000108532 001__ 108532
000108532 005__ 20220511133136.0
000108532 0247_ $$2doi$$a10.1016/j.jclepro.2020.125201
000108532 0248_ $$2sideral$$a122440
000108532 037__ $$aART-2020-122440
000108532 041__ $$aeng
000108532 100__ $$0(orcid)0000-0002-5047-5106$$aAtienza-Martínez, M.
000108532 245__ $$aFunctionalization of sewage sludge char by partial oxidation with molecular oxygen to enhance its adsorptive properties
000108532 260__ $$c2020
000108532 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108532 5203_ $$aThis study investigates the activation of sewage sludge char through partial oxidation with molecular oxygen with the goal to increase the concentration of oxygen-containing surface functional groups and to enhance its ammonium adsorption capacity. The effects of oxidation temperature (200–350 °C), oxygen concentration (5–21 vol %) and oxidation time (30–120 min) on the degree of char oxidation are analyzed. The results obtained by thermogravimetric and elemental analysis, and Fourier Transform Infrared and X-ray Photoelectron spectroscopy corroborate the incorporation of oxygenated functional groups on the surface of sewage sludge char either at low temperature (200 °C) using air or at higher temperature (350 °C) using 5% O2 for 30 min. The oxidation of sewage sludge char hardly increases its specific surface area. The operating conditions during oxidation must be carefully controlled to avoid runaway reactions that lead to total oxidation of char. The evolution of CO and CO2 during oxidation is a good indicator of the advance of the oxidation/burn-off reactions. The ammonium adsorption capacity of sewage sludge char increases after oxidation under mild operating conditions, providing support to the idea of onsite utilization of sewage sludge as ammonium adsorbent in waste water treatment plants. This would provide a step forward towards the implementation of a circular economy.
000108532 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2016-76419-R
000108532 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000108532 590__ $$a9.297$$b2020
000108532 591__ $$aENGINEERING, ENVIRONMENTAL$$b6 / 53 = 0.113$$c2020$$dQ1$$eT1
000108532 591__ $$aGREEN & SUSTAINABLE SCIENCE & TECHNOLOGY$$b3 / 43 = 0.07$$c2020$$dQ1$$eT1
000108532 591__ $$aENVIRONMENTAL SCIENCES$$b18 / 272 = 0.066$$c2020$$dQ1$$eT1
000108532 592__ $$a1.937$$b2020
000108532 593__ $$aEnvironmental Science (miscellaneous)$$c2020$$dQ1
000108532 593__ $$aStrategy and Management$$c2020$$dQ1
000108532 593__ $$aRenewable Energy, Sustainability and the Environment$$c2020$$dQ1
000108532 593__ $$aIndustrial and Manufacturing Engineering$$c2020$$dQ1
000108532 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108532 700__ $$aBinti Suraini, N.N.
000108532 700__ $$0(orcid)0000-0003-4493-6540$$aÁbrego, J.$$uUniversidad de Zaragoza
000108532 700__ $$0(orcid)0000-0001-7035-1955$$aFonts, I.
000108532 700__ $$0(orcid)0000-0001-8797-936X$$aLázaro, L.$$uUniversidad de Zaragoza
000108532 700__ $$0(orcid)0000-0003-0501-7605$$aCarstensen, H.H.
000108532 700__ $$0(orcid)0000-0002-4364-2535$$aGea, G.$$uUniversidad de Zaragoza
000108532 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000108532 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000108532 773__ $$g290, 125201  (2020), [12 pp]$$pJ. clean. prod.$$tJournal of Cleaner Production$$x0959-6526
000108532 8564_ $$s903279$$uhttps://zaguan.unizar.es/record/108532/files/texto_completo.pdf$$yPostprint
000108532 8564_ $$s2776876$$uhttps://zaguan.unizar.es/record/108532/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108532 909CO $$ooai:zaguan.unizar.es:108532$$particulos$$pdriver
000108532 951__ $$a2022-05-11-13:14:28
000108532 980__ $$aARTICLE