000108534 001__ 108534
000108534 005__ 20211123140826.0
000108534 0247_ $$2doi$$a10.1021/acsami.0c17568
000108534 0248_ $$2sideral$$a122579
000108534 037__ $$aART-2020-122579
000108534 041__ $$aeng
000108534 100__ $$aBenítez-Mateos, A.I.
000108534 245__ $$aDesign of the Enzyme-Carrier Interface to Overcome the O2 and NADH Mass Transfer Limitations of an Immobilized Flavin Oxidase
000108534 260__ $$c2020
000108534 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108534 5203_ $$aUnderstanding how the immobilization of enzymes on solid carriers affects their performance is paramount for the design of highly efficient heterogeneous biocatalysts. An efficient supply of substrates onto the solid phase is one of the main challenges to maximize the activity of the immobilized enzymes. Herein, we apply advanced single-particle analysis to decipher the optimal design of an immobilized NADH oxidase (NOX) whose activity depends both on O2 and NADH concentrations. Carrier physicochemical properties and its functionality along with the enzyme distribution across the carrier were implemented as design variables to study the effects of the intraparticle concentration of substrates (O2 and NADH) on the activity. Intraparticle O2-sensing analysis revealed the superior performance of the enzyme immobilized at the outer surface in terms of effective supply of O2. Furthermore, the co-immobilization of NADH and NOX within the tuned surface of porous microbeads increases the effective concentration of NADH in the surroundings of the enzyme. As a result, the optimal spatial organization of NOX and its confinement with NADH allow a 100% recovery of the activity of the soluble enzyme upon the immobilization process. By engineering these variables, we increase the NADH oxidation activity of the heterogeneous biocatalyst by up to 650% compared to NOX immobilized under suboptimal conditions. In conclusion, this work highlights the rational design and engineering of the enzyme-carrier interface to maximize the efficiency of heterogeneous biocatalysts.
000108534 536__ $$9info:eu-repo/grantAgreement/EC/Era-CoBiotech/HOMBIOCAT/PCI2018-092984$$9info:eu-repo/grantAgreement/EC/ERC-Co/METACELL-878089$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-094398-B-I00
000108534 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000108534 590__ $$a9.229$$b2020
000108534 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b21 / 106 = 0.198$$c2020$$dQ1$$eT1
000108534 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b44 / 333 = 0.132$$c2020$$dQ1$$eT1
000108534 592__ $$a2.535$$b2020
000108534 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000108534 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000108534 593__ $$aMedicine (miscellaneous)$$c2020$$dQ1
000108534 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108534 700__ $$aHuber, C.
000108534 700__ $$aNidetzky, B.
000108534 700__ $$aBolivar, J.M.
000108534 700__ $$0(orcid)0000-0003-0031-1880$$aLópez-Gallego, F.
000108534 773__ $$g12, 50 (2020), 56027-56038$$pACS appl. mater. interfaces$$tACS Applied Materials and Interfaces$$x1944-8244
000108534 8564_ $$s1058973$$uhttps://zaguan.unizar.es/record/108534/files/texto_completo.pdf$$yPostprint
000108534 8564_ $$s3138217$$uhttps://zaguan.unizar.es/record/108534/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108534 909CO $$ooai:zaguan.unizar.es:108534$$particulos$$pdriver
000108534 951__ $$a2021-11-23-11:22:56
000108534 980__ $$aARTICLE