«2: Universidad
A8l Zaragoza

1542

macultad de Ciencias

Universidad Zaragoza

Master Universitario en Modelizacion e
Investigacion Matematica, Estadistica y
Computacional 2020/2021

Trabajo Fin de Master
Analisis de técnicas de Deep
learning para la generacidn
automatica de Keywords

lgnacio Oscoz Villanueva

Directores
Jon Pey Pérez
Luis Mariano Esteban Escafio
10 de septiembre de 2021

Indice general

Indice de figuras 111
Indice de tablas \%
1. Introduccién 1
1.1. Objetivos o o 2
1.2. Estructura de la memoria 2

2. Mineria de textos 4
2.1. FEtapas de minerfade texto L. 5
2.1.1. Obtenciéon del texto 5

2.1.2. Pre-procesamiento del texto 6

2.1.3. Representacién numérica 6

2.1.4. Mineriadedatos 8

2.1.5. Evaluacion e interpretaciéon de los resultados 8

3. Redes neuronales 9
3.1. Introduccion Lo 9
3.2. Redes neuronales feedforward y conceptos basicos 14
3.2.1. Perceptrén simpleo 14

3.2.2. Perceptron multicapa y la regla de backpropagation 15

3.2.3. Entrenamiento y sus posibilidades 19

3.3. Redes neuronales convolucionales 28
3.4. Redes neuronales recurrentes 32
3.5. Word2Vec 35

4. Entrenamiento para la generacién de keywords 39
4.1. Obtencién del texto, 39
4.2. Generacién de texto por caracteres 41
4.2.1. Modelodered LSTM 41

4.2.2. Modelo de red convolucional 48

4.3. Generacién de texto por palabras 5}
4.3.1. Modelodered LSTM 55

4.3.2. Modelo de red convolucional 60

Ignacio Oscoz Villanueva

5. Conclusiones y trabajo futuro 65
5.1. Conclusiones 65
5.2. Trabajo futuro oo 66

Bibliografia 68

Anexos 70

IT

Indice de figuras

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.

4.1.
4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Etapas de un proceso de mineria de textos

Una red neuronal superficial.
Algunas de las funciones de activacion mas populares.

Ejemplo de las dos tipos de redes neuronales segin su configuracién.

Perceptrén multicapa con una capa oculta.
Perceptron multicapa con dos capas ocultas.
Ejemplo ilustrativo de la canica.
Capa convolucional 1D.
Capa convolucional 2D.
[lustraciéon de una red neuronal recurrente simple.

Red neuronal recurrente en formato similar al perceptrén multicapa.

Funcionamiento de la celda de memoria interna.
Ilustracion de los modelos de Word2Vee
Modelo CBOW con un contexto de C' palabras utilizadas como

entradaenlared

Diagrama de alto nivel del modelo generador de haikus[15]
Error de distintos modelos con LSTM por caracteres segun cliente,
nimero de celdas de memoria (denominado latent-dim) y épocas.
Precisién de distintos modelos con LSTM por caracteres segin
cliente, nimero de celdas de memoria (denominado latent-dim) y
EPOCAS. + v v i e e e
Error de distintos modelos con LSTM por caracteres para el cliente
A segin numero de celdas de memoria y épocas.
Precisiéon de distintos modelos con LSTM por caracteres para el
cliente A segin ntimero de celdas de memoria y épocas.
Error de distintos modelos convolucionales por caracteres segin
cliente, nimero de neuronas por capa y épocas.
Precision de distintos modelos convolucionales por caracteres segin
cliente, nimero de neuronas por capa y épocas.
Error de distintos modelos con LSTM por palabras segin cliente,
nimero de celdas de memoria (latent-dim) y épocas.
Precision de distintos modelos con LSTM por palabras segin cliente,
nimero de celdas de memoria (latent-dim) y épocas.
Error de distintos modelos convolucionales por palabras segin
cliente, nimero de neuronas por capa y épocas.

I1I

Ignacio Oscoz Villanueva

4.11. Precisién de distintos modelos convolucionales por palabras segin
cliente, nimero de neuronas por capa y épocas. 62

IV

Indice de tablas

4.1.

4.2.
4.3.
4.4.
4.5.
4.6.

4.7.
4.8.
4.9.

4.10.

4.11.
4.12.
4.13.
4.14.

4.15.
4.16.
4.17.

Tiempos de computacién de distintos modelos con LSTM por

caracteres segun cliente y nimero de celdas de memoria.
Generacion de keywords por caracteres para el cliente A
Generacion de keywords por caracteres para el cliente B..
Generacion de keywords por caracteres para el cliente B..
Ejemplo de estrategia de entrenamiento de nuestro modelo
Tiempos de computaciéon de distintos modelos segun cliente y

cantidad de neuronas por capa.
Generacién de keywords por caracteres para el cliente A
Generacion de keywords por caracteres para el cliente B..
Generacion de keywords por caracteres para el cliente C.
Tiempos de computacién de distintos modelos con LSTM por

palabras segin cliente y nimero de celdas de memoria.
Generacién de keywords por palabras para el cliente A
Generacion de keywords por palabras para el cliente B
Generacion de keywords por palabras para el cliente C
Tiempos de computacion de distintos modelos convolucionales por

palabras segin cliente y cantidad de neuronas por capa.
Generacién de keywords por palabras para el cliente A
Generacion de keywords por palabras para el cliente B
Generacion de keywords por palabras para el cliente C

Capitulo 1

Introduccion

Los cambios vertiginosos de las iltimas décadas han transformado a la sociedad
moderna industrial al grado de que ya es cominmente aceptado que se vive en un
nuevo tipo de sociedad y en una nueva era, la de la informacién. Esta era, también
llamada era digital o era informatica, designa al periodo en el que el movimiento
de informacién se volvié mas rapido que el movimiento fisico, gracias a la creacién
y desarrollo de las tecnologias digitales de la informacion y la comunicacién. La
mayoria de esta informacién sin embargo, no se encuentra en forma de tablas
numéricas, sino mas bien en formas textuales. Segun [19], la industria estima
que solo el 21 por-ciento de la informacion esta estructurada. Por informacién
estructurada nos referimos a aquella informacion donde los campos de datos se
alinean uno al lado del otro en longitudes de registro fijas, con campos de datos
especificos que aparecen en ubicaciones estaticas dentro de cada registro. Los datos
no estructurados no contienen un formato de registro establecido; pueden tener
cualquier forma o formato.

La creacién de informaciéon de cada individuo es constante, ya sea por ejemplo
en busquedas de Google, donde la mayor parte de la informacién existe en
forma textual, que es de naturaleza muy desestructurada. Ahora, para crear bits
significativos de conocimiento a partir de esta informacién, es importante conocer
los sistemas de Procesamiento del Lenguaje Natural (PLN) o en inglés Natural
Language Processing (NLP). La PLN es el area de inteligencia artificial que se
encarga de gestionar los lenguajes humanos. Es la técnica computacional en la
que se representa y analiza el lenguaje automaticamente. Pese a ser un campo de
investigacion bastante nuevo, su investigacion estd creciendo a una velocidad muy
alta. Y es que, los impresionantes resultados obtenidos con el aprendizaje profundo
(o deep learning en inglés) en vision por computadora, reconocimiento de patrones
y andlisis de trafico de red hicieron que los investigadores de PLN siguieran la
misma tendencia.

Uno de los multiples usos que se le puede dar a este nuevo campo es por

Ignacio Oscoz Villanueva

ejemplo establecer vinculos entre clientes potenciales y productos con fines de
marketing. Los motores de busqueda como Google, recuperan todos los documentos
que contienen las palabras clave que especificamos. No hay valor anadido a los
datos. La mineria de textos lleva las cosas un paso maés alla al extraer informacién
precisa basada en mucho mas que palabras clave. En su lugar, busca entidades o
conceptos, relaciones, frases y/o oraciones. Intenta determinar el significado real
basado en algoritmos de Procesamiento del Lenguaje Natural, que le permiten
reconocer conceptos similares. Una busqueda utilizando la mineria de texto puede
identificar hechos, relaciones e inferencias que no son del todo obvios.

1.1. Objetivos

Diferentes técnicas de inteligencia artificial han sido utilizadas como herra-
mientas para automatizar la generacion y gestiéon de campanas de marketing en
la plataforma Google Ads. En esta plataforma, se realizan mas de 3 billones de
bisquedas por dia, generando una cantidad ingente de informacién. En este con-
texto, la mineria de textos puede servir para la generacion automatica de palabras
clave utilizando técnicas de deep learning.

En este trabajo se propone desarrollar una herramienta sistemaéatica, basada
esencialmente en redes neuronales, para la generacién de Keywords (o palabras
clave) relevantes. Existen distintas herramientas capaces de abordar este objetivo,
y por eso el objetivo de este trabajo es implementar y determinar cudl resulta
mas conveniente a través de su analisis. Con este fin, se ha realizado un estudio
previo sobre el estado del arte para identificar las posibles alternativas que existen,
y tratar de implementar algunas de ellas, con la intencion de después analizar
su funcionamiento. Para ello, se ha contado con la colaboracion de la empresa
Quarizmi, que ademaés de proporcionar las bases de datos que se han utilizado, ha
servido de guia para cumplir los objetivos pre-establecidos.

Para intentar cumplir dichas metas, se ha utilizado el lenguaje de programacion
Python en su versién 3.8. Ademas se ha hecho uso de librerias como Tensorflow y
Keras, dos librerias Open Source que nos permiten adentrarnos en el Deep Learning
de forma sencilla.

1.2. Estructura de la memoria

Este trabajo pretende explicar, de forma precisa y descriptiva, la parte tedrica
empleada en el desarrollo del trabajo, asi como los resultados obtenidos y las
conclusiones finales. La memoria consta de cinco capitulos: el primer y actual
capitulo se ha dedicado fundamentalmente a la introduccién del trabajo y los

Ignacio Oscoz Villanueva

objetivos propuestos, el segundo a la representacién de la informacién, el siguiente
a los aspectos teodricos de las redes neuronales, otro a la explicacion de las diferentes
implementaciones realizadas, detallando sus resultados correspondientes, y un
ultimo a las conclusiones generales y trabajo futuro.

El segundo capitulo se centra en el campo de la mineria de textos y sus
principales etapas. La obtencion y el preprocesado de los textos, asi como la
representacién numeérica de ellos, es fundamental para un correcto funcionamiento
de modelos de aprendizaje automatico.

El capitulo tres empieza explicando los detalles mas bésicos de las redes
neuronales. A medida que avanza el capitulo se van introduciendo conceptos méas
complejos para terminar explicando aquellos detalles que en el posterior capitulo
acabaremos poniendo en practica como las redes LSTM, las redes convolucionales
y sus configuraciones de entrenamiento.

Como anticipaba, el siguiente apartado tratara sobre abordar los problemas y
objetivos que nos hemos propuesto haciendo uso de los conceptos tedricos que se
han ido desarrollando en los anteriores capitulos. Mds concretamente se trataran
de entrenar dos modelos de redes LSTM (uno para la generacién de keywords
por caracteres y otro para la generacién por palabras) y dos modelos de redes
convolucionales (uno para la generacién de keywords por caracteres y otro para la
generacién por palabras). Una vez entrenados los modelos se tratard de analizar
criticamente los resultados obtenidos y de ver si se han conseguido cumplir los
objetivos propuestos de generar palabras clave.

Para acabar, en el capitulo cinco se desarrollan las conclusiones generales de
este Trabajo Fin de Master y se valoran las lineas de trabajo futuro.

En el anexo se incluye parte del cédigo de programacién desarrollado para este
trabajo. Mas concretamente, se adjuntan los script principales de Python en los
que se incluyen la implementacion de los entrenamientos de las redes neuronales y
la generacién de textos.

Capitulo 2

Mineria de textos

Tradicionalmente, el tratamiento de la informacién se ha realizado sobre bases
de datos numéricos que vienen dados en forma totalmente estructurada. Sin
embargo, como se ha mencionado anteriormente, la mayoria de la informacion de la
que se dispone hoy en dia se encuentra en formato textual, lo que es consecuencia
directa del uso de Internet. Por poner un ejemplo, segiin un estudio de Domo [5],
empresa encargada de conectar los datos con los usuarios para las empresas, en el
ano 2020, en un solo minuto, se estimaron que de media se produjeron al rededor de
4,5 de millones de busquedas en Google, se enviaron casi 42 millones de mensajes
en WhatsApp y se ‘clickaron’ a unos 140000 anuncios de Instagram.

El interés en tratar esta informacién que proviene de textos hace que el campo
de la minerfa de textos se encuentre ahora mismo en auge. Se entiende por mineria
de textos la rama de la lingiiistica computacional cuyo objeto es la obtencion de
informacion que no se encuentra de forma explicita en un conjunto de textos.
Esta busca extraer informacion tutil e importante de formatos de documentos
heterogéneos, como paginas web, correos electronicos, publicaciones en redes
sociales, articulos de revistas... Esto a menudo se hace identificando patrones
dentro de los textos, como tendencias en el uso de palabras, estructura sintactica...
La gente suele hablar de “minerfa de texto y datos (MTD)” al mismo tiempo, pero
estrictamente hablando, la mineria de texto es una forma especifica de mineria de
datos que se ocupa del texto.

La tecnologia de mineria de texto ahora se aplica por una amplia variedad
de usuarios, desde organizaciones gubernamentales, instituciones de investigacién
y empresas para sus necesidades diarias. A continuacién se muestran algunos
ejemplos de uso en diferentes campos:

» Investigaciéon: Un investigador humano necesita mucho tiempo para analizar
y obtener informacion relevante. En algunos casos, esta informacion ni
siquiera es posible obtenerla con su simple lectura. La mineria de textos

4

Ignacio Oscoz Villanueva

permite a los investigadores encontrar mas informacién y de una manera
mas rapida y eficiente.

= Negocios: Las grandes empresas utilizan la mineria de textos para ayudar
en la toma de decisiones y para responder rapidamente las consultas de los
clientes.

= Seguridad: El andlisis de extraccion de texto de blogs y otras fuentes de texto
en linea se utiliza para prevenir delitos en Internet y luchar contra el fraude.

= Diariamente: Los sitios web de correo electronico utilizan la mineria de texto
para crear métodos de filtrado mas fiables y eficaces. También se utiliza
para fines de redes sociales al identificar las relaciones entre los usuarios y
ciertos productos o para determinar las opiniones de los usuarios sobre temas
particulares.

2.1. Etapas de mineria de texto

Obtencion del textol} Preprocesamiento Representacion

numeérica

Figura 2.1: Etapas de un proceso de mineria de textos

Un proceso de mineria de textos consta de cinco etapas distintas [4], como se
observa en la figura 2.1.

2.1.1. Obtencion del texto

Recopilacion de datos de diferentes recursos, como sitios web, correos
electrénicos, comentarios de clientes, archivos de documentos. Dependiendo de
la aplicacién, este proceso puede ser completamente automatizado o guiado por
el minero de texto. En tareas de aprendizaje supervisado, ademas del texto
deberemos obtener los datos de las variables de salida. En nuestro caso, las variables
de salida seran el propio texto.

Ignacio Oscoz Villanueva

2.1.2. Pre-procesamiento del texto

Procesamiento previo, como identificacion de contenido y extraccion de
caracteristicas representativas. Se trata de una etapa en la que se simplifica
el problema original, ya sea eliminando informaciéon no relevante o reduciendo
la dimensionalidad del problema. Todos los elementos del texto no ofrecen la
misma informacién. Por ejemplo, en la tokenizacién! por palabras, los tokens
denominados stop words, no ofrecen nada mas que ruido y es por ello que suelen
eliminarse. La consideracion de una palabra como stop word dependera de la tarea
que estemos realizando. Por ejemplo, un nimero puede considerarse como tal
para ciertas tareas pero no para otras. Para la reduccion de dimensionalidad,
entre otras técnicas, también se puede emplear el lematizado en caso de que
estemos ante una tokenizacion por palabras. Con ello, se sustituyen todas las
palabras por su lema, manteniendo la informacién que ofrecen pero pudiendo asi
reducir considerablemente la dimensionalidad. En nuestro problema, al tratarse de
generacion de textos, no se considerard ningun tipo de eliminacién de stop words
ni de sustitucion por lema. Ademads, con el objetivo de poder ver las diferencias
entre ambas, se tratara con dos tokenizaciones distintas: una por caracteres y otra
por palabras.

2.1.3. Representacion numérica

Una vez tokenizado el texto y habiéndolo ya pre-procesado, seguimos teniendo
un conjunto de frases, palabras o letras de las que directamente no podemos
aplicar ningin modelo de mineria de datos. Para ello, es necesario obtener una
representacion numérica. Existen distintas técnicas para la vectorizacién del texto
pero en este trabajo se hard uso de la codificacion one-hot y del Word2Vec.

codificacién one-hot

La codificacién one-hot es una de las técnicas mas simples para la vectorizacion
de los tokens. Este método representa cada token con un vector de forma {0, 1}V,
donde V es el conjunto total de tokens diferentes del texto. Asi pues, cada
coordenada del vector corresponde con el token del conjunto V' ordenado segin su
aparicion. Dicho de otro modo, cada token del texto se representa con un vector
de dimensién igual a nimero de tokens en el conjunto V', tomando su indice el
valor 1 y 0 en el resto. Para entender mejor esto, veamos dos ejemplos distintos:

'Los tokens son las unidades individuales de significado con las que se estd operando. Pueden
ser palabras, caracteres o incluso oraciones completas. La tokenizacién es el proceso de dividir

los documentos de texto en esas partes.

Ignacio Oscoz Villanueva

= Ejemplo en el caso de tokenizacién por palabras: Supongamos que tenemos un
vocabulario ordenado con las siguientes palabras: { “mineria”, “de”, “texto” }.

Entonces, los vectores que los representarian serian respectivamente (1,0, 0),
(0,1,0) y (0,0,1).

= Ejemplo en el caso de tokenizacién por palabras: Ahora supongamos que

tenemos la palabra “texto” y la quisiéramos tokenizar por caracteres

para después codificarla con one-hot. Entonces nuestro conjunto de tokens
[Pk e,

ordenado serfa el siguiente: {“t”, “e”, “x”, “0”}; y su codificacién la que
viene respectivamente: (1,0,0,0), (0,1,0,0), (0,0,1,0) y (0,0,0,1).

Este método no es capaz de captar ningtin tipo de significado entre sus tokens
debido a que todos ellos son equidistantes entre si, y cuando el nimero de tokens
es elevado aparecen problemas de dimensionalidad. Por eso, en general no es
recomendable para los casos de tokenizacion por palabras. No obstante, dado que
los caracteres carecen de significado semantico propio y el nimero de diferentes
caracteres en un texto no suele ser muy elevado, la vectorizacion por one-hot es
una técnica bastante usada en los textos tokenizados por caracteres.

Word Embeddings

Los word embeddings son una clase de técnicas en las que las palabras
individuales se representan como vectores de valor real en un espacio vectorial
predefinido [3]. Cada palabra se asigna a un vector y los valores del vector
se aprenden de una manera que se asemeja a una red neuronal y, por lo
tanto, la técnica a menudo se agrupa en el campo del aprendizaje profundo. La
representacion distribuida se aprende en base al uso de palabras. Esto permite
que las palabras que se usan de manera similar tengan representaciones similares,
capturando su significado semantico natural. Existen varias técnicas que se pueden
clasificar como dentro de los word embeddings; he aqui unos ejemplos [9]:

» Word2Vec[12] [13]: Este método revolucioné el campo de la PLN con su
aparicién en el ano 2013, y se ha convertido en uno de los méas populares.
Word2Vec predice la palabra de destino a partir del contexto dado de
palabras con un modelo de bolsa continua de palabras (CBOW) o predice el
contexto de la palabra de destino mediante un skip-gram. El modelo CBOW
determina la probabilidad condicional de la palabra objetivo al dar palabras
de contexto, mientras que un modelo de skip-gram hace exactamente lo
contrario, lo que determina las palabras de contexto circundantes al dar
palabras centrales. Esto permite que su representacion vectorial sea capaz
de realizar operaciones como la de “Rey - hombre + mujer = Reina”. Entre
sus limitaciones destaca la incapacidad de representar grupos de palabras
como por ejemplo “perrito caliente”, que lo representaria como dos palabras
(“perro” y “caliente”) que nada tienen que ver con su verdadero significado.
Esta técnica se explicard con més detenimiento en el capitulo 3.

7

Ignacio Oscoz Villanueva

» GloVe [17]: El algoritmo del Global Vectors o GloVe es una extensiéon del
método Word2Vec para el aprendizaje eficiente de vectores de palabras.
Las representaciones de palabras del modelo de espacio vectorial clasico
se desarrollaron utilizando técnicas de factorizacién matricial que hacen un
buen trabajo al usar estadisticas de texto global, pero no son tan buenos
como los métodos aprendidos como Word2Vec para capturar el significado y
demostrarlo en las tareas como calcular analogias (por ejemplo, el ejemplo
de Rey y Reina anterior). En lugar de utilizar una ventana para definir el
contexto local, GloVe construye una matriz explicita de palabra-contexto o
ocurrencia de palabras utilizando estadisticas de todo el texto.

» FastText [2]: Otra extensién del primer método. Este representa cada
palabra como un n-grama de caracteres en lugar de representar palabras
directamente. Esta técnica es ttil para capturar la semantica de palabras
pequenas. El FastText tiene la ventaja de representar palabras raras que
pueden no haber sido vistas en el tiempo de entrenamiento.

2.1.4. Mineria de datos

Obtenida la representacién numérica de los datos textuales, seriamos capaces de
aplicar modelos matematicos que nos permitiesen alcanzar el objetivo de la tarea.
Es decir, ahora aplicarifamos lo que se denomina la mineria de datos. Nuestro
objetivo es el de generar texto a partir de lo que se aprende en los conjuntos de
datos obtenidos. Para ello, se hara uso de dos tipos de redes neuronales artificiales
distintas, como lo son las redes neuronales recurrentes LSTM y las redes neuronales
convolucionales, que se explicaran en el capitulo 3. Con esto, captaremos ciertos
patrones en la representacion numérica de los textos que a su vez nos permitira
generar texto nuevo.

2.1.5. Evaluacion e interpretacion de los resultados

En esta etapa nos encargaremos de analizar el funcionamiento de los modelos de
generacién de texto. En un problema de clasificacién es tan facil como por ejemplo
ver las veces que acierta el modelo. Sin embargo, como veremos mas adelante, en
la generacion de texto es algo mas complicado.

Capitulo 3

Redes neuronales

El deep learning o aprendizaje profundo es el aprendizaje automatico con redes
neuronales artificiales profundas, y el objetivo de este capitulo sera explicar su
funcionamiento.

3.1. Introducciéon

Las redes neuronales son modelos simples del funcionamiento del sistema
nervioso. Las unidades basicas son las neuronas, que generalmente se organizan
en capas. Una red neuronal artificial es un modelo simplificado que emula el
modo en que el cerebro humano procesa la informacion: Funciona simultaneando
un numero elevado de unidades de procesamiento interconectadas que parecen
versiones abstractas de neuronas.

Las unidades de procesamiento se organizan en capas. Hay tres partes
normalmente en una red neuronal: una capa de entrada, con unidades que
representan los campos de entrada; una o varias capas ocultas; y una capa de
salida, con una unidad o unidades que representa el campo o los campos de destino.
Las unidades se conectan con fuerzas de conexién variables (o ponderaciones). Los
datos de entrada o inputs se presentan en la primera capa, y los valores se propagan
desde cada neurona hasta cada neurona de la capa siguiente. Al final, se envia un
resultado desde la capa de salida denominado output o simplemente valor de salida.

En la imagen 3.1 podemos ver un ejemplo de una red neuronal formada por tres
capas. La capa de entrada consta de tres neuronas y cada una de ellas puede aceptar
un valor de entrada, y estdn representadas por las variables xq, 9, x3. Aceptar los
datos de entrada es lo tinico que hace la primera capa. Cada neurona de la capa de
entrada puede tener una tunica salida. Es posible tener menos valores de entrada

Ignacio Oscoz Villanueva

que las neuronas de entrada (entonces puede pasarles un valor de 0 a las neuronas
no utilizadas), pero la red no puede tomar més valores de entrada que nimero
de neuronas de entrada. Las entradas se pueden representar como una secuencia
X1, Ta, ..., T, (que en realidad es lo mismo que un vector de fila) o como un vector
de columna x := (zy,9,...,7,)T. Hay diferentes representaciones de la misma,
y siempre elegiremos la representacion que haga mas facil y réapido el cédlculo de
las operaciones que podamos necesitar. En nuestra elecciéon de representacion de
datos, no estamos limitados por nada mas que por la eficiencia computacional.

223 = bs
+ X1:W13
+ X2+W23
+.X3° W33

X3!

Layer 1 Layer 2 Layer 3

Figura 3.1: Una red neuronal superficial.

Como ya hemos senalado, todas las neuronas de la capa de entrada estan
conectadas a todas las neuronas de la capa oculta, pero las neuronas de la misma
capa no estan interconectadas.

Cada conexion entre la neurona j en la capa k y la neurona m en la capa

n tiene un peso denotado por wfﬁl, y, dado que por lo general queda claro en el
contexto qué capas estan involucradas, podemos omitir el superindice y escribir
simplemente w;,,. El peso regula cuanto del valor inicial se reenviara a una neurona

determinada.

Volviendo a la figura 3.1 observamos que la neurona ampliada (neurona 3 de
la capa 2) obtiene la entrada que es la suma de los productos de las entradas de
la capa anterior y los pesos respectivos. En este caso, las entradas son x1, x5 y 3,
y los pesos son w3, weg y wsz. Cada neurona tiene un valor modificable, llamado
sesgo o bias en inglés, que esta representado aqui por b3, y este sesgo se suma a
la suma anterior. El resultado de esto se llama logit y tradicionalmente se denota
por z (en nuestro caso, zs3).

Excepto en las neuronas lineales donde el valor del logit es proporcional al
de salida, normalmente suele aplicarse una funcién no-lineal, o(z), denominada
funcion de activacion para obtener el output (tradicionalmente denotado por y) de
la neurona. Matematicamente, el output de la neurona j de la capa k se escribe de

10

Ignacio Oscoz Villanueva

la siguiente manera:

Y= (Z Wik + bj> (3.1)
k=1

donde n es el nimero de entradas, wy; son los pesos asociados a los input xy, y
b; el sesgo asociado a la neurona j. El valor de salida se utilizara como valor de

entrada de otras neuronas, y repitiendo el proceso, finalmente obtendremos el valor
de salida final.

Existen distintas funciones de activacion que se pueden usar en distintas capas.
Estas funciones, basicamente deciden si los valores introducidos a una neurona
deben ser activadas o no, es decir, si su informacion es relevante o no. Esto es
importante en la forma en que una red aprende porque no toda la informacién
es igualmente util. Parte de esa es solo ruido. Aqui es donde entran en escena las
funciones de activacion. Las funciones de activacién ayudan a la red a utilizar la
informacion importante y suprimir los puntos de datos irrelevantes. Las funciones
de activacion més destacadas en la literatura son las siguientes:

» Funciéon ReLU: Pese a su simplicidad el ReLU o unidad lineal rectificada es
la funcién de activaciéon mas utilizada en estos momentos. Matematicamente
viene dada de la siguiente manera:

0 stz <0
z en el resto

ReLU(z) = méx (0,z) = { (3.2)
Como puede verse, el ReLU estd medio rectificado (desde abajo). o(z) es
cero cuando z es menor que cero y o(z) es igual a z cuando z es superior o
igual a cero. El problema de esta funcién es que todos los valores negativos
se vuelven cero inmediatamente, lo que disminuye la capacidad del modelo
para ajustarse o entrenarse a partir de los datos correctamente.

= Funcion LeakyReL U: En un intento de resolver el problema de la ReL U surge
esta funcién con la siguiente expresion:

ax six <0

x en el resto (3-3)

LReLU(z) = {
Tomando « valores cercanos a 0,01. Esta simple modificacién ayuda a
aumentar el rango de la funcién ReLU, permitiendo asi aumentar la
capacidad de ajuste y entrenamiento.

= Funciéon sigmoide: La funcion sigmoide, también denominada funcién
logistica, esta definida de esta manera:

1

- 3.4
14+e® (34)

o(x)
Al dar valores entre 0 y 1 resulta 1util para los casos en los que se
quiere predecir una probabilidad como salida. Su principal inconveniente
es que puede hacer que una red neuronal se atasque en el momento del
entrenamiento (por el denominado vanishing grandient problem).

11

Ignacio Oscoz Villanueva

= Funciéon tangente hiperbdlica: La tangente hiperbdlica es similar a la
funcién logistica pero trasformando el valor de = en el rango de [—1,1].
Matematicamente se presenta tal que asi:
x —X
tanhz = % (3.5)
er +e”*
Su principal ventaja respecto a la anterior es que las entradas negativas
daran salidas fuertemente negativas y las entradas cercanas a cero daran
salidas cercanas a cero. La funciéon tanh se utiliza principalmente para la
clasificacién entre dos clases. Presenta el mismo problema que la funcién
sigmoide: el problema del desvanicimiento del gradiente.

= Funciéon Softmax: La funcién Softmax se describe a menudo como una
combinacion de multiples sigmoides. Como hemos dicho, la funcién sigmoide
devuelve valores entre 0 y 1, que pueden tratarse como probabilidades de que
un punto de datos pertenezca a una clase o a otra. De una manera similar la
funcion Softmax puede utilizarse para problemas de clasificacion multiclase.
Esta funcién devuelve valores en el rango de [0, 1], cuya suma es igual a 1.
Es por ello que se puede interpretar como una probabilidad y es utilizada
en la capa de salida, como probabilidad de pertenecer a una cierta clase. La
funcion Softmax se define de la siguiente manera:

Ly
0(r;) = —z—— donde j=1,.., K (3.6)
Tk
dpmr €
Sigmaoid Activation Function Tanh Activation Function
10 100
075
oe
050
(113 025
000
o4 -025
0.50
oz
075
oo 1.00
-100 -75 -50 -25 00 25 50 75 100 -0 75 -50 -25 00 5 50 75 100
(a) ()
RelU Activation Function LeakyRelU Activation Function
10 4 0
B 8
6l 6
P
"
2
21
o -2
-100 -¥5 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100
O (@

Figura 3.2: Algunas de las funciones de activacién més populares.

Una red neuronal aprende examinando los registros individuales, generando
una prediccién para cada registro y realizando ajustes a las ponderaciones cuando
realiza una prediccién incorrecta. Este proceso se repite muchas veces y la red
sigue mejorando sus predicciones hasta haber alcanzado uno o varios criterios de
parada.

12

Ignacio Oscoz Villanueva

Al principio, todas las ponderaciones son aleatorias y las respuestas que
resultan de la red son, posiblemente, disparatadas. La red aprende a través
del entrenamiento. Continuamente se presentan a la red ejemplos para los que
se conoce el resultado, y las respuestas que proporciona se comparan con los
resultados conocidos. A medida que progresa el entrenamiento, la red se va
haciendo cada vez mas precisa en la replicacion de resultados conocidos. Una
vez entrenada, la red se puede aplicar a casos futuros en los que se desconoce
el resultado.

Antes de continuar con la explicacién es necesario comentar la clasificacién de
las redes neuronales segtin su configuracién. Principalmente existen dos grupos de
redes neuronales:

» Redes neuronales Feedforward (cuyas siglas en inglés son FNN): Como su
nombre indica, en estas redes la informacion solamente se propaga hacia
adelante. Es decir, la salida de una neurona solamente puede ser entrada de
las neuronas de la siguiente capa.

» Redes neuronales recurrentes (cuyas siglas en inglés son RNN): En este tipo
de redes la salida de una neurona puede ser entrada de neuronas de capas
anteriores o de la misma capa. Se puece dar también, que la salida de una
neurona, sea entrada de la misma.

Capade
entrada

Capade Capa de
salida entrada

Capa de

Capa oculta Capa oculta salida

Capa oculta Capa oculta

(a) FNN (b) RNN

Figura 3.3: Ejemplo de las dos tipos de redes neuronales segtin su configuracion.

13

Ignacio Oscoz Villanueva

3.2. Redes neuronales feedforward y conceptos

basicos

En la literatura, uno de los primeros pasos a la hora de explicar los conceptos
mas basicos en las redes neuronales suele ser introduciendo ejemplos de redes
neuronales feedforward o de propagacion hacia adelante. De hecho, antes de haber
hecho esta clasificacién, en este trabajo ya habiamos visto un ejemplo de este tipo
de redes (figura 3.1). Como suele ser habitual, comenzaremos explicando las redes
méas simples para ir escalando hacia casos mas complejos.

3.2.1. Perceptréon simple

Formado por una tnica neurona de funcion escalén de Heaviside, también
llamada funcién escaléon unitario, el perceptrén simple es el primer paso para
comprender el funcionamiento de las redes neuronales. Formalmente se define asi:

z=0b+ Z w;T; (3.7)

1 s12<0
= - 3.8
Y {0 en el resto (38)

Donde z; son las entradas, w; los pesos, b es el sesgo v z es el logit. Es posible
absorber el sesgo como uno de los pesos, por lo que solo necesitamos una regla de
actualizacion del peso. Esto se muestra en la ecuacién 3.9: para absorber el sesgo
como un peso, es necesario agregar una entrada xy con el valor 1 y el sesgo es su
peso. Es decir:

z2=0b+ Zwixi = woxo(= b) + w1 + Was... (3.9)

De acuerdo con la ecuacién anterior, b podria ser xy o wy (el otro debe ser 1). Dado
que queremos cambiar el sesgo con el aprendizaje, y las entradas nunca cambian,
debemos tratarlo como un peso. A este procedimiento lo llamamos absorcion de
sesgo o bias absortion.

El entrenamiento del perceptron se hace mediante la llamada regla de
aprendizaje del perceptréon, como sigue:

1. Se elige un caso de entrenamiento.
2. Si la salida predicha coincide con la etiqueta de salida, no se hace nada.

3. Si el perceptron predice un 0 y deberia haber predicho un 1, se agrega el
vector de entrada al vector de peso.

14

Ignacio Oscoz Villanueva

4. Si el perceptrén predice un 1y deberia haber predicho un 0, se resta el vector
de entrada al vector de peso

El perceptron simple puede resultar 1til en problemas simples de clasificacion
binaria. Sin embargo, esta estructura se ve muy limitada en problemas de
clasificacion no lineales, y le resulta imposible clasificar correctamente problemas
no linealmente separables, como por ejemplo un problema XOR. Para solucionar
estos problemas surge el perceptrén multicapa.

3.2.2. Perceptrén multicapa y la regla de backpropagation

Capade
entrada

Capade

Capa oculta salida

Figura 3.4: Perceptrén multicapa con una capa oculta.

El perceptron multicapa es un modelo de redes neuronales formado por una
capa de entrada, una o varias capas ocultas y una capa de salida con una conexién
completa hacia adelante de las neuronas y con funciones de activacién no lineales.
En la imagen 3.4 se puede observar lo que seria un ejemplo de perceptréon multicapa
con una Unica capa oculta. La salida de esta, es facilmente deducible a partir de
la expresiéon 3.1, y tendra la siguiente forma:

yi=0o Y wio Y ww, (3.10)
j=0 k=0

) representa el peso asociado a la conexion de la neurona j de la segunda

capa con la neurona i de la capa de salida, w,%-) representa el peso asociado a la
conexion de la neurona k de la capa de entrada con la neurona j de la capa oculta,
o representa la funcién de activacién de la capa oculta y & representa la funcién de
activacion de la capa de salida. Por otra parte, segin esta notacion, n representara
el nimero de neuronas en la capa de entrada, mientras que m representara el

nimero de neuronas de la capa oculta.

2
donde wj(-i

15

Ignacio Oscoz Villanueva

Si en vez de tener un modelo con una tnica capa oculta tuviésemos uno con
dos capas ocultas como el que observamos en la figura 3.5 la expresiéon de 3.10
podria generalizarse de esta manera:

Yi =0 Zw](-?)& Zw,(é)a Zwl(,?:ck (3.11)

Capade
entrada

Capade
salida

Capa oculta Capa oculta

Figura 3.5: Perceptron multicapa con dos capas ocultas.

No es dificil generalizar atin méas la ecuaciéon 3.11 para un caso totalmente
general de C' > 3 capas y obtener la siguiente expresion recursiva:

ne—1

Y =0 Z wﬁ-—lq:f_l , i1=1,....,n¢ (3.12)
=0
nc-2

:L’jc’l =0 Z wij’kaC’Z . j=1,...,nc_1 (3.13)
k=0

siendo donde ng y nec_1 el nimero de neuronas en la capa de C'y C — 1
respectivamente, wﬁ_l el peso asociado a la neurona j de la capa C' — 1 con
la neurona i de la capa C'y x]c_l la salida de la neurona j de la capa C' — 1. A
pesar de que en esta expresion se denote de la misma manera, o, a las funciones
de activacion de cada capa, es importante recalcar que no tienen porqué ser las

mismas funciones.

Después de que en el ano 1969 Minsky y Papert [14] demostraran que el
perceptron simple no podia resolver tareas de clasificacion no lineales, se empezd
a pensar que la combinacion de varios perceptrones simples seria capaz de resolver
ese problema. El principal obstdculo con la creacién del perceptron multicapa fue
que se desconocia como extender la regla de aprendizaje del perceptron para que
funcionase con multiples capas. Dado que se necesitan multiples capas, la tnica
opcion parecia ser abandonar la regla del perceptrén y usar una regla diferente que

16

Ignacio Oscoz Villanueva

sea mas robusta y capaz de aprender los pesos a través de la capa. Asi de la mano
de Paul Werbos[23] primero, y David Parker[16], Yann LeCun[10] y, Rumelhart,
Hinton y Williams[18] mds tarde, en los anos 80 se desarrollé el algoritmo de
backpropagation o retropropagacién. Mediante este algoritmo, iban adaptando los
pesos propagando los errores hacia atras, es decir, propagando los errores hacia las
capas ocultas. De esta forma se consiguieron trabajar con multiples capas y con
funciones de activacién no lineales.

Algoritmo de retropropagacién

La propagacion hacia atras de errores es basicamente un descenso de gradiente.
Matematicamente hablando, la retropropagacion es:

Wactualizado = Wanterior — T]VE (314)

donde w es el peso, 7 es la tasa de aprendizaje (para simplificar, se puede considerar
1 por ahora) y F es la funcién de costo que mide el rendimiento general. También
podriamos escribirlo en notacién de ciencias de la computacion como una regla
que asigna a w un nuevo valor:

w4+ w—nVE (3.15)

Esto se lee como “el nuevo valor de w es w menos nVE”. Esto no es circular, ya
que estd formulado como una asignacién (), no como una definicién (= o :=).
Esto significa que primero calculamos el lado derecho y luego asignamos a w este
nuevo valor. Observe que si escribiéramos esto mateméticamente, tendriamos una
definicién recursiva.

Quizas nos preguntemos si podriamos hacer el aprendizaje de pesos de una
manera mas simple, sin usar derivadas y descenso de gradientes. Podriamos probar
el siguiente enfoque: seleccionar un peso w y modificarlo un poco y ver si eso ayuda.
Si es asi, nos quedariamos con la modificacion. Si empeora las cosas, cambiariamos
en la direccién opuesta (es decir, en lugar de sumar la pequena cantidad del peso,
restar). Si esto lo hace mejor, nos quedariamos con este cambio. Si ninguno de los
cambios mejora el resultado final, podemos concluir que w es perfecto tal como es
y pasar al siguiente peso v.

Inmediatamente surgen tres problemas. Primero, el proceso lleva mucho
tiempo. Después del cambio de peso, necesitamos procesar al menos un par de
ejemplos de entrenamiento para cada peso para ver si es mejor o peor que antes.
Simplemente hablando, esta es una pesadilla computacional. En segundo lugar,
al cambiar los pesos individualmente, nunca descubriremos si una combinacién
de ellos funcionaria mejor. El primero de estos problemas se soluciona mediante
el descenso de gradientes, mientras que el segundo se resuelve solo parcialmente.
Este problema generalmente se denomina éptimos locales.

El tercer problema es que cerca del final del aprendizaje, los cambios tendran
que ser pequenos y es posible que el “pequeno cambio” de nuestra prueba de

17

Ignacio Oscoz Villanueva

algoritmo sea demasiado grande para aprender con éxito. La propagacién hacia
atras también tiene este problema, y generalmente se resuelve utilizando una tasa
de aprendizaje dindmica que se reduce a medida que avanza el aprendizaje.

Si formalizamos este enfoque obtendremos un método llamado aproximacién
en diferencias finitas:

1. Cada peso w;, 1 > i > k se ajusta agregandole una pequena constante € y se
evalia el error general (con solo w; cambiado), el cual se denotard por E; .

2. Se vuelve a obtener el peso inicial w; y se resta e. Reevaluando el error se
consigue F; .

3. Se repite el proceso para todos los pesos w;,> j > 1

+ —
E}—E;

4. Finalmente, los nuevos pesos se establecerdn en w < w — =

La aproximacién en diferencias finitas hace un buen trabajo al aproximar el
gradiente, y no se usa méas que aritmética elemental. Este método se puede utilizar
para desarrollar la intuicion de céomo se desarrolla el aprendizaje del peso en la
propagacién hacia atras. Sin embargo, la mayoria de las bibliotecas actuales que
tienen herramientas para la diferenciacién automatica realizan un descenso del
gradiente en una fraccién del tiempo que tomaria calcular la aproximacion en
diferencias finitas.

Ahora, pasemos a la retropropagacion. Examinemos lo que sucede en la capa
oculta de la red neuronal feedforward. Comenzamos con pesos y sesgos inicializados
aleatoriamente, los multiplicamos con las entradas, los sumamos y los llevamos a
través de la regresiéon logistica que los “aplana” a un valor entre 0 y 1, y lo hacemos
una vez mas. Al final, obtenemos un valor entre 0 y 1 de la neurona logistica en la
capa de salida. Podemos decir que todo lo que esté por encima de 0.5 es 1 y por
debajo de 0. Pero el problema es que si la red da 0.21 y la salida deberia haber
sido 1, solo conocemos el error que produjo la red (la funcién E), y deberiamos
utilizar eso. Mas precisamente, queremos medir cémo cambia E cuando cambia el
w;, lo que significa que queremos encontrar la derivada de E con respecto a las
actividades de la capa oculta. Queremos encontrar todas las derivadas al mismo
tiempo, y para ello usamos notaciones vectoriales y matriciales y, en consecuencia,
el gradiente. Una vez que tengamos las derivadas de £ con respecto a la actividad
de la capa oculta, calcularemos facilmente los cambios para los mismos pesos.

Entonces, este algoritmo consta de dos pasadas: una primera hacia adelante y
otra hacia atras después:

= En la pasada hacia adelante la informacion del vector imput x* =
(21, T3, ..., T,) se propaga hacia adelante mediante las ecuaciones 3.12 y 3.13
dando como resultado un vector de salida gc = (91, J2.--Un.), representando
C' la capa de salida y, por lo tanto, n¢ el nimero de neuronas en ella.

18

Ignacio Oscoz Villanueva

= En la pasada hacia atras, el error se va propagando desde la capa de salida
hacia la capa de entrada, ajustando los pesos de las conexiones con el objetivo
de minimizar el error E.

Sin perdida de generalidad supongamos que la funcién de error esta definida como
el error cuadratico medio. Asi pues, el error en la observaciéon n vendra dado de la

siguiente manera
A
E, =2 Z (4:(n) — yi(n)) (3.16)
i=1

Y por lo tanto el error global medio sera:

1 N
E = NZEH (3.17)

Siendo N el numero de observaciones.

Entonces, la actualizacion de los pesos tendra la siguiente expresion general:
wn) =wn—-1)—nVE(w(n —1)) (3.18)

donde w(n) es el vector de pesos en la iteracién n, siendo w(0) el vector de pesos
inicial. Y de esta expresion se deduce el criterio de parada:

Aw(n) =w(n) —w(n —1) = —ng—i[n] (3.19)

siendo w el peso a estimar y g—g[n] la derivada parcial de F en la iteracién n.
Hasta cumplir este criterio, la actualizacion de pesos se hace de forma iterada,
aunque como veremos mas tarde este criterio se suele establecer en un nimero fijo
de épocas realizadas.

3.2.3. Entrenamiento y sus posibilidades

Habiendo asentado ya una base de lo que son las redes neuronales y en qué
se basa su entrenamiento, estamos preparados para profundizar un poco mas en
su funcionamiento. Hasta ahora, hemos visto que en el momento de definir una
red neuronal y su entrenamiento existen una gran variedad de posibilidades y
hiperparametros que deberemos de fijar: funcién de pérdida, nimero de neuronas,
nimero de capas, configuraciéon de la red, tasa de aprendizaje, funciones de
activacion... En este apartado profundizaremos en algunos de estos aspectos
ademas de comentar los problemas que pueden surgir y como evitarlos.

No obstante, antes de continuar explicaremos a que se le denomina ser un

hiperparametro. El nombre es bastante inusual, pero en realidad hay una razén
simple detras de él. Cada red neuronal es en realidad una funcién que asigna a

19

Ignacio Oscoz Villanueva

un vector de entrada dado (entrada) una etiqueta de clase (salida). La forma en
que la red neuronal hace esto es a través de las operaciones que realiza y los
parametros que se le dan. Las operaciones incluyen funciones de activacién, la
multiplicacion de matrices..., mientras que los parametros son todos los ntimeros
que no son de entrada que estan por aprender: pesos y sesgos. Sabemos que los
sesgos son simplemente pesos y que la red neuronal encuentra un buen conjunto
de pesos propagando hacia atras los errores que registra. Dado que las operaciones
son siempre las mismas, esto significa que todo el aprendizaje realizado por una
red neuronal es en realidad una bisqueda de un buen conjunto de pesos, o en otras
palabras, es simplemente ajustar sus parametros. Ahora que esto esté claro, es facil
decir qué es un hiperparametro. Un hiperparametro es cualquier niimero utilizado
en la red neuronal que no puede ser aprendido por la red. Esto es, el aprendizaje
no puede ajustar los hiperparametros y deben ajustarse manualmente; no existe
una forma cientifica de hacerlo, es mas una cuestién de intuicién y experiencia. Un
ejemplo seria la tasa de aprendizaje o la cantidad de neuronas en la capa oculta.

Tipos de entrenamiento

Segin el momento en el que se actualicen los pesos existen tres estrategias de
entrenamientos: Estrategia off-line, estrategia on-line y estrategia por minibatch.
Sin embargo, antes de comentar las diferentes estrategias de entrenamiento por las
que se puede optar, conviene explicar estos dos conceptos:

= Lote: También llamado batch, el lote es el conjunto de muestras a través de
las cuales se trabaja antes de actualizar los parametros internos del modelo.
Se puede pensar en un lote como un bucle “for” que itera sobre una o mas
muestras y hace predicciones. Al final del lote, las predicciones se comparan
con las variables de salida esperadas y se calcula un error. A partir de
este error, se actualizan los valores de los pesos. Esto permite acelerar la
convergencia en contraposicion a si los pesos tuviesen que actualizarse tras
pasar por todos los datos de entrenamiento.

] Epoca: Las épocas representan el numero de veces que cada muestra del
conjunto de datos de entrenamiento ha tenido la oportunidad de actualizar
los parametros internos del modelo. Normalmente se elige un ntimero elevado
de épocas pero esto, ademas de conllevar un gran coste computacional, a
veces también conlleva un sobre-entrenamiento del modelo.

En consecuencia, se nos suman dos nuevos parametros que deberemos fijar
para realizar el entrenamiento de nuestra red. Ahora que se han explicado
estos conceptos basicos, podemos continuar con la clasificacién de tipos de
entrenamiento:

= Estrategia off-line: También conocida como estrategia por lote o estrategia
por batch, es un tipo de entrenamiento en el que los pesos se actualizan

20

Ignacio Oscoz Villanueva

después de haber pasado todo el conjunto de datos por la red. Es decir,
solo se toma un unico lote, el conjunto de datos de entrenamiento entero,
y con €l se minimiza directamente la funcién de pérdida FE. A pesar de que
tedricamente hablando esta estrategia seria la correcta, en grandes conjuntos
de datos su convergencia es lenta y requiere mucho coste computacional.
Es por ello que este método resulta 1til tinicamente en conjuntos de datos
relativamente pequenos.

» Estrategia on-line: Al contrario que la anterior, esta estrategia actualiza
los pesos con el procesado de cada muestra del conjunto de entrenamiento.
Es decir, el tamano de lote es igual a 1. Es por ello que esta estrategia
pueda aplicarse en conjunto de datos grandes. No obstante, este método no
es compatible con la programacion en paralelo ya que es necesario el resultado
obtenido después de procesar una observacién antes de procesar la siguiente.

= Estrategia por minibatch: Es una estrategia hibrida que mantiene las
ventajas de sus predecesoras. Este método divide el conjunto de datos de
entrenamiento en pequenos lotes del mismo tamano o minibatches, para ir
actualizando los pesos con cada procesado de uno de ellos. Con ello, logramos
que el entrenamiento sea factible para conjuntos de datos grandes sin perder
la posibilidad de poder usar programacion en paralelo.

Funcién de perdida

Como bien hemos indicado previamente todo el entrenamiento se realiza con
el objetivo final de minimizar esta funcién. Su correcta elecciéon nos permitird
describir manera mas acertada el error entre los vectores de salida estimados, ¢, vy
los vectores de salida esperados, y. Debido a que existen incontables maneras de
medir este error, en este trabajo solamente se explicard la funcion de la que se va
a hacer uso: Entropia cruzada categorica.

La entropia cruzada categorica es una funcién de pérdida que se utiliza en tareas
de clasificacion de clases multiples. Estas son tareas en las que un ejemplo solo
puede pertenecer a una de las muchas categorias posibles, y el modelo debe decidir
cudl. La funcién de pérdida de entropia cruzada categorica calcula la pérdida de
un ejemplo calculando la siguiente suma:

E(§,y) = - Z yi log (i) (3.20)

siendo n¢, el nimero de neuronas en la capa final o, lo que es lo mismo, el nimero
de categorias de las que predecir la probabilidad de permanencia.

Esta funcién es una muy buena medida de cuan distinguibles son dos

distribuciones de probabilidad discretas entre si. En este contexto, y; es la
probabilidad estimada de que ocurra el evento ¢ y la suma de todos ¢; es 1, lo

21

Ignacio Oscoz Villanueva

que significa que puede ocurrir exactamente un evento. El signo menos asegura
que la pérdida se reduce cuando las distribuciones se acercan entre si.

Softmax es la tinica funciéon de activacién recomendada para usar con la funcién
de pérdida de entropia cruzada categorica. Estrictamente hablando, la salida del
modelo solo necesita ser positiva para que el logaritmo de cada valor de salida g;
exista. Sin embargo, el principal atractivo de esta funcién de pérdida es comparar
dos distribuciones de probabilidad. La activacion de softmax cambia la escala de
la salida del modelo para que tenga las propiedades correctas.

Numero de neuronas y numero de capas

La eleccién del ntimero de neuronas normalmente suele hacerse de manera
experimental ya que no existen evidencias tedricas que respalden ciertamente
una metodologia para su eleccién. Lo mismo sucede con el nimero de capas.
Configurar la arquitectura de la red sin duda es un paso importante a la hora
de definirla. Un niimero demasiado bajo de estas cantidades generara modelos que
no aprenden lo suficiente de los datos de entrenamiento (underfitting). Elevar el
nimero de estos hiperparametros siempre tendra como consecuencia modelos mas
complejos y costosos computacionalmente, y ademas esta accién no siempre traera
mejores resultados. La elevacion excesiva del niimero de neuronas de la capa oculta,
resultara en modelos sobreentrenados (overfitting) que se ajustan bien al conjunto
de datos de entrenamiento pero carecen de generalidad en su aplicacion. Existen
algunas reglas que en la practica han resultado ser eficientes, como por ejemplo
la regla de capa oculta-capa de entrada [1], o la regla de la pirdmide [11]. Esta
ultima, se basa en la suposicion de que el nimero de neuronas de la capa oculta,
debe ser menor que el nimero de neuronas de la capa de entrada pero mayor que
el nimero de neuronas de la capa de salida.

En la practica, como bien he comentado antes, esta eleccion suele hacerse a
prueba y error, intentando conseguir un equilibrio entre el coste computacional del
modelo y su eficacia.

Tasa de aprendizaje

La idea de incluir una tasa de aprendizaje se propuso explicitamente por
primera vez en el ano 2000 [20]. Como hemos visto anteriormente, la tasa de
aprendizaje controla la cantidad de actualizacion que queremos, ya que la tasa de
aprendizaje es parte de la regla general de actualizacién de peso, es decir, entra
en juego al final de la propagacién hacia atras. Antes de pasar a los tipos de tasa
de aprendizaje, exploremos por qué la tasa de aprendizaje es importante en un
entorno abstracto.

22

Ignacio Oscoz Villanueva

Construyamos un ejemplo abstracto de aprendizaje imaginando que tenemos
una canica que representa nuestro modelo y una curva en forma de cuenco redondo
y profundo, cuya altura representa el error del modelo. El gradiente es como la
gravedad e intenta minimizar la funcién de pérdida o el error pero queremos que sea
diferente a la gravedad fisica para que la cantidad de movimiento en esta direccién
no esté determinada por la posicién exacta del minimo para la altura, es decir, no
se asiente en el fondo sino que puede moverse al otro lado del cuenco. Dejamos
la cantidad de movimiento sin especificar en este momento, pero asumimos que
rara vez es la cantidad exacta necesaria para alcanzar el minimo real: a veces es
un poco mas y se sobrepasa, y otras es un poco menos y no lo alcanza. Aqui
hay que senalar un punto muy importante: la curvatura “apunta” al minimo, pero
estamos siguiendo la curvatura en el punto en el que nos encontramos actualmente,
y no en el minimo. En cierto sentido, la canica es extremadamente “miope”:
solo ve la curvatura actual y se mueve a lo largo de ella. Sabremos que hemos
encontrado el minimo cuando tengamos la curvatura de 0. Tenga en cuenta que
en nuestro ejemplo tenemos un ¢uenco idealizado”, que tiene solo un punto donde
la curvatura es 0, y ese es el minimo global para y. Imaginese cuantas superficies
mas complejas podria haber donde no podemos decir que el punto de curvatura
0 es el minimo global, pero también tengamos en cuenta que si pudiéramos tener
una transformacion que transforme cualquiera de estas superficies complejas en
nuestro cuenco, tendriamos un aprendizaje algoritmo perfecto.

Cada época de aprendizaje es un movimiento (de alguna cantidad) en la
“direccion general” de la curvatura del cuenco, y una vez hecho, se queda donde
estd. La segunda época “descongela” la situacién, y nuevamente se sigue la
direccion general hacia la curvatura. Este segundo movimiento podria ser la
continuacion del primero, o un movimiento en una direccién casi opuesta si la
canica sobrepasa el minimo (la base del cuenco). El proceso puede continuar
indefinidamente, pero después de varias épocas, los movimientos seran realmente
pequenos e insignificantes, por lo que podemos detenernos después de un nimero
predeterminado de épocas o cuando la mejora no sea significativa.

La tasa de aprendizaje controla la cantidad de movimiento que vamos a
realizar. Una tasa de aprendizaje de 1 significa hacer todo el movimiento, y una
tasa de aprendizaje de 0,1 significa hacer solo el 10% del movimiento. Como se
menciond anteriormente, podemos tener una tasa de aprendizaje global o una
tasa de aprendizaje dindmica para que cambie segun ciertas condiciones que
especifiquemos.

Volviendo al ejemplo de la canica, imaginemos que ahora tenemos un cuenco
poco profundo con forma de elipse alargada. Si dejamos caer la canica sobre la parte
del borde mas lejana al centro, se movera a lo largo de una curvatura muy poco
profunda y tomara una gran cantidad de épocas encontrar su camino hacia el fondo
del cuenco. La tasa de aprendizaje puede ayudar aqui. Si tomamos solo una fraccion
del movimiento, la direccion de la curvatura para el siguiente movimiento sera
considerablemente mejor que si nos movemos de un borde de un cuenco alargado
y poco profundo al borde opuesto. Dard pasos mas pequenos pero encontrara una

23

Ignacio Oscoz Villanueva

buena direccién mucho més rapidamente (ver figura 3.6).

X >
Elongated surface Same surface
leaming rate 0.2

v

Figura 3.6: Ejemplo ilustrativo de la canica.

Esto nos abre un debate sobre el valor de la tasa de aprendizaje 1. Una tasa de
aprendizaje pequena puede conllevar a una trayectoria més “suave”, pero también
a un aprendizaje més lento. Por otro lado, una tasa de aprendizaje alta lleva a
un entrenamiento mas rapido pero puede ocasionar oscilaciones en superficies del
error de alta curvatura o incluso puede provocar el estancamiento en un minimo
local y no global. Los valores que se utilizan con mas frecuencia suelen estar en el
intervalo [0, 1] como 0,1,0,01,0,001... Valores como 0,03 simplemente se perderdn
y se comportaran de manera muy similar al logaritmo més cercano, que en este
caso es 0,01.

Como sucede con otros hiperparametros, para esta cantidad tampoco existen
reglas que ayuden fijar su valor, y por eso suele fijarse mediante pruebas de ensayo-
error. No obstante para nuestro caso no sera necesario realizar dichas pruebas, ya
que se hara uso de una tasa de aprendizaje adaptativa con el método de Rmsprop,
el cual mas tarde explicaremos.

Momento

Dirigimos nuestra atencién ahora a una idea similar a la tasa de aprendizaje,
pero diferente llamada momento o inercia. Hablando informalmente, la tasa de
aprendizaje controla qué parte del movimiento se debe mantener en el paso actual,
mientras que el momento controla qué parte del movimiento del paso anterior
se debe mantener en el paso actual. El problema que la inercia intenta resolver
es el problema de los minimos locales. Volvamos a nuestra idea con el cuenco
pero ahora modifiquemos el cuenco para que tenga minimos locales. La canica cae
como de costumbre hacia el minimo y continta a lo largo de la curvatura, y se
detiene cuando la curvatura es 0. Pero el problema es que la curvatura 0 no es
necesariamente el minimo global, es solo local. Si fuera un sistema fisico, la canica
tendria impulso y caeria por encima del minimo local a un minimo global, alli iria
y oscilaria un poco para luego asentarse. El impulso en las redes neuronales es solo
la formalizacion de esta idea. Entre los distintos momentos que se le puede agregar
a la ecuacién 3.18, el mas intuitivo es el momento estandar, que deja la expresion

24

Ignacio Oscoz Villanueva

original tal que ast:
w(n)=wn—1) —nVE(wn — 1))+ pAw(n — 1) (3.21)

donde i > 0 seria el correspondiente término del momento. Con esto se consigue
acelerar el descenso en direcciones similares en iteraciones consecutivas (gradientes
consistentes) y, estabilizar si se tienen oscilaciones de signos en varias iteraciones
consecutivas. Por tanto, se evitan oscilaciones (inestabilidad) en “valles” de la
superficie de error a la par que acelera la convergencia en regiones con poca
pendiente. Es por eso que se dice que esta idea de actualizacién de los pesos
se basa en el gradiente para modificar la “velocidad” del vector de pesos en vez de
su “posicion”, como hace el algoritmo original.

Regularizacion

Uno de los aspectos més importantes a la hora de entrenar redes neuronales
es evitar el sobreentrenamiento. La regularizacion se refiere a un conjunto de
diferentes técnicas que reducen la complejidad de un modelo de red neuronal
durante el entrenamiento y, por lo tanto, evitan el este sobreajuste. Entre las
técnicas més populares de regularizacién se encuentran las siguientes:

» Regularizacion Ly: La regularizacion Ly es el tipo més comun de todas las
técnicas de regularizacion y también se conoce cominmente en inglés como
weights decay. La idea de este método es utilizar la norma euclidiana para el
término de regularizacién. Con esto, la funcién de pérdida L. regularizada,
E, simplemente serd, la funcién de pérdida original definida para la tarea,
E, mas el término de regularizacién:

E=E+A|w|;=E+)Y_ w} (3.22)

siendo A es conocido como el parametro de regularizacion y es el
hiperparametro que ajusta cuanto de regularizacion queremos. La intuicién
detras de esto es que durante el procedimiento de aprendizaje, se preferiran
pesos mas pequenos, pero se consideraran pesos mas grandes si la disminuciéon
general del error es significativa. La eleccion de \ determina cuanto se
preferiran los pesos pequenos (cuando A es mayor, la preferencia por pesos
pequenos es mayor).

» Regularizacion L;: La regularizacion L;, también conocida en inglés como
basis pursuit denoising usa el valor absoluto en lugar de los cuadrados:

E=E+Mw|,=E+X>_ |uw (3.23)

Para la mayoria de los problemas de clasificacion y prediccion, la regula-
rizaciéon Lo resulta mejor. Sin embargo, hay ciertas problemas en las que

25

Ignacio Oscoz Villanueva

la L, sobresale: aquellos que contienen una gran cantidad de datos irrele-
vantes. Estos pueden ser datos muy ruidosos o caracteristicas que no son
informativas, pero también pueden ser datos escasos (donde la mayoria de
las caracteristicas son irrelevantes porque faltan).

= Dropout: Sin duda otra técnica muy popular y eficaz. El Dropout funciona de
manera distinta que las anteriores ya que no modifica la funcién de pérdida
sino la estructura de la red. Su funcionamiento es tan simple como que
consiste en la eliminacién temporal de algunas de las neuronas de la red,
forzando a la red a trabajar con parte de sus neuronas. Concretamente,
durante el entrenamiento en cada época, cada neurona tiene una probabilidad
p de ser eliminada. De esta manera las neuronas se convierten menos
dependientes entre ellas.

Problema de desvanecimiento y explosién

El problema de desvanecimiento describe la situacion en la que una red no puede
propagar informacién de gradiente 1til desde el extremo de salida del modelo a las
capas cercanas al extremo de entrada del modelo. Cuando se hace uso de la técnica
del gradiente descendente cada uno de los pesos de la red neuronal recibe una
actualizacion proporcional a la derivada parcial de la funcién de error con respecto
al peso actual en cada iteracién del entrenamiento. El problema es que, en algunos
casos, el gradiente serd muy pequeno, lo que evitara que el peso cambie su valor.
En el peor de los casos, esto puede impedir por completo que la red neuronal siga
entrenando. Como un ejemplo de la causa del problema, las funciones de activacién
tradicionales, como la funcién sigmoide, tienen gradientes en el rango [0, 1], y la
retropropagacién calcula los gradientes mediante la regla de la cadena. Dado que
su derivada es o’ (x) = o(x)(1 — o(x)), para casos de z cercanos a los extremos del
rango, los pesos no variaran practicamente nada, provocando un aprendizaje lento
de la red. Ademas, el problema empeora a medida que aumentamos el nimero
de capas ocultas ya que el gradiente decrece exponencialmente. Esto es por causa
de que en la actualizacion de los pesos se va requiriendo de un ntimero mayor de
derivadas de funciones de activaciéon a medida que aumenta el niimero de capas.

Por otro lado puede ocurrir lo contrario. Cuando el gradiente toma valores muy
altos, los pesos se actualizan muy rapidamente provocando que el aprendizaje que
experimenta el modelo sea préacticamente nulo. A este problema se le denomina
problema de explosion.

Inicializacion de los pesos

Como hemos dicho previamente, el primer paso en el entrenamiento de una red
es dar unos valores de inicio a sus pesos. Valores de inicio que suelen ser aleatorios,
pero que deberemos de determinar su distribucién. Una distribucién correcta puede

26

Ignacio Oscoz Villanueva

ser clave para conseguir la convergencia del algoritmo en una cantidad de tiempo
razonable. Si los pesos iniciales son demasiado pequenos entonces la varianza de
los datos de entrada empieza a disminuir a medida que pasan por cada capa de
la red, conduciendo al problema de desvanecimiento. Por otro lado, si los pesos
iniciales son demasiado grandes, entonces la varianza crece rapidamente a lo largo
de la red, dando lugar al problema de explosién.

Glorot y Bengio [6], propusieron en el ano 2010, una regla de inicializacién
que lleva el nombre del primero, Xavier, cuyo obejetivo era que la varianza de los
datos de entrada y salida coincidieran. Para ello, propusieron inicializar la matriz
de pesos W siguiendo la siguiente distribucién uniforme:

V6 V6

WU |- + 3.24
Vnhe-1+nc \/nc-1+nc (3:24)

donde ne_1 v ne son el nimero de neuronas en la capa anterior y en la actual
respectivamente. Esta inicializacién de los pesos consigue evitar tanto el problema
de desvanecimiento como el de explosion, y aunque hay una gran variedad de
técnicas de inicializacion, hoy en dia esta es una de las més populares.

Algoritmo de RMSProp

En pocas palabras, RMSProp utiliza una tasa de aprendizaje adaptativa en
lugar de tratar la tasa de aprendizaje como un hiperparametro. Esto significa que
la tasa de aprendizaje cambia con el tiempo. Los gradientes de funciones muy
complejas, como las redes neuronales, tienen una tendencia a dar problemas de
desvanecimiento y explosion a medida que los datos se propagan a través de la
funcion. RMSProp se desarrollé como una técnica estocéstica para el aprendizaje
por minibatches. Esta técnica se ocupa de evitar los problemas de desvanecimiento
y explosion mediante el uso de un promedio exponencial. La idea basica es usar un
factor de desintegracién, p € (0, 1), y ponderar las derivadas parciales cuadradas
que ocurren en anteriores actualizaciones por p". Tengamos en cuenta que esto se
puede lograr facilmente multiplicando el agregado al cuadrado actual (es decir, la
estimacion en ejecucién) por p y luego sumando (1 — p) por la derivada parcial
actual (al cuadrado). La estimacién en ejecucién se inicializa en 0. Esto provoca
algin sesgo (indeseable) en las primeras iteraciones, que desaparece a largo plazo.
Por lo tanto, si A; es el valor promediado exponencialmente del i-ésimo parametro
w;, tenemos la siguiente forma de actualizar A;:

Ai(n) = pAs(n — 1)+ (1 - p) (o8 [n]) (3.25)

donde n representa el nimero de iteracion. La raiz cuadrada de este valor para
cada parametro se usa para normalizar su gradiente:

oy 2 9B
A o

27

(3.26)

w;i(n) = w;(n —1

Ignacio Oscoz Villanueva

3.3. Redes neuronales convolucionales

Las redes neuronales convolucionales estan disenadas para trabajar con
entradas estructuradas en cuadricula, que tienen fuertes dependencias espaciales en
las regiones locales de la cuadricula. El ejemplo mas obvio de datos estructurados
en cuadricula es una imagen bidimensional. Este tipo de datos también exhibe
dependencias espaciales, porque las ubicaciones espaciales adyacentes en una
imagen a menudo tienen valores de color similares de los pixeles individuales.
Una dimensién adicional captura los diferentes colores, lo que crea un volumen
de entrada tridimensional. Por lo tanto, las caracteristicas de una red neuronal
convolucional tienen dependencias entre si basadas en distancias espaciales. Otras
formas de datos secuenciales como texto, series de tiempo y secuencias también
pueden considerarse casos especiales de datos estructurados en cuadricula con
varios tipos de relaciones entre elementos adyacentes. La gran mayoria de las
aplicaciones de redes neuronales convolucionales se centran en datos de imagenes,
pero su uso cada vez esta mas extendido en campos como la mineria de texto.

Una caracteristica definitoria importante de las redes neuronales convoluciona-
les es una operacion, que se conoce como convolucion. Una operacién de convolu-
cién es una operacién de producto escalar entre un conjunto de pesos estructurado
en cuadricula y entradas estructuradas en cuadricula similares extraidas de dife-
rentes localidades espaciales en el volumen de entrada. Este tipo de operacién es
util para datos con un alto nivel de ubicacién espacial o de otro tipo, como datos de
imagenes. Por lo tanto, las redes neuronales convolucionales se definen como redes
que usan la operacién convolucional en al menos una capa, aunque la mayoria de
las redes neuronales convolucionales usan esta operacion en multiples capas.

il —> [T [

[- TS

GI7

e

Figura 3.7: Capa convolucional 1D.

Una capa convolucional toma una matriz y una pequena funcién de activacion
con por ejemplo tamanio de entrada 4 (estos tamanos suelen ser 4 0 9, a veces 16) y
pasa la funcién a toda la matriz. Esto significa que la primera entrada consta de los
componentes 1-4 del vector aplanado, la segunda entrada son los componentes 2-5,
la tercera son los componentes 3—6, y asi sucesivamente. Puede ver una descripcién
general del proceso en la parte inferior de la figura 3.7. Este proceso crea un vector

28

Ignacio Oscoz Villanueva

de salida que es mas pequeno que el vector de entrada general, ya que comenzamos
en el componente 1, pero tomamos cuatro componentes y producimos una sola
salida. El resultado final es que si nos moviéramos a lo largo de un vector de 10
dimensiones con la funcién de activacién (esta funcién se llama campo receptivo
local en las redes neuronales convolucionales), produciriamos un vector de salida de
7 dimensiones (ver la parte inferior de la figura 3.7). Este tipo de capa convolucional
se denomina capa convolucional 1D.

Padding

También podemos adoptar un enfoque diferente y decir que queremos que la
dimensién de salida sea la misma que la de entrada, pero luego nuestro campo
receptivo local' de 4 dimensiones tendria que comenzar en la entrada en “celdas”
-1, 0, 1, 2 y luego continuar a 0, 1, 2, 3, y asi sucesivamente, terminando en 9,
10, 11 . Poner componentes -1, 0 y 11 para que el vector de salida tenga el mismo
tamano que el vector de entrada se llama padding o relleno. Los componentes
adicionales generalmente obtienen valores 0, pero a veces tiene sentido tomar los
valores del primer y 1ltimo componente de la matriz o el promedio de todos los
valores. Lo importante a la hora de rellenar es pensar como no “enganar” a la capa
convolucional para aprender las regularidades del relleno.

|

Figura 3.8: Capa convolucional 2D.

Repasemos la situacién en 2D, como si no aplanamos la imagen en un vector.
Esta es la configuracién clasica para capas convolucionales, y dichas capas se
denominan capas convolucionales 2D o capas convolucionales planas. Si usaramos
3D, lo llamariamos espaciales, y para 4D o més hiperespaciales.

Las entradas de las funciones de activaciéon ahora también deberian ser de
dos dimensiones, y esta es la razén por la que usamos con mayor frecuencia 4,

!Cada neurona dentro de una CNN es responsable de una regién definida de los datos de
entrada, y esto permite que las neuronas aprendan patrones como lineas, bordes y pequenos
detalles que componen la imagen. Esta region definida del espacio a la que estd expuesta una

neurona o unidad en los datos de entrada se denomina Campo Receptivo Local.

29

Ignacio Oscoz Villanueva

9 y 16, ya que son cuadrados de 2 por 2, 3 por 3 y 4 por 4 respectivamente. El
paso ahora representa un movimiento de este cuadrado en la imagen, mirando
desde la izquierda, yendo a la derecha y una vez terminado, una fila hacia
abajo, moviendose completamente hacia la izquierda sin escanear y comenzando a
escanear de izquierda a derecha (ver figura 3.8). Una cosa que se vuelve obvia es
que ahora obtendremos menos resultados. Si usamos un campo receptivo local de 3
por 3 para escanear una imagen de 10 por 10, como resultado del campo receptivo
local obtendremos una matriz de 8 por 8 (ver parte inferior de la figura 3.8.

Una red neuronal convolucional tiene multiples capas. Imaginemos una red
neuronal convolucional que consta de tres capas convolucionales y una capa
completamente conectada. Supongamos que procesara una matriz cuadrada de
dimensién 10 por 10 y que las tres capas tienen un campo receptivo local de 3 por
3.

La primera capa toma una matriz de 10 por 10, produce una salida (tiene
pesos y sesgos inicializados aleatoriamente) de tamano 8 por 8, que luego se le da
a la segunda capa convolucional (que tiene su propio campo receptivo local con
inicializacion aleatoria de pesos y sesgos pero hemos decidido que sea también 3
por 3), lo que produce una salida de tamano 6 por 6, y esto se le da a la tercera
capa (que tiene un tercer campo receptivo local). Esta tercera capa convolucional
produce una imagen de 4 por 4. Luego lo aplanamos a un vector de 16 dimensiones y
lo pasamos a una capa estandar completamente conectada que tiene una neurona
de salida con su correspondiente funciéon no lineal. Comparando la salida de la
funcién no lineal con la etiqueta que le corresponde, se calcula el error y se
retropropaga, y esto se repite para cada imput en el conjunto de datos que completa
el entrenamiento de la red.

En el caso de las redes convulucionales 2D el padding es igualmente realizable.
No obstante, en este caso tendriamos un “marco” de relleno.

Mapas de caracteristicas

Ahora que sabemos cémo funciona una red neuronal convolucional, podemos
usar un truco. Recordemos que una capa convolucional escanea por ejemplo una
imagen de 10 por 10 con una con un campo receptivo local de 3 por 3 (9 pesos,
1 sesgo) y crea una nueva matriz de 8 por 8 como salida. Imaginemos también
que la imagen tiene tres canales para colores. ;Como procesarias una imagen con
tres canales? Una respuesta natural es correr sobre el mismo campo receptivo (que
tiene pesos y sesgos entrenables pero inicializados aleatoriamente). Esta es una
buena estrategia. Pero, ;qué pasa si lo invertimos y en lugar de usar un campo
receptivo local en tres canales, queremos usar cinco campos receptivos locales en
un canal? Recordemos que un campo receptivo local se define por su tamano y por
sus pesos y sesgos. La idea aqui es mantener el mismo tamano pero inicializar los
otros campos receptivos con diferentes pesos y sesgos. Esto significa que cuando

30

Ignacio Oscoz Villanueva

escanean una imagen de 3 canales de 10 por 10, construiran 15 imédgenes de salida
de 8 por 8. Estas imédgenes se denominan mapas de caracteristicas. Es como tener
una imagen de 8 por 8 con 15 canales. Esto es muy ttil ya que solo un mapa de
caracteristicas que aprende una buena representacién (por ejemplo, ojos y narices
en imagenes de perros) aumentard considerablemente la precisién general de la
red (suponga que la tarea de toda la red es clasificar imédgenes de perros y varias
objetos que no son perros (es decir, detectar un perro en una imagen)).

Una de las ideas principales aqui es que una imagen (o matriz) de 3 canales de
10 x 10 se convierte en una matriz de 15 canales de 8 x 8. La imagen de entrada
se transformé en un objeto mas pequeno pero mas profundo, y esto sucedera en
cada capa convolucional. Reducir el tamano de la matriz significa empaquetar la
informacién en una representacién mas compacta (pero mas profunda).

Max Pooling

En nuestra busqueda de la compacidad, podemos agregar una nueva capa
antes o después de una capa convolucional. Esta nueva capa se denomina capa
de agrupacion maxima, o maz pooling en inglés. La capa de agrupacién maxima
toma un tamano de grupo como hiperparametro, generalmente 2 por 2. Luego
procesa su matriz de entrada de la siguiente manera: divide la matriz en areas de
2 por 2, como una cuadricula, y toma de cada agrupacién de cuatro elementos
el elemento con el valor maximo. Finalmente se compone estos elementos en una
nueva matriz, con el mismo orden que la matriz original. Una capa de agrupacién
maxima de 2 por 2 produce una matriz que tiene una cuarta parte del tamano de
la matriz original. Por supuesto, en lugar del maximo, se puede idear una seleccién
o creacion de pixeles diferente, como el promedio de los cuatro pixeles o el minimo,
pero generalmente se utiliza el maximo.

La idea detras de la agrupacion maxima es que la informaciéon importante en
una matriz rara vez estd contenida en pixeles adyacentes (esto explica la parte
‘elegir uno de cuatro’. Notese que esta es una suposicion muy fuerte que puede no
ser valida en general.

Por lo general, una red neuronal convolucional se compone de una capa
convolucional seguida de una capa de agrupacién maxima, seguida de una capa
convolucional, y asi sucesivamente. A medida que la matriz pasa por la red,
después de varias capas, obtenemos una matriz pequena con muchos canales.
Luego, podemos aplanar esto a un vector y usar una una funcion de activacion
al final para extraer qué partes son relevantes para nuestra tarea. La funcién
de activacién seleccionara qué partes de la representacion se utilizaran para la
clasificacion y creard un resultado que se comparard con el objetivo para luego
propagar el error hacia atras. Esto forma una red neuronal convolucional completa.

31

Ignacio Oscoz Villanueva

3.4. Redes neuronales recurrentes

Todas las redes neuronales que hemos visto hasta ahora tienen conexiones que
propagan la informacién hacia adelante, y es por eso que las hemos llamado “redes
neuronales de feedforward”. Resulta que al tener conexiones que realimentan la
salida de nuevo en una capa como entradas, podemos procesar secuencias de
longitud desigual. Esto hace que la red sea profunda, pero comparte pesos, por
lo que evita en parte el problema del vanishing gradient. Las redes que tienen
tales bucles de retroalimentacién se denominan redes neuronales recurrentes. En
la historia de las redes neuronales recurrentes, hay un giro interesante. Tan pronto
como la idea del perceptrén no parecié buena, la idea de hacer un “perceptrén
de multiples capas” parecié natural. Recordemos que esta idea era tedrica y
anterior a la retropropagacién (que fue ampliamente aceptada después de 1986),
lo que significa que nadie pudo hacerla funcionar en ese entonces. Entre las ideas
tedricas exploradas se encontraba agregar una sola capa, agregar varias capas y
agregar ciclos de retroalimentacion, que son todas ideas naturales y simples. Esto
fue antes de 1986. Dado que la retropropagacién aun no estaba disponible, J.
J. Hopfield introdujo la idea de las redes Hopfield [8], que pueden considerarse
las primeras redes neuronales recurrentes exitosas. Estas redes eran diferentes
de lo que hoy consideramos redes neuronales recurrentes. Hoy en dia las redes
neuronales recurrentes mas importantes son las redes de memoria a corto-largo
plazo o LSTM, que fueron inventadas en 1997 por Hochreiter y Schmidhuber
[7]. Son las redes neuronales recurrentes més utilizadas y responsables de muchos
resultados de vanguardia en varios campos, desde el reconocimiento de voz hasta
la traduccién automadtica. En esta seccion, nos centraremos en desarrollar los
conceptos necesarios para explicar las LSTM en detalle.

Como se comentado previamente las RNN, o redes neuronales recurrentes,
permiten que las salidas de las neuronas sean también entradas de neuronas de
capas anteriores o incluso de neuronas de su propia capa. Estos bucles son los
que permiten que la informacion persista, consiguiendo en la red esa capacidad de
“memoria temporal”. A continuacién, en la figura 3.9, se observa un ejemplo de
una red neuronal recurrente, donde la salida en el instante (o observacién) ¢ de la
capa oculta sirve como entrada del siguiente instante (o observacién) ¢ + 1:

CAPA DE E
ENTRADA 3

Figura 3.9: llustracion de una red neuronal recurrente simple.

Con el objetivo de hacer ver que una red neuronal recurrente no se aleja

32

Ignacio Oscoz Villanueva

tanto como parece de una feedforward, es habitual mostrarla como un perceptrén
multicapa en paralelo:

ENTRADA CAPA OCULTA SALIDA

tiempo t X

Y
t+1

tiempo t+2 X; -
e p ‘1&3—’-

Figura 3.10: Red neuronal recurrente en formato similar al perceptrén multicapa.

Como obserbamos en la figura 3.9, la tinica diferencia que existe entre esta red
y el perceptron multicapa es la necesidad de agregar una nueva variable, ¢, que
representa el “tiempo”. Con esto, la salida de capa oculta en la observacién t, y;,
queda determinada de la siguiente manera:

y=0cUzxi+Wy,1), t=1,..n (3.27)

siendo n el nimero de observaciones y, U y W las matrices de pesos de la entrada
x; v la salida de la capa oculta del instante anterior, y;_; (donde yo = 0).

Por otra parte, el descenso en la tonalidad de la capa oculta de la figura 3.10,
nos ilustra la perdida de informacién con el paso del tiempo. Es decir, la capacidad
de memoria de las redes recurrentes convencionales esta limitada y no son capaces
de aprender dependencias a largo plazo. La sensibilidad disminuye a medida que
se introducen nuevos output, sobreescribiendo las activaciones de la capa oculta, y
por consiguiente “olvidando” asi las primeras entradas. Con el objetivo de evitar
esta pérdida de informacién y permitir las dependencias a largo plazo surgieron
las redes recurrentes de memoria a largo y corto plazo, cuyas siglas en ingles son
LSTM (long short-term memory)

LSTM

El remplazo de los nodos de la capa oculta por lo que se denominan celdas de
memoria es la novedad que presentaron estas redes recurrentes. Estas unidades

33

Ignacio Oscoz Villanueva

son las que dotan a la red de esa memoria a largo plazo de la que carecen
las redes recurrentes convencionales. Estas celdas de memoria cuentan con una
especie de “sistema de compuertas” que lo que hacen es decidir que informacién
debe guardarse en la memoria actual, cual debe olvidarse y que informacién se
debe transmitir al resto de capas. Asi pues se consideran trés puertas: puerta de
entrada, puerta de olvido y puerta de salida. Y para t > 1 estas puertas tendran
las siguientes expresiones respectivamente:

it = O(Uil't + Wiyt_l)
fo=oU z,+ Wy _y) (3.28)
o =0(U°xy + W 1)

donde U, W son las matrices de pesos que deberemos estimar, z; es el vector de
entrada de la capa en el tiempo ¢, y;_1 es el vector de salida de la capa en el
instante ¢t — 1 y o representa a la funciéon de activacién, que normalmente suele
ser la funcion sigmoide. La puerta de entrada es la que decide qué informacién
al estado oculto deja pasar, la puerta de olvido es la que decide qué parte de la
“memoria” guarda y la de salida es la que decide qué informacion deja salir de la
capa oculta. Este mecanismo de compuertas permite que la informacion perdure
en el tiempo, dotando asi a la red de “memoria”. El comportamiento general de
una capa oculta LSTM quedara determinado ademés de por las expresiones 3.28,
por las expresiones que vienen:

g+ = ReLU(U%2; + Wy,_1)
Ct = Cp—1 * ft + g * it (329)
yr = ReLU(¢;) * o4

siendo ¢, la representacién de la celda de memoria interna en el momento ¢ (donde
co = 0), g; la entrada al estado oculto, y, la salida del estado oculto en el tiempo ¢
(donde yo = 0), y U9, W9 las matrices de pesos a estimar. Ademéds observamos el
signo “x” que indica la multiplicacion componente a componente de vectores y la
funcién de activacion ReLLU que a pesar de que podriamos haber elegido cualquier

otra, es la que se utilizara.

En la imagen 3.11 podemos ver ilustrado el funcionamiento de la capa oculta
de una red recurrente LSTM. En ella observamos que el sistema de compuertas
3.28 viene representado por los circulos de color rosa. Ademas, tenemos “g”, o la
posible entrada a la capa, que se determina con la primera expresion de 3.29. En
el tiempo ¢, la entrada ¢; se multiplicara elemento a elemento por la puerta de
entrada ¢. Como la funcién sigmoide presenta valores en el rango entre 0 y 1, esta
operacion puede interpretarse como la eleccion de la cantidad de “informacién” de
g que se deja entrar a la celda. Por otra parte, la celda de memoria interna en el
instante anterior, C;_1, se multiplicard elemento a elemento por la puerta de olvido
fi , generando la memoria que perdura. De igual modo que antes, esto se puede
interpretar como la eleccién de la cantidad de “informacién” que se mantiene de
la celda de memoria interna del instante anterior. La suma de estas dos cantidades
conforma lo que sera la nueva celda de memoria interna C}, a la que se le aplica
la funcién ReLU y se multiplica elemento a elemento por la puerta de salida oy,

34

Ignacio Oscoz Villanueva

Xt Xi+1

Figura 3.11: Funcionamiento de la celda de memoria interna.

obteniendo asi la salida de la capa oculta en el momento ¢, 3;. A su vez, esta salida
servird como entrada al estado oculto del siguiente instante de tiempo.

Entrenamiento de redes recurrentes

El algoritmo que permite entrenar las redes recurrentes es conocido como
algoritmo de retropropagacién a través del tiempo, (BPTT, sus siglas en inglés).
Este algoritmo se basa en la retropropagacion original pero adaptandose a la
estructura de las redes recurrentes [22].

3.5. Word2Vec

Word2Vec es una de las técnicas mas populares para aprender incrustaciones
de palabras utilizando una red neuronal de dos capas. Su entrada es un texto y
su salida es un conjunto de vectores. Los word embedings a través de Word2Vec
pueden hacer que el lenguaje natural sea legible por computadora, luego se puede
usar una mayor implementacion de operaciones matematicas en palabras para
detectar sus similitudes. Un conjunto de vectores de palabras bien entrenados
colocara palabras similares cerca unas de otras en ese espacio.

Hay dos algoritmos de entrenamiento principales para Word2Vec, uno es la
bolsa continua de palabras (CBOW, con sus siglas en inglés) y el otro se llama
skip-gram (ver figura 3.12). Ambos son redes neuronales de una sola capa oculta.
La principal diferencia entre estos dos métodos es que CBOW utiliza el contexto
para predecir una palabra objetivo, mientras que skip-gram utiliza una palabra
para predecir un contexto objetivo.

35

Ignacio Oscoz Villanueva

INPUT PROJECTION OUTPUT INPUT PROJECTION ~ OUTPUT
w(t-2) A P w(t-2)
w(t-1) N v w(t-1)

) . SUM y
M
: > w(t) w(t) >
4
w(t+1) ’ 4 w(t+1)
w(t+2) / 94 w(t+2)
CBOW Skip-gram

Figura 3.12: [lustracién de los modelos de Word2Vec

El planteamiento en ambos modelos es similar: definir una ventana simétrica
(contexto) en torno a una palabra central y plantear un problema de optimizacién
basado en predecir la palabra central dado el contexto o viceversa. Sin pérdida de
generalidad, a continuacién se explicara el modelo de CVOW que nos permitira la
representacion de los tokens de nuestros conjuntos de datos.

CBOW

El modelo CBOW predice y genera vectores representativos estudiando el
contexto de la palabra inicial. Esta técnica utiliza una codificacién one-hot para
representar numéricamente el vocabulario de longitud V. Por lo tanto, en principio,
la palabra w; vendra representada tal que asi:

W; = ($1,$2,...,$i,...,xv) (330)

donde todas los elementos cuyo indice sean diferente a i tendran un valor nulo y

En el caso mas comun de CBOW, el contexto utilizado se expande maés
alld de una palabra y utiliza un contexto de longitud C. El objetivo de este
modelo sera conseguir la probabilidad condicional de la palabra de salida wo,
basdndose en las palabras de entrada W, = {w}, W)y, ..., w} .}, es decir, calcular
P(wo|wh, Wy, ...,w},.). Esto se consigue mediante iteraciones dentro del modelo,
basédndose en las dos matrices de pesos Wy W’. W es la matriz que conecta la
capa de entrada con la capa oculta, y W’ conecta la capa de salida con la oculta.
Las dos matrices tienen dimensiones similares, W tiene forma de V' x N mientras
que W’ esta definida como N x V donde N es la dimensién de la capa oculta y
V es el tamano de los Embedding que resultaran del modelo.

36

Ignacio Oscoz Villanueva

Xy :

“\ Hidden Layer

. O ’I\;VNXV LY
- ___;O - O

X :

Output Layer

XCE

4 Input Layer

Figura 3.13: Modelo CBOW con un contexto de C' palabras utilizadas como

entrada en la red

Definamos h como viene:
h=W"z=v] (3.31)

donde se representa la proyeccion de la palabra de entrada sobre el nuevo vector
h. Si entendemos el modelo complejo de CBOW como una simple combinacién de
palabras de entrada, la h tomara la siguiente expresion:

1 1
h = EWT(wl + X+ ... +xC0) = 5('0“}1 + Vi + oo+ V)" (3.32)

siendo el vector resultante una simple combinacién lineal de las palabras de
entrada pertenecientes al contexto C'. El contexto C' se define con una ventana
deslizante sobre la palabra elegida. La palabra ntmero n, en una ventana de
tamano S tendra como contexto las palabras definidas en el conjunto C,, =

{wnfS/Qa ooy Wy eevy wn+S/2}-

El objetivo de h es ponderar un criterio de evaluacion utilizando la informacion
de la segunda mitad del modelo contenida en W',

uj = vy h (3.33)

Utilizando la funcion softmax, podemos aproximar nuestro objetivo inicial, la
probabilidad condicional, de la siguiente manera:

et

N Z}c/:l evr
El objetivo del modelo serd maximizar la probabilidad condicional combinada de

todo el vocabulario. Por ello, habra que maximizar la funciéon objetivo o la funcion
log-likelyhood, que se define de la siguiente manera:

Yj = P(wj|wi7w;v "'7w:/:)

(3.34)

v
Zlog(P(wﬂw;_S/Q,...,w;,...,w;JrS/Q)) (3.35)
j=1

37

Ignacio Oscoz Villanueva

La codificacién continua de palabras Word2Vec es capaz de capturar la
similitud de palabras de manera que dos palabras similares estaran cercanas en
el espacio n-dimensional de palabras que se crea. Destaca por su habilidad al
capturar informaciéon semantica y sintactica de las palabras, pero siempre hay que
tener en cuenta que la informacién util que proporciona dependera del contexto
que tengamos.

38

Capitulo 4

Entrenamiento para la generacion

de keywords

4.1. Obtencion del texto

Como previamente se ha comentado los datos (que en este caso vienen en forma
de textos) para realizar el estudio los ha proporcionado la empresa Quarizmi.
Estos datos vienen en forma de frases, que en realidad son las buiisquedas que han
realizado distintos usuarios de Google que han hecho por lo menos una vez “click”
en anuncios de publicidad de tres clientes de la empresa Quarizmi. Dado que los
usuarios que han realizado dichas bisquedas se han interesado por estos anuncios
lo que se pretende es crear nuevas keywords o palabras clave basados en estas
bisquedas, para dirigir los futuros anuncios de estos tres clientes a usuarios que
estén interesados en sus productos. Para ello, intentaremos aplicar todo lo visto
hasta ahora, pero antes, veamos como son los textos que tenemos.

Del primer cliente, al que nos referiremos como “Cliente A”, tenemos una lista
formada por 883 busquedas y podemos encontrar biusquedas como estas:

» franquicia co aliment

= abrir franquicia supermercado

» franquicias de alimentacion sin royaliti y sin canon de entrada
» supermercados dia franquicias

= franquicias tiendas de ropa infantil

= mejores franquicias hosteleria

39

Ignacio Oscoz Villanueva

» franquicias de ropa moda joven

= franquyicia de administracion de fincas gratis

Observamos que son frases no muy largas, y muy especificas y concisas. Por
otro lado al tratarse de busquedas realizadas por Google, sera comun encontrar
varias frases que contengan errores ortograficos o que simplemente no estén bien
redactadas.

Del segundo cliente, denominado como “Cliente B”, tenemos una lista formada
por 5899 frases, en las que veremos frases del siguiente estilo:

= 805 la roche posay anthelios spray fresco viso invisibile spf50 75ml
= xIs medical precio y opiniones

= gel hidroalcoholico aloe vera 5 litros

= pasta lacer 200 ml

» pilexil forte anticaida

» fotoprotector isdin hydrolotion spf 50 200 ml

= comprar vitamina c sesderma

= alcohol 96 11 madrid

Finalmente, del que llamaremos el “Cliente C” tenemos una lista de 10727
bisquedas entre las cuales estan estas:

= como ser bombero en espana

= guardia civil nimero

= tecnico en anatomia patolo estudiar a distancia
= fp policia

= grado superior de cocina la pobla de farnals

= grado superior enfermeria online

» policia nacional gijon

= precio curso doblaje barcelona

40

Ignacio Oscoz Villanueva

La eleccion de estos tres conjuntos de datos no ha sido casualidad. Esta se
ha hecho con el objetivo de probar los modelos con conjuntos de datos con
caracteristicas distintas, ya que como podemos apreciar, el niimero de muestras de
cada cliente y su variabilidad puede resultar muy distinto.

Cada una de estas frases podra ser utilizada para entrenar los modelos
de cada cliente, pero para ello, serd necesario transformarlas previamente,
representandolas numéricamente. Dado que nuestra tarea consiste en generar texto,
hemos considerado que no es necesario ninguna eliminaciéon de stop words ni de
sustitucién por lema. Es por eso que después de tokenizar ya podriamos pasar
a la fase de representacion numérica de los textos. Como se ha mencionado
previamente, se han realizado dos tipos de tokenizacién: por caracteres y por
palabras. De esta manera, trabajamos con dos tipos de tareas segun la generacién
de texto: la que consiste en ir generando texto caracter a caracter y la que consiste
en ir generando texto por palabras. Una vez tokenizado deberemos de representar
cada token numéricamente, pero como veremos a continuaciéon dependiendo del
tokenizado que se haga, se utilizaran distintas técnicas de representacién numérica
del texto.

4.2. Generacién de texto por caracteres

Dentro de los modelos de generaciéon de texto por caracteres que hemos
considerado, se encuentran el modelo de red LSTM y el modelo de red
convolucional.

4.2.1. Modelo de red LSTM

El modelo trabajado en este apartado esta basado en un modelo de generacién
de haikus de Jeremu Neyman [15]. Este modelo utiliza una red neuronal LSTM que
se entrena con haikus (poemas tradicionales japoneses de estructura silédbica de 5-
7-5) para posteriormente generar nuevos poemas caracter a caracter. Sin embargo
tiene un pequeno giro: El niimero de silabas de cada linea se proporciona a la red,
se pasa a través de una capa densa (con funcién de activacién ReLU) y luego se
agrega al estado interno de LSTM, como se ve en la figura 4.1. La idea de nuestro
modelo es hacer lo mismo pero con el nimero de caracteres por keywords creadas.
De este modo, seriamos capaces de mas o menos controlar el tamano de Keywords
creadas; y digo mas o menos por que esto no sera una condicién restrictiva sino
una tendencia a que se cumpla dicha condiciéon. Nuestro modelo se completa con
una capa densa con funcion de activacion de softmax que lo que nos dara es un
vector de probabilidades que indique la probabilidad de cada caracter de ser el
siguiente.

41

Ignacio Oscoz Villanueva

Syllables Line 1 —)State 1—»
- D Out 1 Line 1 Text Out
Line 1 Text ———» @

Syllables Line 2 —)State 2—»
LSTM (2048 units)
B Dense Out 2 Line 2 Text Out
Line 2 Text ————f

Syllables Line 3 —)State 3—
Line 3 Text ——— 1 Dense Out 3 Line 3 Text Out

Figura 4.1: Diagrama de alto nivel del modelo generador de haikus[15]

¥

Antes de proceder con el entrenamiento del modelo, sin embargo, recordemos
que deberemos representar numéricamente los conjuntos de datos que ya hemos
tokenizado. Como anticipdbamos en el capitulo 2, la representacién numérica més
adecuada para la tokenizacion por caracteres es la codificacién one-hot. Una vez
transformado cada caracter en un vector de one-hot, se obtiene un conjunto de
conjuntos de vectores (o una matriz) en el que cada conjunto de vectores (o fila)
representa a una frase. Un inconveniente que surge llegado a este punto es que
cada frase contiene un nimero de caracteres diferentes y a la hora de introducirlos
como datos de entrada de la red no se puede tener entradas de distintas longitudes.
Para solucionar esto, simplemente se rellenan las frases con espacios vacios para
llegar a la longitud méaxima de caracteres de las frases del conjunto de datos del
correspondiente cliente. Una vez preparado por completo el conjunto de datos,
se dividen los datos que se usaran como datos de entrenamiento de los que se
usardn como datos de validaciéon. En nuestro caso se ha optado por el 90 % de
todo el conjunto de datos para entrenamiento y 10 % para validacion. Es necesario
comentar también, que durante el entrenamiento los datos de salida de la red con
los que se retropropagara el error son los propios datos de entrada, es decir, las
busquedas codificadas en one-hot.

El siguiente paso es determinar los hiperparametros. Aunque la mayor parte
de la configuracion de la red que se ha utilizado, se haya justificado y determinado
en el capitulo 3, volvamos a recordarlo:

= La estretegia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demas.

= La funcién de pérdida que mejor se adapta al problema es la de la entropia
categorica cruzada.

= La inicializacion de pesos no puede ser otra que la de Xavier uniforme.

» Kl algoritmo de optimizacién que se ha escogido es el Rmsprop, con su valor
por defecto p = 0,95.

42

Ignacio Oscoz Villanueva

Por otra parte queda por especificar el valor de la tasa de aprendizaje, n, el
tamano de los minibatches, el nimero de celdas de memoria y el nimero de épocas.
Ya sabemos que la eleccién de los hiperparametros a veces no es mas que cuestion
de prueba-error. Por eso, en el caso de la primera, en principio se ha tomado el
valor por defecto que ofrece Keras, n = 0,1, y si en el entrenamiento surgiese algin
inconveniente que pudiese estar relacionado con esto se probaria a cambiarlo. Con
el tamano de los minilotes se seguird un planteamiento similar: a priori, se ha
fijado en 64 (basédndose en [15]) pero posteriormente se podria cambiar. El nimero
de épocas y celdas de memoria, en cambio, merecen un estudio mas profundo,
ya que estos influyen mas en la calidad del modelo. Para ello, se ha realizado un
barrido con ambos hiperparametros, en el que se estudia la influencia de cada
hiperparametro.

Cliente C, latent_dim = 2000

=== Error de entrenamiento
== Error de validacion

Cliente A, latent_dim = 2000 Cliente B, latent_dim = 2000

=== Error de entrenamiento
== Error de validacién

=== Error de entrenamiento
== Error de validacion

% 10 20 30 w % 10 20 30 40 % 10 20 30 40
Epocas Epocas Epocas

Cliente A, latent_dim = 4000

=== Error de entrenamiento
== Error de validacion

Cliente B, latent_dim = 4000

=== Error de entrenamiento
== Error de validacion

Cliente C, latent_dim = 4000

=== Error de entrenamiento
== Error de validacion

o= ENEEEEE

10 20 30 40
Epocas

Cliente C, latent_dim = 6000

o 10 20 30 40 0 10 20 30 40 0
Epocas Epocas
Cliente A, latent_dim = 6000 Cliente B, latent_dim = 6000

=== Error de entrenamiento
=== Error de validacion

=== Error de entrenamiento
=== Error de validacion

=== Error de entrenamiento
=== Error de validacién

BiEe o=NEa

% 10 20 30 w % 10 20 30 40 % 10 20 30 40
Epocas Epocas Epocas

Figura 4.2: Error de distintos modelos con LSTM por caracteres segin cliente,

nimero de celdas de memoria (denominado latent-dim) y épocas.

En la figura 4.2 observamos los errores (calculados con la entropia categérica
cruzada) de cada modelo. El niimero de épocas ideal para cada caso serd aquel
que minimice el error de validacién, ya que cuando el error de validaciéon empieza
a incrementarse mientras el de entrenamiento sigue decreciendo se estd dando
un sobre-ajuste del modelo. Con un vistazo general puede llamar la atencion la
lenta convergencia de los ejemplos del Cliente A en comparacién con el resto.
Sin embargo, recordemos que este cliente era con mucha diferencia el que menos
datos proporcionaba. Por lo que es l6gico pensar que necesitara mas épocas para ir

43

Ignacio Oscoz Villanueva

reduciendo el error. Si se observa bien, este fenémeno sucede también en los otros
dos clientes: Cuantos més datos se tenga, mas rapida sera la convergencia. Por
otra parte, resulta curioso que el nimero de celdas de memoria (denominado por
latent-dim) no tenga apenas influencia en el error. Cuanto mayor sea esta cantidad
mayor es la complejidad del modelo, por lo que si la mejora no es apreciable, el
modelo mas simple serd mejor.

Para validar el entrenamiento podemos hacer uso de la precisién o accuracy
que se muestra en la figura 4.3. En estos graficos observaremos con que porcentaje
dara el modelo el maximo de probabilidad de salida al siguiente token; o dicho
de otra forma, el token con més probabilidad que se predice, con que porcentaje
coincidird con el que de verdad sea el siguiente token. A primera vista se puede
observar la fuerte relacién de los graficos de la precision con los de el error. Si
nos fijamos bien, veremos que cuando uno sube el otro tiende a bajar y viceversa.
Por ello, las conclusiones que se pueden obtener de estas figuras son similares. En
primer lugar, podriamos pensar que a los modelos del cliente A, no les basta con 40
épocas para llegar a la convergencia y podriamos intuir que tanto la precisién del
entrenamiento, como la de validacion, tenderan a incrementarse elevando el niimero
de épocas. Ademads, nos damos cuenta que efectivamente el subir la cantidad de
celdas de memoria mas alld de las 2000, inicamente nos producirda modelos més
complejos que no daran mejores resultados. En cuanto a la precisiéon de cada
modelo, podemos estar satisfechos con los resultados obtenidos, ya que para los
modelos éptimos de los clientes B y C en cuanto a error, se obtienen accuracys de
validacién superiores al 0,85.

Finalmente analicemos los tiempos de computacion de cada ejecucion. Como
los tiempos de ejecucién entre de cada época practicamente no varian (es decir,
el tiempo de ejecucién es linealmente proporcional a la cantidad de épocas),
solamente se analizaran los tiempos de entrenamiento de todas las épocas por
cliente y cantidad de celdas de memoria. En la tabla 4.1 se observa que cuanto més
se eleve la complejidad del modelo (subiendo la cantidad de unidades de memoria)
mas evidente es la ralentizacion del entrenamiento. Por otro lado, parece que el
numero de datos utilizado afecta aproximadamente de manera lineal a la duracién
del entrenamiento.

nimero de celdas | Cliente A | Cliente B | Cliente C
2000 14 min 95 min 212 min
4000 46 min 288 min | 655 min
6000 99 min 621 min | 1379 min

Tabla 4.1: Tiempos de computacién de distintos modelos con LSTM por caracteres

segun cliente y nimero de celdas de memoria.

Teniendo todo lo que hemos comentado en cuenta, como mejor opcién para un
modelo general que se adapte lo mejor posible a cada uno de los clientes analizados,

44

Ignacio Oscoz Villanueva

N Cliente A, latent_dim = 2000 Cliente B, latent_dim = 2000

= Accuracy de entrenamiento
= Accuracy de validacion

\P

Cliente C, latent_dim = 2000

> > >
© 9] [
e e e
=1 =1 =1
1 o o
2 < <
=—— Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacion = Accuracy de validacién
00 10 20 30 40 00 10 20 30 40 0(] 10 20 30 40
Epocas Epocas Epocas
Cliente A, latent_dim = 4000 N Cliente B, latent_dim = 4000 Cliente C, latent_dim = 4000
= Accuracy de entrenamiento
—— Accuracy de validacién
> > >
[9 [
e e c
=1 =1 =1
o o o
< < <
= Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacién = Accuracy de validacién
00 10 20 30 40 OU 10 20 30 40 0(l 10 20 30 40
Epocas Epocas Epocas
N Cliente A, latent_dim = 6000 N Cliente B, latent_dim = 6000 1 Cliente C, latent_dim = 6000
—— Accuracy de entrenamiento T
= Accuracy de validacion
> > >
[9 [
e c e
=1 =1 =1
I I o
< < <

= Accuracy de entrenamiento

= Accuracy de entrenamiento
= Accuracy de validacion

= Accuracy de validacion

0

0 20

Epocas

20 10

Epocas

20 30 40 10

Epocas

10

Figura 4.3: Precision de distintos modelos con LSTM por caracteres segtin cliente,

nimero de celdas de memoria (denominado latent-dim) y épocas.

parece un modelo con 2000 celdas de memoria entrenado durante 10 épocas con
los hiperparametros que hemos definido. Esta definicion es la que mejor resultados
propone por lo menos para los clientes B y C, y en cuanto a error, accuracy y
tiempo de entrenamiento se refiere. Sin embargo, si quisiéramos ser mas especificos
para cada cliente, para el A tendriamos que seguir entrenando durante mas épocas.
Por eso, puede verse que un segundo barrido de entrenamientos durante 60 épocas
se ha realizado en las figuras 4.4 y 4.5. En estas figuras podemos concluir que el
modelo més optimo para este cliente es el que tiene 2000 unidades de celdas de
memoria y ademas es suficiente con entrenarlo durante 40 épocas.

Cliente A, latent_dim = 6000

= Error de entrenamiento
== Error de validacion

Cliente A, latent_dim = 4000

= Error de entrenamiento
== Error de validacién

Cliente A, latent_dim = 2000

= Error de entrenamiento
== Error de validacion

3 3

Error
Error
Error

30 40 50 60

Epocas

20 30 40 10 20

30
Epocas

Epocas

10 20 40

Figura 4.4: Error de distintos modelos con LSTM por caracteres para el cliente

A segiin nimero de celdas de memoria y épocas.

45

Ignacio Oscoz Villanueva

Cliente A, latent_dim = 2000 N Cliente A, latent_dim = 4000 Cliente A, latent_dim = 6000

Accuracy
Accuracy
Accuracy

= Accuracy de entrenamiento = Accuracy de entrenamiento == Accuracy de entrenamiento
=== Accuracy de validacion = Accuracy de validacion === Accuracy de validacion

% 10 20 30 40 50 60 % 10 20 30 40 50 60 % 10 20 30 10 50 60
Epocas Epocas Epocas

Figura 4.5: Precision de distintos modelos con LSTM por caracteres para el cliente

A segin numero de celdas de memoria y épocas.

Aunque no se haya comentado previamente, hasta ahora y durante todo el
trabajo se elegirdn modelos entrenados durante un nimero de épocas que sea
multiplo de diez. La razén para esta eleccion es simple: A pesar de que podamos
entrenar durante un numero bastante elevado de épocas, guardar los modelos
entrenados con sus correspondientes parametros e hiperparametros ocupa espacio
en la memoria, mas de 500 Mb por cada modelo en este caso. Como nos podemos
imaginar es inviable guardar todos los modelos y por ello se eligio guardar los
modelos cada diez épocas de entrenamiento. Esto nos limitard a la hora de elegir
la mejor opcién pero también veremos que no habrda mucha diferencia entre el
modelo elegido y el que pueda considerarse mas 6ptimo.

Generacion de keywords

Habiendo elegido ya los modelos que se creen més apropiados es hora de
empezar con la generacion de nuevas posibles busquedas que los usuarios que
quieran los productos de estos clientes puedan efectuar. Para la generacion de
nuevas keywords nos basaremos en el generador del articulo [15]. Para empezar
con la generacién de texto aleatoriamente propondremos un caracter inicial, que
codificandolo en one-hot servira como entrada para la red. De esta obtendremos
un vector de probabilidades que indique la probabilidad de cada caracter de
ser el siguiente, y en funcién de esa distribuciéon se seleccionara aleatoriamente
un caracter, que sera el siguiente. En esta seleccion influird el parametro de
temperatura, T, que se utilizard para cambiar las probabilidades y controlar la
posibilidad de que caracteres con baja probabilidad tiendan a escogerse mas veces.
Asi, la probabilidad de que el token (en este caso cardcter) nimero i, p;, sea elegido
como el siguiente tendra esta expresion:

pi = o Tpy; (4.1)

donde p; es el probabilidad del token numero j segun la red neuronal y n es el
nimero de tokens. De esta manera, al aumentar 7', hacemos que la tendencia de

46

Ignacio Oscoz Villanueva

seleccion para caracteres con probabilidad baja aumente.

Después de elegir un caracter el proceso se repetirda tomando como entrada, los
caracteres de entrada de la anterior seleccion y el propio cardcter, creando token
a token una nueva oracién. Esta secuencia se dard por terminada cuando por el
prefijado de la longitud del nuevo texto, la generacién de nuevos caracteres se
detenga.

Explicado ya el funcionamiento de la generacién, comencemos generando
palabras clave para el cliente A, que recordemos que el modelo por el que hemos
optado para este caso es el de 2000 unidades de memoria entrenado durante 40
épocas. Con T' = 1 (equivalente a tomar las probabilidades de salida de la red)
se pueden obtener los resultados de la tabla 4.2. Vemos que estos no son del
todo malos ya que en general, aunque tienda a haber fallos en algunas letras, se
entiende lo que se quiere decir. No obstante, las frases resultan bastante repetitivas
sobre todo porque palabras como “varieadades”, “supermercado” o “franquicias”
aparecen constantemente. Este es el conjunto de datos con menos clientes y por lo
tanto esto tendra bastante influencia a la hora ver lo que se ha generado. Ademas,
las frases del conjunto de datos también resultaban repetitivas hasta cierto punto.

veriadades franquicia de supermercados

franquicias de taererica de supermercado dia

tienda de franquicia de supermercado dia

franquicia mida

vicies de franquicias de erecicion de coches

franquicia de panaderia

abrie franquicia de paqueteria

veriadades de cafeterara franquicia

franquicia de alimentacion

Tabla 4.2: Generacién de keywords por caracteres para el cliente A

Usando la misma temperatura que en la anterior pero ahora con un modelo de
latent-dim= 2000 entrenado durante 10 épocas generaremos frases del estilo de los
de la tabla 4.3. Estas frases en general parecen bastante coherentes, para encontrar
fallos de escritura hay que fijarse bien y no son tan repetitivas como las generadas
para el cliente A. El conjunto de este cliente, ofrece frases que son en si mismas
muy especificas, con nombres de productos y términos muy concretos y por ello
los textos generados tenderan a serlo también. Por eso analizdndolas una a una
veremos que algunas de ellas tienden a ser demasiado especificas hasta el punto de
que pueden perder algo de coherencia.

Para acabar con este apartado analizaremos los resultados con 7' = 1, para

el modelo del cliente C con 2000 celdas de memoria y 10 épocas. Estos textos
generados se pueden leer en la tabla 4.4. Se trata de oraciones con pocos fallos

47

Ignacio Oscoz Villanueva

y total coherencia, que ademdas son muy especificos pero variados. Por lo tanto
son resultados bastante buenos. Parece ser que al aumentar el niimero de datos de
entrenamiento la calidad de los textos generados mejora, o por lo menos con los
conjuntos de textos que hemos analizado.

xls medical forte 5 precio més

sesderma sesretinal mature skin serum pack

bimanan plus q quemagrasas opiniones

opiniones de decol forte

bimanan komplett chocolate crujiente precio

gel hidroalcoholico de manos de manos dicora

carrofart cellage firming cream reafirmante opiniones

la roche posay rosaliac parche de magnesio comprar onal

comprar alcohol 70 grados en san sebastian de los reyes

Tabla 4.3: Generacion de keywords por caracteres para el cliente B

curso para ninos de cocina en la semana blanca en madrid para estudiar

que hay que estudiar para ser auxiliar de enfermeria en calle colombia

hay grado medio de nutricion y dietetica

universidades en tarragona dénde cursar un grado de enfermeria

academia oposiciones susta de correos

cursos de cocina espanola en madrid espana

institutos grado medio auxiliar de enfermeria

oposiciones auxiliar administrativo bizkaia

academia oposiciones secundaria asturias

grado medio de estética

sueldo academia guardia civil 2020

Tabla 4.4: Generacion de keywords por caracteres para el cliente B

4.2.2. Modelo de red convolucional

El siguiente modelo esta basado en un modelo de generacién de memes de
Dylan Wenzlau [21]. En este articulo vemos un ejemplo de uso de redes neuronales
convolucionales para la generacion de texto. Para nuestro caso sin embargo, la
arquitectura de la red variard un poco: Primero se repetird una sucesién de Capa
convolucional, Maz Pooling de 2 x 2 y un Dropout de 0.25 (como en el articulo
[21]) un total de tres veces. La salida de esta secuencia serd entrada de una nueva

48

Ignacio Oscoz Villanueva

capa convolucional donde su output, después de aplanarlo, servira de entrada para
una capa densa con funcién de activacion Softmax que dara la salida de la red.

En este caso la entrada a la red no puede ser de la misma forma que la entrada
al modelo con LSTM. Para el modelo convolucional la idea es que este intente
predecir cual sera el caracter que viene a continuacion, recibiendo como informacién
de entrada una parte de una frase. Esto se ve mejor con el siguiente ejemplo:

Frase Entrada Salida
fp bombero ‘t’ ‘p’
fp bombero ‘fp’ <
fp bombero ‘p’ ‘b’
fp bombero ‘fp b’ ‘0’
fp bombero ‘fp bo’ ‘m’
fp bombero | ‘fp bom’ ‘b’
fp bombero | ‘fp bomb’ ‘e’
fp bombero | ‘fp bombe’ ‘r’
fp bombero | ‘fp bomber’ ‘0’

Tabla 4.5: Ejemplo de estrategia de entrenamiento de nuestro modelo

Aunque la estrategia input-output de la red sea distinta, no lo es la forma
de representar numéricamente los textos. Al igual que antes, los caracteres
se transformaran con la codificiacién one-hot, dando como resultado una
representacién matricial para cada frase de entrada y un vector para cada caracter
de salida. Al igual que antes, es necesario que todas las entradas y salidas de la
red tengan las mismas dimensiones, por lo que se tienen que rellenar las frases
con espacios vacios hasta alcanzar la longitud maxima de caracteres de las frases
del conjunto de datos. Con todo esto, como es logico, el nimero de frases con el
que contabamos para entrenar el modelo aumenta significativamente, y resulta en
26484, 147590, 369642 numero de datos de entrada y salida para los clientes A, B
y C respectivamente. Una vez obtenidos estos datos ya transformados, ya podemos
dividirlos en los conjuntos de datos de entrenamiento y validacion, con un 90 % y
10 % respectivamente, siendo esta la proporcién usada en el primer modelo.

La configuraciéon del entrenamiento, sus hiperpardametros y la justificacion de
estos sigue siendo similar al modelo de LSTM:

= La estrategia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demaés.

= La funcién de pérdida que mejor se adapta al problema es la de la entropia
categorica cruzada.

49

Ignacio Oscoz Villanueva

» La inicializacion de pesos no puede ser otra que la de Xavier uniforme.

» Kl algoritmo de optimizacién que se ha escogido es el Rmsprop, con su valor
por defecto p = 0,95.

= En principio la tasa de aprendizaje que ofrece Keras, n = 0,1 deberfa ir bien.
= El tamano de los lotes elegido es de 64.

= La mejor opcién para las funciones de activacién de la capa oculta sin duda
es la de la ReLLU.

R Cliente A, 64 neuronas por capa 5 Cliente B, 64 neuronas por capa 5 Cliente C, 64 neuronas por capa
=== Error de entrenamiento === Error de entrenamiento === ErTor de entrenamiento
= Error de validacién \kVA = Error de validacién = Error de validacién
2 2
g g
v} I
1 1 1
0 [0
(] 10 20 30 40 (] 10 20 30 40 (] 10 20 30 40
Epocas Epocas Epocas
3 Cliente A, 128 neuronas por capa 3 Cliente B, 128 neuronas por capa 3 Cliente C, 128 neuronas por capa
= Error de entrenamiento = Error de entrenamiento = Error de entrenamiento
=== Error de validacion == Error de validacion === Error de validacién

2 2
s g
fiv} i
1 1
0 [0
(] 10 20 30 40 (] 10 20 30 40 (] 10 20 30 40
Epocas Epocas Epocas
R Cliente A, 256 neuronas por capa 5 Cliente B, 256 neuronas por capa 5 Cliente C, 256 neuronas por capa
= Error de entrenamiento = Error de entrenamiento = Error de entrenamiento
=== Error de validacion == Error de validacion === Error de validacion

s 8
fin} i
1 1
0 0 0
(] 10 20 30 40 (] 10 20 30 40 (] 10 20 30 40
Epocas Epocas Epocas
3 Cliente A, 512 neuronas por capa 3 Cliente B, 512 neuronas por capa 3 Cliente C, 512 neuronas por capa
=== Error de entrenamiento === Error de entrenamiento === ErTor de entrenamiento
= Error de validacién = Error de validacién = Error de validacion
2 2 2
s g s
v} I i}
1 1 1
o~
—
0 [0
(] 10 20 30 40 (] 10 20 30 40 (] 10 20 30 40
Epocas Epocas Epocas

Figura 4.6: Error de distintos modelos convolucionales por caracteres segun

cliente, niimero de neuronas por capa y épocas.

En la figura 4.6 podemos ver el comportamiento del error durante los distintos
entrenamientos. Del mismo modo que se hace en el modelo [21], aqui también se ha
escogido un nimero de neuronas por capa igual para todas las capas. Para analizar

50

Ignacio Oscoz Villanueva

distintos resultados y encontrar el modelo éptimo se ha hecho un barrido con
distintos niimeros de neuronas por capa y épocas por cada cliente. Debido a que se
trata con modelos formulados de distinto modo no se puede comparar directamente
el error del modelo LSTM con el error del modelo convolucional. El analisis de error
es util para determinar si el entrenamiento se ha realizado correctamente y para
saber cuando se empieza a sobre-entrenar el modelo. Relacionado con esto, un
fenémeno curioso que se aprecia en el cliente C es el incremento del valor de la
funcion de pérdida y algunos picos que surgen. Podriamos pensar que el algoritmo
de retropropagacion este funcionando mal pero en este caso el incremento del error
sucede por la tasa de aprendizaje. Para evitar este fendmeno deberiamos probar
con un valor inferior de 7. De esta manera evitariamos el incremento del error de
entrenamiento aunque el modelo mas 6ptimo no cambiaria demasiado.

Por lo demas parece parece que el entrenamiento se ha realizado correctamente.
A diferencia de antes, al anadir mas complejidad a la red (aumentando el nimero
de neuronas) se observa que el error de entrenamiento decrece més. Sin embargo,
parece que esto tampoco hace mejorar mucho la validacion, que es lo importante
ya que al final nos quedaremos con el modelo donde la validaciéon sea mejor.

Por otro lado en la figura 4.7 tenemos la precisién de los distintos modelos.
La precision es la forma de medir con que porcentaje acertara el modelo cual
serd el siguiente cardcter. Estos graficos parece que no hacen mas que reafirmar
lo que comentabamos con los gréficos del error. Sin embargo, si nos fijamos bien,
apreciaremos que la precision si que mejora aumentando el niimero de neuronas en
los clientes B y C, aunque no en el A. El mayor impacto de la cantidad de neuronas
por capa se observa en el cliente B pero en los dos ultimos podemos concluir que
es suficiente con 256 neuronas por capa, ya que con 512 el accuracy de validacién
no aumenta significativamente. Para finalizar, en relacién con los graficos del valor
de la funcién de pérdida, se puede apreciar que en el momento que un modelo
empieza a sobre-ajustarse su curva de validacién de precisién deja de aumentar,
por lo que en cierto modo el aumento de precision y el descenso del error van de
la mano.

neuronas por capa | Cliente A | Cliente B | Cliente C
64 11 min 61 min 224 min
128 33 min 220 min | 710 min
256 99 min 652 min | 2196 min
512 253 min | 1661 min | 4939 min

Tabla 4.6: Tiempos de computacién de distintos modelos segtin cliente y cantidad

de neuronas por capa.

Los tiempos de computaciéon de cada ejecucion se pueden ver en la tabla
4.6. Obsérvese que al doblar el numero de neuronas por capa al principio,
aproximadamente hace ralentizar la ejecucion en un tercio. No obstante, se intuye
que esta relacién va perdiendo fuerza cada vez que se dobla el niimero de neuronas.

o1

Ignacio Oscoz Villanueva

Cliente B, 64 neuronas por capa Cliente C, 64 neuronas por capa

= Accuracy de entrenamiento
= Accuracy de validacion

Cliente A, 64 neuronas por capa

= Accuracy de entrenamiento
= Accuracy de validacion

= Accuracy de entrenamiento
= Accuracy de validacion

> > >
9 9 9
e ° c
=1 =1 S
o v u
: r ; /AWW g
0, [0,
(] 10 20 30 40 (] 10 20 30 40] 10 20 30 40
Epocas Epocas Epocas
N Cliente A, 128 neuronas por capa Cliente B, 128 neuronas por capa N Cliente C, 128 neuronas por capa
m— ACCuracy de entrenamiento m— Accuracy de entrenamiento
= Accuracy de validacion = Accuracy de validacién
> > >
1] o o
o I AL © }
=1 =1 1 =1
o 9] o
§ < K §
= Accuracy de entrenamiento
= Accuracy de validacion
% 10 20 30 w % 10 20 30 40 % 10 20 30 40
Epocas Epocas Epocas
Cliente A, 256 neuronas por capa N Cliente B, 256 neuronas por capa Cliente C, 256 neuronas por capa
= Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacién = Accuracy de validacién
o —
> > >
U o o
I ° o ;
=1 =1 =1
o [~ o
< < <
= Accuracy de entrenamiento
—— Accuracy de validacion
% 10 20 30 w % 10 20 30 0 % 10 20 30 4
Epocas Epocas Epocas
Cliente A, 512 neuronas por capa Cliente B, 512 neuronas por capa Cliente C, 512 neuronas por capa
> > >
9 9 9 ;
e ° e
=1 =1 =1
o o o
s < <
= Accuracy de entrenamiento = Accuracy de entrenamiento = Accuracy de entrenamiento
=== Accuracy de validacion === Accuracy de validacion = Accuracy de validacion
% 10 20 30 w % 10 20 30 40 % 10 20 30 40

Epocas Epocas Epocas

Figura 4.7: Precision de distintos modelos convolucionales por caracteres segiun

cliente, niimero de neuronas por capa y épocas.

Por contrario, el aumento de neuronas parece que més efecto tiene en el aumento
del tiempo de ejecucién cuantos mas datos se tengan. En cuanto a la comparaciéon
del tiempo con el anterior modelo, es facil ver que las filas de la tabla 4.1 son
comparables con las tres primeras filas de la tabla 4.6.

Teniendo todo esto en cuenta, si se tuviese que elegir un modelo de red
convolucional general que se adaptase lo mejor posible a los tres clientes, uno con
256 neuronas por capa entrenado durante 10 épocas con los hiperparametros que
hemos definido podria ser buena opcién. Dicho modelo, es el que mejor resultados
ofrece para los clientes B y C por lo menos si evaluamos en cuanto a error, precision
y tiempo de entrenamiento. Si pretendiéramos ser mas especificos con cada cliente,
quiza al primer cliente le convendria mas un modelo con menos neuronas por capa
como por ejemplo uno de 128 o incluso de 64, ya que complicar mas el modelo solo

52

Ignacio Oscoz Villanueva

aumentaria la complejidad y el tiempo de ejecucion.

Generacion de keywords

Después de elegir los mejores modelos, es hora de ponerlos a prueba en la
generacion de keywords. Para generar nuevas busquedas clave se seguird el mismo
principio que el seguido para el caso LSTM: Aleatoriamente se propondrd un
caracter inicial que servira como primera entrada para la red. De esta obtendremos
un vector de probabilidades que indique la probabilidad de cada caracter de ser
el siguiente, y en funcién de esa distribucion se seleccionara aleatoriamente un
caracter. Al igual que en el caso anterior, tendremos el parametro de temperatura,
T, con el que podremos controlar la tendencia a escoger los caracteres con
probabilidades mas bajas. De este modo obtenemos una lista de dos caracteres
que servird como entrada para predecir el siguiente caracter y repetir este proceso.
A diferencia de antes, la longitud de la frase creada se controlard de manera més
artificial cortando el proceso de generacién una vez acabada la palabra donde se
ha alcanzado el nimero de caracteres que se habia prefijado.

Habiendo ya explicado como funciona la generacion de texto veamos algunos
ejemplos. En primer lugar, generaremos algunos keywords para el cliente A, con
T =1 y haciendo uso del modelo de 128 neuronas por capa entrenado durante 20
épocas, veremos textos del siguiente estilo:

quieres de paquet

supermercado franquicias de supermercados

ntar franquicias de panaderia cafeteria

hay franquicias de supermercados de

1 as mejor franquicias

supermercado franquicias

erenquicias de

berianas de supermercados pequenos

x franquicias de supermerca

Tabla 4.7: Generacién de keywords por caracteres para el cliente A

El hecho de contar con un accuracy de validacién de 0,76 hace que a priori el
modelo no parezca malo del todo. Sin embargo, viendo los resultados que ofrece en
la tabla 4.7 nos damos cuenta de que no son tan buenos. Las palabras que se forman
en su mayoria se forman sin errores de escritura, aunque de vez en cuando vemos
oraciones sin ningun sentido, pero el conjunto de palabras tiende a no mostrar
informacion relevante. Es mas, se aprecia un exceso de repeticion de las palabras
“supermercado” y “franquicias”. Esto puede deberse a la cantidad de frases de

33

Ignacio Oscoz Villanueva

entrenamiento y a su calidad, ya que como hemos visto en los ejemplos de este
cliente ambas palabras se repiten més de una vez. Ademas es interesante observar
como algunas oraciones parecen inacabadas (las que acaban en “de”) debido a que
la forma de terminarlas es mas artificial que en el modelo de LSTM.

Con un T" = 1, el modelo de 256 ntimero de neuronas por capa entrenado
durante 10 épocas, los resultados para el cliente B seran similares a los que tenemos
en la tabla 4.8. A pesar de tener una precisién validada claramente inferior de 0,59,
se aprecian resultados mucho mejores que en el caso de A. No obstante, algunas
frases parecen carecer de sentido por ejemplo al concretar dos voltimenes distintos.
Por otra parte, es necesario comentar que para esta temperatura se ha observado
que uno de cada diez frases generadas, se encuentran en el conjunto de datos de
entrenamiento. Para evitar esto e intentar generar frases que no se hayan usado
para entrenar se puede elevar el parametro de temperatura.

alcohol 96 1 litro comprar 200 ml

redoxon vitamina

omega vitamina crema productor gel 30 precion

mejores cremas protectoras
heliocare 360 plus flude 50 ml

comprar alcohol

redoxon vitamina ¢ 360 capsulas preci

dercos de pelo frtaalecturico

gel hidroalcoholico 1 litro de 120ml

tetinas dr brown nivel 25 550 ml

Tabla 4.8: Generacién de keywords por caracteres para el cliente B

Finalmente, hagamos lo propio con el cliente C. El modelo de 256 neuronas por
capa entrenado durante 10 épocas generara textos del tipo de la tabla 4.9. Para este
caso se repite que una décima parte de las frases generadas son frases que han sido
utilizadas para el entrenamiento. Recordemos que este modelo tiene una precisién
de validacion del 80 %, lo cual se refleja en los resultados. Se puede afirmar que no
son malos resultados, aunque en algunos casos veamos frases incompletas.

o4

Ignacio Oscoz Villanueva

temario oposiciones bombero

oposiciones bombero madrid

buscar de maquillaje en

policia nacional

cursos de cocina

vericion de peluqueria madrid

hay que hacer para ser policia nacional

yonductor de ambulancia y dietetica y biomee

servicio de polici

fp grado medio auxiliar

Tabla 4.9: Generacién de keywords por caracteres para el cliente C

4.3. Generacion de texto por palabras

En este apartado también se desarrollara tanto modelos de red con LSTM como
modelos de red convolucional.

4.3.1. Modelo de red LSTM

El modelo que se usard en esta secciéon serda el mismo modelo que se ha
utilizado en la seccion 4.2.1. La tunica diferencia con respecto al anterior modelo
serd que esta vez, al tratarse de generacién por palabras, el modelo tendra que ser
entrenado por palabras. Es decir, en la representacion numérica, el texto debera
ser tokenizado por palabras. Podriamos usar una codificacion one-hot, al igual que
antes, para representar numéricamente el texto. No obstante, dado que estamos
hablando de que cada conjunto de datos cuenta con mas de 4000 palabras distintas,
cada palabra vendria representada con un vector de mas de 4000 elementos.
Trabajar con vectores de tal magnitud encarece mucho los gastos computacionales
y no es para nada eficiente. Por ello, para reducir la dimensionalidad habra que
buscar alguna alternativa. El Word2Vec ademéas de solucionarnos el problema de
la dimensionalidad, nos proporciona una representacion basada en el contexto
semantico y sintactico. Entonces, a priori parece una buena opcion aplicar esta
técnica a nuestros textos para transformarlos en vectores.

La libreria gensim sera la que nos ayude a representar nuestras palabras con
Word2Vec. Este paquete nos permite aplicar directamente esta técnica sin tener
que programar nosotros toda la red. Para ello, es necesario prefijar el tamano de
ventana de contexto y el tamano del vector de salida que se quiere. En nuestro caso,
se han fijado en 5 y 100 respectivamente, ya que nuestras frases no son tan largas

95

Ignacio Oscoz Villanueva

y no tenemos tantas palabras como para necesitar vectores de salida mayores.

Una vez tengamos los textos transformados, efectuamos el mismo entrenamien-
to que en la seccion 4.2.1, es decir:

= La estrategia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demaés.

= La funcién de pérdida que mejor se adapta al problema es la de la entropia
categorica cruzada.

= La inicializacion de pesos no puede ser otra que la de Xavier uniforme.

= Kl algoritmo de optimizacion que se ha escogido es el Rmsprop, con su valor
por defecto p = 0,95.

= En principio la tasa de aprendizaje que ofrece Keras, n = 0,1 deberfa ir bien.

= El tamano de los lotes elegido es de 64.

El barrido de épocas, y nimero de unidades de memoria en cada cliente puede
verse en la figura 4.10. De primeras, llama la atencién el comportamiento del error
de validacién sobre todo en los clientes A y B, que préacticamente no baja nada.
El entrenamiento actia de forma correcta porque su error va decreciendo en cada
época, pero en estos clientes no se consigue un modelo lo suficientemente general
para poder reducir el error de validacién también. En el cliente C en cambio,
que recordemos que es el cliente con mas datos, parece que el error de validacién
consigue reducirse pero tampoco mucho.

Analizando la precision de estos modelos en la figura 4.9, observaremos que el
accuracy de los modelos de los clientes A y B tampoco sube con el entrenamiento.
Si que lo hace en cambio para el cliente C, aunque tampoco mucho. La precision
de los modelos puede ser considerablemente alta, pero el hecho de que suba poco o
directamente no se incremente nada puede indicarnos que algo no va bien, y més
si el valor de la funcién de pérdida tiene un comportamiento similar.

En cuanto los tiempos de ejecucion, hemos conseguido modelos cuyo entrena-
miento es considerablemente inferior a los modelos de tokenizacion por caracteres
(ver tabla 4.10). Este resultado es totalmente légico si pensamos que ahora por
cada palabra se obtiene un vector mientras que antes cada palabra venia repre-
sentado con un nimero de vectores igual al nimero de caracteres que formaban
la palabra. Ademds, parece que el nimero de datos influye aproximadamente de
la misma manera que en los anteriores casos, es decir, linealmente, y esto se hace
notar mas para los clientes B y C. Por otra parte, el hecho de aumentar el nimero
de celdas de memoria cada vez tiene menos peso en el tiempo, dado que el tiempo
aumenta proporcionalmente mucho mas en el salto de 2000 a 4000 que de 4000 a
6000.

56

Ignacio Oscoz Villanueva

Cliente A, latent_dim = 2000 Cliente B, latent_dim = 2000 Cliente C, latent_dim = 2000

=== Error de entrenamiento === Error de entrenamiento === Error de entrenamiento
== Ermror de validacion === Error de validacion === Error de validacién

Error
Error

(] 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epocas Epocas Epocas
R Cliente A, latent_dim = 4000 5 Cliente B, latent_dim = 4000 5 Cliente C, latent_dim = 4000
=== Error de entrenamiento === Error de entrenamiento === Error de entrenamiento
—— Error de validacion —— Error de validacién —— Error de validacién

Error

] 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epocas Epocas Epocas
3 Cliente A, latent_dim = 6000 3 Cliente B, latent_dim = 6000 3 Cliente C, latent_dim = 6000
= Error de entrenamiento = Error de entrenamiento = Ermror de entrenamiento
=== Emor de validacion == Error de validacion === Ermor de validacién

Error

=
S

(] 10 20 30 40 (] 10 20 30 40 (] 10 20 30
Epocas Epocas Epocas

Figura 4.8: Error de distintos modelos con LSTM por palabras segin cliente,

nimero de celdas de memoria (latent-dim) y épocas.

niumero de celdas | Cliente A | Cliente B | Cliente C
2000 4 min 10 min 23 min
4000 24 min 71 min 148 min
6000 49 min 143 min | 303 min

Tabla 4.10: Tiempos de computacién de distintos modelos con LSTM por palabras

segun cliente y nimero de celdas de memoria.

Como mejor modelo general se puede escoger al que tiene 2000 celdas de
memoria entrenado durante 10 épocas. Con esto, no se puede esperar mucho para
la generacion de keywords del cliente A y del cliente B, pero con cualquier otra
eleccion tampoco se podria esperar nada mejor. Esta eleccion es la que mejor
se adapta al cliente C, ya que el aumentar la cantidad de celdas de memoria lo
unico que se produce es mas complejidad en el modelo y por lo tanto méas coste
computacional, y el aumentar las épocas tampoco produciria nada més que mayor
tiempo de ejecucion de entrenamiento.

o7

Ignacio Oscoz Villanueva

Cliente B, latent_dim = 2000

N Cliente A, latent_dim = 2000 N
== Accuracy de entrenamiento

= Accuracy de validacion

> > >
© 9] [
e e e
=1 =1 =1
1 o o
2 < <
=—— Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacion === Accuracy de validacion
00 10 20 30 40 00 10 20 30 40 00 10 20 30 40
Epocas Epocas Epocas
Cliente A, latent_dim = 4000 N Cliente B, latent_dim = 4000 N Cliente C, latent_dim = 4000
= Accuracy de entrenamiento
—— Accuracy de validacién /—-
] rd«v-@m:]]
[9 [
e e c
=1 =1 =1
E £ E
= Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacién = Accuracy de validacién
00 10 20 30 40 OU 10 20 30 40 O(l 10 20 30 40
Epocas Epocas Epocas
N Cliente A, latent_dim = 6000 N Cliente B, latent_dim = 6000 1 Cliente C, latent_dim = 6000
—— Accuracy de entrenamiento
= Accuracy de validacion //’
> > >
[9 [
e c e
=1 =1 =1
£ g ¥
= Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacion === Accuracy de validacion
OU 10 20 30 40 00 10 20 30 40 00 10 20 30 40

Epocas

Epocas

Cliente C, latent_dim = 2000

b

Epocas

Figura 4.9: Precisién de distintos modelos con LSTM por palabras segun cliente,

nimero de celdas de memoria (latent-dim) y épocas.

Generacion de keywords

Siguiendo el procedimiento de la generacion de keywords con el primer modelo,
pero en este caso por palabras en vez de caracteres, seremos capaces de generar
las nuevas palabras calve. Con los modelos de 2000 celdas, entrenados durante 10
épocas podremos obtener los resultados de las tablas 4.11, 4.12 y 4.13. Viendo
estas tablas enseguida nos damos cuenta que los resultados no son aprovechables
como busquedas claves. Ademas de la poca coherencia de las oraciones se observa
cierta tendencia a la repeticién de algunos tokens. Quiza se podria salvar alguna
frase de la tabla 4.12 porque los datos de este cliente tienden a ser muy especificos
en cuanto a nombres de los productos y por ello alguna frase que se crea podria
tener un minimo de sentido, pero en general estamos hablando de unos resultados

muy malos.

28

Ignacio Oscoz Villanueva

granos france abrir franquicia

ranking franquicias franquicia ropa en infantil

neumaticos qué necesito al pizza espana

super inmoboliarias rentables pizzeria de franquicia

condis que vale a o folder ropa

café la mejores coches euros amazon

santa passion tiendas auto kfc ecologico dia

365 cual restauracion y ropa

danone france mejores ropa franquicia

Tabla 4.11: Generacion de keywords por palabras para el cliente A

doctor sensilis s medical forte opiniones

kaidax desmaquillante de de gel

tratar donde micro plata 180 caseros spanje 7Hgr 75gr 7Hgr sesderma sesderma

gx ergy 700 shake wash m solar

iappharma recambio gotas b5 capsulas opiniones

ceema desmaquillante de de gel

mayores satisfyer micro shake calmantes caseros repuestos sp gr essence gr serum

nilo sterillium 700 shake xt m solar

12 redoxon digital hydra 40 brown

Tabla 4.12: Generacion de keywords por palabras para el cliente B

cuanto examenes cobra fer virtual virtual

policiq pedir nuevo curs convocatoria 2021

creativa bases ciudadano planner titulo 2021 2021 nuevo

plasencia puedo es es es es

marcelo examenes nuevo test 2018 2018 justicia

cafe logos mi blog justicia 2019 2019

ad maxima nuevo teleoperadora electricos universitarios previa

denuncias medical minima educacio justicia

gallego telefonos nuevo oposicions

Tabla 4.13: Generacion de keywords por palabras para el cliente C

29

Ignacio Oscoz Villanueva

4.3.2. Modelo de red convolucional

Continuando con la dindamica del trabajo en esta seccién se repetira el mismo
modelo que el de la seccién 4.2.2 pero con el uso de palabras en vez de caracteres.
Como en el caso de la LSTM, aqui también hemos elegido el Word2Vec como
forma de representacién vectorial de los datos textuales. Este cambio, nos limita
a la hora de intentar replicar el modelo original por caracteres, ya que por temas
de las dimensiones de los vectores que sustituyen a las frases, las matrices se van
reduciendo hasta que llegan a un punto que no pueden reducirse mas. Para evitar
este problema, introduciremos la técnica del padding en las capas de convolucion.
Por lo demés se seguiran las mismas condiciones de entrenamiento:

= La estrategia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demas.

= La funcién de pérdida que mejor se adapta al problema es la de la entropia
categorica cruzada.

» La inicializacién de pesos no puede ser otra que la de Xavier uniforme.

= El algoritmo de optimizacion que se ha escogido es el Rmsprop, con su valor
por defecto p = 0,95.

= Después de observar con unas pequenas pruebas que el error de entrenamien-
to tendia a subir se ha bajado la tasa da aprendizaje a n = 0,01.

» El tamanio de los lotes elegido es de 64.

= La mejor opcién para las funciones de activacién de la capa oculta sin duda
es la de la ReLU.

El error del barrido por cliente, cantidad de neuronas por capa y ntmero
de épocas con estos hiperparametros nos da la siguiente figura 4.10. A primera
vista todos los entrenamientos tienen bastante mala pinta porque la pérdida de
entrenamiento apenas decrece y la de la validacion directamente no lo hace. El
Unico entrenamiento que se ve un poco mejor es el del cliente C, aunque en este
tampoco veamos mucho descenso del error. Los graficos de precision que se ven
en 4.11 no nos dan tampoco muchas esperanzas de que el entrenamiento haya
sido correcto. En estos observamos como el accuracy practicamente se mantiene
constante durante todo el entrenamiento, indicandonos que el modelo no se mejora.
Estos resultados no son problema de la configuracion de la red neuronal o de
los hiperparametros usados, mas bien nos vienen a decir que probablemente este
modelo no sea apropiado para la generacion de textos por palabras.

Los tiempos de ejecucién de estos entrenamientos se muestran en la tabla 4.14.

Al igual que antes, es 16gico concluir que como ahora por cada palabra obtenemos
un vector y antes cada palabra venia representado con un niimero de vectores igual

60

Ignacio Oscoz Villanueva

Cliente A, 64 neuronas por capa

=== Error de entrenamiento
3 == Error de validacion

] 10 20 30 40
Epocas
Cliente A, 128 neuronas por capa
=== Emor de entrenamiento
3 === Error de validacién

(] 10 20 30 40
Epocas
Cliente A, 256 neuronas por capa
=== Error de entrenamiento
3 = Error de validacién

(] 10 20 30 40

Epocas
Cliente A, 512 neuronas por capa

=== Error de entrenamiento
3 == Ermror de validacion

o 10 20 30 40

Epocas

Cliente B, 64 neuronas por capa

=== Error de entrenamiento

3 § : === Error de validacion

] 10 20 30 40
Epocas
Cliente B, 128 neuronas por capa

== Error de entrenamiento

3 3 f} == Error de validacién

0 10 20 30 40
Epocas

Cliente B, 256 neuronas por capa

== Error de entrenamiento
3 = Error de validacién

2
2
fral

1

% 10 20 30 2

Epocas
Cliente B, 512 neuronas por capa
=== Error de entrenamiento

3 === Error de validacion
w2
o
=
]

1

00 10 20 30 40

Epocas

Cliente C, 64 neuronas por capa

=== Error de entrenamiento
3 === Error de validacién

N s ey,

) 10 20 30 40
Epocas
Cliente C, 128 neuronas por capa

=== Error de entrenamiento
3 === Error de validacion

s
[in]

1

U(] 10 20 30 40

Epocas
Cliente C, 256 neuronas por capa
=== Error de entrenamiento

3 = Error de validacién
=2 _—
2
[

1

0,

(] 10 20 30 40

Epocas
Cliente C, 512 neuronas por capa
=== Error de entrenamiento

3 === Error de validacion
L2
o
=
]

1

0(] 10 20 30 40

Epocas

Figura 4.10: Error de distintos modelos convolucionales por palabras segun cliente,

nimero de neuronas por capa y épocas.

al nimero de caracteres que formaban la palabra, el tiempo de computacion de
estos entrenamientos sera inferior. Parece que ene este caso no se cumple tan bien
la relacién de linealidad del tiempo de ejecucién y el nimero de datos. Por otra
parte, se ve que el aumento de neuronas por capa cada vez tiene mas relevancia en
el peso. No obstante, este analisis no tiene mucha importancia debido a que por el
transcurso del entrenamiento y sus graficos de error y precisién no somos capaces
de afirmar que algiin modelo sea mejor que otro, aunque si que podemos afirmar
que todos son bastante malos.

61

Ignacio Oscoz Villanueva

Cliente A, 64 neuronas por capa

= Accuracy de entrenamiento
= Accuracy de validacion

Cliente B, 64 neuronas por capa

= Accuracy de entrenamiento
= Accuracy de validacion

Cliente C, 64 neuronas por capa
= Accuracy de entrenamiento
= Accuracy de validacion

————
Y~ pan
> > >
9 9 9
e ° c
=1 =1 S
o v u
2 < <
0, [0,
(] 10 20 30 40 (] 10 20 30 40] 10 20 30 40
Epocas Epocas Epocas
N Cliente A, 128 neuronas por capa Cliente B, 128 neuronas por capa N Cliente C, 128 neuronas por capa
—ACCUracy de entrenamiento m— ACCuracy de entrenamiento m— Accuracy de entrenamiento
= Accuracy de validacion = Accuracy de validacion = Accuracy de validacién
P——— S ——
> > >
1] o o
o ° ©
E E 5
o 9] o
2 < <
0 o 0
(] 10 20 30 40 0 10 20 30 40 (] 10 20 30 40
Epocas Epocas Epocas
Cliente A, 256 neuronas por capa N Cliente B, 256 neuronas por capa Cliente C, 256 neuronas por capa
= Accuracy de entrenamiento = Accuracy de entrenamiento = Accuracy de entrenamiento
—— Accuracy de validacién = Accuracy de validacién = Accuracy de validacién
—
> > >
U o o
I ° o
=1 =1 =1
o [~ o
< < <
0 [0
(] 10 20 30 40 10 20 30 40 10 20 30 40
Epocas Epocas Epocas
Cliente A, 512 neuronas por capa Cliente B, 512 neuronas por capa Cliente C, 512 neuronas por capa
= Accuracy de entrenamiento = Accuracy de entrenamiento = Accuracy de entrenamiento
= Accuracy de validacion == Accuracy de validacion = Accuracy de validacion
7 -
> > >
9 9 9
e ° e
=1 =1 =1
o o o
s < <
% 10 20 30 40 10 20 30 40 10 20 30 40
Epocas Epocas Epocas

Figura 4.11: Precision de distintos modelos convolucionales por palabras segin

cliente, niimero de neuronas por capa y épocas.

neuronas por capa

Cliente A | Cliente B

Cliente C

64 3 min 6 min 59 min
128 6 min 31 min 76 min
256 18 min 75 min 346 min

512

101 min

284 min

1951 min

Tabla 4.14: Tiempos de computacién de distintos modelos convolucionales por

palabras segin cliente y cantidad de neuronas por capa.

Generacion de keywords

A pesar de no haber obtenido buenos resultados y de intuir que la generacion
de palabras clave sera bastante mala se procedera con la generacion de keywords,
62

Ignacio Oscoz Villanueva

en las tablas 4.15, 4.16 y 4.17. Para generar estas palabras clave se ha utilizado una
temperatura de una unidad, 7" = 1, en los modelos entrenados en 10 épocas de cada
cliente de 64 neuronas por capa con la misma estrategia de generacion utilizada
hasta ahora. Esta eleccion se justifica entendiendo que el aumentar el nimero
de épocas de entrenamiento o la cantidad de neuronas no producird modelos con
mayor accuracy. Como era de esperar, en estas tablas no observamos ni siquiera una
Unica generacién de texto con coherencia. Ademads, las oraciones creadas destacan
por la repeticion de ciertos tokens como el espacio vacio en las tablas 4.15 y 4.17,
y el token “iese” en la tabla 4.16.

complete para

ar de de sin

reafirmante crema

lancetas comprar de

bariéderm de de rebotica

optimum de para pasta

di y facial

aldem de crema manos

Tabla 4.15: Generacion de keywords por palabras para el cliente A

on guardia para academia iese iese

este de iese iese iese iese

na de iese iese iese iese iese iese

ejercicio para iese iese

fabra oposiciones iese iese

bazan en para iese en iese iese

libro oposiciones oposiciones iese iese

duracion para auxiliar iese iese

Tabla 4.16: Generacion de keywords por palabras para el cliente B

63

Ignacio Oscoz Villanueva

24h en

camion de

plastico ropa

starbuck
dia de

franquicia paqueteria

t4 trasporte

supermercats ropa de

Tabla 4.17: Generacion de keywords por palabras para el cliente C

64

Capitulo 5

Conclusiones y trabajo futuro

5.1. Conclusiones

En este Trabajo de Fin de Méster, se ha abordado el estudio de la generacion
de keywords para campanas publicitarias en internet. Para realizar esta tarea se
han implementado distintos modelos y se han ido analizando uno a uno para tratar
de encontrar el mejor.

Como conclusién general, se puede afirmar que ni el modelo con LSTM, ni el
modelo de red convolucional han resultado muy ttiles a la hora de generar keywords
palabra por palabra. En ambos casos los resultados han sido cuanto menos
decepcionantes ya que no se ha logrado generar frases con una coherencia minima.
Esto puede deberse a principalmente dos factores: Las frases de entrenamiento y/o
los modelos utilizados. Las frases de entrenamiento estan tomadas de busquedas
realizadas por Google, que como se sabe y puede observarse, tienden a ser frases
mas simplificadas de lo habitual, que ademas, presentan estructuras sintacticas
no muy completas. Dado que el Word2Vec es una técnica que intenta representar
las palabras haciendo uso del contexto sintactico y seméantico de los textos es
posible que no haya logrado captar del todo bien estos contextos en las frases
utilizadas, y esto haya derivado en un mal funcionamiento de nuestros modelos.
Ademas, el hecho de que las propias frases presenten fallos de escritura y diferentes
declinaciones para las mismas palabras, hace aumentar el nimero de palabras y
por tanto su variabilidad lo que no ayuda en nada a dicha técnica. Por otro lado,
es posible también que los modelos utilizados no sean suficientemente complejos
como para aplicarlos en la generacion por palabras, y que por ello, aunque se lograse
que la representaciéon numérica de las palabras fuese mejor, estos no obtuviesen
mejores resultados. Con modelos més complejos, se hace referencia a combinaciones
de redes neuronales que por ejemplo permitiesen codificar los textos de manera que
se asegure que Unicamente la informacién relevante se mantenga y decodificar esta

65

Ignacio Oscoz Villanueva

informacion para predecir el siguiente token.

En cuanto a la generacion por caracteres, se puede decir que los resultados han
sido mas positivos que los de generacién por palabras. Los modelos con LSTM han
ofrecido mejores resultados en cuanto precision que los convolucionales, y esto se ha
notado en los keywords que se han generado con cada modelo. Otra ventaja que los
primeros tienen con los segundos es su forma mas coherente y natural de finalizar
las frases. Mientras que con LSTM los textos creados mantenian coherencia y
sentido hasta el final, en la generacién con redes convolucionales muchas veces se
observaba que algunas frases parecian incompletas. Por lo tanto segin el estudio
realizado, la generacién caracter por caracter mediante redes LSTM es la mejor
opcién (por lo menos entre las opciones que se ha puesto a prueba) a la hora de
crear keywords, y de hecho podria resultar util para automatizar las campanas
de publicidad. La generacién de textos con redes convolucionales en cambio, no
ha resultado tan exitosa pero es una linea de trabajo muy reciente y por eso hay
motivos suficientes para estar satisfechos con los resultados obtenidos.

Actualmente, la aplicacion de técnicas de aprendizaje profundo en el campo de
generacion de textos es bastante novedosa. El objetivo en este trabajo era analizar
distintos modelos y evaluar su funcionamiento para la generacion automatica
de palabras clave para campanas publicitarias. Aunque no se hayan logrado los
mejores resultados, se ha podido aportar un granito de arena y es por ello por lo
que se puede estar satisfecho.

5.2. Trabajo futuro

En cuanto al trabajo futuro parece bastante evidente cuales podrian ser las dos
lineas que podrian tomarse después de este trabajo, y las dos son la continuacién
del estudio de la generacion de keywords por palabras :

= La primera tiene que ver con el primer factor que comentabamos antes por
el que podrian no funcionar correctamente estos modelos: El Word2Vec.
Relacionado con esto, podrian haber distintas nuevas lineas de trabajo futuro
como por ejemplo el probar con otras técnicas como las ya mencionadas
GloVe o FastText. No obstante, puede resultar mas efectivo trabajar un poco
los textos de entrenamiento. Es decir, por ejemplo, como se mencionaba en
las conclusiones muchas palabras se presentan con fallos de escritura y/o
varias declinaciones lo que hace que el nimero de palabras se multiplique.
Por lo tanto, otra opcion seria centrarse en la fase de pre-procesamiento del
texto, ya sea corrigiendo los fallos de escritura, eliminando las stop words
y/o lematizando. De esta manera, ademés de conseguir simplificar el texto
original, permitiria que el Word2Vec funcionase mejor y en consecuencia que
las redes neuronales pudieran ser entrenadas de una manera mas correcta.

66

Ignacio Oscoz Villanueva

= Otra linea de trabajo futuro por la que se podria optar es la de analizar
modelos mas complejos. Los resultados de los modelos estudiados indicaban
que el entrenamiento no se producia correctamente y comentabamos que
una de las razones podria ser porque los modelos no eran suficientemente
complejos como para capturar la informacién de los textos. Con modelos
mas complejos no se refiere a por ejemplo aumentar el niimero de neuronas
o de capas, sino a combinar distintas redes. En los ultimos anos, ha habido
muchos avances en la generacion de textos con aprendizaje profundo, y dos
modelos parecen haber resultado bastante buenos con esta tarea [9]: Los
denominados Variational Auto-Encoders (VAE) y los Generative Adversarial
Networks (GAN). Ambos, son modelos que utilizan redes neuronales, pero
son bastante mas complejos que los que hemos usado en este trabajo. Viendo
que la rama de la generacién de textos con deep-learning ha tomado ese
camino, probar con cualquiera de los dos modelos puede parecer una buena
opcion de trabajo futuro.

67

Bibliografia

1]
2]

[6]

[10]

[11]

[12]

[13]

M. Berry and G. Linoft. Data Mining Techniques. John Wiley and Sons, 1997.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, June 2017.

Jason Brownlee. What are word embeddings for text?, 2017.
Jiakang Chang. Text mining 101. openminted, 2018.
Domo. Data never sleeps 8.0, 2021.

X. Glorot and Y.Bengio. Understanding the difficulty of training deep feed-
forward neural networks. Society for Artificial Intelligence and Statistics,
2010.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural comput,
9:1735-1780, 1997.

J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Procedings of the National Academy of Sciences,
79:2554-2558, 1982.

T. Igbal and S. Qureshi. The survey: Text generation models in deep learning.
Journal of King Saud University — Computer and Information Sciences, page
135-146, April 2020.

Y. LeCun. Une procédure d’apprentissage pour réseau a seuil asymmetrique.
Proc. Cogn, 85:599-604, 1985.

T. Masters. Practical neural network recipes in c++. Academic Press
Professional, 1993.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. Cornell University, 09 2013.

T. Mikolov, K. Chen, G. Corrado, J. Dean, and I. Sutskeber. Distributed
representations of words and phrases and their compositionality. Cornell
University, 10 2013.

68

Ignacio Oscoz Villanueva

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

M. Minsky and S. Papert. Perceptrons: An introduction to computational
geometry. MIT Press, 1969.

Jeremy Neiman. Generating haiku with deep learning. towards data science,
2018.

D.B. Parker. Learning-logic. MIT Center for Computational Research in
FEconomics and Management Science, 1985.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532—
1543, Doha, Qatar, October 2014. Association for Computational Linguistics.

D.E. Rumelhart, R.J G.E. Hinton, and Williams. Learning internal
representations by error propagation. Parallel Distrib. Process, 1:318-362,
1986.

M. Shacklett. Unstructured data: A cheat sheet. TechRepublic, 2017.

J. Wen, J.L. Zhao, S'W. Luo, and Z. Han. The improvements of bp neural
network learning algorithm in proceedings of 5th international conference on
signal processing. IEEFE Press, pages 1647-1649, 2000.

Dylan Wenzlau. Meme text generation with a deep convolutional network in
keras and tensorflow. towards data science, 2019.

P. J. Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEFE, 78:1550-1560, 1990.

P.J. Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sci- ences. Harvard University, 1975.

69

Anexos

Entrenamiento de modelo LSTM por caracteres

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

nnn

Created on Mon May 17 09:54:01 2021

@Qauthor: ina

miunn

import os

from pathlib import Path

import tensorflow.compat.vl as tfl
tfl.disable_v2_behavior ()

tf_session = tfl.Session()

from tensorflow.compat.vl.keras import backend as K

K.set_session(tf_session)

from tensorflow.keras.callbacks import ModelCheckpoint,
CSVLogger

from tensorflow.keras.layers import Add, Dense, Input, LSTM

from tensorflow.keras.models import Model

from tensorflow.keras.preprocessing.text import Tokenizer

import numpy as np
import pandas as pd

import joblib
import datetime

import time

for o in range (10):

70

Ignacio Oscoz Villanueva

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

try:
from keras.utils import np_utils
print (’Works!’)
break
except Exception as e:
print (e, o)

time.sleep (0.5)

class TraininglLine:
def __init__(self, name, previous_line, lstm, n_tokens):
self.char_input = Input(shape=(None, n_tokens),

name=’char_input_7/s’ % name)

self .numberchar_input = Input(
shape=(1,) ,name=’"numberchar_input_Y%s’ % name)
self .numberchar_dense = Dense(
lstm.units, activation=’relu’, name=’
numberchar_dense_¥%s’ % name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

self.lstm = LSTM(

latent_dim, return_state=True, return_sequences=True,
name=’1lstm_7%s’ % name)

initial_state = [self.numberchar_dense_output, self.

numberchar_dense_output]

self.lstm_out, self.lstm_h, self.lstm_c = 1lstm(

self.char_input, initial_state=initial_state)

self.output_dense = Dense(
n_tokens, activation=’softmax’, name=’output_%s’ 9%
name)

self .output = self.output_dense(self.lstm_out)

def create_training _model(latent_dim, n_tokens):
lstm = LSTM(latent_dim, return_state=True, return_sequences
=True, name=’lstm’)
lines = []

inputs = []

71

Ignacio Oscoz Villanueva

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

outputs = []
previous_line = lines[-1] if lines else None
lines.append(Trainingline(’line _0’, previous_line, lstm,

n_tokens))

inputs += [lines[-1].char_input, lines[-1].numberchar_input
]

outputs.append(lines[-1].output)

training_model = Model (inputs, outputs)
training_model.compile(optimizer=’rmsprop’, loss=’

categorical_crossentropy’)

return training_model, lstm, lines, inputs, outputs

class GeneratorLine:
def __init__(self, name, training_line, lstm, n_tokens) :
self.char_input = Input(
shape=(None, n_tokens), name=’char_input_/s’ % name

)

self .numberchar_input = Input(
shape=(1,), name=’numberchar_input_’s’ % name)
self .numberchar_dense = Dense(
lstm.units, activation=’relu’, name=’
numberchar_dense_¥%s’ % name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

self .h_input = Input(shape=(lstm.units,), name=’
h_input_Y%s’ % name)

self.c_input = Input(shape=(lstm.units,), name=’
c_input_%s’ % name)

initial_state = [self.h_input, self.c_input]

self.lstm = lstm

self.lstm_out, self.lstm_h, self.lstm_c = self.lstm(

self.char_input, initial_state=initial_state)

self .output_dense = Dense(
n_tokens, activation=’softmax’, name=’output_%s’ %
name)

self.output = self.output_dense(self.lstm_out)

72

Ignacio Oscoz Villanueva

102

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

129

130

131

132

134

135

136

self .numberchar_dense.set_weights (
training_line.numberchar_dense.get_weights ())

self .lstm.set_weights(lstm.get_weights ())

self.output_dense.set_weights(training_line.

output_dense.get_weights ())

def entrenar (epochs=30, latent_dim=500,root_path="",name="259

_424_9086"):

sample_size = 1

data_path = os.path.join(root_path,"KW_ ST files", name,"
st_report2020.csv")

output_dir = Path(’%d_%d_output_test_%s’ % (latent_dim,
epochs ,name))

try:
output_dir.mkdir ()

except:
pass

sample_size = 1

data_path = os.path.join(root_path,"KW_ST_files", name,"
st_report2020.csv")

time_file = open(output_dir / ("inicial_time_ %s-%s.txt"
latent_dim,epochs)),"a"
time_file.write(str(datetime.datetime.now () .time()))

time_file.close ()

df _raw = pd.read_csv(data_path)

df _raw df _raw.sample(frac=sample_size)

conversions = np.array(df_raw["Conversions"])

df = df_raw[’Search term’].drop([np.where(conversions<1)
1001 [0],axis=0)

max_length = int(max([df_raw["Search term"].str.len().
quantile (.99)1))

df = pd.DataFrame(df [(df_raw([’Search term’].str.len() <=
max_length)].copy())

ncharacters = []

73

b

(

Ignacio Oscoz Villanueva

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

163

165

166

167

168

170

171

172

174

ncharacters = [len(df[].values[i]) for i in
range (len(df))]

daf [] = ncharacters

df [1 = (df [1.str[0] + df[1.
str.pad(max_length+2, ,)

af [] = df [].str.pad(max_length+2,
>)

inputs = df[]

tokenizer = Tokenizer (filters= , char_level=True)
tokenizer.fit_on_texts (inputs)

n_tokens = len(tokenizer.word_counts) + 1

X 2s the input for each line in sequences of one-hot-
encoded wvalues

X = np_utils.to_categorical ([
tokenizer.texts_to_sequences (inputs)

], num_classes=n_tokens)

outputs = df[]

Y 2s the output for each line in sequences of one-hot-
encoded wvalues

Y = np_utils.to_categorical ([
tokenizer.texts_to_sequences (outputs)

], num_classes=n_tokens)

X_characters <s the count of characters for each line

X_characters = df [[1].values

TRAINING MODEL

training_model, lstm, lines, inputs, outputs =
create_training _model(latent_dim, n_tokens)

if epochs==60:

joblib.dump([latent_dim, n_tokens, max_length,

4

Ignacio Oscoz Villanueva

175

176

177

178

179

180

181

182

183

184

185

186

187

188

190

191

192

194

195

196

197

199

200

201

202

203

204

205

206

207

208

210

tokenizer], str(output_dir / (’metadata_’%s-%s.pkl’ 9%
(latent_dim,epochs))))

filepath = str(output_dir / ("%s-{epoch:02d}-{loss:.2f
}-{val_loss:.2f}.hdf5" % latent_dim))

checkpoint = ModelCheckpoint (
filepath, monitor=’loss’, verbose=1, save_best_only

=True, mode=’min’,period=10)

csv_logger = CSVLogger (
str (output_dir / (’training_log_TY%s-%s.csv’ % (
latent_dim,epochs))), append=True, separator=’,’

)

callbacks_list [checkpoint, csv_logger]
else:

callbacks_list

None

training_model.fit ([
X[0],X_characters[:,0]], Y[0], batch_size=64,epochs=
epochs,

validation_split=.1 ,callbacks=callbacks_list)

return 1lstm, lines, tokenizer, n_tokens, max_length

root_path = os.path.abspath(os.path.dirname(__file__))
os.chdir(root_path)
dataframes = ["437_910_0412","991_035_4076","259_424_9086"1]
latent_dimension = [2000,4000,6000]
number_epoch = [60]
for dataframe_name in dataframes:

for n in latent_dimension:

for e in number_epoch:

latent_dim = n

5

Ignacio Oscoz Villanueva

211

212

l1stm, lines, tokenizer, n_tokens, max_length =
entrenar (
epochs=e,latent_dim=latent_dim,root_path=root_path,

name=dataframe_name)

76

Ignacio Oscoz Villanueva

Moédulo para generacion por caracteres con modelo LSTM

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

#1/usr/bin/env python3
-*- coding: utf-8 -—*-

nnn

Created on Mon May 17 12:09:58 2021
Qauthor: ina

nnn

import tensorflow.compat.vl as tfl #new
tfl.disable_v2_behavior () #new

tf_session = tfl.Session()

from tensorflow.compat.vl.keras import backend as K #new
from keras tmport backend as K
K.set_session(tf_session)

from keras.layers import Add, Dense, Input, LSTM

from keras.models import Model

from keras.utils import np_utils

import numpy as np

from keras.layers import Add, Dense, Input, LSTM

def sample(preds, temperature=1.0):

preds np.asarray (preds) .astype()
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)

preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial (1, preds, 1)

return np.argmax (probas)

class TrainingLine:

def __init__(self, name, previous_line, lstm, n_tokens):
self.char_input = Input(shape=(None, n_tokens), name=
% name)
self .numberchar_input = Input(shape=(1,), name=
% name)

7

Ignacio Oscoz Villanueva

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

self .numberchar_dense = Dense(lstm.units, activation=
, name= % name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

#self.lstm = LSTM(latent_dim, return_state=True,
return_sequences=True, name=’lstm_Js’ J name)
initial_state = [self.numberchar_dense_output, self.

numberchar_dense_output]

self.lstm_out, self.lstm_h, self.lstm_c = lstm(self.

char_input, initial_state=initial_state)
self.output_dense = Dense(n_tokens, activation=
, name= % name)

self .output = self.output_dense(self.lstm_out)

def create_training_model (latent_dim, n_tokens):

lstm = LSTM(latent_dim, return_state=True, return_sequences
=True, name=)

lines = []

inputs = []

outputs = []

previous_line = lines[-1] if lines else None

lines.append(TrainingLine (, previous_line, lstm,

n_tokens))

inputs += [lines[-1].char_input, lines[-1].numberchar_input
]

outputs.append(lines[-1].output)

training_model = Model (inputs, outputs)
training_model.compile (optimizer= , loss=
)

return training_model, lstm, lines, inputs, outputs

class GeneratorLine:

def __init__(self, name, training_line, lstm, n_tokens):
self.char_input = Input(shape=(None, n_tokens), name=
% name)
self .numberchar_input = Input(shape=(1,), name=
% name)

78

Ignacio Oscoz Villanueva

72

73

74

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

self .numberchar_dense = Dense(lstm.units, activation=
, name= % name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

self .h_input Input (shape=(lstm.units,), name=

% name)

self.c_input Input (shape=(lstm.units,), name=
% name)

initial_state = [self.h_input, self.c_input]

self.lstm = lstm

self.lstm_out, self.lstm_h, self.lstm_c = self.lstm(

self.char_input, initial_state=initial_state)

self.output_dense = Dense(n_tokens, activation=
, name= % name)

self.output = self.output_dense(self.lstm_out)

self .numberchar_dense.set_weights(training_line.
numberchar_dense.get_weights ())

#self.lstm.set_weights(lstm.get_weights ())

self .output_dense.set_weights(training_line.

output_dense.get_weights ())

class Generator:
def __init__(self, 1lstm, lines, tf_session, tokenizer,
n_tokens, max_line_length):
self.tf_session = tf_session
self.tokenizer = tokenizer
self .n_tokens = n_tokens

self .max_line_length = max_line_length

self.lstm = LSTM(

lstm.units, return_state=True, return_sequences=

True,
name=
)
self.lines = [

GeneratorLine (

H

lines [0], self.lstm, self.n_tokens

79

Ignacio Oscoz Villanueva

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

136

137

138

139

140

141

142

143

144

145

146

]
self.lstm.set_weights(lstm.get_weights ())

def generate_haiku(self, numberchar=25, temperature=.1,

first_char=None) :

output = []
h = None
c = None

if first_char is None:
first_char = chr(int(np.random.randint (ord(),
ord ()+1)))

next_char = self.tokenizer.texts_to_sequences(

first_char) [0] [0]

line = self.lines[0]

s = self.tf_session.run(
line.numberchar_dense_output,
feed_dict={

line.numberchar_input: [[numberchar]]

if h is None:

h = s

c = s
else:

h =h + s

c = c¢c + s

line_output [next_char]
end = False
next_char = None

for i in range(self.max_line_length):

char, h, ¢ = self.tf_session.run(
[line.output, line.lstm_h, line.lstm_c],
feed_dict={
line.char_input: [[
np_utils.to_categorical(
line_output [-1],

num_classes=self.n_tokens

80

Ignacio Oscoz Villanueva

147

148

149

150

151

153

154

156

157

158

159

161

162

163

164

165

166

168

169

170

171

11,

line.h_input: h,

line.c_input: c

)

char = sample(char[0,0],

if char == 1 and not end:
end = True

if char !'= 1 and end:
next_char = char
char = 1

line_output

cleaned_text =

line_output

.append (char)

temperature)

self .tokenizer.sequences_to_texts ([

1) [0].strip() [1:]1.replace(

B

) .replace(s

) .replace(

print (cleaned_text)

output .append(cleaned_text)

return output

81

Ignacio Oscoz Villanueva

Entrenamiento de modelo convolucional por caracteres

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

#1/usr/bin/env python3
-*- coding: utf-8

nnn

—% —

Created on Thu Jun 17 17:13:23 2021

@Qauthor: ina

nnn

import os

from tensorflow.

CSVLogger

from tensorflow.
from tensorflow.

from tensorflow.

keras.

keras.

keras

keras

callbacks import ModelCheckpoint,

layers import Add, Dense

.models import Model

.preprocessing.text import Tokenizer

from pathlib import Path

import numpy as

np

import pandas as pd

import joblib

from tensorflow
from tensorflow
Flatten

from tensorflow

import datetime

import time

for o in range (10):

try:

.keras.layers import Dropout

.keras.layers import Conv2D, MaxPooling2D,

.keras import Sequential

from keras.utils import np_utils

print (

break

)

except Exception as e:

print (e,

o)

time.sleep (0.5)

def entrenar (epochs=30, neuronas_capa=512, kernel_size

82

Ignacio Oscoz Villanueva

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

root_path="",name="259_ 424 9086"):
data_path = os.path.join(root_path,"KW_ST files'", name,"
st_report2020.csv")

output_dir = Path(’%d_%d_cnn_Y%s’ % (neuronas_capa,epochs,
name))
try:
output_dir.mkdir ()
except:
pass # Percent of samples to use for training, might
be necessary tf you’re running out of memory
data_path = os.path.join(root_path,"KW_ ST files", name,"
st_report2020.csv"

time_file = open(output_dir / ("inicial_time_Ys-%s.txt" % (
neuronas_capa, name)),"a"

time_file.write(str(datetime.datetime.now () .time()))

time_file.close ()

df _raw = pd.read_csv(data_path)

df_raw = df_raw.sample(frac=sample_size)

conversions = np.array(df_raw["Conversions"])

df = df _raw[’Search term’].drop([np.where(conversions<1)
1[0]1[0],axis=0)

max_length = int(max([df_raw["Search term"].str.len().
quantile (.99)1))

df = pd.DataFrame (df [(df _raw[’Search term’].str.len() <=
max_length)].copy (D)

ncharacters = []

ncharacters = [len(df[’Search term’].values[i]) for i in
range (len(df))]

df [’ characters’] = ncharacters

search = np.array(df["Search term"])

inp_list = []

out_list = []

for i in range(len(search)):
for j in range(l,len(search[i])):
inp_list.append(search[i][0:j])
out_list.append(list(search[i][j]))
inputs = pd.DataFrame(inp_list)

83

Ignacio Oscoz Villanueva

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

108

outputs = pd.DataFrame (out_list)

inputs [0] inputs [0].str.pad(max_length+2, ,)

tokenizer Tokenizer (filters=’’, char_level=True)
tokenizer.fit_on_texts (inputs [0])

n_tokens = len(tokenizer.word_counts) + 1

X = np_utils.to_categorical(np.array(tokenizer.

texts_to_sequences (inputs[0])), num_classes=n_tokens)

Y = np_utils.to_categorical ([tokenizer.texts_to_sequences
(outputs [0])])
Y = np_utils.to_categorical (tokenizer.texts_to_sequences(

outputs [0]), num_classes=n_tokens)

X = X.reshape(len(X),max_length+2,n_tokens,1)

model = Sequential ()

#add model layers

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation= , input_shape=(max_length+2,n_tokens,b1)
))

model.add (MaxPooling2D (pool_size = (2,2)))

model .add (Dropout (0.25))

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation=))

model .add (MaxPooling2D (pool_size = (2,2)))

model.add (Dropout (0.25))

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation=))

model.add (MaxPooling2D (pool_size = (2,2)))

model.add (Dropout (0.25))

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,

activation=))
model.add (Flatten ())
model .add(Dense(n_tokens, activation=))
model.compile (loss= , optimizer=
, metrics=[D

84

Ignacio Oscoz Villanueva

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

joblib.dump ([neuronas_capa, n_tokens, max_length, tokenizer
], str(output_dir / (’metadata_s-%s.pkl’ % (

neuronas_capa, name))))

filepath = str(output_dir / ("Ys-{epoch:02d}-{loss:.2f}-{
val_loss:.2f}.hdf5" % neuronas_capa))

checkpoint = ModelCheckpoint (
filepath, monitor=’loss’, verbose=1,

save_best_only=True, mode=’min’,period=10)

csv_logger = CSVLogger (
str(output_dir / (’training_log_Y%s-%s.csv’ % (

neuronas_capa, name))), append=True, separator=’,’)

callbacks_list = [checkpoint, csv_logger]

history = model.fit(
X, Y, batch_size=neuronas_capa,epochs=epochs,
validation_split=.1, callbacks=callbacks_list)

return model, history

root_path = os.path.abspath(os.path.dirname(__file__))
os.chdir(root_path)
dataframes = ["259_424_9086","437_910_0412","991_035_4076"1]
neuronas_capa = [64,128,256,512]
number_epoch = [40]
for dataframe_name in dataframes:
for n in neuronas_capa:
for e in number_epoch:
model, history = entrenar(
epochs=e, neuronas_capa=n, kernel_size = 3,

root_path=root_path,name=dataframe_name)

85

Ignacio Oscoz Villanueva

Moédulo para generacion por caracteres con modelo convolucional

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#1/usr/bin/env python3
-*- coding: utf-8 -—*-

nnn

Created on Mon May 17 12:09:58 2021

@Qauthor: ina

nnn

import tensorflow.compat.vl as tfl

tfl.disable_v2_behavior ()

tf_session = tfl.Session ()

from tensorflow.compat.vl.keras import backend as K

K.set_session(tf_session)

import numpy as np

import time

for o in range (10):

try:

except Exception as e:

def sample(preds,

from keras.utils import np_utils

print ()

break

print (e, o)

time.sleep (0.5)

temperature=1.0) :

preds = np.asarray(preds).astype(

preds = np.log(preds) / temperature

exp_preds = np.exp(preds)

preds = exp_preds / np.sum(exp_preds)

probas = np.random.multinomial (1, preds,

return np.argmax (probas)

class Generator:

def

__init__(self,

max_line_length,

self.tf_session

tf_

session, tokenizer,

model) :

tf_session

86

1)

n_tokens,

Ignacio Oscoz Villanueva

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

self.tokenizer = tokenizer
self.n_tokens = n_tokens
self .max_line_length = max_line_length

self .model = model

def generate_kword(self, temperature=.1, first_char=None,

kw_length=None) :
encoded_output = []
if first_char is None:
first_char = chr(int(np.random.randint (ord(),
ord ()+1)))
if kw_length is None:
kw_length = self .max_line_length-5

first_char_encoded = np_utils.to_categorical(
self .tokenizer.texts_to_sequences (first_char)
[0] [0] ,num_classes=self.n_tokens)
encoded_output.append(self.tokenizer.texts_to_sequences
(first_char) [0] [0])
space = np_utils.to_categorical(
self.tokenizer.texts_to_sequences (),num_classes
=self.n_tokens) .reshape(self.n_tokens,1)
space2 = np_utils.to_categorical(
self .tokenizer.texts_to_sequences () ,num_classes=

self .n_tokens) .reshape(self.n_tokens, 1)

out = np.repeat(
space.reshape(l,self.n_tokens),self.max_line_length
+2,axis=0) .reshape (
1,self .max_line_length+2,self.n_tokens,1)
out [0] [0] = first_char_encoded.reshape(self.n_tokens,1)
encoded_output.append(self.tokenizer.texts_to_sequences

(first_char) [0][0])

for i in range(l,kw_length):
new_out = sample(self.model.predict (out) [0],
temperature)
encoded_output.append (new_out)
out [0] [i] = np_utils.to_categorical (new_out,
num_classes=self.n_tokens).reshape(self.n_tokens
, 1)
if np.array_equal (space,out [0][i]):
break
if not np.array_equal (space,out[0][i])
for j in range(1,10):

87

Ignacio Oscoz Villanueva

74

75

76

7

78

79

80

81

82

83

84

new_out

sample (self .model.predict (out) [0],

temperature)

encoded_output.append (new_out)

out [0] [i+j] = np_utils.to_categorical (new_out,

num_classes=self.n_tokens).reshape (self.

n_tokens ,1)

if np.array_equal (space2,out[0][i+j]):

break

output_raw =

self .tokenizer.sequences_to_texts ([

encoded_output])

output = output_raw[0].strip() [1:].replace(’

.replace (’

return output

)
>

’7).replace(’\n’,

88

)

)

)

B

7\11’)

Ignacio Oscoz Villanueva

Entrenamiento de modelo LSTM por palabras

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#1/usr/bin/env python3

-*- coding: utf-8 -—*-

nnn

Created on Mon May 17 09:54:01 2021

@Qauthor: ina

nnn

import os

import gensim

from pathlib import Path

import tensorflow.compat.vl as tfl
tfl.disable_v2_behavior ()

tf_session = tfl.Session ()

from tensorflow.compat.vl.keras import backend as K

K.set_session(tf_session)

from tensorflow.keras.

CSVLlogger

from tensorflow.keras.

from tensorflow.keras

from tensorflow.keras

import numpy as np
import pandas as pd

import joblib

import datetime
import time
for o in range (10):

try:

callbacks import ModelCheckpoint,

layers import Add, Dense, Input, LSTM

.models import Model

.preprocessing.text import Tokenizer

#from keras.utils import to_categorica

from keras.utils.np_utils import to_categorical

print (
break

)

except Exception as e:

print (e, o)

time.sleep (0.5)

89

Ignacio Oscoz Villanueva

class Trainingline:
def _init__(self, name, previous_line, lstm, n_tokens):

self.char_input = Input(shape=(None, 100),

46

47

48

49

name= % name)
self .numberchar_input = Input(
shape=(1,) ,name= % name)
self .numberchar_dense = Dense(
lstm.units, activation= , name=
% name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

self.lstm = LSTM(

latent_dim, return_state=True, return_sequences=True,
name= % name)

initial_state = [self.numberchar_dense_output, self.

numberchar_dense_output]

self.lstm_out, self.lstm_h, self.lstm_c = 1lstm(

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

inputs +=

self .char_input,

self.output_dense = Dense(

n_tokens,

name)

self .output

=True, name=
lines = []
inputs = []
outputs = []

previous_line =

n_tokens))

lines [-1]

activation=

self .output

def create_training model(latent_dim,

= LSTM(latent_dim,

)

lines.append(TrainingLine (

[lines [-1].char_input,

outputs.append(lines[-1].output)

90

return_state=True,

, name=

n_tokens):

if lines else None

initial_state=initial_state)

_dense(self.lstm_out)

return_sequences

, previous_line, lstm,

lines[-1] . numberchar_input

Ignacio Oscoz Villanueva

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

103

104

105

107

108

109

110

111

training_model = Model (inputs, outputs)
training_model.compile (optimizer=’rmsprop’, loss=’
categorical_crossentropy’,metrics=[’categorical_accuracy

>,’accuracy’])

return training_model, lstm, lines, inputs, outputs

class GeneratorLine:
def __init__(self, name, training_line, lstm, n_tokens):
self.char_input = Input(

shape=(None, 100), name=’char_input_’s’ % name)

self .numberchar_input = Input(
shape=(1,), name=’numberchar_input_Y%s’ % name)
self .numberchar_dense = Dense(
lstm.units, activation=’relu’, name=’
numberchar_dense_Y%s’ % name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

self .h_input = Input(shape=(lstm.units,), name=’
h_input_Y%s’ % name)

self.c_input = Input(shape=(lstm.units,), name=’
c_input_%s’ % name)

initial_state = [self.h_input, self.c_input]

self.lstm = lstm

self.lstm_out, self.lstm_h, self.lstm_c = self.lstm(

self.char_input, initial_state=initial_state)

self .output_dense = Dense(
n_tokens, activation=’softmax’, name=’output_’s’ %
name)

self.output = self.output_dense(self.lstm_out)

self .numberchar_dense.set_weights (
training_line.numberchar_dense.get_weights ())

self.lstm.set_weights(lstm.get_weights ())

self .output_dense.set_weights(training_line.

output_dense.get_weights ())

91

Ignacio Oscoz Villanueva

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

def entrenar (epochs=30, latent_dim=500,root_path="",name="259
_424 _9086") :

sample_size = 1
data_path = os.path.join(root_path,"KW_ST_files", name,"
st_report2020.csv")

output_dir = Path(’/d_%d_words_output_test_%s’ % (
latent_dim,epochs ,name))
try:
output_dir.mkdir ()
except:
pass # Percent of samples to use for training, might
be necessary if you’re running out of memory
data_path = os.path.join(root_path,"KW_ ST files", name,"
st_report2020.csv"

time_file = open(output_dir / ("inicial_time_Y%s-%s.txt" % (
latent_dim,epochs)),"a"
time_file.write(str(datetime.datetime.now() .time()))

time_file.close ()

df _raw = pd.read_csv(data_path)
df _raw = df _raw.sample(frac=sample_size)

conversions = np.array(df_raw["Conversions"])

df = pd.DataFrame ()

df [’Search term’] = df_raw[’Search term’].drop([np.where(
conversions<1)]1[0][0],axis=0)

max_length = int(max([pd.Series([df_raw[’Search term’].
values [n].count(’ ’)+1 for n in range(len(df_raw))]).
quantile (.99)1))

df = pd.DataFrame (df [(df [’Search term’].str.count(’ ’) <=
max_length)].copy ())

nwords = []

ncharacters = [len(df[’Search term’].values[i]) for % 1in
range (len(df))]

nwords = [df[’Search term’].values[n].count(’ ’)+1 for n in

range (len(df))]

df [’ characters’] = nwords

92

Ignacio Oscoz Villanueva

144

145

146

147

148

149

150

151

152

154

155

156

157

158

159

160

161

162

163

164

165

167

168

169

170

171

172

173

174

175

177

df [1= [df[J.values[n]+ (1)x* for n in
range (len (df [1)1
df [1 = [df[].values[n]+ (max_length-df[
].values [n]. count()+1) * for n in
range (len (df [1)1
outputs = df[]
tokenizer = Tokenizer(filters= ,lower=True, split= ,

char_level=False)

tokenizer.fit_on_texts (outputs)

n_tokens = len(tokenizer.word_counts) + 1
tokenized_list = tokenizer.texts_to_sequences (outputs)
max_length = max([len(tokenized_list[n]) for n in range (O,

len(tokenized_list))])

inputs = np.array([np.array(df[1) [n].split() for n
in range(len(np.array (df[IDDDED)
model _w2v = gensim.models.Word2Vec (inputs ,min_count=1,

window=5)

model _w2v.save(str (output_dir /))
model_w2v = gensim.models.Word2Vec.load(str(output_dir /
))
w2v = model_w2v.wv
X0 = []
X0 = np.array([[w2v[np.array(outputs) [n].split() [k]] for

k in range(len(np.array(outputs) [0].split()))] for n
in range (len(outputs))])
words_in_sentence = len(np.array(outputs) [0].split())

X = X0.reshape(1,1len(X0) ,words_in_sentence ,100)

Y = to_categorical ([
tokenizer.texts_to_sequences (outputs)
], num_classes=n_tokens)

X_characters is the count of characters for each line

X_characters = df [[1] .values

93

Ignacio Oscoz Villanueva

178

180

181

182

184

185

186

188

189

190

191

192

193

194

195

197

198

199

201

202

203

204

205

207

208

209

210

211

212

TRAINING MODEL
training_model, lstm, lines, inputs, outputs =

create_training _model(latent_dim, n_tokens)

joblib.dump([latent_dim, n_tokens, max_length, tokenizer],
str (output_dir / (% (latent_dim,
epochs))))

filepath = str(output_dir / (
% latent_dim))

checkpoint = ModelCheckpoint(
filepath, monitor= , verbose=1,

save_best_only=True, mode= ,period=10)

csv_logger = CSVLogger (
str (output_dir / (% (
latent_dim,epochs))), append=True, separator

=)

callbacks_list [checkpoint, csv_logger]

training_model.fit ([
X[0],X_characters[:,0]], Y[0], batch_size=64,epochs
=epochs,

validation_split=.1 ,callbacks=callbacks_list)

return 1lstm, lines, tokenizer, n_tokens, max_length

root_path = os.path.abspath(os.path.dirname(__file__))
os.chdir(root_path)

dataframes = [) >]
latent_dimension = [2000,4000,6000]

number_epoch = [40]

for dataframe_name in dataframes:

for n in latent_dimension:
for e in number_epoch:
latent_dim = n

1stm, lines, tokenizer, n_tokens, max_length =

94

Ignacio Oscoz Villanueva

213

entrenar (
epochs=e,latent_dim=latent_dim,root_path=root_path,

name=dataframe_name)

95

Ignacio Oscoz Villanueva

Moédulo para generacion por palabras con modelo LSTM

1| #!/usr/bin/env python3
2| # -*- coding: utf-8 -—-*-

nnn

4 Created on Mon May 17 12:09:58 2021

6 @Qauthor: ina

nnn

10| import tensorflow.compat.vl as tfl
11| tfl.disable_v2_behavior ()

12| tf_session = tfl.Session()

13
14 from tensorflow.compat.vl.keras import backend as K
15| K.set_session(tf_session)

16
17| from tensorflow.keras.callbacks import ModelCheckpoint,
CSVLogger

18| from tensorflow.keras.layers import Add, Dense, Input,
19| from tensorflow.keras.models import Model

20
21| dimport numpy as np
22 import time

23

24| for o in range(10):

25 try:

26 from keras.utils import np_utils
27 print ()

28 break

29 except Exception as e:

30 print (e, o)

31 time.sleep (0.5)

32
33
34

35| def sample(preds, temperature=1.0):

36 preds = np.asarray(preds).astype()
37 preds = np.log(preds) / temperature

38 exp_preds = np.exp(preds)

39 preds = exp_preds / np.sum(exp_preds)

40 probas = np.random.multinomial (1, preds, 1)

96

LSTM

Ignacio Oscoz Villanueva

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

return np.argmax (probas)

class Trainingline:

def __init__(self, name, previous_line, lstm, n_tokens):
self.char_input = Input(shape=(None, n_tokens), name=’

char_input_Y%s’ % name)

self .numberchar_input = Input(shape=(1,), name=’

numberchar_input_Y%s’ % name)

self .numberchar_dense = Dense(lstm.units, activation=’
relu’, name=’numberchar_dense_Y%s’ Y% name)
self .numberchar_dense_output = self.numberchar_dense (

self .numberchar_input)

#self.lstm = LSTM(latent_dim, return_state=True,
return_sequences=True, name=’lstm_Js’ J name)
initial_state = [self.numberchar_dense_output, self.

numberchar_dense_output]

self.lstm_out, self.lstm_h, self.lstm_c = lstm(self.

char_input, initial_state=initial_state)

self .output_dense = Dense(n_tokens, activation=’softmax
>, name=’output_’s’ % name)

self .output = self.output_dense(self.lstm_out)

def create_training model(latent_dim, n_tokens):

lstm = LSTM(latent_dim, return_state=True, return_sequences

=True, name=’lstm’)

lines = []

inputs = []

outputs = []

previous_line = lines[-1] if lines else Nomne
lines.append(Trainingline(’line 0’, previous_line, lstm,

n_tokens))

inputs += [lines[-1].char_input, lines[-1].numberchar_input
]

outputs.append(lines[-1].output)

training_model = Model (inputs, outputs)

training_model.compile (optimizer=’rmsprop’, loss=’

categorical_crossentropy’,metrics=[’accuracy’])

97

Ignacio Oscoz Villanueva

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

109

return training_model,

class GeneratorLine:

def __init__(self, name, training_line, lstm, n_tokens):
self.char_input = Input(
shape=(None, 100), name= % name)
self .numberchar_input = Input(
shape=(1,), name= % name)
self .numberchar_dense = Dense(
lstm.units, activation= , name=
% name)
self .numberchar_dense_output = self.numberchar_dense (
self .numberchar_input)
self .h_input = Input(shape=(lstm.units,), name=
% name)
self.c_input = Input(shape=(lstm.units,), name=
% name)
initial_state = [self.h_input, self.c_input]
self.lstm = 1lstm

self

self

self

.1stm_out, self.lstm_h,

self .char_input,

lstm, lines, inputs,

self.lstm_c

outputs

self.lstm(

initial_state=initial_state)

self .numberchar_dense.set_weights (

self.lstm.set_weights(lstm.get_weights ())

.output_dense = Dense/(

n_tokens, activation= , name=
name)

.output = self.output_dense(self.lstm_out)

training_line.numberchar_dense.get_weights())

self.output_dense.set_weights(training_line.

output_dense.get_weights ())

class Generator:

def __init__(self, 1lstm,

n_tokens,

self
self
self
self

.tf_session = tf_

lines, tf_session,

max_line_length, wv):

session

.tokenizer = tokenizer

.n_tokens = n_tokens

.max_line_length

= max_line_length

98

tokenizer,

Ignacio Oscoz Villanueva

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

140

141

142

143

144

145

146

147

148

149

150

def

self.lstm = LSTM(

lstm.units, return_state=True, return_sequences=

True,
name=
)
self.lines = [
GeneratorLine (
lines [0], self.lstm, self.n_tokens
)
]

self.lstm.set_weights(lstm.get_weights ())

self.wv = wv

generate_kwords (self, nwords=5, temperature=.1):

output = []

h = None
¢ = None
first_word = chr(int (np.random.randint (ord(’a’),

(’z°)+1)))

mext_char = self.tokentizer.texts_to_sequences(
first_char) [0] [0]

next_char = np.random.randint(self.n_tokens)

line = self.lines [0]

s = self.tf_session.run(

line.numberchar_dense_output,
feed_dict={

line.numberchar_input: [[nwords]]

if h is None:

h = s

c =s
BILEE 8

h =h + s

c =c + s
line_output = [next_char]
end = False

99

ord

Ignacio Oscoz Villanueva

151

152

153

154

155

157

158

159

160

161

162

163

164

165

166

167

168

170

171

172

173

174

175

176

177

178

179

180

182

183

184

next_char =

None

for i in range(self.max_line_length):

char, h,

[line.output,

c = self.tf_session.run(

feed_dict={

char = sample(char[0,0],

line.char_input:

line.lstm_h,

line.lstm_c],

[self .wv[self.tokenizer.

sequences_to_texts ([[line_output

[(-1111)11]

line.h_input: h,

line.c_input: c

if char == 1 and not end:
end = True

if char != 1 and end:
next_char = char
char = 1

line_output.append(char)

cleaned_text

temperature)

= self.tokenizer.sequences_to_texts ([

line_output
1) [0].strip() [0:].replace(

B

) .replace(

3)

print (cleaned_text)

output.append(cleaned_text)

return output

100

Ignacio Oscoz Villanueva

Entrenamiento de modelo convolucional por palabras

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

#!/usr/bin/env python3

#o-x-

nnn

coding:

utf-8

—% —

Created on Thu Jun 17 17:13:23 2021

@Qauthor: ina

nnn

import os
import gensim

from tensorflow

import keras

from pathlib import Path

from tensorflow
CSVLogger

from tensorflow

from tensorflow.

from tensorflow.

import numpy as

.keras.callbacks import ModelCheckpoint,

.keras.layers import Add, Dense
keras .models import Model

keras.preprocessing.text import Tokenizer

np

import pandas as pd

import joblib

from tensorflow
from tensorflow
Flatten

from tensorflow

import datetime

import time

.keras.layers import Dropout

.keras.layers import Conv2D, MaxPooling2D,

.keras import Sequential

for o in range (10):

try:

#from keras.utils import to_categorica

from keras.utils.np_utils import to_categorical

print (’Works!’)

break

101

Ignacio Oscoz Villanueva

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

except Exception as e:
print (e, 0)

time.sleep (0.5)

oocooooooooooooooosoosoooosooso FUNCION
def entrenar (epochs=30, neuronas_capa=512, kernel_size = 3,
root_path="",name="259 424 9086"):

data_path = os.path.join(root_path,"KW_ST files", name,"
st_report2020.csv"

output_dir = Path(’%d_%d_cnn_Y%s’ % (neuronas_capa,epochs,
name))
try:
output_dir.mkdir ()
except:
pass # Percent of samples to use for training, might
be necessary tf you’re running out of memory
data_path = os.path.join(root_path,"KW_ ST _files", name,"
st_report2020.csv")

sample_size = 1

time_file = open(output_dir / ("inicial_time_Ys-%s.txt" % (
neuronas_capa, name)),"a"
time_file.write(str(datetime.datetime.now () .time()))

time_file.close ()

df _raw = pd.read_csv(data_path)
df _raw = df _raw.sample(frac=sample_size)

conversions = np.array(df_raw["Conversions"])

df = pd.DataFrame ()

df [’Search term’] = df_raw[’Search term’].drop([np.where(
conversions<1)]1[0][0],axis=0)

max_length = int(max ([pd.Series([df_raw[’Search term’].
values [n].count(’ ’)+1 for n in range(len(df_raw))]).
quantile (.99)1))

df = pd.DataFrame(df [(df[’Search term’].str.count(’ ’) <=
max_length)].copy ())

nwords = []

ncharacters = [len(df[’Search term’].values[i]) for % 1in

102

Ignacio Oscoz Villanueva

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

108

range (len (df))]

nwords = [df[’Search term’].values[n].count(’ ’)+1 for n in
range (len(df))]

df [’ characters’] = nwords

df [’in’]= [df[’Search term’].values[n]+ ’> \n’ for n in

range (len(df [’Search term’]))]

w2v_inputs = np.array([np.array(df[’in’]) [n].split(’ ’) for
n in range(len(np.array(df[’in’]1)))1)

model_w2v = gensim.models.Word2Vec (w2v_inputs ,min_count=1,
window=5)

model _w2v.save(str(output_dir / ’model _w2v’))

model_w2v = gensim.models.Word2Vec.load(str(output_dir / ~’
model _w2v’))

w2v = model_w2V.wv

tokenizer = Tokenizer(filters=’’,lower=True, split=’ ’,

char_level=False)
tokenizer.fit_on_texts(df[’Search term’])
tokenizer.fit_on_texts(’\n’)

search = tokenizer.texts_to_sequences (df[’Search term’])

n_tokens len(tokenizer .word_counts)+1

(1
(1

for i in range(len(search)):

inp_list

out_1list

for j in range(l,max_length+1):
try:
search[i][j]
except:
search[i]. append (tokenizer.texts_to_sequences (’
\n’) [0]1[01)
inp_list.append(search[i][0:j])
out_list.append(search[i][j])
inputs = pd.DataFrame(inp_list)
outputs = pd.DataFrame (out_list)

103

Ignacio Oscoz Villanueva

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137

139

140

141

142

inputs = inputs.fillna(int(tokenizer.texts_to_sequences (
) [01[01))
X = np.array([[w2v[tokenizer.sequences_to_texts ([[inputs [k

J[n]l])]for k in range(max_length)]for n in range(len(
inputs))])

to_categorical (outputs, num_classes=n_tokens)
X.reshape(len(X) ,max_length,100,1)

model = Sequential ()
#add model layers
model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation= , input_shape=(max_length ,100,1)))
model.add (MaxPooling2D (pool_size = (2,2)))
model.add (Dropout (0.25))

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation= ,padding=))

model.add (MaxPooling2D (pool_size = (2,2)))

model .add (Dropout (0.25))

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation= ,padding=))

model.add (MaxPooling2D (pool_size = (2,2)))

model .add (Dropout (0.25))

model.add (Conv2D (neuronas_capa, kernel_size=kernel_size,
activation= ,padding=))
model .add (Flatten ())

model .add (Dense(n_tokens, activation=))

opt = keras.optimizers.RMSprop(learning_rate=0.0001)
model.compile (loss= , optimizer=

opt, metrics=[, D)

joblib.dump ([neuronas_capa, n_tokens, max_length, tokenizer
1, str(output_dir / (% (

neuronas_capa, name))))

filepath = str(output_dir / (

104

Ignacio Oscoz Villanueva

143

144

145

146

147

148

149

150

151

152

154

155

156

157

158

160

161

162

163

164

165

166

167

val_loss:.2f}.hdf5" % neuronas_capa))

checkpoint = ModelCheckpoint (
filepath, monitor=’loss’, verbose=1,

save_best_only=True, mode=’min’,period=10)

csv_logger = CSVLogger (
str (output_dir / (’training_log_‘%s-%s.csv’ % (

neuronas_capa, name))), append=True, separator=’,6’)

callbacks_list = [checkpoint, csv_logger]

history = model.fit(
X, Y, batch_size=64,epochs=epochs,
validation_split=.1, callbacks=callbacks_list)
return model, history
#-—mmm === ENTRENAMIENTO
root_path = os.path.abspath(os.path.dirname(__file__))
os.chdir(root_path)
dataframes = ["259_424_9086","437_910_0412","991_035_4076"]
neuronas_capa = [64,128,256,512]
number_epoch = [40]
for dataframe_name in dataframes:
for n in neuronas_capa:
for e in number_epoch:
model, history = entrenar (
epochs=e, neuronas_capa=n, kernel_size = 3,

root_path=root_path ,name=dataframe_name)

105

Ignacio Oscoz Villanueva

Moédulo para generacion por palabras con modelo convolucional

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

#1/usr/bin/env python3
-*- coding: utf-8 -—*-

nnn

Created on Mon May 17 12:09:58 2021

@Qauthor: ina

nnn

import tensorflow.compat.vl as tfl #new
tfl.disable_v2_behavior () #new

tf_session = tfl.Session()
from tensorflow.compat.vl.keras import backend as K #new

from keras tmport backend as K

K.set_session(tf_session)

import numpy as np

import time

for o in range (10):

try:
from keras.utils import np_utils
print()
break

except Exception as e:
print (e, o)

time.sleep (0.5)

def sample(preds, temperature=1.0):

helper function to sample an index from a probadbility
array

From https://github.com/11lSourcell/keras_ezplained/blob/
master/gentext.py

preds = np.asarray(preds).astype()

preds = np.log(preds) / temperature

exp_preds = np.exp(preds)

preds = exp_preds / np.sum(exp_preds)

probas = np.random.multinomial (1, preds, 1)

return np.argmax (probas)

106

Ignacio Oscoz Villanueva

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

class Generator:
def _init__(self, tokenizer, n_tokens, max_line_length,

model, wv):

self.tokenizer = tokenizer
self.n_tokens = n_tokens
self .max_line_length = max_line_length

self .model = model
self .wv = wv
def generate_kword(self, temperature=.1, first_word=None,
kw_length=None) :
encoded_output = []
if first_word is None:
first_word = np.random.randint(self.n_tokens)
if kw_length is None:
kw_length = self .max_line_length-2

encoded_output .append (first_word)

end = False
space = np_utils.to_categorical(
self.tokenizer.texts_to_sequences () ,num_classes

=self.n_tokens) .reshape(self.n_tokens,1)

space_w2v = self.wv[]

out = np.repeat(
space_w2v.reshape (1,100) ,self .max_line_length,b axis
=0) .reshape (
1,self .max_line_length ,100,1)
out [0] [0] = np.array(self.wv[first_word]).reshape
(100,1)

for i in range(l,kw_length):

new_out = sample(self.model.predict (out) [0],
temperature)

encoded_output.append (new_out)

out [0][i] = np.array(self.wv[self.tokenizer.
sequences_to_texts ([[new_out]]) [0]]) .reshape
(100,1)

if np.array_equal (space,out [0][i]) and np.
array_equal (space,out [0] [i-1]) and not end:

end = True

107

Ignacio Oscoz Villanueva

75

76

7

78

79

80

81

82

83

84

85

86

87

88

if np.array_equal (space,out [0][i]) and end:
break
if not np.array_equal (space,out[0][i])
for j in range(1,2):
new_out = sample(self.model.predict(out) [0],
temperature)
encoded_output.append (new_out)
out [0] [i+j] = np.array(self.wv[self.tokenizer.

sequences_to_texts ([[new_out]]) [0]]) .reshape

(100,1)
if np.array_equal (space,out[0][i+j]):
break
output_raw = self.tokenizer.sequences_to_texts ([

encoded_output])
output = output_raw[0].strip() [0:].replace(’ >, ’\n’)
.replace(’\n’, 7)

return output

108

	Índice de figuras
	Índice de tablas
	Introducción
	Objetivos
	Estructura de la memoria

	Minería de textos
	Etapas de minería de texto
	Obtención del texto
	Pre-procesamiento del texto
	Representación numérica
	Minería de datos
	Evaluación e interpretación de los resultados

	Redes neuronales
	Introducción
	Redes neuronales feedforward y conceptos básicos
	Perceptrón simple
	Perceptrón multicapa y la regla de backpropagation
	Entrenamiento y sus posibilidades

	Redes neuronales convolucionales
	Redes neuronales recurrentes
	Word2Vec

	Entrenamiento para la generación de keywords
	Obtención del texto
	Generación de texto por caracteres
	Modelo de red LSTM
	Modelo de red convolucional

	Generación de texto por palabras
	Modelo de red LSTM
	Modelo de red convolucional

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Bibliografía
	Anexos

