000108540 001__ 108540
000108540 005__ 20230519145431.0
000108540 0247_ $$2doi$$a10.3390/fractalfract5030069
000108540 0248_ $$2sideral$$a125195
000108540 037__ $$aART-2021-125195
000108540 041__ $$aeng
000108540 100__ $$aPasupathi, Rajan
000108540 245__ $$aIterated Function Systems composed of generalized theta-contractions
000108540 260__ $$c2021
000108540 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108540 5203_ $$aThe theory of iterated function systems (IFSs) has been an active area of research on fractals and various types of self-similarity in nature. The basic theoretical work on IFSs has been proposed by Hutchinson. In this paper, we introduce a new generalization of Hutchinson IFS, namely generalized θ-contraction IFS, which is a finite collection of generalized θ-contraction functions T1, . . . , TN from finite Cartesian product space X × · · · × X into X, where (X, d) is a complete metric space. We prove the existence of attractor for this generalized IFS. We show that the Hutchinson operators for countable and multivalued θ-contraction IFSs are Picard. Finally, when the map θ is continuous, we show the relation between the code space and the attractor of θ-contraction IFS.
000108540 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000108540 590__ $$a3.577$$b2021
000108540 592__ $$a0.644$$b2021
000108540 594__ $$a2.8$$b2021
000108540 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b18 / 108 = 0.167$$c2021$$dQ1$$eT1
000108540 593__ $$aStatistical and Nonlinear Physics$$c2021$$dQ2
000108540 593__ $$aAnalysis$$c2021$$dQ2
000108540 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108540 700__ $$0(orcid)0000-0003-4847-0493$$aNavascués, María Antonia$$uUniversidad de Zaragoza
000108540 700__ $$aChand, A.K. Bedabrata
000108540 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000108540 773__ $$g5 (2021), 5030069 [14 pp.]$$pFractal fract.$$tFractal and fractional$$x2504-3110
000108540 8564_ $$s2841902$$uhttps://zaguan.unizar.es/record/108540/files/texto_completo.pdf$$yVersión publicada
000108540 8564_ $$s2605761$$uhttps://zaguan.unizar.es/record/108540/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108540 909CO $$ooai:zaguan.unizar.es:108540$$particulos$$pdriver
000108540 951__ $$a2023-05-18-14:18:44
000108540 980__ $$aARTICLE