C4); 128.3 (C3,5); 

123.2 (C3’’,5’’); 122.7 (C3’,5’) ppm IR: ν(C=O) 1635 cm-1, νas(SO3) 1246; νs(CF3) 1224; 



νas(CF3) 1145; νs(SO3) 1026. Elemental analysis calcd. (%) for C36H28AgF3N3O4PS 

(794.53): C, 54.42; H, 3.55; N, 5.29, S, 4.04; found: C, 54.47; H, 3.71; N, 5.18; S, 4.44. 

MS(ESI+): [Ag(PPh3)2]+ m/z = 633 (100%); [M-OTf]+ m/z = 646 (25%). 

[Ag(OTf)(L2)(PPh3)] (2b). White solid in 68% yield. 1H NMR (400 MHz, (CD3)2CO, 

25ºC) δ (ppm) = 8.39 (m, 1H, H6’); 7.87 (m, 1H, H4’); 7.63 (dd, 1H, JH-H = 5.0; 1.2 Hz, 

H5’’); 7.57 (m, 3H, H2,6,3’); 7.47 (m, 15H, PPh3); 7.34 (m, 3H, H3,4,5); 7.28 (m, 1H, H5’); 

6.91 (m, 1H, H4’’); 6.82 (dd, 1H, JH-H = 3.8; 1.2 Hz, H3’’) ppm 19F{1H} NMR (100 MHz, 

(CD3)2CO): δ(ppm) = -78.7 (s). 31P{1H} NMR (100 MHz, (CD3)2CO, 203 K): δ(ppm) = 

10.1 (2m, 1P, J109Ag-P = 533.3 Hz, J107Ag-P = 463.1 Hz) ppm. 13C{1H} NMR (100 MHz, 

(CD3)2CO): δ(ppm) = 149.9 (s); 139.2 (s); 134.7 (d, 6C, JC-C = 15.5 Hz, PPh3); 133.2 (s); 

132.3 (s); 132.0 (s, 3C, PPh3); 131.5 (s); 130.2 (s, 6C, PPh3); 129.4 (s); 128.2 (s); 127.8 

(s); 123.2 ppm. IR: ν(C=O) 1625 cm-1, νas(SO3) 1265; νs(CF3) 1221; νas(CF3) 1141; 

νs(SO3) 1026. Elemental analysis calcd. (%) for C35H27AgF3N2O4PS2 (799.57): C, 52.58; 

H, 3.40; N, 3.50; S, 8.02.; found: C, 52.30; H, 3.41; N, 3.23; S, 8.34. MS(ESI+): 

[Ag(PPh3)2]+ m/z = 633 (100%); [M-OTf]+ m/z = 651 (13%). 

4.4. Synthesis of the complexes [Ag2(OTf)2(L)(PPh3)2] (L1, 3a; L2, 3b). To a 

dichloromethane solution (10 mL) of [Ag(OTf)(PPh3)] (0.1557 g, 0.6 mmol) was added 

L1 or L2 (0.3 mmol). After 45min of stirring protected from light at room temperature, 

the solution was reduced to minimum volume under vacuum. A white solid was obtained 

and washed with n-hexane. 

[Ag2(OTf)2(L1)(PPh3)2] (3a). White solid in 78% yield. 1H NMR (400 MHz, (CD3)2CO, 

25ºC) δ (ppm) = 8.71 (m, 2H, H2’’,6’’); 8.47 (m, 1H, H6’); 7.96 (m, 1H, H4’); 7.54 (m, 33H, 

H3’,3’’,5’’+PPh3); 7.35 (m, 5H, Ph); 7.27 (m, 1H, H5’) ppm. 19F{1H} NMR (100 MHz, 

(CD3)2CO): δ(ppm) = -79.9 (s). 31P{1H} NMR (100 MHz, (CD3)2CO, 203 K): δ(ppm) = 

13.1 (2d, J109Ag-P = 927.9 Hz, J107Ag-P = 838.8 Hz, AgPPh3) ppm. 13C{1H} NMR (100 

MHz, (CD3)2CO): δ(ppm) = δ: 152.1 (C2’’,6’’); 150.4 (C6’); 142.6 (m); 140.3 (C4’); 134.8 

(m, 12C, PPh3); 132.1 (6C, PPh3); 130.4 (C2,6); 130.2(m, 12C, PPh3); 128.8 (C4); 128.5 

(C3,5); 124.5 (py); 123.5 (py); 123.4 (py) ppm IR: ν(C=O) 1667 cm-1, νas(SO3) 1239; 

νs(CF3) 1220; νas(CF3) 1149; νs(SO3) 1023. Elemental analysis calcd. (%) for 

C55H43Ag2F6N3O7P2S2 (1313.75): C, 50.28; H, 3.30; N, 3.20; S, 4.88; found: C, C, 50.68; 

H, 3.62; N, 3.43; S, 4.35. MS(ESI+): [Ag(PPh3)2]+ m/z = 633 (100%); [M-Ag-2OTf]+ m/z 

= 646 (50%).  



[Ag2(OTf)2(L2)(PPh3)2] (3b). White solid in 44% yield. 1H NMR (400 MHz, (CD3)2CO, 

25ºC) δ (ppm) = 8.62 (m, 1H, H6’); 8.04 (m, 1H, H4’); 7.58 (m, 32H, H3’,5’’+PPh3); 7.47 

(m, 1H, H5’); 7.39 (m, 4H, Ph); 7.36 (m, 1H, Ph); 6.85 (m, 1H, H4’’); 6.78 (dd, 1H, JH-H = 

3.8 1.2 Hz, H3’’) ppm. 19F{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = -80 (s). 31P{1H} 

NMR (100 MHz, (CD3)2CO, 203 K): δ(ppm) = 13.0 (2m, 1P, JAg-P (average) = 725.5 Hz, 

SAgPPh3); 10.6 (2m, JAg-P (average) = 520.9 Hz, NAgPPh3) ppm. 13C{1H} NMR (100 MHz, 

(CD3)2CO): δ(ppm) = 151.4 (C6’); 141.7 (C4’); 134.8 (m, 6C, PPh3); 134.0 (C3’’); 133.3 

(C5’’); 132.1 (s, 3C, PPh3); 130.7 (s, 2C, C2,6); 130.2 (s, 6C, PPh3); 129.1 (C4); 129.0 (s, 

2C, C3,5); 128.1 (C4’’); 125.0 (C3’); 124.0 (C5’) ppm. IR: ν(C=O) 1638 cm-1, νas(SO3) 

1239; νs(CF3) 1220; νas(CF3) 1148; νs(SO3) 1023. Elemental analysis calcd. (%) for 

C54H42Ag2F6N2O7P2S (1318.79): C, 49.18; H, 3.21; N, 2.12; S, 7.29; found: C, 49.01; H, 

3.25; N, 1.99; S, 6.98. MS(ESI+): [Ag(PPh3)2]+ m/z = 633 (100%); [L2+Ag(PPh3)]+ m/z 

= 651 (61%).  

4.5. Synthesis of the complexes [Ag(OTf)(L)]2 (L1, 4a; L2, 4b). To a dichloromethane 

solution (10 mL) of [Ag(OTf)] (0.051 g, 0.2 mmol) was added L1 or L2 (0.2 mmol). After 

45min of stirring protected from light at room temperature, the solution was reduced to 

minimum volume under vacuum. A white solid was obtained and washed with n-hexane. 

[Ag(OTf)(L1)]2 (4a). White solid in 72% yield. 1H NMR (400 MHz, (CD3)2CO, 25ºC) δ 

(ppm) = 8.56 (m, 4H, H2’’,6’’); 8.30 (m, 2H, H6’); 7.86 (td, 2H, JH-H = 7.9; 2.0 Hz, H4’); 

7.45 (m, 6 H, H3’,3’’,5’’); 7.39 (m, 4H, Ph); 7.29 (m, 8H, H5’+Ph) ppm. 19F{1H} NMR (100 

MHz, (CD3)2CO): δ(ppm) = -77.8 (s). 13C{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = 

δ: 168.0 (s, 2C, C=O); 154.8 (s, 2C); 149.9 (4C, C2’’,6’’); 148.8 (C6’); 144.6 (s, 2C); 141.1 

(s, 2C); 138.8 (s, 2C, C4’); 129.3 (s, 4C, C2,6); 128.0 (C4); 122.7 (C3’,5’); 122.6 (s, 2C); 

122.4 (s, 2C); 121.9 (s,2C). IR: ν(C=O) 1659 cm-1, νas(SO3) 1248; νs(CF3) 1221; νas(CF3) 

1141; νs(SO3) 1026. Elemental analysis calcd. (%) for C36H26Ag2F6N6O8S2 (1064.48): C, 

40.62; H, 2.46; N, 7.89; S, 6.02; found: C, 39.98; H, 2.40; N, 7.81; S, 5.98. MS(ESI+): 

[L1+H]+ m/z = 276 (100%); [M-2OTf-Ag]+ m/z = 657 (99%); [M-OTf+Na]2+ m/z = 938 

(8%).  

[Ag(OTf)(L2)]2 (4b). White solid in 16% yield. 1H NMR (400 MHz, (CD3)2CO, 25ºC) δ 

(ppm) = 8.88 (m, 2H, H6’); 8.52 (M, 2H, H4’); 7.86 (m, 4 H, H5’,5’’); 7.71 (m, 10H, Ph); 

7.38 (d, 2H, JH-H = 8.4 Hz, H3’); 7.01 (m, 4H, H3’’,4’’) ppm. 19F{1H} NMR (100 MHz, 

(CD3)2CO): δ(ppm) = -80.0 (s). 13C{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = δ: 165.3 

(s, 2C); 153.1 (s, 2C); 147.0 (s, 2C, C4’); 136.4 and 128.6 (m, 4C, C3’’,4’’); 136.0 (s, 2C, 



C5’ or C5’’), 131.9 (s, 4C, C2,6); 131.6 (C4); 130.7 (s, 4C, C3,5) ppm. IR: ν(C=O) 1644 cm-

1, νas(SO3) 1256; νs(CF3) 1221; νas(CF3) 1146; νs(SO3) 1023. Elemental analysis calcd. 

(%) for C34H24Ag2F6N4O8S4 (1074.56): C, 38.00; H, 2.25; N, 5.21; S, 11.94; found: C, 

38.28; H, 2.20; N, 4.88; S, 11.99. MS(ESI+): [L2+H]+ m/z = 281 (100%). 

4.6. Synthesis of the complexes [Ag(OTf)(L)2] (L1, 5a; L2, 5b). To a dichloromethane 

solution (10 mL) of [Ag(OTf)] (0.051 g, 0.2 mmol) was added L1 or L2 (0.4 mmol). After 

45min of stirring protected from light at room temperature, the solution was reduced to 

minimum volume under vacuum. A white solid was obtained and washed with n-hexane. 

 [Ag(OTf)(L1)2] (5a). White solid in 54% yield. 1H NMR (400 MHz, (CD3)2CO, 25ºC) δ 

(ppm) = 8.54 (m, 4H, H2’’,6’’); 8.28 (m, 2H, H6’); 7.83 (m, 2H, H4’); 7.39 (m, 10 H, H3’,3’’,5’’ 

+ Ph); 7.28 (m, 6H, Ph); 7.23 (td, 2H, JH-H = 4.9; 1.0 Hz, H5’) ppm. 19F{1H} NMR (100 

MHz, (CD3)2CO): δ(ppm) = -78.9 (s). 13C{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = 

δ: 150.5 (4C, C2’’,6’’); 149.6 (C6’); 139.3 (s, 2C, C4’); 130.1 (s, 4C, C2,6); 129.0 (C4); 128.1 

(s, 4C, C3,5); 123.8 (s, 4C, C3’’,5’’); 122.9 (s, 2C, C3’); 122.4 (s, 2C, C5’) ppm. IR: ν(C=O) 

1654 cm-1, νas(SO3) 1251; νs(CF3) 1222; νas(CF3) 1154; νs(SO3) 1027. Elemental analysis 

calcd. (%) for C35H26AgF3N6O5S (807.55): C, 52.06; H, 3.25; N, 10.41; S, 3.97; found: 

C, 52.55; H, 3.23; N, 10.39; S, 3.56. MS(ESI+): [L1+H]+ m/z = 276 (45%); [M-OTf]+ 

m/z = 659 (100%).  

[Ag(OTf)(L2)2] (5b). White solid in 39% yield. 1H NMR (400 MHz, (CD3)2CO, 25ºC) δ 

(ppm) = 8.51 (m, 2H, H6’); 8.12 (m, 2H, H4’); 7.56 (d, 2 H, JH-H = 4.4 Hz, H5’’); 7.47 (m, 

14H, H3’,5’ + Ph); 6.90 (m, 4H, H3’’,4’’) ppm. 19F{1H} NMR (100 MHz, (CD3)2CO): 

δ(ppm) = -80.1 (s). 13C{1H} NMR (100 MHz, (CD3)2CO): δ(ppm) = δ: 133.7 (s, 2C, C5’),  

130.9 (s, 4C, C2,6); 129.5 (s, 2C, C4); 129.4 (s, 4C, C3,5); 128.2 (s, 2C, C4’) ppm. IR: 

ν(C=O) 1646 cm-1, νas(SO3) 1258; νs(CF3) 1222; νas(CF3) 1150; νs(SO3) 1027. Elemental 

analysis calcd. (%) for C33H24AgF3N4O5S3 (817.63): C, 48.48; H, 2.96; N, 6.85; S, 11.77; 

found: C, 48.52; H, 3.03; N, 6.92; S, 12.24. MS(ESI+): [L2+H]+ m/z = 281 (100%); [M-

TfO]+ m/z = 669 (1%); [M+H]+ m/z = 819 (1%); 

4.7. Cell culture 

Human colorectal adenocarcinoma Caco-2 cells were kindly provided by Dr. Edith Brot-

Laroche (Université Pierre et Marie Curie-Paris 6 UMR S872, Les Cordeliers, France). 

Human breast adenocarcinoma MCF-7 and MDA-231 cells were kindly provided by 

Carlos J. Ciudad and Dr. Verònica Noé (Departamento de Bioquímica y Fisiología, 

Facultad de Farmacia, Universidad de Barcelona, Spain). All cell lines were maintained 



in a humidified atmosphere of 5% CO2 at 37ºC. Cells (passages 20-40) were grown in 

Dulbecco’s Modified Eagles medium (DMEM) (Gibco Invitrogen, Paisley, UK) 

supplemented with 20% fetal bovine serum, 1% non-essential amino acids, 1% penicillin 

(1000 U/mL), 1% streptomycin (1000 μg/mL) and 1% amphotericin (250 U/mL). Culture 

medium was replaced every two days and cells were passaged enzymatically with 0.25% 

trypsin-1 mM EDTA and sub-cultured on 25 cm2 flasks at a density of 2·104 cells/cm2.  

Experiments in undifferentiated Caco-2 cells as well as on MCF-7 and MDA-231 cells 

were performed 24h post-seeding. For assays on differentiated Caco-2 cells, cells were 

cultured on 96-wells plates under standard culture conditions for 7 to 9 days, until 

reaching 80% confluence as confirmed by optic microscopy observance.  

4.8. Cell treatment. Complexes were initially solved on DMSO to a concentration of 20 

mM and then diluted on cell culture without fetal bovine serum to the required work 

concentrations. For treatment, cell culture medium was replaced with medium containing 

complexes and cells were incubated at 37ºC for a variable time depending on the assay. 

4.9. Cell proliferation assay and IC50 calculation. MTT assay was performed as 

previously described by Mármol et al.59 

For IC50 calculation, cells were grown in 96-wells plates at a density of 4000 cells per 

well and incubated overnight at standard culture conditions. Then, cells were exposed to 

a range of concentrations of complexes (0-20 μM for complexes 1-5a and 1-5b; 10-100 

μM for coordination ligands L1 and L2) for 72h. Changes in cell proliferation were 

analysed by MTT and the obtained absorbance values were converted into percentage of 

growth inhibition. Absorbance was measured with SPECTROstar Nano (BMG Labtech). 

4.10. Cell death studies. Caco-2 cells were grown at 25 cm2 flasks at a density of 300.000 

cells per flask and incubated overnight under standard culture conditions. Cells were then 

exposed to gold and silver complexes for 48h, then collected and stained with Annexin 

V-FITC by flow cytometry as previously described by Sánchez-de-Diego et al.80  

4.10. Measurement of caspase 8 and caspase 3 activation. Caco-2 cells were grown at 25 

cm2 flasks at a density of 300.000 cells per flask and incubated overnight under standard 

culture conditions. Cells were then exposed to gold and silver complexes for 24h and 

collected for caspase 8 and 3 activity measurement.  

Caspase 8 Assay Kit (Abcam; ab39700) was used for colorimetric determination of 

caspase 8 activation. Treated Caco-2 cells were manipulated according to manufacturer’s 

instructions and absorbance was measured at 400 nm with SPECTROstar Nano (BMG 

Labtech). Protein concentration was determined by Bradford method.  



For caspase 3 activation measurement, Caspase 3Assay Kit, Colorimetric (Sigma-

Aldrich; CASP-3-C) was used. Treated Caco-2 cells were manipulated according to 

manufacturer’s instructions and absorbance was measured at 405 nm with SPECTROstar 

Nano (BMG Labtech). Protein concentration was determined by Bradford method. 

4.11. Propidium iodide staining of DNA content and cell cycle analysis. Caco-2 cells were 

grown at 25 cm2 flasks at a density of 300.000 cells per flask and incubated overnight 

under standard culture conditions. Cells were exposed to gold and silver complexes for 

48h, then collected and changes in cell cycle were analyzed as previously described by 

Sánchez-de-Diego et al.80  

4.12. Flow cytometry mitochondrial membrane potential assay. Caco-2 cells were grown 

at 25 cm2 flasks at a density of 300.000 cells per flask and incubated overnight under 

standard culture conditions. Cells were then exposed to gold and silver complexes for 48h 

and changes in Δψ were performed as previously described by Sánchez-de-Diego et al.80  

4.13. Analysis of total cellular oxidative stress. Caco-2 cells cells were grown in 96-wells 

plates at a density of 4000 cells per well, and after overnight incubation under standard 

culture conditions, were exposed to gold and silver complexes 24h. Thereafter, 

measurement of total intracellular ROS levels was performed as previously described by 

Sánchez-de-Diego et al.80 Fluorescence data were normalized with percentage of cell 

viability determined by MTT. 

4.14. Analysis of thioredoxin reductase activity. Caco-2 cells cells were grown in 96-wells 

plates at a density of 4000 cells per well, and after overnight incubation under standard 

culture conditions, were exposed to gold and silver complexes 24h. Then, TrxR activity 

was determined as previously described by Mármol et al.59 Absorbance was measured 

with SPECTROstar Nano (BMG Labtech). 

4.15. Measurement of glutathione reductase activity. Caco-2 cells cells were grown in 

96-wells plates at a density of 4000 cells per well, and after overnight incubation under 

standard culture conditions, were exposed to gold and silver complexes for 24h. Analysis 

of GR activity was performed as previously described by Sánchez-de-Diego et al.80 

Absorbance was measured with SPECTROstar Nano (BMG Labtech). 

4.16. Analysis of 20S proteasome activity. Caco-2 cells were grown at 25 cm2 flasks at a 

density of 300.000 cells per flask and incubated overnight under standard culture 

conditions. Cells were exposed to gold and silver complexes for 24h, then collected and 

lysed with saponine and centrifuged at 13.000 rpm for 15 min at 4ºC. Supernatant was 

further analyzed with Proteasome 20S Activity Assay Kit (Sigma-Aldrich; MAK172) 



according manufacturer’s instructions. Fluorescence was measured with FLUOstar 

Omega (BMG Labtech).  

4.17. Crystal Structure Determinations 

Crystals were mounted in inert oil on glass fibres and transferred to the cold gas stream 

of a Smart APEX CCD diffractometers equipped with a low-temperature attachment. 

Data were collected using monochromated MoKα radiation (λ = 0.71073 Å). Scan type 

ϖ. Absorption corrections based on multiple scans were applied using SADABS.75 The 

structures were solved by direct methods and refined on F2 using the program SHELXT-

2016.76 All non-hydrogen atoms were refined anisotropically. CCDC deposition numbers 

2020939 (L1), 2020940 (L2), 2020941 (1a), and 2020942 (1b) contain the supplementary 

crystallographic data. These data can be obtained free of charge by The Cambridge 

Crystallography Data Center. 
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