000108563 001__ 108563
000108563 005__ 20230519145420.0
000108563 0247_ $$2doi$$a10.1007/s13105-021-00837-6
000108563 0248_ $$2sideral$$a125139
000108563 037__ $$aART-2021-125139
000108563 041__ $$aeng
000108563 100__ $$aDíez-Sainz, Ester
000108563 245__ $$aEffects of gut microbiota–derived extracellular vesicles on obesity and diabetes and their potential modulation through diet
000108563 260__ $$c2021
000108563 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108563 5203_ $$aObesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota–derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet–induced increase of the proteobacterium Pseudomonas panacis–derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet–induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota–derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota–derived EV.
000108563 536__ $$9info:eu-repo/grantAgreement/ES/ISCIII/CB12-03-30002$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/BFU2015-65937-R$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-102205-B-I00
000108563 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000108563 590__ $$a5.08$$b2021
000108563 592__ $$a0.845$$b2021
000108563 594__ $$a7.2$$b2021
000108563 591__ $$aPHYSIOLOGY$$b16 / 81 = 0.198$$c2021$$dQ1$$eT1
000108563 593__ $$aMedicine (miscellaneous)$$c2021$$dQ2
000108563 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b107 / 297 = 0.36$$c2021$$dQ2$$eT2
000108563 593__ $$aBiochemistry$$c2021$$dQ2
000108563 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000108563 700__ $$aMilagro, Fermín I.
000108563 700__ $$aRiezu-Boj, José I.
000108563 700__ $$0(orcid)0000-0002-1033-6152$$aLorente-Cebrián, Silvia$$uUniversidad de Zaragoza
000108563 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000108563 773__ $$g(2021), [15 pp.]$$pJ. physiol. biochem.$$tJournal of Physiology and Biochemistry$$x1138-7548
000108563 8564_ $$s1121370$$uhttps://zaguan.unizar.es/record/108563/files/texto_completo.pdf$$yVersión publicada
000108563 8564_ $$s2322911$$uhttps://zaguan.unizar.es/record/108563/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000108563 909CO $$ooai:zaguan.unizar.es:108563$$particulos$$pdriver
000108563 951__ $$a2023-05-18-14:06:41
000108563 980__ $$aARTICLE