000108583 001__ 108583
000108583 005__ 20211201131442.0
000108583 0247_ $$2doi$$a10.1142/S0218348X20501364
000108583 0248_ $$2sideral$$a122538
000108583 037__ $$aART-2020-122538
000108583 041__ $$aeng
000108583 100__ $$0(orcid)0000-0003-4847-0493$$aNavascués, M.A.$$uUniversidad de Zaragoza
000108583 245__ $$aMultivariate Affine Fractal Interpolation
000108583 260__ $$c2020
000108583 5060_ $$aAccess copy available to the general public$$fUnrestricted
000108583 5203_ $$aFractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world signals, which are usually difficult to represent using the classical approaches. The affine fractal interpolants constitute a generalization of the broken line interpolation, which appears as a particular case of the linear self-affine functions for specific values of the scale parameters. We study the p convergence of this type of interpolants for 1 = p < 8 extending in this way the results available in the literature. In the second part, the affine approximants are defined in higher dimensions via product of interpolation spaces, considering rectangular grids in the product intervals. The associate operator of projection is considered. Some properties of the new functions are established and the aforementioned operator on the space of continuousfunctions defined on a multidimensional compact rectangle is studied.
000108583 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000108583 590__ $$a3.665$$b2020
000108583 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b19 / 108 = 0.176$$c2020$$dQ1$$eT1
000108583 591__ $$aMULTIDISCIPLINARY SCIENCES$$b23 / 73 = 0.315$$c2020$$dQ2$$eT1
000108583 592__ $$a0.654$$b2020
000108583 593__ $$aApplied Mathematics$$c2020$$dQ1
000108583 593__ $$aMultidisciplinary$$c2020$$dQ1
000108583 593__ $$aModeling and Simulation$$c2020$$dQ1
000108583 593__ $$aGeometry and Topology$$c2020$$dQ1
000108583 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000108583 700__ $$aKatiyar, S.K.
000108583 700__ $$aChand, A.K.B.
000108583 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000108583 773__ $$g28, 7 (2020), [14 pp]$$pFractals-Complex Geom. Patterns Scaling Nat. Soc.$$tFractals$$x0218-348X
000108583 8564_ $$s5335039$$uhttps://zaguan.unizar.es/record/108583/files/texto_completo.pdf$$yPostprint
000108583 8564_ $$s773582$$uhttps://zaguan.unizar.es/record/108583/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000108583 909CO $$ooai:zaguan.unizar.es:108583$$particulos$$pdriver
000108583 951__ $$a2021-12-01-12:16:03
000108583 980__ $$aARTICLE