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Caṕıtulo 1

Introducción

Los cambios vertiginosos de las últimas décadas han transformado a la sociedad
moderna industrial al grado de que ya es comúnmente aceptado que se vive en un
nuevo tipo de sociedad y en una nueva era, la de la información. Esta era, también
llamada era digital o era informática, designa al periodo en el que el movimiento
de información se volvió más rápido que el movimiento f́ısico, gracias a la creación
y desarrollo de las tecnoloǵıas digitales de la información y la comunicación. La
mayoŕıa de esta información sin embargo, no se encuentra en forma de tablas
numéricas, sino mas bien en formas textuales. Según [19], la industria estima
que solo el 21 por-ciento de la información está estructurada. Por información
estructurada nos referimos a aquella información donde los campos de datos se
alinean uno al lado del otro en longitudes de registro fijas, con campos de datos
espećıficos que aparecen en ubicaciones estáticas dentro de cada registro. Los datos
no estructurados no contienen un formato de registro establecido; pueden tener
cualquier forma o formato.

La creación de información de cada individuo es constante, ya sea por ejemplo
en búsquedas de Google, donde la mayor parte de la información existe en
forma textual, que es de naturaleza muy desestructurada. Ahora, para crear bits
significativos de conocimiento a partir de esta información, es importante conocer
los sistemas de Procesamiento del Lenguaje Natural (PLN) o en inglés Natural
Language Processing (NLP). La PLN es el área de inteligencia artificial que se
encarga de gestionar los lenguajes humanos. Es la técnica computacional en la
que se representa y analiza el lenguaje automáticamente. Pese a ser un campo de
investigación bastante nuevo, su investigación está creciendo a una velocidad muy
alta. Y es que, los impresionantes resultados obtenidos con el aprendizaje profundo
(o deep learning en inglés) en visión por computadora, reconocimiento de patrones
y análisis de tráfico de red hicieron que los investigadores de PLN siguieran la
misma tendencia.

Uno de los múltiples usos que se le puede dar a este nuevo campo es por
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ejemplo establecer v́ınculos entre clientes potenciales y productos con fines de
marketing. Los motores de búsqueda como Google, recuperan todos los documentos
que contienen las palabras clave que especificamos. No hay valor añadido a los
datos. La mineŕıa de textos lleva las cosas un paso más allá al extraer información
precisa basada en mucho más que palabras clave. En su lugar, busca entidades o
conceptos, relaciones, frases y/o oraciones. Intenta determinar el significado real
basado en algoritmos de Procesamiento del Lenguaje Natural, que le permiten
reconocer conceptos similares. Una búsqueda utilizando la mineŕıa de texto puede
identificar hechos, relaciones e inferencias que no son del todo obvios.

1.1. Objetivos

Diferentes técnicas de inteligencia artificial han sido utilizadas como herra-
mientas para automatizar la generación y gestión de campañas de marketing en
la plataforma Google Ads. En esta plataforma, se realizan mas de 3 billones de
búsquedas por d́ıa, generando una cantidad ingente de información. En este con-
texto, la mineŕıa de textos puede servir para la generación automática de palabras
clave utilizando técnicas de deep learning.

En este trabajo se propone desarrollar una herramienta sistemática, basada
esencialmente en redes neuronales, para la generación de Keywords (o palabras
clave) relevantes. Existen distintas herramientas capaces de abordar este objetivo,
y por eso el objetivo de este trabajo es implementar y determinar cuál resulta
mas conveniente a través de su análisis. Con este fin, se ha realizado un estudio
previo sobre el estado del arte para identificar las posibles alternativas que existen,
y tratar de implementar algunas de ellas, con la intención de después analizar
su funcionamiento. Para ello, se ha contado con la colaboración de la empresa
Quarizmi, que además de proporcionar las bases de datos que se han utilizado, ha
servido de gúıa para cumplir los objetivos pre-establecidos.

Para intentar cumplir dichas metas, se ha utilizado el lenguaje de programación
Python en su versión 3.8. Además se ha hecho uso de libreŕıas como Tensorflow y
Keras, dos libreŕıas Open Source que nos permiten adentrarnos en el Deep Learning
de forma sencilla.

1.2. Estructura de la memoria

Este trabajo pretende explicar, de forma precisa y descriptiva, la parte teórica
empleada en el desarrollo del trabajo, aśı como los resultados obtenidos y las
conclusiones finales. La memoria consta de cinco caṕıtulos: el primer y actual
caṕıtulo se ha dedicado fundamentalmente a la introducción del trabajo y los
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objetivos propuestos, el segundo a la representación de la información, el siguiente
a los aspectos teóricos de las redes neuronales, otro a la explicación de las diferentes
implementaciones realizadas, detallando sus resultados correspondientes, y un
último a las conclusiones generales y trabajo futuro.

El segundo caṕıtulo se centra en el campo de la mineŕıa de textos y sus
principales etapas. La obtención y el preprocesado de los textos, aśı como la
representación numérica de ellos, es fundamental para un correcto funcionamiento
de modelos de aprendizaje automático.

El caṕıtulo tres empieza explicando los detalles mas básicos de las redes
neuronales. A medida que avanza el caṕıtulo se van introduciendo conceptos más
complejos para terminar explicando aquellos detalles que en el posterior caṕıtulo
acabaremos poniendo en práctica como las redes LSTM, las redes convolucionales
y sus configuraciones de entrenamiento.

Como anticipaba, el siguiente apartado tratará sobre abordar los problemas y
objetivos que nos hemos propuesto haciendo uso de los conceptos teóricos que se
han ido desarrollando en los anteriores caṕıtulos. Más concretamente se tratarán
de entrenar dos modelos de redes LSTM (uno para la generación de keywords
por caracteres y otro para la generación por palabras) y dos modelos de redes
convolucionales (uno para la generación de keywords por caracteres y otro para la
generación por palabras). Una vez entrenados los modelos se tratará de analizar
cŕıticamente los resultados obtenidos y de ver si se han conseguido cumplir los
objetivos propuestos de generar palabras clave.

Para acabar, en el caṕıtulo cinco se desarrollan las conclusiones generales de
este Trabajo Fin de Máster y se valoran las ĺıneas de trabajo futuro.

En el anexo se incluye parte del código de programación desarrollado para este
trabajo. Más concretamente, se adjuntan los script principales de Python en los
que se incluyen la implementación de los entrenamientos de las redes neuronales y
la generación de textos.
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Caṕıtulo 2

Mineŕıa de textos

Tradicionalmente, el tratamiento de la información se ha realizado sobre bases
de datos numéricos que vienen dados en forma totalmente estructurada. Sin
embargo, como se ha mencionado anteriormente, la mayoŕıa de la información de la
que se dispone hoy en d́ıa se encuentra en formato textual, lo que es consecuencia
directa del uso de Internet. Por poner un ejemplo, según un estudio de Domo [5],
empresa encargada de conectar los datos con los usuarios para las empresas, en el
año 2020, en un solo minuto, se estimaron que de media se produjeron al rededor de
4,5 de millones de búsquedas en Google, se enviaron casi 42 millones de mensajes
en WhatsApp y se ‘clickaron’ a unos 140000 anuncios de Instagram.

El interés en tratar esta información que proviene de textos hace que el campo
de la mineŕıa de textos se encuentre ahora mismo en auge. Se entiende por mineŕıa
de textos la rama de la lingǘıstica computacional cuyo objeto es la obtención de
información que no se encuentra de forma expĺıcita en un conjunto de textos.
Esta busca extraer información útil e importante de formatos de documentos
heterogéneos, como páginas web, correos electrónicos, publicaciones en redes
sociales, art́ıculos de revistas... Esto a menudo se hace identificando patrones
dentro de los textos, como tendencias en el uso de palabras, estructura sintáctica...
La gente suele hablar de “mineŕıa de texto y datos (MTD)” al mismo tiempo, pero
estrictamente hablando, la mineŕıa de texto es una forma espećıfica de mineŕıa de
datos que se ocupa del texto.

La tecnoloǵıa de mineŕıa de texto ahora se aplica por una amplia variedad
de usuarios, desde organizaciones gubernamentales, instituciones de investigación
y empresas para sus necesidades diarias. A continuación se muestran algunos
ejemplos de uso en diferentes campos:

Investigación: Un investigador humano necesita mucho tiempo para analizar
y obtener información relevante. En algunos casos, esta información ni
siquiera es posible obtenerla con su simple lectura. La mineŕıa de textos
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permite a los investigadores encontrar más información y de una manera
más rápida y eficiente.

Negocios: Las grandes empresas utilizan la mineŕıa de textos para ayudar
en la toma de decisiones y para responder rápidamente las consultas de los
clientes.

Seguridad: El análisis de extracción de texto de blogs y otras fuentes de texto
en ĺınea se utiliza para prevenir delitos en Internet y luchar contra el fraude.

Diariamente: Los sitios web de correo electrónico utilizan la mineŕıa de texto
para crear métodos de filtrado más fiables y eficaces. También se utiliza
para fines de redes sociales al identificar las relaciones entre los usuarios y
ciertos productos o para determinar las opiniones de los usuarios sobre temas
particulares.

2.1. Etapas de mineŕıa de texto

Figura 2.1: Etapas de un proceso de mineŕıa de textos

Un proceso de mineŕıa de textos consta de cinco etapas distintas [4], como se
observa en la figura 2.1.

2.1.1. Obtención del texto

Recopilación de datos de diferentes recursos, como sitios web, correos
electrónicos, comentarios de clientes, archivos de documentos. Dependiendo de
la aplicación, este proceso puede ser completamente automatizado o guiado por
el minero de texto. En tareas de aprendizaje supervisado, además del texto
deberemos obtener los datos de las variables de salida. En nuestro caso, las variables
de salida serán el propio texto.
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2.1.2. Pre-procesamiento del texto

Procesamiento previo, como identificación de contenido y extracción de
caracteŕısticas representativas. Se trata de una etapa en la que se simplifica
el problema original, ya sea eliminando información no relevante o reduciendo
la dimensionalidad del problema. Todos los elementos del texto no ofrecen la
misma información. Por ejemplo, en la tokenización1 por palabras, los tokens
denominados stop words, no ofrecen nada mas que ruido y es por ello que suelen
eliminarse. La consideración de una palabra como stop word dependerá de la tarea
que estemos realizando. Por ejemplo, un número puede considerarse como tal
para ciertas tareas pero no para otras. Para la reducción de dimensionalidad,
entre otras técnicas, también se puede emplear el lematizado en caso de que
estemos ante una tokenización por palabras. Con ello, se sustituyen todas las
palabras por su lema, manteniendo la información que ofrecen pero pudiendo aśı
reducir considerablemente la dimensionalidad. En nuestro problema, al tratarse de
generación de textos, no se considerará ningún tipo de eliminación de stop words
ni de sustitución por lema. Además, con el objetivo de poder ver las diferencias
entre ambas, se tratará con dos tokenizaciones distintas: una por caracteres y otra
por palabras.

2.1.3. Representación numérica

Una vez tokenizado el texto y habiéndolo ya pre-procesado, seguimos teniendo
un conjunto de frases, palabras o letras de las que directamente no podemos
aplicar ningún modelo de mineŕıa de datos. Para ello, es necesario obtener una
representación numérica. Existen distintas técnicas para la vectorización del texto
pero en este trabajo se hará uso de la codificación one-hot y del Word2Vec.

codificación one-hot

La codificación one-hot es una de las técnicas mas simples para la vectorización
de los tokens. Este método representa cada token con un vector de forma {0, 1}|V |,
donde V es el conjunto total de tokens diferentes del texto. Aśı pues, cada
coordenada del vector corresponde con el token del conjunto V ordenado según su
aparición. Dicho de otro modo, cada token del texto se representa con un vector
de dimensión igual a número de tokens en el conjunto V , tomando su ı́ndice el
valor 1 y 0 en el resto. Para entender mejor esto, veamos dos ejemplos distintos:

1Los tokens son las unidades individuales de significado con las que se está operando. Pueden

ser palabras, caracteres o incluso oraciones completas. La tokenización es el proceso de dividir

los documentos de texto en esas partes.
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Ejemplo en el caso de tokenización por palabras: Supongamos que tenemos un
vocabulario ordenado con las siguientes palabras: {“mineria”, “de”, “texto”}.
Entonces, los vectores que los representaŕıan seŕıan respectivamente (1, 0, 0),
(0, 1, 0) y (0, 0, 1).

Ejemplo en el caso de tokenización por palabras: Ahora supongamos que
tenemos la palabra “texto” y la quisiéramos tokenizar por caracteres
para después codificarla con one-hot. Entonces nuestro conjunto de tokens
ordenado seŕıa el siguiente: {“t”, “e”, “x”, “o”}; y su codificación la que
viene respectivamente: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) y (0, 0, 0, 1).

Este método no es capaz de captar ningún tipo de significado entre sus tokens
debido a que todos ellos son equidistantes entre śı, y cuando el número de tokens
es elevado aparecen problemas de dimensionalidad. Por eso, en general no es
recomendable para los casos de tokenización por palabras. No obstante, dado que
los caracteres carecen de significado semántico propio y el número de diferentes
caracteres en un texto no suele ser muy elevado, la vectorización por one-hot es
una técnica bastante usada en los textos tokenizados por caracteres.

Word Embeddings

Los word embeddings son una clase de técnicas en las que las palabras
individuales se representan como vectores de valor real en un espacio vectorial
predefinido [3]. Cada palabra se asigna a un vector y los valores del vector
se aprenden de una manera que se asemeja a una red neuronal y, por lo
tanto, la técnica a menudo se agrupa en el campo del aprendizaje profundo. La
representación distribuida se aprende en base al uso de palabras. Esto permite
que las palabras que se usan de manera similar tengan representaciones similares,
capturando su significado semántico natural. Existen varias técnicas que se pueden
clasificar como dentro de los word embeddings ; he aqúı unos ejemplos [9]:

Word2Vec[12] [13]: Este método revolucionó el campo de la PLN con su
aparición en el año 2013, y se ha convertido en uno de los más populares.
Word2Vec predice la palabra de destino a partir del contexto dado de
palabras con un modelo de bolsa continua de palabras (CBOW) o predice el
contexto de la palabra de destino mediante un skip-gram. El modelo CBOW
determina la probabilidad condicional de la palabra objetivo al dar palabras
de contexto, mientras que un modelo de skip-gram hace exactamente lo
contrario, lo que determina las palabras de contexto circundantes al dar
palabras centrales. Esto permite que su representación vectorial sea capaz
de realizar operaciones como la de “Rey - hombre + mujer = Reina”. Entre
sus limitaciones destaca la incapacidad de representar grupos de palabras
como por ejemplo “perrito caliente”, que lo representaŕıa como dos palabras
(“perro” y “caliente”) que nada tienen que ver con su verdadero significado.
Esta técnica se explicará con más detenimiento en el caṕıtulo 3.
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GloVe [17]: El algoritmo del Global Vectors o GloVe es una extensión del
método Word2Vec para el aprendizaje eficiente de vectores de palabras.
Las representaciones de palabras del modelo de espacio vectorial clásico
se desarrollaron utilizando técnicas de factorización matricial que hacen un
buen trabajo al usar estad́ısticas de texto global, pero no son tan buenos
como los métodos aprendidos como Word2Vec para capturar el significado y
demostrarlo en las tareas como calcular analoǵıas (por ejemplo, el ejemplo
de Rey y Reina anterior). En lugar de utilizar una ventana para definir el
contexto local, GloVe construye una matriz expĺıcita de palabra-contexto o
ocurrencia de palabras utilizando estad́ısticas de todo el texto.

FastText [2]: Otra extensión del primer método. Este representa cada
palabra como un n-grama de caracteres en lugar de representar palabras
directamente. Esta técnica es útil para capturar la semántica de palabras
pequeñas. El FastText tiene la ventaja de representar palabras raras que
pueden no haber sido vistas en el tiempo de entrenamiento.

2.1.4. Mineŕıa de datos

Obtenida la representación numérica de los datos textuales, seŕıamos capaces de
aplicar modelos matemáticos que nos permitiesen alcanzar el objetivo de la tarea.
Es decir, ahora aplicaŕıamos lo que se denomina la mineŕıa de datos. Nuestro
objetivo es el de generar texto a partir de lo que se aprende en los conjuntos de
datos obtenidos. Para ello, se hará uso de dos tipos de redes neuronales artificiales
distintas, como lo son las redes neuronales recurrentes LSTM y las redes neuronales
convolucionales, que se explicarán en el caṕıtulo 3. Con esto, captaremos ciertos
patrones en la representación numérica de los textos que a su vez nos permitirá
generar texto nuevo.

2.1.5. Evaluación e interpretación de los resultados

En esta etapa nos encargaremos de analizar el funcionamiento de los modelos de
generación de texto. En un problema de clasificación es tan fácil como por ejemplo
ver las veces que acierta el modelo. Sin embargo, como veremos más adelante, en
la generación de texto es algo mas complicado.
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Caṕıtulo 3

Redes neuronales

El deep learning o aprendizaje profundo es el aprendizaje automático con redes
neuronales artificiales profundas, y el objetivo de este caṕıtulo será explicar su
funcionamiento.

3.1. Introducción

Las redes neuronales son modelos simples del funcionamiento del sistema
nervioso. Las unidades básicas son las neuronas, que generalmente se organizan
en capas. Una red neuronal artificial es un modelo simplificado que emula el
modo en que el cerebro humano procesa la información: Funciona simultaneando
un número elevado de unidades de procesamiento interconectadas que parecen
versiones abstractas de neuronas.

Las unidades de procesamiento se organizan en capas. Hay tres partes
normalmente en una red neuronal: una capa de entrada, con unidades que
representan los campos de entrada; una o varias capas ocultas; y una capa de
salida, con una unidad o unidades que representa el campo o los campos de destino.
Las unidades se conectan con fuerzas de conexión variables (o ponderaciones). Los
datos de entrada o inputs se presentan en la primera capa, y los valores se propagan
desde cada neurona hasta cada neurona de la capa siguiente. Al final, se env́ıa un
resultado desde la capa de salida denominado output o simplemente valor de salida.

En la imagen 3.1 podemos ver un ejemplo de una red neuronal formada por tres
capas. La capa de entrada consta de tres neuronas y cada una de ellas puede aceptar
un valor de entrada, y están representadas por las variables x1, x2, x3. Aceptar los
datos de entrada es lo único que hace la primera capa. Cada neurona de la capa de
entrada puede tener una única salida. Es posible tener menos valores de entrada
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que las neuronas de entrada (entonces puede pasarles un valor de 0 a las neuronas
no utilizadas), pero la red no puede tomar más valores de entrada que número
de neuronas de entrada. Las entradas se pueden representar como una secuencia
x1, x2, ..., xn (que en realidad es lo mismo que un vector de fila) o como un vector
de columna x := (x1, x2, ..., xn)T . Hay diferentes representaciones de la misma,
y siempre elegiremos la representación que haga más fácil y rápido el cálculo de
las operaciones que podamos necesitar. En nuestra elección de representación de
datos, no estamos limitados por nada más que por la eficiencia computacional.

Figura 3.1: Una red neuronal superficial.

Como ya hemos señalado, todas las neuronas de la capa de entrada están
conectadas a todas las neuronas de la capa oculta, pero las neuronas de la misma
capa no están interconectadas.

Cada conexión entre la neurona j en la capa k y la neurona m en la capa
n tiene un peso denotado por wknjm, y, dado que por lo general queda claro en el
contexto qué capas están involucradas, podemos omitir el supeŕındice y escribir
simplemente wjm. El peso regula cuánto del valor inicial se reenviará a una neurona
determinada.

Volviendo a la figura 3.1 observamos que la neurona ampliada (neurona 3 de
la capa 2) obtiene la entrada que es la suma de los productos de las entradas de
la capa anterior y los pesos respectivos. En este caso, las entradas son x1, x2 y x3,
y los pesos son w13, w23 y w33. Cada neurona tiene un valor modificable, llamado
sesgo o bias en inglés, que está representado aqúı por b3, y este sesgo se suma a
la suma anterior. El resultado de esto se llama logit y tradicionalmente se denota
por z (en nuestro caso, z23).

Excepto en las neuronas lineales donde el valor del logit es proporcional al
de salida, normalmente suele aplicarse una función no-lineal, σ(z), denominada
función de activación para obtener el output (tradicionalmente denotado por y) de
la neurona. Matemáticamente, el output de la neurona j de la capa k se escribe de
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la siguiente manera:

ykj = σ

(
n∑
k=1

wkjxk + bj

)
(3.1)

donde n es el número de entradas, wkj son los pesos asociados a los input xk, y
bj el sesgo asociado a la neurona j. El valor de salida se utilizará como valor de
entrada de otras neuronas, y repitiendo el proceso, finalmente obtendremos el valor
de salida final.

Existen distintas funciones de activación que se pueden usar en distintas capas.
Estas funciones, básicamente deciden si los valores introducidos a una neurona
deben ser activadas o no, es decir, si su información es relevante o no. Esto es
importante en la forma en que una red aprende porque no toda la información
es igualmente útil. Parte de esa es solo ruido. Aqúı es donde entran en escena las
funciones de activación. Las funciones de activación ayudan a la red a utilizar la
información importante y suprimir los puntos de datos irrelevantes. Las funciones
de activación más destacadas en la literatura son las siguientes:

Función ReLU : Pese a su simplicidad el ReLU o unidad lineal rectificada es
la función de activación más utilizada en estos momentos. Matemáticamente
viene dada de la siguiente manera:

ReLU(x) = máx (0, x) =

{
0 si x < 0
x en el resto

(3.2)

Como puede verse, el ReLU está medio rectificado (desde abajo). σ(z) es
cero cuando z es menor que cero y σ(z) es igual a z cuando z es superior o
igual a cero. El problema de esta función es que todos los valores negativos
se vuelven cero inmediatamente, lo que disminuye la capacidad del modelo
para ajustarse o entrenarse a partir de los datos correctamente.

Función LeakyReLU : En un intento de resolver el problema de la ReLU surge
esta función con la siguiente expresión:

LReLU(x) =

{
αx si x < 0
x en el resto

(3.3)

Tomando α valores cercanos a 0,01. Esta simple modificación ayuda a
aumentar el rango de la función ReLU, permitiendo aśı aumentar la
capacidad de ajuste y entrenamiento.

Función sigmoide: La función sigmoide, también denominada función
loǵıstica, está definida de esta manera:

σ(x) =
1

1 + e−x
(3.4)

Al dar valores entre 0 y 1 resulta útil para los casos en los que se
quiere predecir una probabilidad como salida. Su principal inconveniente
es que puede hacer que una red neuronal se atasque en el momento del
entrenamiento (por el denominado vanishing grandient problem).
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Función tangente hiperbólica: La tangente hiperbólica es similar a la
función loǵıstica pero trasformando el valor de x en el rango de [−1, 1].
Matemáticamente se presenta tal que aśı:

tanhx =
ex − e−x

ex + e−x
(3.5)

Su principal ventaja respecto a la anterior es que las entradas negativas
darán salidas fuertemente negativas y las entradas cercanas a cero darán
salidas cercanas a cero. La función tanh se utiliza principalmente para la
clasificación entre dos clases. Presenta el mismo problema que la función
sigmoide: el problema del desvanicimiento del gradiente.

Función Softmax: La función Softmax se describe a menudo como una
combinación de múltiples sigmoides. Como hemos dicho, la función sigmoide
devuelve valores entre 0 y 1, que pueden tratarse como probabilidades de que
un punto de datos pertenezca a una clase o a otra. De una manera similar la
función Softmax puede utilizarse para problemas de clasificación multiclase.
Esta función devuelve valores en el rango de [0, 1], cuya suma es igual a 1.
Es por ello que se puede interpretar como una probabilidad y es utilizada
en la capa de salida, como probabilidad de pertenecer a una cierta clase. La
función Softmax se define de la siguiente manera:

σ(xj) =
exj∑K
k=1 e

xk
donde j = 1, ..., K (3.6)

Figura 3.2: Algunas de las funciones de activación más populares.

Una red neuronal aprende examinando los registros individuales, generando
una predicción para cada registro y realizando ajustes a las ponderaciones cuando
realiza una predicción incorrecta. Este proceso se repite muchas veces y la red
sigue mejorando sus predicciones hasta haber alcanzado uno o varios criterios de
parada.
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Al principio, todas las ponderaciones son aleatorias y las respuestas que
resultan de la red son, posiblemente, disparatadas. La red aprende a través
del entrenamiento. Continuamente se presentan a la red ejemplos para los que
se conoce el resultado, y las respuestas que proporciona se comparan con los
resultados conocidos. A medida que progresa el entrenamiento, la red se va
haciendo cada vez más precisa en la replicación de resultados conocidos. Una
vez entrenada, la red se puede aplicar a casos futuros en los que se desconoce
el resultado.

Antes de continuar con la explicación es necesario comentar la clasificación de
las redes neuronales según su configuración. Principalmente existen dos grupos de
redes neuronales:

Redes neuronales Feedforward (cuyas siglas en inglés son FNN): Como su
nombre indica, en estas redes la información solamente se propaga hacia
adelante. Es decir, la salida de una neurona solamente puede ser entrada de
las neuronas de la siguiente capa.

Redes neuronales recurrentes (cuyas siglas en inglés son RNN): En este tipo
de redes la salida de una neurona puede ser entrada de neuronas de capas
anteriores o de la misma capa. Se puece dar también, que la salida de una
neurona, sea entrada de la misma.

(a) FNN (b) RNN

Figura 3.3: Ejemplo de las dos tipos de redes neuronales según su configuración.
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3.2. Redes neuronales feedforward y conceptos

básicos

En la literatura, uno de los primeros pasos a la hora de explicar los conceptos
más básicos en las redes neuronales suele ser introduciendo ejemplos de redes
neuronales feedforward o de propagación hacia adelante. De hecho, antes de haber
hecho esta clasificación, en este trabajo ya hab́ıamos visto un ejemplo de este tipo
de redes (figura 3.1). Como suele ser habitual, comenzaremos explicando las redes
más simples para ir escalando hacia casos más complejos.

3.2.1. Perceptrón simple

Formado por una única neurona de función escalón de Heaviside, también
llamada función escalón unitario, el perceptrón simple es el primer paso para
comprender el funcionamiento de las redes neuronales. Formalmente se define aśı:

z = b+
∑
i

wixi (3.7)

y =

{
1 si z ≤ 0

0 en el resto
(3.8)

Donde xi son las entradas, wi los pesos, b es el sesgo y z es el logit. Es posible
absorber el sesgo como uno de los pesos, por lo que solo necesitamos una regla de
actualización del peso. Esto se muestra en la ecuación 3.9: para absorber el sesgo
como un peso, es necesario agregar una entrada x0 con el valor 1 y el sesgo es su
peso. Es decir:

z = b+
∑
i

wixi = w0x0(= b) + w1x1 + w2x2... (3.9)

De acuerdo con la ecuación anterior, b podŕıa ser x0 o w0 (el otro debe ser 1). Dado
que queremos cambiar el sesgo con el aprendizaje, y las entradas nunca cambian,
debemos tratarlo como un peso. A este procedimiento lo llamamos absorción de
sesgo o bias absortion.

El entrenamiento del perceptrón se hace mediante la llamada regla de
aprendizaje del perceptrón, como sigue:

1. Se elige un caso de entrenamiento.

2. Si la salida predicha coincide con la etiqueta de salida, no se hace nada.

3. Si el perceptrón predice un 0 y debeŕıa haber predicho un 1, se agrega el
vector de entrada al vector de peso.

14



Ignacio Oscoz Villanueva

4. Si el perceptrón predice un 1 y debeŕıa haber predicho un 0, se resta el vector
de entrada al vector de peso

El perceptrón simple puede resultar útil en problemas simples de clasificación
binaria. Sin embargo, esta estructura se ve muy limitada en problemas de
clasificación no lineales, y le resulta imposible clasificar correctamente problemas
no linealmente separables, como por ejemplo un problema XOR. Para solucionar
estos problemas surge el perceptrón multicapa.

3.2.2. Perceptrón multicapa y la regla de backpropagation

Figura 3.4: Perceptrón multicapa con una capa oculta.

El perceptrón multicapa es un modelo de redes neuronales formado por una
capa de entrada, una o varias capas ocultas y una capa de salida con una conexión
completa hacia adelante de las neuronas y con funciones de activación no lineales.
En la imagen 3.4 se puede observar lo que seŕıa un ejemplo de perceptrón multicapa
con una única capa oculta. La salida de esta, es fácilmente deducible a partir de
la expresión 3.1, y tendrá la siguiente forma:

yi = σ̃

(
m∑
j=0

w
(2)
ji σ

(
n∑
k=0

w
(1)
kj xk

))
(3.10)

donde w
(2)
ji representa el peso asociado a la conexión de la neurona j de la segunda

capa con la neurona i de la capa de salida, w
(1)
kj representa el peso asociado a la

conexión de la neurona k de la capa de entrada con la neurona j de la capa oculta,
σ representa la función de activación de la capa oculta y σ̃ representa la función de
activación de la capa de salida. Por otra parte, según esta notación, n representará
el número de neuronas en la capa de entrada, mientras que m representará el
número de neuronas de la capa oculta.
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Si en vez de tener un modelo con una única capa oculta tuviésemos uno con
dos capas ocultas como el que observamos en la figura 3.5 la expresión de 3.10
podŕıa generalizarse de esta manera:

yi = ˜̃σ

(
m∑
j=0

w
(3)
ji σ̃

(
n∑
k=0

w
(2)
kj σ

(
p∑
l=0

w
(1)
lk xk

)))
(3.11)

Figura 3.5: Perceptrón multicapa con dos capas ocultas.

No es dif́ıcil generalizar aún más la ecuación 3.11 para un caso totalmente
general de C ≥ 3 capas y obtener la siguiente expresión recursiva:

yi = σ

(
nC−1∑
j=0

wC−1ji xC−1j

)
, i = 1, ..., nC (3.12)

xC−1j = σ

(
nC−2∑
k=0

wC−2kj xC−2k

)
, j = 1, ..., nC−1 (3.13)

siendo donde nC y nC−1 el número de neuronas en la capa de C y C − 1
respectivamente, wC−1ji el peso asociado a la neurona j de la capa C − 1 con

la neurona i de la capa C y xC−1j la salida de la neurona j de la capa C − 1. A
pesar de que en esta expresión se denote de la misma manera, σ, a las funciones
de activación de cada capa, es importante recalcar que no tienen porqué ser las
mismas funciones.

Después de que en el año 1969 Minsky y Papert [14] demostraran que el
perceptrón simple no pod́ıa resolver tareas de clasificación no lineales, se empezó
a pensar que la combinación de varios perceptrones simples seŕıa capaz de resolver
ese problema. El principal obstáculo con la creación del perceptrón multicapa fue
que se desconoćıa cómo extender la regla de aprendizaje del perceptrón para que
funcionase con múltiples capas. Dado que se necesitan múltiples capas, la única
opción parećıa ser abandonar la regla del perceptrón y usar una regla diferente que
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sea más robusta y capaz de aprender los pesos a través de la capa. Aśı de la mano
de Paul Werbos[23] primero, y David Parker[16], Yann LeCun[10] y, Rumelhart,
Hinton y Williams[18] más tarde, en los años 80 se desarrolló el algoritmo de
backpropagation o retropropagación. Mediante este algoritmo, iban adaptando los
pesos propagando los errores hacia atrás, es decir, propagando los errores hacia las
capas ocultas. De esta forma se consiguieron trabajar con múltiples capas y con
funciones de activación no lineales.

Algoritmo de retropropagación

La propagación hacia atrás de errores es básicamente un descenso de gradiente.
Matemáticamente hablando, la retropropagación es:

wactualizado = wanterior − η∇E (3.14)

donde w es el peso, η es la tasa de aprendizaje (para simplificar, se puede considerar
1 por ahora) y E es la función de costo que mide el rendimiento general. También
podŕıamos escribirlo en notación de ciencias de la computación como una regla
que asigna a w un nuevo valor:

w ←− w − η∇E (3.15)

Esto se lee como “el nuevo valor de w es w menos η∇E”. Esto no es circular, ya
que está formulado como una asignación (←−), no como una definición (= o :=).
Esto significa que primero calculamos el lado derecho y luego asignamos a w este
nuevo valor. Observe que si escribiéramos esto matemáticamente, tendŕıamos una
definición recursiva.

Quizás nos preguntemos si podŕıamos hacer el aprendizaje de pesos de una
manera más simple, sin usar derivadas y descenso de gradientes. Podŕıamos probar
el siguiente enfoque: seleccionar un peso w y modificarlo un poco y ver si eso ayuda.
Si es aśı, nos quedaŕıamos con la modificación. Si empeora las cosas, cambiaŕıamos
en la dirección opuesta (es decir, en lugar de sumar la pequeña cantidad del peso,
restar). Si esto lo hace mejor, nos quedaŕıamos con este cambio. Si ninguno de los
cambios mejora el resultado final, podemos concluir que w es perfecto tal como es
y pasar al siguiente peso v.

Inmediatamente surgen tres problemas. Primero, el proceso lleva mucho
tiempo. Después del cambio de peso, necesitamos procesar al menos un par de
ejemplos de entrenamiento para cada peso para ver si es mejor o peor que antes.
Simplemente hablando, esta es una pesadilla computacional. En segundo lugar,
al cambiar los pesos individualmente, nunca descubriremos si una combinación
de ellos funcionaŕıa mejor. El primero de estos problemas se soluciona mediante
el descenso de gradientes, mientras que el segundo se resuelve solo parcialmente.
Este problema generalmente se denomina óptimos locales.

El tercer problema es que cerca del final del aprendizaje, los cambios tendrán
que ser pequeños y es posible que el “pequeño cambio” de nuestra prueba de
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algoritmo sea demasiado grande para aprender con éxito. La propagación hacia
atrás también tiene este problema, y generalmente se resuelve utilizando una tasa
de aprendizaje dinámica que se reduce a medida que avanza el aprendizaje.

Si formalizamos este enfoque obtendremos un método llamado aproximación
en diferencias finitas:

1. Cada peso wi, 1 ≥ i ≥ k se ajusta agregándole una pequeña constante ε y se
evalúa el error general (con solo wi cambiado), el cual se denotará por E+

i .

2. Se vuelve a obtener el peso inicial wi y se resta ε. Reevaluando el error se
consigue E−i .

3. Se repite el proceso para todos los pesos wj,≥ j ≥ l

4. Finalmente, los nuevos pesos se establecerán en w ←− w − E+
i −E

−
i

2ε

La aproximación en diferencias finitas hace un buen trabajo al aproximar el
gradiente, y no se usa más que aritmética elemental. Este método se puede utilizar
para desarrollar la intuición de cómo se desarrolla el aprendizaje del peso en la
propagación hacia atrás. Sin embargo, la mayoŕıa de las bibliotecas actuales que
tienen herramientas para la diferenciación automática realizan un descenso del
gradiente en una fracción del tiempo que tomaŕıa calcular la aproximación en
diferencias finitas.

Ahora, pasemos a la retropropagación. Examinemos lo que sucede en la capa
oculta de la red neuronal feedforward. Comenzamos con pesos y sesgos inicializados
aleatoriamente, los multiplicamos con las entradas, los sumamos y los llevamos a
través de la regresión loǵıstica que los “aplana” a un valor entre 0 y 1, y lo hacemos
una vez más. Al final, obtenemos un valor entre 0 y 1 de la neurona loǵıstica en la
capa de salida. Podemos decir que todo lo que esté por encima de 0.5 es 1 y por
debajo de 0. Pero el problema es que si la red da 0.21 y la salida debeŕıa haber
sido 1, solo conocemos el error que produjo la red (la función E), y debeŕıamos
utilizar eso. Más precisamente, queremos medir cómo cambia E cuando cambia el
wi, lo que significa que queremos encontrar la derivada de E con respecto a las
actividades de la capa oculta. Queremos encontrar todas las derivadas al mismo
tiempo, y para ello usamos notaciones vectoriales y matriciales y, en consecuencia,
el gradiente. Una vez que tengamos las derivadas de E con respecto a la actividad
de la capa oculta, calcularemos fácilmente los cambios para los mismos pesos.

Entonces, este algoritmo consta de dos pasadas: una primera hacia adelante y
otra hacia atrás después:

En la pasada hacia adelante la información del vector imput x =
(x1, x2, ..., xn) se propaga hacia adelante mediante las ecuaciones 3.12 y 3.13
dando como resultado un vector de salida ŷC = (ŷ1, ŷ2...ŷnC

), representando
C la capa de salida y, por lo tanto, nC el número de neuronas en ella.
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En la pasada hacia atrás, el error se va propagando desde la capa de salida
hacia la capa de entrada, ajustando los pesos de las conexiones con el objetivo
de minimizar el error E.

Sin perdida de generalidad supongamos que la función de error esta definida como
el error cuadrático medio. Aśı pues, el error en la observación n vendrá dado de la
siguiente manera

En =
1

2

nC∑
i=1

(ŷi(n)− yi(n))2 (3.16)

Y por lo tanto el error global medio será:

E =
1

N

N∑
n

En (3.17)

Siendo N el número de observaciones.

Entonces, la actualización de los pesos tendrá la siguiente expresión general:

w(n) = w(n− 1)− η∇E(w(n− 1)) (3.18)

donde w(n) es el vector de pesos en la iteración n, siendo w(0) el vector de pesos
inicial. Y de esta expresión se deduce el criterio de parada:

∆w(n) = w(n)− w(n− 1) = −η∂E
∂w

[n] (3.19)

siendo w el peso a estimar y ∂E
∂w

[n] la derivada parcial de E en la iteración n.
Hasta cumplir este criterio, la actualización de pesos se hace de forma iterada,
aunque como veremos más tarde este criterio se suele establecer en un número fijo
de épocas realizadas.

3.2.3. Entrenamiento y sus posibilidades

Habiendo asentado ya una base de lo que son las redes neuronales y en qué
se basa su entrenamiento, estamos preparados para profundizar un poco más en
su funcionamiento. Hasta ahora, hemos visto que en el momento de definir una
red neuronal y su entrenamiento existen una gran variedad de posibilidades y
hiperparámetros que deberemos de fijar: función de pérdida, número de neuronas,
número de capas, configuración de la red, tasa de aprendizaje, funciones de
activación... En este apartado profundizaremos en algunos de estos aspectos
además de comentar los problemas que pueden surgir y como evitarlos.

No obstante, antes de continuar explicaremos a que se le denomina ser un
hiperparámetro. El nombre es bastante inusual, pero en realidad hay una razón
simple detrás de él. Cada red neuronal es en realidad una función que asigna a
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un vector de entrada dado (entrada) una etiqueta de clase (salida). La forma en
que la red neuronal hace esto es a través de las operaciones que realiza y los
parámetros que se le dan. Las operaciones incluyen funciones de activación, la
multiplicación de matrices..., mientras que los parámetros son todos los números
que no son de entrada que están por aprender: pesos y sesgos. Sabemos que los
sesgos son simplemente pesos y que la red neuronal encuentra un buen conjunto
de pesos propagando hacia atrás los errores que registra. Dado que las operaciones
son siempre las mismas, esto significa que todo el aprendizaje realizado por una
red neuronal es en realidad una búsqueda de un buen conjunto de pesos, o en otras
palabras, es simplemente ajustar sus parámetros. Ahora que esto está claro, es fácil
decir qué es un hiperparámetro. Un hiperparámetro es cualquier número utilizado
en la red neuronal que no puede ser aprendido por la red. Esto es, el aprendizaje
no puede ajustar los hiperparámetros y deben ajustarse manualmente; no existe
una forma cient́ıfica de hacerlo, es más una cuestión de intuición y experiencia. Un
ejemplo seŕıa la tasa de aprendizaje o la cantidad de neuronas en la capa oculta.

Tipos de entrenamiento

Según el momento en el que se actualicen los pesos existen tres estrategias de
entrenamientos: Estrategia off-line, estrategia on-line y estrategia por minibatch.
Sin embargo, antes de comentar las diferentes estrategias de entrenamiento por las
que se puede optar, conviene explicar estos dos conceptos:

Lote: También llamado batch, el lote es el conjunto de muestras a través de
las cuales se trabaja antes de actualizar los parámetros internos del modelo.
Se puede pensar en un lote como un bucle “for” que itera sobre una o más
muestras y hace predicciones. Al final del lote, las predicciones se comparan
con las variables de salida esperadas y se calcula un error. A partir de
este error, se actualizan los valores de los pesos. Esto permite acelerar la
convergencia en contraposición a si los pesos tuviesen que actualizarse tras
pasar por todos los datos de entrenamiento.

Época: Las épocas representan el número de veces que cada muestra del
conjunto de datos de entrenamiento ha tenido la oportunidad de actualizar
los parámetros internos del modelo. Normalmente se elige un número elevado
de épocas pero esto, además de conllevar un gran coste computacional, a
veces también conlleva un sobre-entrenamiento del modelo.

En consecuencia, se nos suman dos nuevos parámetros que deberemos fijar
para realizar el entrenamiento de nuestra red. Ahora que se han explicado
estos conceptos básicos, podemos continuar con la clasificación de tipos de
entrenamiento:

Estrategia off-line: También conocida como estrategia por lote o estrategia
por batch, es un tipo de entrenamiento en el que los pesos se actualizan
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después de haber pasado todo el conjunto de datos por la red. Es decir,
solo se toma un único lote, el conjunto de datos de entrenamiento entero,
y con él se minimiza directamente la función de pérdida E. A pesar de que
teóricamente hablando esta estrategia seŕıa la correcta, en grandes conjuntos
de datos su convergencia es lenta y requiere mucho coste computacional.
Es por ello que este método resulta útil únicamente en conjuntos de datos
relativamente pequeños.

Estrategia on-line: Al contrario que la anterior, esta estrategia actualiza
los pesos con el procesado de cada muestra del conjunto de entrenamiento.
Es decir, el tamaño de lote es igual a 1. Es por ello que esta estrategia
pueda aplicarse en conjunto de datos grandes. No obstante, este método no
es compatible con la programación en paralelo ya que es necesario el resultado
obtenido después de procesar una observación antes de procesar la siguiente.

Estrategia por minibatch: Es una estrategia h́ıbrida que mantiene las
ventajas de sus predecesoras. Este método divide el conjunto de datos de
entrenamiento en pequeños lotes del mismo tamaño o minibatches, para ir
actualizando los pesos con cada procesado de uno de ellos. Con ello, logramos
que el entrenamiento sea factible para conjuntos de datos grandes sin perder
la posibilidad de poder usar programación en paralelo.

Función de perdida

Como bien hemos indicado previamente todo el entrenamiento se realiza con
el objetivo final de minimizar esta función. Su correcta elección nos permitirá
describir manera más acertada el error entre los vectores de salida estimados, ŷ, y
los vectores de salida esperados, y. Debido a que existen incontables maneras de
medir este error, en este trabajo solamente se explicará la función de la que se va
a hacer uso: Entroṕıa cruzada categórica.

La entroṕıa cruzada categórica es una función de pérdida que se utiliza en tareas
de clasificación de clases múltiples. Estas son tareas en las que un ejemplo solo
puede pertenecer a una de las muchas categoŕıas posibles, y el modelo debe decidir
cuál. La función de pérdida de entroṕıa cruzada categórica calcula la pérdida de
un ejemplo calculando la siguiente suma:

E(ŷ, y) = −
nC∑
i=1

yi log(ŷi) (3.20)

siendo nC , el número de neuronas en la capa final o, lo que es lo mismo, el número
de categoŕıas de las que predecir la probabilidad de permanencia.

Esta función es una muy buena medida de cuán distinguibles son dos
distribuciones de probabilidad discretas entre śı. En este contexto, ŷi es la
probabilidad estimada de que ocurra el evento i y la suma de todos ŷi es 1, lo
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que significa que puede ocurrir exactamente un evento. El signo menos asegura
que la pérdida se reduce cuando las distribuciones se acercan entre śı.

Softmax es la única función de activación recomendada para usar con la función
de pérdida de entroṕıa cruzada categórica. Estrictamente hablando, la salida del
modelo solo necesita ser positiva para que el logaritmo de cada valor de salida ŷi
exista. Sin embargo, el principal atractivo de esta función de pérdida es comparar
dos distribuciones de probabilidad. La activación de softmax cambia la escala de
la salida del modelo para que tenga las propiedades correctas.

Número de neuronas y número de capas

La elección del número de neuronas normalmente suele hacerse de manera
experimental ya que no existen evidencias teóricas que respalden ciertamente
una metodoloǵıa para su elección. Lo mismo sucede con el número de capas.
Configurar la arquitectura de la red sin duda es un paso importante a la hora
de definirla. Un número demasiado bajo de estas cantidades generará modelos que
no aprenden lo suficiente de los datos de entrenamiento (underfitting). Elevar el
número de estos hiperparámetros siempre tendrá como consecuencia modelos más
complejos y costosos computacionalmente, y además esta acción no siempre traerá
mejores resultados. La elevación excesiva del número de neuronas de la capa oculta,
resultará en modelos sobreentrenados (overfitting) que se ajustan bien al conjunto
de datos de entrenamiento pero carecen de generalidad en su aplicación. Existen
algunas reglas que en la práctica han resultado ser eficientes, como por ejemplo
la regla de capa oculta-capa de entrada [1], o la regla de la pirámide [11]. Esta
última, se basa en la suposición de que el número de neuronas de la capa oculta,
debe ser menor que el número de neuronas de la capa de entrada pero mayor que
el número de neuronas de la capa de salida.

En la práctica, como bien he comentado antes, esta elección suele hacerse a
prueba y error, intentando conseguir un equilibrio entre el coste computacional del
modelo y su eficacia.

Tasa de aprendizaje

La idea de incluir una tasa de aprendizaje se propuso expĺıcitamente por
primera vez en el año 2000 [20]. Como hemos visto anteriormente, la tasa de
aprendizaje controla la cantidad de actualización que queremos, ya que la tasa de
aprendizaje es parte de la regla general de actualización de peso, es decir, entra
en juego al final de la propagación hacia atrás. Antes de pasar a los tipos de tasa
de aprendizaje, exploremos por qué la tasa de aprendizaje es importante en un
entorno abstracto.
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Construyamos un ejemplo abstracto de aprendizaje imaginando que tenemos
una canica que representa nuestro modelo y una curva en forma de cuenco redondo
y profundo, cuya altura representa el error del modelo. El gradiente es como la
gravedad e intenta minimizar la función de pérdida o el error pero queremos que sea
diferente a la gravedad f́ısica para que la cantidad de movimiento en esta dirección
no esté determinada por la posición exacta del mı́nimo para la altura, es decir, no
se asiente en el fondo sino que puede moverse al otro lado del cuenco. Dejamos
la cantidad de movimiento sin especificar en este momento, pero asumimos que
rara vez es la cantidad exacta necesaria para alcanzar el mı́nimo real: a veces es
un poco más y se sobrepasa, y otras es un poco menos y no lo alcanza. Aqúı
hay que señalar un punto muy importante: la curvatura “apunta” al mı́nimo, pero
estamos siguiendo la curvatura en el punto en el que nos encontramos actualmente,
y no en el mı́nimo. En cierto sentido, la canica es extremadamente “miope”:
solo ve la curvatura actual y se mueve a lo largo de ella. Sabremos que hemos
encontrado el mı́nimo cuando tengamos la curvatura de 0. Tenga en cuenta que
en nuestro ejemplo tenemos un çuenco idealizado”, que tiene solo un punto donde
la curvatura es 0, y ese es el mı́nimo global para y. Imaǵınese cuántas superficies
más complejas podŕıa haber donde no podemos decir que el punto de curvatura
0 es el mı́nimo global, pero también tengamos en cuenta que si pudiéramos tener
una transformación que transforme cualquiera de estas superficies complejas en
nuestro cuenco, tendŕıamos un aprendizaje algoritmo perfecto.

Cada época de aprendizaje es un movimiento (de alguna cantidad) en la
“dirección general” de la curvatura del cuenco, y una vez hecho, se queda donde
está. La segunda época “descongela” la situación, y nuevamente se sigue la
dirección general hacia la curvatura. Este segundo movimiento podŕıa ser la
continuación del primero, o un movimiento en una dirección casi opuesta si la
canica sobrepasa el mı́nimo (la base del cuenco). El proceso puede continuar
indefinidamente, pero después de varias épocas, los movimientos serán realmente
pequeños e insignificantes, por lo que podemos detenernos después de un número
predeterminado de épocas o cuando la mejora no sea significativa.

La tasa de aprendizaje controla la cantidad de movimiento que vamos a
realizar. Una tasa de aprendizaje de 1 significa hacer todo el movimiento, y una
tasa de aprendizaje de 0,1 significa hacer solo el 10 % del movimiento. Como se
mencionó anteriormente, podemos tener una tasa de aprendizaje global o una
tasa de aprendizaje dinámica para que cambie según ciertas condiciones que
especifiquemos.

Volviendo al ejemplo de la canica, imaginemos que ahora tenemos un cuenco
poco profundo con forma de elipse alargada. Si dejamos caer la canica sobre la parte
del borde más lejana al centro, se moverá a lo largo de una curvatura muy poco
profunda y tomará una gran cantidad de épocas encontrar su camino hacia el fondo
del cuenco. La tasa de aprendizaje puede ayudar aqúı. Si tomamos solo una fracción
del movimiento, la dirección de la curvatura para el siguiente movimiento será
considerablemente mejor que si nos movemos de un borde de un cuenco alargado
y poco profundo al borde opuesto. Dará pasos más pequeños pero encontrará una
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buena dirección mucho más rápidamente (ver figura 3.6).

Figura 3.6: Ejemplo ilustrativo de la canica.

Esto nos abre un debate sobre el valor de la tasa de aprendizaje η. Una tasa de
aprendizaje pequeña puede conllevar a una trayectoria más “suave”, pero también
a un aprendizaje más lento. Por otro lado, una tasa de aprendizaje alta lleva a
un entrenamiento más rápido pero puede ocasionar oscilaciones en superficies del
error de alta curvatura o incluso puede provocar el estancamiento en un mı́nimo
local y no global. Los valores que se utilizan con más frecuencia suelen estar en el
intervalo [0, 1] como 0,1, 0,01, 0,001... Valores como 0,03 simplemente se perderán
y se comportarán de manera muy similar al logaritmo más cercano, que en este
caso es 0,01.

Como sucede con otros hiperparametros, para esta cantidad tampoco existen
reglas que ayuden fijar su valor, y por eso suele fijarse mediante pruebas de ensayo-
error. No obstante para nuestro caso no será necesario realizar dichas pruebas, ya
que se hará uso de una tasa de aprendizaje adaptativa con el método de Rmsprop,
el cual mas tarde explicaremos.

Momento

Dirigimos nuestra atención ahora a una idea similar a la tasa de aprendizaje,
pero diferente llamada momento o inercia. Hablando informalmente, la tasa de
aprendizaje controla qué parte del movimiento se debe mantener en el paso actual,
mientras que el momento controla qué parte del movimiento del paso anterior
se debe mantener en el paso actual. El problema que la inercia intenta resolver
es el problema de los mı́nimos locales. Volvamos a nuestra idea con el cuenco
pero ahora modifiquemos el cuenco para que tenga mı́nimos locales. La canica cae
como de costumbre hacia el mı́nimo y continúa a lo largo de la curvatura, y se
detiene cuando la curvatura es 0. Pero el problema es que la curvatura 0 no es
necesariamente el mı́nimo global, es solo local. Si fuera un sistema f́ısico, la canica
tendŕıa impulso y caeŕıa por encima del mı́nimo local a un mı́nimo global, alĺı iŕıa
y oscilaŕıa un poco para luego asentarse. El impulso en las redes neuronales es solo
la formalización de esta idea. Entre los distintos momentos que se le puede agregar
a la ecuación 3.18, el más intuitivo es el momento estandar, que deja la expresión
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original tal que aśı:

w(n) = w(n− 1)− η∇E(w(n− 1)) + µ∆w(n− 1) (3.21)

donde µ > 0 seŕıa el correspondiente término del momento. Con esto se consigue
acelerar el descenso en direcciones similares en iteraciones consecutivas (gradientes
consistentes) y, estabilizar si se tienen oscilaciones de signos en varias iteraciones
consecutivas. Por tanto, se evitan oscilaciones (inestabilidad) en “valles” de la
superficie de error a la par que acelera la convergencia en regiones con poca
pendiente. Es por eso que se dice que esta idea de actualización de los pesos
se basa en el gradiente para modificar la “velocidad” del vector de pesos en vez de
su “posición”, como hace el algoritmo original.

Regularización

Uno de los aspectos más importantes a la hora de entrenar redes neuronales
es evitar el sobreentrenamiento. La regularización se refiere a un conjunto de
diferentes técnicas que reducen la complejidad de un modelo de red neuronal
durante el entrenamiento y, por lo tanto, evitan el este sobreajuste. Entre las
técnicas más populares de regularización se encuentran las siguientes:

Regularización L2: La regularización L2 es el tipo más común de todas las
técnicas de regularización y también se conoce comúnmente en inglés como
weights decay. La idea de este método es utilizar la norma euclidiana para el
término de regularización. Con esto, la función de pérdida L2 regularizada,
Ẽ, simplemente será, la función de pérdida original definida para la tarea,
E, más el término de regularización:

Ẽ = E + λ ‖w‖22 = E + λ
∑
i

w2
i (3.22)

siendo λ es conocido como el parámetro de regularización y es el
hiperparámetro que ajusta cuanto de regularización queremos. La intuición
detrás de esto es que durante el procedimiento de aprendizaje, se preferirán
pesos más pequeños, pero se considerarán pesos más grandes si la disminución
general del error es significativa. La elección de λ determina cuánto se
preferirán los pesos pequeños (cuando λ es mayor, la preferencia por pesos
pequeños es mayor).

Regularización L1: La regularización L1, también conocida en inglés como
basis pursuit denoising usa el valor absoluto en lugar de los cuadrados:

Ẽ = E + λ ‖w‖1 = E + λ
∑
i

|wi| (3.23)

Para la mayoŕıa de los problemas de clasificación y predicción, la regula-
rización L2 resulta mejor. Sin embargo, hay ciertas problemas en las que
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la L1 sobresale: aquellos que contienen una gran cantidad de datos irrele-
vantes. Estos pueden ser datos muy ruidosos o caracteŕısticas que no son
informativas, pero también pueden ser datos escasos (donde la mayoŕıa de
las caracteŕısticas son irrelevantes porque faltan).

Dropout : Sin duda otra técnica muy popular y eficaz. El Dropout funciona de
manera distinta que las anteriores ya que no modifica la función de pérdida
sino la estructura de la red. Su funcionamiento es tan simple como que
consiste en la eliminación temporal de algunas de las neuronas de la red,
forzando a la red a trabajar con parte de sus neuronas. Concretamente,
durante el entrenamiento en cada época, cada neurona tiene una probabilidad
p de ser eliminada. De esta manera las neuronas se convierten menos
dependientes entre ellas.

Problema de desvanecimiento y explosión

El problema de desvanecimiento describe la situación en la que una red no puede
propagar información de gradiente útil desde el extremo de salida del modelo a las
capas cercanas al extremo de entrada del modelo. Cuando se hace uso de la técnica
del gradiente descendente cada uno de los pesos de la red neuronal recibe una
actualización proporcional a la derivada parcial de la función de error con respecto
al peso actual en cada iteración del entrenamiento. El problema es que, en algunos
casos, el gradiente será muy pequeño, lo que evitará que el peso cambie su valor.
En el peor de los casos, esto puede impedir por completo que la red neuronal siga
entrenando. Como un ejemplo de la causa del problema, las funciones de activación
tradicionales, como la función sigmoide, tienen gradientes en el rango [0, 1], y la
retropropagación calcula los gradientes mediante la regla de la cadena. Dado que
su derivada es σ′(x) = σ(x)(1− σ(x)), para casos de x cercanos a los extremos del
rango, los pesos no variarán prácticamente nada, provocando un aprendizaje lento
de la red. Además, el problema empeora a medida que aumentamos el número
de capas ocultas ya que el gradiente decrece exponencialmente. Esto es por causa
de que en la actualización de los pesos se va requiriendo de un número mayor de
derivadas de funciones de activación a medida que aumenta el número de capas.

Por otro lado puede ocurrir lo contrario. Cuando el gradiente toma valores muy
altos, los pesos se actualizan muy rápidamente provocando que el aprendizaje que
experimenta el modelo sea prácticamente nulo. A este problema se le denomina
problema de explosión.

Inicialización de los pesos

Como hemos dicho previamente, el primer paso en el entrenamiento de una red
es dar unos valores de inicio a sus pesos. Valores de inicio que suelen ser aleatorios,
pero que deberemos de determinar su distribución. Una distribución correcta puede
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ser clave para conseguir la convergencia del algoritmo en una cantidad de tiempo
razonable. Si los pesos iniciales son demasiado pequeños entonces la varianza de
los datos de entrada empieza a disminuir a medida que pasan por cada capa de
la red, conduciendo al problema de desvanecimiento. Por otro lado, si los pesos
iniciales son demasiado grandes, entonces la varianza crece rápidamente a lo largo
de la red, dando lugar al problema de explosión.

Glorot y Bengio [6], propusieron en el año 2010, una regla de inicialización
que lleva el nombre del primero, Xavier, cuyo obejetivo era que la varianza de los
datos de entrada y salida coincidieran. Para ello, propusieron inicializar la matriz
de pesos W siguiendo la siguiente distribución uniforme:

W ∼ U

[
−

√
6√

nC−1 + nC
,+

√
6√

nC−1 + nC

]
(3.24)

donde nC−1 y nC son el número de neuronas en la capa anterior y en la actual
respectivamente. Esta inicialización de los pesos consigue evitar tanto el problema
de desvanecimiento como el de explosión, y aunque hay una gran variedad de
técnicas de inicialización, hoy en d́ıa esta es una de las más populares.

Algoritmo de RMSProp

En pocas palabras, RMSProp utiliza una tasa de aprendizaje adaptativa en
lugar de tratar la tasa de aprendizaje como un hiperparámetro. Esto significa que
la tasa de aprendizaje cambia con el tiempo. Los gradientes de funciones muy
complejas, como las redes neuronales, tienen una tendencia a dar problemas de
desvanecimiento y explosión a medida que los datos se propagan a través de la
función. RMSProp se desarrolló como una técnica estocástica para el aprendizaje
por minibatches. Esta técnica se ocupa de evitar los problemas de desvanecimiento
y explosión mediante el uso de un promedio exponencial. La idea básica es usar un
factor de desintegración, ρ ∈ (0, 1), y ponderar las derivadas parciales cuadradas
que ocurren en anteriores actualizaciones por ρn. Tengamos en cuenta que esto se
puede lograr fácilmente multiplicando el agregado al cuadrado actual (es decir, la
estimación en ejecución) por ρ y luego sumando (1 − ρ) por la derivada parcial
actual (al cuadrado). La estimación en ejecución se inicializa en 0. Esto provoca
algún sesgo (indeseable) en las primeras iteraciones, que desaparece a largo plazo.
Por lo tanto, si Ai es el valor promediado exponencialmente del i-ésimo parámetro
wi, tenemos la siguiente forma de actualizar Ai:

Ai(n) = ρAi(n− 1) + (1− ρ)

(
∂E

∂wi
[n]

)2

(3.25)

donde n representa el número de iteración. La ráız cuadrada de este valor para
cada parámetro se usa para normalizar su gradiente:

wi(n) = wi(n− 1) +
α√
Ai(n)

∂E

∂wi
[n] (3.26)
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3.3. Redes neuronales convolucionales

Las redes neuronales convolucionales están diseñadas para trabajar con
entradas estructuradas en cuadŕıcula, que tienen fuertes dependencias espaciales en
las regiones locales de la cuadŕıcula. El ejemplo más obvio de datos estructurados
en cuadŕıcula es una imagen bidimensional. Este tipo de datos también exhibe
dependencias espaciales, porque las ubicaciones espaciales adyacentes en una
imagen a menudo tienen valores de color similares de los ṕıxeles individuales.
Una dimensión adicional captura los diferentes colores, lo que crea un volumen
de entrada tridimensional. Por lo tanto, las caracteŕısticas de una red neuronal
convolucional tienen dependencias entre śı basadas en distancias espaciales. Otras
formas de datos secuenciales como texto, series de tiempo y secuencias también
pueden considerarse casos especiales de datos estructurados en cuadŕıcula con
varios tipos de relaciones entre elementos adyacentes. La gran mayoŕıa de las
aplicaciones de redes neuronales convolucionales se centran en datos de imágenes,
pero su uso cada vez esta más extendido en campos como la mineŕıa de texto.

Una caracteŕıstica definitoria importante de las redes neuronales convoluciona-
les es una operación, que se conoce como convolución. Una operación de convolu-
ción es una operación de producto escalar entre un conjunto de pesos estructurado
en cuadŕıcula y entradas estructuradas en cuadŕıcula similares extráıdas de dife-
rentes localidades espaciales en el volumen de entrada. Este tipo de operación es
útil para datos con un alto nivel de ubicación espacial o de otro tipo, como datos de
imágenes. Por lo tanto, las redes neuronales convolucionales se definen como redes
que usan la operación convolucional en al menos una capa, aunque la mayoŕıa de
las redes neuronales convolucionales usan esta operación en múltiples capas.

Figura 3.7: Capa convolucional 1D.

Una capa convolucional toma una matriz y una pequeña función de activación
con por ejemplo tamaño de entrada 4 (estos tamaños suelen ser 4 o 9, a veces 16) y
pasa la función a toda la matriz. Esto significa que la primera entrada consta de los
componentes 1–4 del vector aplanado, la segunda entrada son los componentes 2–5,
la tercera son los componentes 3–6, y aśı sucesivamente. Puede ver una descripción
general del proceso en la parte inferior de la figura 3.7. Este proceso crea un vector
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de salida que es más pequeño que el vector de entrada general, ya que comenzamos
en el componente 1, pero tomamos cuatro componentes y producimos una sola
salida. El resultado final es que si nos moviéramos a lo largo de un vector de 10
dimensiones con la función de activación (esta función se llama campo receptivo
local en las redes neuronales convolucionales), produciŕıamos un vector de salida de
7 dimensiones (ver la parte inferior de la figura 3.7). Este tipo de capa convolucional
se denomina capa convolucional 1D.

Padding

También podemos adoptar un enfoque diferente y decir que queremos que la
dimensión de salida sea la misma que la de entrada, pero luego nuestro campo
receptivo local1 de 4 dimensiones tendŕıa que comenzar en la entrada en “celdas”
-1, 0, 1, 2 y luego continuar a 0, 1, 2, 3, y aśı sucesivamente, terminando en 9,
10, 11 . Poner componentes -1, 0 y 11 para que el vector de salida tenga el mismo
tamaño que el vector de entrada se llama padding o relleno. Los componentes
adicionales generalmente obtienen valores 0, pero a veces tiene sentido tomar los
valores del primer y último componente de la matriz o el promedio de todos los
valores. Lo importante a la hora de rellenar es pensar cómo no “engañar” a la capa
convolucional para aprender las regularidades del relleno.

Figura 3.8: Capa convolucional 2D.

Repasemos la situación en 2D, como si no aplanamos la imagen en un vector.
Esta es la configuración clásica para capas convolucionales, y dichas capas se
denominan capas convolucionales 2D o capas convolucionales planas. Si usáramos
3D, lo llamaŕıamos espaciales, y para 4D o más hiperespaciales.

Las entradas de las funciones de activación ahora también debeŕıan ser de
dos dimensiones, y esta es la razón por la que usamos con mayor frecuencia 4,

1Cada neurona dentro de una CNN es responsable de una región definida de los datos de

entrada, y esto permite que las neuronas aprendan patrones como ĺıneas, bordes y pequeños

detalles que componen la imagen. Esta región definida del espacio a la que está expuesta una

neurona o unidad en los datos de entrada se denomina Campo Receptivo Local.
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9 y 16, ya que son cuadrados de 2 por 2, 3 por 3 y 4 por 4 respectivamente. El
paso ahora representa un movimiento de este cuadrado en la imagen, mirando
desde la izquierda, yendo a la derecha y una vez terminado, una fila hacia
abajo, moviendose completamente hacia la izquierda sin escanear y comenzando a
escanear de izquierda a derecha (ver figura 3.8). Una cosa que se vuelve obvia es
que ahora obtendremos menos resultados. Si usamos un campo receptivo local de 3
por 3 para escanear una imagen de 10 por 10, como resultado del campo receptivo
local obtendremos una matriz de 8 por 8 (ver parte inferior de la figura 3.8.

Una red neuronal convolucional tiene múltiples capas. Imaginemos una red
neuronal convolucional que consta de tres capas convolucionales y una capa
completamente conectada. Supongamos que procesará una matriz cuadrada de
dimensión 10 por 10 y que las tres capas tienen un campo receptivo local de 3 por
3.

La primera capa toma una matriz de 10 por 10, produce una salida (tiene
pesos y sesgos inicializados aleatoriamente) de tamaño 8 por 8, que luego se le da
a la segunda capa convolucional (que tiene su propio campo receptivo local con
inicialización aleatoria de pesos y sesgos pero hemos decidido que sea también 3
por 3), lo que produce una salida de tamaño 6 por 6, y esto se le da a la tercera
capa (que tiene un tercer campo receptivo local). Esta tercera capa convolucional
produce una imagen de 4 por 4. Luego lo aplanamos a un vector de 16 dimensiones y
lo pasamos a una capa estándar completamente conectada que tiene una neurona
de salida con su correspondiente función no lineal. Comparando la salida de la
función no lineal con la etiqueta que le corresponde, se calcula el error y se
retropropaga, y esto se repite para cada imput en el conjunto de datos que completa
el entrenamiento de la red.

En el caso de las redes convulucionales 2D el padding es igualmente realizable.
No obstante, en este caso tendŕıamos un “marco” de relleno.

Mapas de caracteŕısticas

Ahora que sabemos cómo funciona una red neuronal convolucional, podemos
usar un truco. Recordemos que una capa convolucional escanea por ejemplo una
imagen de 10 por 10 con una con un campo receptivo local de 3 por 3 (9 pesos,
1 sesgo) y crea una nueva matriz de 8 por 8 como salida. Imaginemos también
que la imagen tiene tres canales para colores. ¿Cómo procesaŕıas una imagen con
tres canales? Una respuesta natural es correr sobre el mismo campo receptivo (que
tiene pesos y sesgos entrenables pero inicializados aleatoriamente). Esta es una
buena estrategia. Pero, ¿qué pasa si lo invertimos y en lugar de usar un campo
receptivo local en tres canales, queremos usar cinco campos receptivos locales en
un canal? Recordemos que un campo receptivo local se define por su tamaño y por
sus pesos y sesgos. La idea aqúı es mantener el mismo tamaño pero inicializar los
otros campos receptivos con diferentes pesos y sesgos. Esto significa que cuando
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escanean una imagen de 3 canales de 10 por 10, construirán 15 imágenes de salida
de 8 por 8. Estas imágenes se denominan mapas de caracteŕısticas. Es como tener
una imagen de 8 por 8 con 15 canales. Esto es muy útil ya que solo un mapa de
caracteŕısticas que aprende una buena representación (por ejemplo, ojos y narices
en imágenes de perros) aumentará considerablemente la precisión general de la
red (suponga que la tarea de toda la red es clasificar imágenes de perros y varias
objetos que no son perros (es decir, detectar un perro en una imagen)).

Una de las ideas principales aqúı es que una imagen (o matriz) de 3 canales de
10 x 10 se convierte en una matriz de 15 canales de 8 x 8. La imagen de entrada
se transformó en un objeto más pequeño pero más profundo, y esto sucederá en
cada capa convolucional. Reducir el tamaño de la matriz significa empaquetar la
información en una representación más compacta (pero más profunda).

Max Pooling

En nuestra búsqueda de la compacidad, podemos agregar una nueva capa
antes o después de una capa convolucional. Esta nueva capa se denomina capa
de agrupación máxima, o max pooling en inglés. La capa de agrupación máxima
toma un tamaño de grupo como hiperparámetro, generalmente 2 por 2. Luego
procesa su matriz de entrada de la siguiente manera: divide la matriz en áreas de
2 por 2, como una cuadŕıcula, y toma de cada agrupación de cuatro elementos
el elemento con el valor máximo. Finalmente se compone estos elementos en una
nueva matriz, con el mismo orden que la matriz original. Una capa de agrupación
máxima de 2 por 2 produce una matriz que tiene una cuarta parte del tamaño de
la matriz original. Por supuesto, en lugar del máximo, se puede idear una selección
o creación de ṕıxeles diferente, como el promedio de los cuatro ṕıxeles o el mı́nimo,
pero generalmente se utiliza el máximo.

La idea detrás de la agrupación máxima es que la información importante en
una matriz rara vez está contenida en ṕıxeles adyacentes (esto explica la parte
’elegir uno de cuatro’. Nótese que esta es una suposición muy fuerte que puede no
ser válida en general.

Por lo general, una red neuronal convolucional se compone de una capa
convolucional seguida de una capa de agrupación máxima, seguida de una capa
convolucional, y aśı sucesivamente. A medida que la matriz pasa por la red,
después de varias capas, obtenemos una matriz pequeña con muchos canales.
Luego, podemos aplanar esto a un vector y usar una una función de activación
al final para extraer qué partes son relevantes para nuestra tarea. La función
de activación seleccionará qué partes de la representación se utilizarán para la
clasificación y creará un resultado que se comparará con el objetivo para luego
propagar el error hacia atrás. Esto forma una red neuronal convolucional completa.
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3.4. Redes neuronales recurrentes

Todas las redes neuronales que hemos visto hasta ahora tienen conexiones que
propagan la información hacia adelante, y es por eso que las hemos llamado “redes
neuronales de feedforward”. Resulta que al tener conexiones que realimentan la
salida de nuevo en una capa como entradas, podemos procesar secuencias de
longitud desigual. Esto hace que la red sea profunda, pero comparte pesos, por
lo que evita en parte el problema del vanishing gradient. Las redes que tienen
tales bucles de retroalimentación se denominan redes neuronales recurrentes. En
la historia de las redes neuronales recurrentes, hay un giro interesante. Tan pronto
como la idea del perceptrón no pareció buena, la idea de hacer un “perceptrón
de múltiples capas” pareció natural. Recordemos que esta idea era teórica y
anterior a la retropropagación (que fue ampliamente aceptada después de 1986),
lo que significa que nadie pudo hacerla funcionar en ese entonces. Entre las ideas
teóricas exploradas se encontraba agregar una sola capa, agregar varias capas y
agregar ciclos de retroalimentación, que son todas ideas naturales y simples. Esto
fue antes de 1986. Dado que la retropropagación aún no estaba disponible, J.
J. Hopfield introdujo la idea de las redes Hopfield [8], que pueden considerarse
las primeras redes neuronales recurrentes exitosas. Estas redes eran diferentes
de lo que hoy consideramos redes neuronales recurrentes. Hoy en d́ıa las redes
neuronales recurrentes más importantes son las redes de memoria a corto-largo
plazo o LSTM, que fueron inventadas en 1997 por Hochreiter y Schmidhuber
[7]. Son las redes neuronales recurrentes más utilizadas y responsables de muchos
resultados de vanguardia en varios campos, desde el reconocimiento de voz hasta
la traducción automática. En esta sección, nos centraremos en desarrollar los
conceptos necesarios para explicar las LSTM en detalle.

Como se comentado previamente las RNN, o redes neuronales recurrentes,
permiten que las salidas de las neuronas sean también entradas de neuronas de
capas anteriores o incluso de neuronas de su propia capa. Estos bucles son los
que permiten que la información persista, consiguiendo en la red esa capacidad de
“memoria temporal”. A continuación, en la figura 3.9, se observa un ejemplo de
una red neuronal recurrente, donde la salida en el instante (o observación) t de la
capa oculta sirve como entrada del siguiente instante (o observación) t+ 1:

Figura 3.9: Ilustración de una red neuronal recurrente simple.

Con el objetivo de hacer ver que una red neuronal recurrente no se aleja
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tanto como parece de una feedforward, es habitual mostrarla como un perceptrón
multicapa en paralelo:

Figura 3.10: Red neuronal recurrente en formato similar al perceptrón multicapa.

Como obserbamos en la figura 3.9, la única diferencia que existe entre esta red
y el perceptrón multicapa es la necesidad de agregar una nueva variable, t, que
representa el “tiempo”. Con esto, la salida de capa oculta en la observación t, yt,
queda determinada de la siguiente manera:

yt = σ(Uxt +Wyt−1), t = 1, ...n (3.27)

siendo n el número de observaciones y, U y W las matrices de pesos de la entrada
xt y la salida de la capa oculta del instante anterior, yt−1 (donde y0 = 0).

Por otra parte, el descenso en la tonalidad de la capa oculta de la figura 3.10,
nos ilustra la perdida de información con el paso del tiempo. Es decir, la capacidad
de memoria de las redes recurrentes convencionales esta limitada y no son capaces
de aprender dependencias a largo plazo. La sensibilidad disminuye a medida que
se introducen nuevos output, sobreescribiendo las activaciones de la capa oculta, y
por consiguiente “olvidando” aśı las primeras entradas. Con el objetivo de evitar
esta pérdida de información y permitir las dependencias a largo plazo surgieron
las redes recurrentes de memoria a largo y corto plazo, cuyas siglas en ingles son
LSTM (long short-term memory)

LSTM

El remplazo de los nodos de la capa oculta por lo que se denominan celdas de
memoria es la novedad que presentaron estas redes recurrentes. Estas unidades

33



Ignacio Oscoz Villanueva

son las que dotan a la red de esa memoria a largo plazo de la que carecen
las redes recurrentes convencionales. Estas celdas de memoria cuentan con una
especie de “sistema de compuertas” que lo que hacen es decidir que información
debe guardarse en la memoria actual, cual debe olvidarse y que información se
debe transmitir al resto de capas. Aśı pues se consideran trés puertas: puerta de
entrada, puerta de olvido y puerta de salida. Y para t ≥ 1 estas puertas tendrán
las siguientes expresiones respectivamente:

it = σ(U ixt +W iyt−1)

ft = σ(U fxt +W fyt−1)

ot = σ(U oxt +W oyt−1)

(3.28)

donde U , W son las matrices de pesos que deberemos estimar, xt es el vector de
entrada de la capa en el tiempo t, yt−1 es el vector de salida de la capa en el
instante t − 1 y σ representa a la función de activación, que normalmente suele
ser la función sigmoide. La puerta de entrada es la que decide qué información
al estado oculto deja pasar, la puerta de olvido es la que decide qué parte de la
“memoria” guarda y la de salida es la que decide qué información deja salir de la
capa oculta. Este mecanismo de compuertas permite que la información perdure
en el tiempo, dotando aśı a la red de “memoria”. El comportamiento general de
una capa oculta LSTM quedará determinado además de por las expresiones 3.28,
por las expresiones que vienen:

gt = ReLU(U gxt +W gyt−1)

ct = ct−1 ∗ ft + gt ∗ it
yt = ReLU(ct) ∗ ot

(3.29)

siendo ct la representación de la celda de memoria interna en el momento t (donde
c0 = 0), gt la entrada al estado oculto, yt la salida del estado oculto en el tiempo t
(donde y0 = 0), y U g, W g las matrices de pesos a estimar. Además observamos el
signo “∗” que indica la multiplicación componente a componente de vectores y la
función de activación ReLU que a pesar de que podŕıamos haber elegido cualquier
otra, es la que se utilizará.

En la imagen 3.11 podemos ver ilustrado el funcionamiento de la capa oculta
de una red recurrente LSTM. En ella observamos que el sistema de compuertas
3.28 viene representado por los ćırculos de color rosa. Además, tenemos “g”, o la
posible entrada a la capa, que se determina con la primera expresión de 3.29. En
el tiempo t, la entrada gt se multiplicará elemento a elemento por la puerta de
entrada i. Como la función sigmoide presenta valores en el rango entre 0 y 1, esta
operación puede interpretarse como la elección de la cantidad de “información” de
gt que se deja entrar a la celda. Por otra parte, la celda de memoria interna en el
instante anterior, Ct−1, se multiplicará elemento a elemento por la puerta de olvido
ft , generando la memoria que perdura. De igual modo que antes, esto se puede
interpretar como la elección de la cantidad de “información” que se mantiene de
la celda de memoria interna del instante anterior. La suma de estas dos cantidades
conforma lo que será la nueva celda de memoria interna Ct, a la que se le aplica
la función ReLU y se multiplica elemento a elemento por la puerta de salida ot,
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Figura 3.11: Funcionamiento de la celda de memoria interna.

obteniendo aśı la salida de la capa oculta en el momento t, yt. A su vez, esta salida
servirá como entrada al estado oculto del siguiente instante de tiempo.

Entrenamiento de redes recurrentes

El algoritmo que permite entrenar las redes recurrentes es conocido como
algoritmo de retropropagación a través del tiempo, (BPTT, sus siglas en inglés).
Este algoritmo se basa en la retropropagación original pero adaptandose a la
estructura de las redes recurrentes [22].

3.5. Word2Vec

Word2Vec es una de las técnicas más populares para aprender incrustaciones
de palabras utilizando una red neuronal de dos capas. Su entrada es un texto y
su salida es un conjunto de vectores. Los word embedings a través de Word2Vec
pueden hacer que el lenguaje natural sea legible por computadora, luego se puede
usar una mayor implementación de operaciones matemáticas en palabras para
detectar sus similitudes. Un conjunto de vectores de palabras bien entrenados
colocará palabras similares cerca unas de otras en ese espacio.

Hay dos algoritmos de entrenamiento principales para Word2Vec, uno es la
bolsa continua de palabras (CBOW, con sus siglas en inglés) y el otro se llama
skip-gram (ver figura 3.12). Ambos son redes neuronales de una sola capa oculta.
La principal diferencia entre estos dos métodos es que CBOW utiliza el contexto
para predecir una palabra objetivo, mientras que skip-gram utiliza una palabra
para predecir un contexto objetivo.
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Figura 3.12: Ilustración de los modelos de Word2Vec

El planteamiento en ambos modelos es similar: definir una ventana simétrica
(contexto) en torno a una palabra central y plantear un problema de optimización
basado en predecir la palabra central dado el contexto o viceversa. Sin pérdida de
generalidad, a continuación se explicará el modelo de CVOW que nos permitirá la
representación de los tokens de nuestros conjuntos de datos.

CBOW

El modelo CBOW predice y genera vectores representativos estudiando el
contexto de la palabra inicial. Esta técnica utiliza una codificación one-hot para
representar numéricamente el vocabulario de longitud V . Por lo tanto, en principio,
la palabra wi vendrá representada tal que aśı:

wi = (x1, x2, ..., xi, ..., xV ) (3.30)

donde todas los elementos cuyo ı́ndice sean diferente a i tendrán un valor nulo y
xi = 1.

En el caso más común de CBOW, el contexto utilizado se expande más
allá de una palabra y utiliza un contexto de longitud C. El objetivo de este
modelo será conseguir la probabilidad condicional de la palabra de salida wO,
basándose en las palabras de entrada Wc = {w′I1, w′I2, ..., w′Ic}, es decir, calcular
P (wO|w′I1, w′I2, ..., w′Ic). Esto se consigue mediante iteraciones dentro del modelo,
basándose en las dos matrices de pesos W y W ′. W es la matriz que conecta la
capa de entrada con la capa oculta, y W ′ conecta la capa de salida con la oculta.
Las dos matrices tienen dimensiones similares, W tiene forma de V ×N mientras
que W ′ está definida como N × V donde N es la dimensión de la capa oculta y
V es el tamaño de los Embedding que resultarán del modelo.
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Figura 3.13: Modelo CBOW con un contexto de C palabras utilizadas como

entrada en la red

Definamos h como viene:

h = W Tx = vTwI
(3.31)

donde se representa la proyección de la palabra de entrada sobre el nuevo vector
h. Si entendemos el modelo complejo de CBOW como una simple combinación de
palabras de entrada, la h tomará la siguiente expresión:

h =
1

C
W T (x1 + x2 + ...+ xC) =

1

C
(vw1 + vw2 + ...+ vwC

)T (3.32)

siendo el vector resultante una simple combinación lineal de las palabras de
entrada pertenecientes al contexto C. El contexto C se define con una ventana
deslizante sobre la palabra elegida. La palabra número n, en una ventana de
tamaño S tendrá como contexto las palabras definidas en el conjunto Cwn ={
wn−S/2, ..., wn, ..., wn+S/2

}
.

El objetivo de h es ponderar un criterio de evaluación utilizando la información
de la segunda mitad del modelo contenida en W ′.

uj = v′Twj
h (3.33)

Utilizando la función softmax, podemos aproximar nuestro objetivo inicial, la
probabilidad condicional, de la siguiente manera:

yj = P (wj|w′1, w′2, ..., w′c) =
euj∑V
k=1 e

uk
(3.34)

El objetivo del modelo será maximizar la probabilidad condicional combinada de
todo el vocabulario. Por ello, habrá que maximizar la función objetivo o la función
log-likelyhood, que se define de la siguiente manera:

V∑
j=1

log(P (wj|w′j−S/2, ..., w′j, ..., w′j+S/2)) (3.35)
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La codificación continua de palabras Word2Vec es capaz de capturar la
similitud de palabras de manera que dos palabras similares estarán cercanas en
el espacio n-dimensional de palabras que se crea. Destaca por su habilidad al
capturar información semántica y sintáctica de las palabras, pero siempre hay que
tener en cuenta que la información útil que proporciona dependerá del contexto
que tengamos.
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Caṕıtulo 4

Entrenamiento para la generación

de keywords

4.1. Obtención del texto

Como previamente se ha comentado los datos (que en este caso vienen en forma
de textos) para realizar el estudio los ha proporcionado la empresa Quarizmi.
Estos datos vienen en forma de frases, que en realidad son las búsquedas que han
realizado distintos usuarios de Google que han hecho por lo menos una vez “click”
en anuncios de publicidad de tres clientes de la empresa Quarizmi. Dado que los
usuarios que han realizado dichas búsquedas se han interesado por estos anuncios
lo que se pretende es crear nuevas keywords o palabras clave basados en estas
búsquedas, para dirigir los futuros anuncios de estos tres clientes a usuarios que
estén interesados en sus productos. Para ello, intentaremos aplicar todo lo visto
hasta ahora, pero antes, veamos como son los textos que tenemos.

Del primer cliente, al que nos referiremos como “Cliente A”, tenemos una lista
formada por 883 búsquedas y podemos encontrar búsquedas como estas:

franquicia co aliment

abrir franquicia supermercado

franquicias de alimentacion sin royaliti y sin canon de entrada

supermercados dia franquicias

franquicias tiendas de ropa infantil

mejores franquicias hosteleria
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franquicias de ropa moda joven

franquyicia de administracion de fincas gratis

Observamos que son frases no muy largas, y muy espećıficas y concisas. Por
otro lado al tratarse de búsquedas realizadas por Google, será común encontrar
varias frases que contengan errores ortográficos o que simplemente no estén bien
redactadas.

Del segundo cliente, denominado como “Cliente B”, tenemos una lista formada
por 5899 frases, en las que veremos frases del siguiente estilo:

805 la roche posay anthelios spray fresco viso invisibile spf50 75ml

xls medical precio y opiniones

gel hidroalcoholico aloe vera 5 litros

pasta lacer 200 ml

pilexil forte anticaida

fotoprotector isdin hydrolotion spf 50 200 ml

comprar vitamina c sesderma

alcohol 96 1l madrid

Finalmente, del que llamaremos el “Cliente C” tenemos una lista de 10727
búsquedas entre las cuales están estas:

como ser bombero en españa

guardia civil número

tecnico en anatomia patolo estudiar a distancia

fp policia

grado superior de cocina la pobla de farnals

grado superior enfermeŕıa online

polićıa nacional gijon

precio curso doblaje barcelona
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La elección de estos tres conjuntos de datos no ha sido casualidad. Esta se
ha hecho con el objetivo de probar los modelos con conjuntos de datos con
caracteŕısticas distintas, ya que como podemos apreciar, el número de muestras de
cada cliente y su variabilidad puede resultar muy distinto.

Cada una de estas frases podrá ser utilizada para entrenar los modelos
de cada cliente, pero para ello, será necesario transformarlas previamente,
representándolas numéricamente. Dado que nuestra tarea consiste en generar texto,
hemos considerado que no es necesario ninguna eliminación de stop words ni de
sustitución por lema. Es por eso que después de tokenizar ya podŕıamos pasar
a la fase de representación numérica de los textos. Como se ha mencionado
previamente, se han realizado dos tipos de tokenización: por caracteres y por
palabras. De esta manera, trabajamos con dos tipos de tareas según la generación
de texto: la que consiste en ir generando texto carácter a carácter y la que consiste
en ir generando texto por palabras. Una vez tokenizado deberemos de representar
cada token numéricamente, pero como veremos a continuación dependiendo del
tokenizado que se haga, se utilizarán distintas técnicas de representación numérica
del texto.

4.2. Generación de texto por caracteres

Dentro de los modelos de generación de texto por caracteres que hemos
considerado, se encuentran el modelo de red LSTM y el modelo de red
convolucional.

4.2.1. Modelo de red LSTM

El modelo trabajado en este apartado está basado en un modelo de generación
de haikus de Jeremu Neyman [15]. Este modelo utiliza una red neuronal LSTM que
se entrena con haikus (poemas tradicionales japoneses de estructura silábica de 5-
7-5) para posteriormente generar nuevos poemas caracter a caracter. Sin embargo
tiene un pequeño giro: El número de śılabas de cada ĺınea se proporciona a la red,
se pasa a través de una capa densa (con función de activación ReLU) y luego se
agrega al estado interno de LSTM, como se ve en la figura 4.1. La idea de nuestro
modelo es hacer lo mismo pero con el número de caracteres por keywords creadas.
De este modo, seŕıamos capaces de mas o menos controlar el tamaño de Keywords
creadas; y digo mas o menos por que esto no será una condición restrictiva sino
una tendencia a que se cumpla dicha condición. Nuestro modelo se completa con
una capa densa con función de activación de softmax que lo que nos dará es un
vector de probabilidades que indique la probabilidad de cada carácter de ser el
siguiente.
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Figura 4.1: Diagrama de alto nivel del modelo generador de haikus[15]

Antes de proceder con el entrenamiento del modelo, sin embargo, recordemos
que deberemos representar numéricamente los conjuntos de datos que ya hemos
tokenizado. Como anticipábamos en el caṕıtulo 2, la representación numérica más
adecuada para la tokenización por caracteres es la codificación one-hot. Una vez
transformado cada carácter en un vector de one-hot, se obtiene un conjunto de
conjuntos de vectores (o una matriz) en el que cada conjunto de vectores (o fila)
representa a una frase. Un inconveniente que surge llegado a este punto es que
cada frase contiene un número de caracteres diferentes y a la hora de introducirlos
como datos de entrada de la red no se puede tener entradas de distintas longitudes.
Para solucionar esto, simplemente se rellenan las frases con espacios vaćıos para
llegar a la longitud máxima de caracteres de las frases del conjunto de datos del
correspondiente cliente. Una vez preparado por completo el conjunto de datos,
se dividen los datos que se usarán como datos de entrenamiento de los que se
usarán como datos de validación. En nuestro caso se ha optado por el 90 % de
todo el conjunto de datos para entrenamiento y 10 % para validación. Es necesario
comentar también, que durante el entrenamiento los datos de salida de la red con
los que se retropropagará el error son los propios datos de entrada, es decir, las
búsquedas codificadas en one-hot.

El siguiente paso es determinar los hiperparámetros. Aunque la mayor parte
de la configuración de la red que se ha utilizado, se haya justificado y determinado
en el caṕıtulo 3, volvamos a recordarlo:

La estretegia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demás.

La función de pérdida que mejor se adapta al problema es la de la entroṕıa
categórica cruzada.

La inicialización de pesos no puede ser otra que la de Xavier uniforme.

El algoritmo de optimización que se ha escogido es el Rmsprop, con su valor
por defecto ρ = 0,95.
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Por otra parte queda por especificar el valor de la tasa de aprendizaje, η, el
tamaño de los minibatches, el número de celdas de memoria y el número de épocas.
Ya sabemos que la elección de los hiperparámetros a veces no es más que cuestión
de prueba-error. Por eso, en el caso de la primera, en principio se ha tomado el
valor por defecto que ofrece Keras, η = 0,1, y si en el entrenamiento surgiese algún
inconveniente que pudiese estar relacionado con esto se probaŕıa a cambiarlo. Con
el tamaño de los minilotes se seguirá un planteamiento similar: a priori, se ha
fijado en 64 (basándose en [15]) pero posteriormente se podŕıa cambiar. El número
de épocas y celdas de memoria, en cambio, merecen un estudio más profundo,
ya que estos influyen más en la calidad del modelo. Para ello, se ha realizado un
barrido con ambos hiperparámetros, en el que se estudia la influencia de cada
hiperparámetro.

Figura 4.2: Error de distintos modelos con LSTM por caracteres según cliente,

número de celdas de memoria (denominado latent-dim) y épocas.

En la figura 4.2 observamos los errores (calculados con la entroṕıa categórica
cruzada) de cada modelo. El número de épocas ideal para cada caso será aquel
que minimice el error de validación, ya que cuando el error de validación empieza
a incrementarse mientras el de entrenamiento sigue decreciendo se está dando
un sobre-ajuste del modelo. Con un vistazo general puede llamar la atención la
lenta convergencia de los ejemplos del Cliente A en comparación con el resto.
Sin embargo, recordemos que este cliente era con mucha diferencia el que menos
datos proporcionaba. Por lo que es lógico pensar que necesitará más épocas para ir
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reduciendo el error. Si se observa bien, este fenómeno sucede también en los otros
dos clientes: Cuantos más datos se tenga, más rápida será la convergencia. Por
otra parte, resulta curioso que el número de celdas de memoria (denominado por
latent-dim) no tenga apenas influencia en el error. Cuanto mayor sea esta cantidad
mayor es la complejidad del modelo, por lo que si la mejora no es apreciable, el
modelo más simple será mejor.

Para validar el entrenamiento podemos hacer uso de la precisión o accuracy
que se muestra en la figura 4.3. En estos gráficos observaremos con que porcentaje
dará el modelo el máximo de probabilidad de salida al siguiente token; o dicho
de otra forma, el token con más probabilidad que se predice, con que porcentaje
coincidirá con el que de verdad sea el siguiente token. A primera vista se puede
observar la fuerte relación de los gráficos de la precisión con los de el error. Si
nos fijamos bien, veremos que cuando uno sube el otro tiende a bajar y viceversa.
Por ello, las conclusiones que se pueden obtener de estas figuras son similares. En
primer lugar, podŕıamos pensar que a los modelos del cliente A, no les basta con 40
épocas para llegar a la convergencia y podŕıamos intuir que tanto la precisión del
entrenamiento, como la de validación, tenderán a incrementarse elevando el número
de épocas. Además, nos damos cuenta que efectivamente el subir la cantidad de
celdas de memoria mas allá de las 2000, únicamente nos producirá modelos más
complejos que no darán mejores resultados. En cuanto a la precisión de cada
modelo, podemos estar satisfechos con los resultados obtenidos, ya que para los
modelos óptimos de los clientes B y C en cuanto a error, se obtienen accuracys de
validación superiores al 0,85.

Finalmente analicemos los tiempos de computación de cada ejecución. Como
los tiempos de ejecución entre de cada época prácticamente no vaŕıan (es decir,
el tiempo de ejecución es linealmente proporcional a la cantidad de épocas),
solamente se analizarán los tiempos de entrenamiento de todas las épocas por
cliente y cantidad de celdas de memoria. En la tabla 4.1 se observa que cuanto más
se eleve la complejidad del modelo (subiendo la cantidad de unidades de memoria)
mas evidente es la ralentización del entrenamiento. Por otro lado, parece que el
número de datos utilizado afecta aproximadamente de manera lineal a la duración
del entrenamiento.

número de celdas Cliente A Cliente B Cliente C

2000 14 min 95 min 212 min

4000 46 min 288 min 655 min

6000 99 min 621 min 1379 min

Tabla 4.1: Tiempos de computación de distintos modelos con LSTM por caracteres

según cliente y número de celdas de memoria.

Teniendo todo lo que hemos comentado en cuenta, como mejor opción para un
modelo general que se adapte lo mejor posible a cada uno de los clientes analizados,
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Figura 4.3: Precisión de distintos modelos con LSTM por caracteres según cliente,

número de celdas de memoria (denominado latent-dim) y épocas.

parece un modelo con 2000 celdas de memoria entrenado durante 10 épocas con
los hiperparámetros que hemos definido. Esta definición es la que mejor resultados
propone por lo menos para los clientes B y C, y en cuanto a error, accuracy y
tiempo de entrenamiento se refiere. Sin embargo, si quisiéramos ser más espećıficos
para cada cliente, para el A tendŕıamos que seguir entrenando durante más épocas.
Por eso, puede verse que un segundo barrido de entrenamientos durante 60 épocas
se ha realizado en las figuras 4.4 y 4.5. En estas figuras podemos concluir que el
modelo más óptimo para este cliente es el que tiene 2000 unidades de celdas de
memoria y además es suficiente con entrenarlo durante 40 épocas.

Figura 4.4: Error de distintos modelos con LSTM por caracteres para el cliente

A según número de celdas de memoria y épocas.

45



Ignacio Oscoz Villanueva

Figura 4.5: Precisión de distintos modelos con LSTM por caracteres para el cliente

A según número de celdas de memoria y épocas.

Aunque no se haya comentado previamente, hasta ahora y durante todo el
trabajo se elegirán modelos entrenados durante un número de épocas que sea
múltiplo de diez. La razón para esta elección es simple: A pesar de que podamos
entrenar durante un número bastante elevado de épocas, guardar los modelos
entrenados con sus correspondientes parámetros e hiperparámetros ocupa espacio
en la memoria, más de 500 Mb por cada modelo en este caso. Como nos podemos
imaginar es inviable guardar todos los modelos y por ello se eligió guardar los
modelos cada diez épocas de entrenamiento. Esto nos limitará a la hora de elegir
la mejor opción pero también veremos que no habrá mucha diferencia entre el
modelo elegido y el que pueda considerarse más óptimo.

Generación de keywords

Habiendo elegido ya los modelos que se creen más apropiados es hora de
empezar con la generación de nuevas posibles búsquedas que los usuarios que
quieran los productos de estos clientes puedan efectuar. Para la generación de
nuevas keywords nos basaremos en el generador del art́ıculo [15]. Para empezar
con la generación de texto aleatoriamente propondremos un carácter inicial, que
codificandolo en one-hot servirá como entrada para la red. De esta obtendremos
un vector de probabilidades que indique la probabilidad de cada carácter de
ser el siguiente, y en función de esa distribución se seleccionará aleatoriamente
un carácter, que será el siguiente. En esta selección influirá el parámetro de
temperatura, T , que se utilizará para cambiar las probabilidades y controlar la
posibilidad de que caracteres con baja probabilidad tiendan a escogerse más veces.
Aśı, la probabilidad de que el token (en este caso carácter) número i, p̃i, sea elegido
como el siguiente tendrá esta expresión:

p̃i =
e

ln pi
T∑n

j e
ln pj
T

(4.1)

donde pj es el probabilidad del token número j según la red neuronal y n es el
número de tokens. De esta manera, al aumentar T , hacemos que la tendencia de
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selección para carácteres con probabilidad baja aumente.

Después de elegir un carácter el proceso se repetirá tomando como entrada, los
caracteres de entrada de la anterior selección y el propio carácter, creando token
a token una nueva oración. Esta secuencia se dará por terminada cuando por el
prefijado de la longitud del nuevo texto, la generación de nuevos caracteres se
detenga.

Explicado ya el funcionamiento de la generación, comencemos generando
palabras clave para el cliente A, que recordemos que el modelo por el que hemos
optado para este caso es el de 2000 unidades de memoria entrenado durante 40
épocas. Con T = 1 (equivalente a tomar las probabilidades de salida de la red)
se pueden obtener los resultados de la tabla 4.2. Vemos que estos no son del
todo malos ya que en general, aunque tienda a haber fallos en algunas letras, se
entiende lo que se quiere decir. No obstante, las frases resultan bastante repetitivas
sobre todo porque palabras como “varieadades”, “supermercado” o “franquicias”
aparecen constantemente. Este es el conjunto de datos con menos clientes y por lo
tanto esto tendrá bastante influencia a la hora ver lo que se ha generado. Además,
las frases del conjunto de datos también resultaban repetitivas hasta cierto punto.

veriadades franquicia de supermercados

franquicias de taererica de supermercado dia

tienda de franquicia de supermercado dia

franquicia mida

vicies de franquicias de erecicion de coches

franquicia de panaderia

abrie franquicia de paqueteŕıa

veriadades de cafeterara franquicia

franquicia de alimentacion

Tabla 4.2: Generación de keywords por caracteres para el cliente A

Usando la misma temperatura que en la anterior pero ahora con un modelo de
latent-dim= 2000 entrenado durante 10 épocas generaremos frases del estilo de los
de la tabla 4.3. Estas frases en general parecen bastante coherentes, para encontrar
fallos de escritura hay que fijarse bien y no son tan repetitivas como las generadas
para el cliente A. El conjunto de este cliente, ofrece frases que son en śı mismas
muy espećıficas, con nombres de productos y términos muy concretos y por ello
los textos generados tenderán a serlo también. Por eso analizándolas una a una
veremos que algunas de ellas tienden a ser demasiado espećıficas hasta el punto de
que pueden perder algo de coherencia.

Para acabar con este apartado analizaremos los resultados con T = 1, para
el modelo del cliente C con 2000 celdas de memoria y 10 épocas. Estos textos
generados se pueden leer en la tabla 4.4. Se trata de oraciones con pocos fallos

47



Ignacio Oscoz Villanueva

y total coherencia, que además son muy espećıficos pero variados. Por lo tanto
son resultados bastante buenos. Parece ser que al aumentar el número de datos de
entrenamiento la calidad de los textos generados mejora, o por lo menos con los
conjuntos de textos que hemos analizado.

xls medical forte 5 precio más

sesderma sesretinal mature skin serum pack

bimanan plus q quemagrasas opiniones

opiniones de decol forte

bimanan komplett chocolate crujiente precio

gel hidroalcoholico de manos de manos dicora

carrofart cellage firming cream reafirmante opiniones

la roche posay rosaliac parche de magnesio comprar onal

comprar alcohol 70 grados en san sebastián de los reyes

Tabla 4.3: Generación de keywords por caracteres para el cliente B

curso para niños de cocina en la semana blanca en madrid para estudiar

que hay que estudiar para ser auxiliar de enfermeria en calle colombia

hay grado medio de nutricion y dietetica

universidades en tarragona dónde cursar un grado de enfermeria

academia oposiciones susta de correos

cursos de cocina española en madrid españa

institutos grado medio auxiliar de enfermeria

oposiciones auxiliar administrativo bizkaia

academia oposiciones secundaria asturias

grado medio de estética

sueldo academia guardia civil 2020

Tabla 4.4: Generación de keywords por caracteres para el cliente B

4.2.2. Modelo de red convolucional

El siguiente modelo esta basado en un modelo de generación de memes de
Dylan Wenzlau [21]. En este art́ıculo vemos un ejemplo de uso de redes neuronales
convolucionales para la generación de texto. Para nuestro caso sin embargo, la
arquitectura de la red variará un poco: Primero se repetirá una sucesión de Capa
convolucional, Max Pooling de 2 × 2 y un Dropout de 0.25 (como en el art́ıculo
[21]) un total de tres veces. La salida de esta secuencia será entrada de una nueva
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capa convolucional donde su output, después de aplanarlo, servirá de entrada para
una capa densa con función de activación Softmax que dará la salida de la red.

En este caso la entrada a la red no puede ser de la misma forma que la entrada
al modelo con LSTM. Para el modelo convolucional la idea es que este intente
predecir cual será el carácter que viene a continuación, recibiendo como información
de entrada una parte de una frase. Esto se ve mejor con el siguiente ejemplo:

Frase Entrada Salida

fp bombero ‘f’ ‘p’

fp bombero ‘fp’ ‘ ’

fp bombero ‘fp ’ ‘b’

fp bombero ‘fp b’ ‘o’

fp bombero ‘fp bo’ ‘m’

fp bombero ‘fp bom’ ‘b’

fp bombero ‘fp bomb’ ‘e’

fp bombero ‘fp bombe’ ‘r’

fp bombero ‘fp bomber’ ‘o’

Tabla 4.5: Ejemplo de estrategia de entrenamiento de nuestro modelo

Aunque la estrategia input-output de la red sea distinta, no lo es la forma
de representar numéricamente los textos. Al igual que antes, los caracteres
se transformarán con la codificiación one-hot, dando como resultado una
representación matricial para cada frase de entrada y un vector para cada carácter
de salida. Al igual que antes, es necesario que todas las entradas y salidas de la
red tengan las mismas dimensiones, por lo que se tienen que rellenar las frases
con espacios vaćıos hasta alcanzar la longitud máxima de caracteres de las frases
del conjunto de datos. Con todo esto, como es lógico, el número de frases con el
que contábamos para entrenar el modelo aumenta significativamente, y resulta en
26484, 147590, 369642 número de datos de entrada y salida para los clientes A, B
y C respectivamente. Una vez obtenidos estos datos ya transformados, ya podemos
dividirlos en los conjuntos de datos de entrenamiento y validación, con un 90 % y
10 % respectivamente, siendo esta la proporción usada en el primer modelo.

La configuración del entrenamiento, sus hiperparámetros y la justificación de
estos sigue siendo similar al modelo de LSTM:

La estrategia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demás.

La función de pérdida que mejor se adapta al problema es la de la entroṕıa
categórica cruzada.
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La inicialización de pesos no puede ser otra que la de Xavier uniforme.

El algoritmo de optimización que se ha escogido es el Rmsprop, con su valor
por defecto ρ = 0,95.

En principio la tasa de aprendizaje que ofrece Keras, η = 0,1 debeŕıa ir bien.

El tamaño de los lotes elegido es de 64.

La mejor opción para las funciones de activación de la capa oculta sin duda
es la de la ReLU.

Figura 4.6: Error de distintos modelos convolucionales por caracteres según

cliente, número de neuronas por capa y épocas.

En la figura 4.6 podemos ver el comportamiento del error durante los distintos
entrenamientos. Del mismo modo que se hace en el modelo [21], aqúı también se ha
escogido un número de neuronas por capa igual para todas las capas. Para analizar
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distintos resultados y encontrar el modelo óptimo se ha hecho un barrido con
distintos números de neuronas por capa y épocas por cada cliente. Debido a que se
trata con modelos formulados de distinto modo no se puede comparar directamente
el error del modelo LSTM con el error del modelo convolucional. El análisis de error
es útil para determinar si el entrenamiento se ha realizado correctamente y para
saber cuando se empieza a sobre-entrenar el modelo. Relacionado con esto, un
fenómeno curioso que se aprecia en el cliente C es el incremento del valor de la
función de pérdida y algunos picos que surgen. Podŕıamos pensar que el algoritmo
de retropropagación este funcionando mal pero en este caso el incremento del error
sucede por la tasa de aprendizaje. Para evitar este fenómeno debeŕıamos probar
con un valor inferior de η. De esta manera evitaŕıamos el incremento del error de
entrenamiento aunque el modelo más óptimo no cambiaŕıa demasiado.

Por lo demás parece parece que el entrenamiento se ha realizado correctamente.
A diferencia de antes, al añadir mas complejidad a la red (aumentando el número
de neuronas) se observa que el error de entrenamiento decrece más. Sin embargo,
parece que esto tampoco hace mejorar mucho la validación, que es lo importante
ya que al final nos quedaremos con el modelo donde la validación sea mejor.

Por otro lado en la figura 4.7 tenemos la precisión de los distintos modelos.
La precisión es la forma de medir con que porcentaje acertará el modelo cual
será el siguiente carácter. Estos gráficos parece que no hacen mas que reafirmar
lo que comentábamos con los gráficos del error. Sin embargo, si nos fijamos bien,
apreciaremos que la precisión si que mejora aumentando el número de neuronas en
los clientes B y C, aunque no en el A. El mayor impacto de la cantidad de neuronas
por capa se observa en el cliente B pero en los dos últimos podemos concluir que
es suficiente con 256 neuronas por capa, ya que con 512 el accuracy de validación
no aumenta significativamente. Para finalizar, en relación con los gráficos del valor
de la función de pérdida, se puede apreciar que en el momento que un modelo
empieza a sobre-ajustarse su curva de validación de precisión deja de aumentar,
por lo que en cierto modo el aumento de precisión y el descenso del error van de
la mano.

neuronas por capa Cliente A Cliente B Cliente C

64 11 min 61 min 224 min

128 33 min 220 min 710 min

256 99 min 652 min 2196 min

512 253 min 1661 min 4939 min

Tabla 4.6: Tiempos de computación de distintos modelos según cliente y cantidad

de neuronas por capa.

Los tiempos de computación de cada ejecución se pueden ver en la tabla
4.6. Obsérvese que al doblar el numero de neuronas por capa al principio,
aproximadamente hace ralentizar la ejecución en un tercio. No obstante, se intuye
que esta relación va perdiendo fuerza cada vez que se dobla el número de neuronas.
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Figura 4.7: Precisión de distintos modelos convolucionales por caracteres según

cliente, número de neuronas por capa y épocas.

Por contrario, el aumento de neuronas parece que más efecto tiene en el aumento
del tiempo de ejecución cuantos más datos se tengan. En cuanto a la comparación
del tiempo con el anterior modelo, es fácil ver que las filas de la tabla 4.1 son
comparables con las tres primeras filas de la tabla 4.6.

Teniendo todo esto en cuenta, si se tuviese que elegir un modelo de red
convolucional general que se adaptase lo mejor posible a los tres clientes, uno con
256 neuronas por capa entrenado durante 10 épocas con los hiperparámetros que
hemos definido podŕıa ser buena opción. Dicho modelo, es el que mejor resultados
ofrece para los clientes B y C por lo menos si evaluamos en cuanto a error, precisión
y tiempo de entrenamiento. Si pretendiéramos ser más espećıficos con cada cliente,
quizá al primer cliente le convendŕıa más un modelo con menos neuronas por capa
como por ejemplo uno de 128 o incluso de 64, ya que complicar más el modelo solo
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aumentaŕıa la complejidad y el tiempo de ejecución.

Generación de keywords

Después de elegir los mejores modelos, es hora de ponerlos a prueba en la
generación de keywords. Para generar nuevas búsquedas clave se seguirá el mismo
principio que el seguido para el caso LSTM: Aleatoriamente se propondrá un
carácter inicial que servirá como primera entrada para la red. De esta obtendremos
un vector de probabilidades que indique la probabilidad de cada carácter de ser
el siguiente, y en función de esa distribución se seleccionará aleatoriamente un
carácter. Al igual que en el caso anterior, tendremos el parámetro de temperatura,
T , con el que podremos controlar la tendencia a escoger los caracteres con
probabilidades mas bajas. De este modo obtenemos una lista de dos caracteres
que servirá como entrada para predecir el siguiente carácter y repetir este proceso.
A diferencia de antes, la longitud de la frase creada se controlará de manera más
artificial cortando el proceso de generación una vez acabada la palabra donde se
ha alcanzado el número de caracteres que se hab́ıa prefijado.

Habiendo ya explicado como funciona la generación de texto veamos algunos
ejemplos. En primer lugar, generaremos algunos keywords para el cliente A, con
T = 1 y haciendo uso del modelo de 128 neuronas por capa entrenado durante 20
épocas, veremos textos del siguiente estilo:

quieres de paquet

supermercado franquicias de supermercados

ntar franquicias de panaderia cafeteria

hay franquicias de supermercados de

l as mejor franquicias

supermercado franquicias

erenquicias de

berianas de supermercados pequeños

x franquicias de supermerca

Tabla 4.7: Generación de keywords por caracteres para el cliente A

El hecho de contar con un accuracy de validación de 0,76 hace que a priori el
modelo no parezca malo del todo. Sin embargo, viendo los resultados que ofrece en
la tabla 4.7 nos damos cuenta de que no son tan buenos. Las palabras que se forman
en su mayoŕıa se forman sin errores de escritura, aunque de vez en cuando vemos
oraciones sin ningún sentido, pero el conjunto de palabras tiende a no mostrar
información relevante. Es más, se aprecia un exceso de repetición de las palabras
“supermercado” y “franquicias”. Esto puede deberse a la cantidad de frases de

53



Ignacio Oscoz Villanueva

entrenamiento y a su calidad, ya que como hemos visto en los ejemplos de este
cliente ambas palabras se repiten más de una vez. Además es interesante observar
como algunas oraciones parecen inacabadas (las que acaban en “de”) debido a que
la forma de terminarlas es más artificial que en el modelo de LSTM.

Con un T = 1, el modelo de 256 número de neuronas por capa entrenado
durante 10 épocas, los resultados para el cliente B serán similares a los que tenemos
en la tabla 4.8. A pesar de tener una precisión validada claramente inferior de 0,59,
se aprecian resultados mucho mejores que en el caso de A. No obstante, algunas
frases parecen carecer de sentido por ejemplo al concretar dos volúmenes distintos.
Por otra parte, es necesario comentar que para esta temperatura se ha observado
que uno de cada diez frases generadas, se encuentran en el conjunto de datos de
entrenamiento. Para evitar esto e intentar generar frases que no se hayan usado
para entrenar se puede elevar el parámetro de temperatura.

alcohol 96 1 litro comprar 200 ml

redoxon vitamina

omega vitamina crema productor gel 30 precion

mejores cremas protectoras

heliocare 360 plus flude 50 ml

comprar alcohol

redoxon vitamina c 360 capsulas preci

dercos de pelo frtaalecturico

gel hidroalcoholico 1 litro de 120ml

tetinas dr brown nivel 25 550 ml

Tabla 4.8: Generación de keywords por caracteres para el cliente B

Finalmente, hagamos lo propio con el cliente C. El modelo de 256 neuronas por
capa entrenado durante 10 épocas generará textos del tipo de la tabla 4.9. Para este
caso se repite que una décima parte de las frases generadas son frases que han sido
utilizadas para el entrenamiento. Recordemos que este modelo tiene una precisión
de validación del 80 %, lo cual se refleja en los resultados. Se puede afirmar que no
son malos resultados, aunque en algunos casos veamos frases incompletas.
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temario oposiciones bombero

oposiciones bombero madrid

buscar de maquillaje en

policia nacional

cursos de cocina

vericion de peluqueria madrid

hay que hacer para ser polićıa nacional

yonductor de ambulancia y dietetica y biomee

servicio de polici

fp grado medio auxiliar

Tabla 4.9: Generación de keywords por caracteres para el cliente C

4.3. Generación de texto por palabras

En este apartado también se desarrollará tanto modelos de red con LSTM como
modelos de red convolucional.

4.3.1. Modelo de red LSTM

El modelo que se usará en esta sección será el mismo modelo que se ha
utilizado en la sección 4.2.1. La única diferencia con respecto al anterior modelo
será que esta vez, al tratarse de generación por palabras, el modelo tendrá que ser
entrenado por palabras. Es decir, en la representación numérica, el texto deberá
ser tokenizado por palabras. Podŕıamos usar una codificación one-hot, al igual que
antes, para representar numéricamente el texto. No obstante, dado que estamos
hablando de que cada conjunto de datos cuenta con más de 4000 palabras distintas,
cada palabra vendŕıa representada con un vector de más de 4000 elementos.
Trabajar con vectores de tal magnitud encarece mucho los gastos computacionales
y no es para nada eficiente. Por ello, para reducir la dimensionalidad habrá que
buscar alguna alternativa. El Word2Vec además de solucionarnos el problema de
la dimensionalidad, nos proporciona una representación basada en el contexto
semántico y sintáctico. Entonces, a priori parece una buena opción aplicar esta
técnica a nuestros textos para transformarlos en vectores.

La libreŕıa gensim será la que nos ayude a representar nuestras palabras con
Word2Vec. Este paquete nos permite aplicar directamente esta técnica sin tener
que programar nosotros toda la red. Para ello, es necesario prefijar el tamaño de
ventana de contexto y el tamaño del vector de salida que se quiere. En nuestro caso,
se han fijado en 5 y 100 respectivamente, ya que nuestras frases no son tan largas
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y no tenemos tantas palabras como para necesitar vectores de salida mayores.

Una vez tengamos los textos transformados, efectuamos el mismo entrenamien-
to que en la sección 4.2.1, es decir:

La estrategia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demás.

La función de pérdida que mejor se adapta al problema es la de la entroṕıa
categórica cruzada.

La inicialización de pesos no puede ser otra que la de Xavier uniforme.

El algoritmo de optimización que se ha escogido es el Rmsprop, con su valor
por defecto ρ = 0,95.

En principio la tasa de aprendizaje que ofrece Keras, η = 0,1 debeŕıa ir bien.

El tamaño de los lotes elegido es de 64.

El barrido de épocas, y número de unidades de memoria en cada cliente puede
verse en la figura 4.10. De primeras, llama la atención el comportamiento del error
de validación sobre todo en los clientes A y B, que prácticamente no baja nada.
El entrenamiento actúa de forma correcta porque su error va decreciendo en cada
época, pero en estos clientes no se consigue un modelo lo suficientemente general
para poder reducir el error de validación también. En el cliente C en cambio,
que recordemos que es el cliente con más datos, parece que el error de validación
consigue reducirse pero tampoco mucho.

Analizando la precisión de estos modelos en la figura 4.9, observaremos que el
accuracy de los modelos de los clientes A y B tampoco sube con el entrenamiento.
Si que lo hace en cambio para el cliente C, aunque tampoco mucho. La precisión
de los modelos puede ser considerablemente alta, pero el hecho de que suba poco o
directamente no se incremente nada puede indicarnos que algo no va bien, y más
si el valor de la función de pérdida tiene un comportamiento similar.

En cuanto los tiempos de ejecución, hemos conseguido modelos cuyo entrena-
miento es considerablemente inferior a los modelos de tokenización por caracteres
(ver tabla 4.10). Este resultado es totalmente lógico si pensamos que ahora por
cada palabra se obtiene un vector mientras que antes cada palabra veńıa repre-
sentado con un número de vectores igual al número de caracteres que formaban
la palabra. Además, parece que el número de datos influye aproximadamente de
la misma manera que en los anteriores casos, es decir, linealmente, y esto se hace
notar más para los clientes B y C. Por otra parte, el hecho de aumentar el número
de celdas de memoria cada vez tiene menos peso en el tiempo, dado que el tiempo
aumenta proporcionalmente mucho más en el salto de 2000 a 4000 que de 4000 a
6000.
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Figura 4.8: Error de distintos modelos con LSTM por palabras según cliente,

número de celdas de memoria (latent-dim) y épocas.

número de celdas Cliente A Cliente B Cliente C

2000 4 min 10 min 23 min

4000 24 min 71 min 148 min

6000 49 min 143 min 303 min

Tabla 4.10: Tiempos de computación de distintos modelos con LSTM por palabras

según cliente y número de celdas de memoria.

Como mejor modelo general se puede escoger al que tiene 2000 celdas de
memoria entrenado durante 10 épocas. Con esto, no se puede esperar mucho para
la generación de keywords del cliente A y del cliente B, pero con cualquier otra
elección tampoco se podŕıa esperar nada mejor. Esta elección es la que mejor
se adapta al cliente C, ya que el aumentar la cantidad de celdas de memoria lo
único que se produce es más complejidad en el modelo y por lo tanto más coste
computacional, y el aumentar las épocas tampoco produciŕıa nada más que mayor
tiempo de ejecución de entrenamiento.
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Figura 4.9: Precisión de distintos modelos con LSTM por palabras según cliente,

número de celdas de memoria (latent-dim) y épocas.

Generación de keywords

Siguiendo el procedimiento de la generación de keywords con el primer modelo,
pero en este caso por palabras en vez de caracteres, seremos capaces de generar
las nuevas palabras calve. Con los modelos de 2000 celdas, entrenados durante 10
épocas podremos obtener los resultados de las tablas 4.11, 4.12 y 4.13. Viendo
estas tablas enseguida nos damos cuenta que los resultados no son aprovechables
como búsquedas claves. Además de la poca coherencia de las oraciones se observa
cierta tendencia a la repetición de algunos tokens. Quizá se podŕıa salvar alguna
frase de la tabla 4.12 porque los datos de este cliente tienden a ser muy espećıficos
en cuanto a nombres de los productos y por ello alguna frase que se crea podŕıa
tener un mı́nimo de sentido, pero en general estamos hablando de unos resultados
muy malos.
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granos france abrir franquicia

ranking franquicias franquicia ropa en infantil

neumaticos qué necesito al pizza españa

super inmoboliarias rentables pizzeria de franquicia

condis que vale a o folder ropa

café la mejores coches euros amazon

santa passion tiendas auto kfc ecologico dia

365 cual restauracion y ropa

danone france mejores ropa franquicia

Tabla 4.11: Generación de keywords por palabras para el cliente A

doctor sensilis s medical forte opiniones

kaidax desmaquillante de de gel

tratar dónde micro plata 180 caseros spanje 75gr 75gr 75gr sesderma sesderma

gx ergy 700 shake wash m solar

iappharma recambio gotas b5 capsulas opiniones

ceema desmaquillante de de gel

mayores satisfyer micro shake calmantes caseros repuestos sp gr essence gr serum

nilo sterillium 700 shake xt m solar

12 redoxon digital hydra 40 brown

Tabla 4.12: Generación de keywords por palabras para el cliente B

cuánto examenes cobra fer virtual virtual

policiq pedir nuevo curs convocatoria 2021

creativa bases ciudadano planner t́ıtulo 2021 2021 nuevo

plasencia puedo es es es es

marcelo examenes nuevo test 2018 2018 justicia

cafe logos mi blog justicia 2019 2019

ad maxima nuevo teleoperadora electricos universitarios previa

denuncias medical minima educacio justicia

gallego telefonos nuevo oposicions

Tabla 4.13: Generación de keywords por palabras para el cliente C
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4.3.2. Modelo de red convolucional

Continuando con la dinámica del trabajo en esta sección se repetirá el mismo
modelo que el de la sección 4.2.2 pero con el uso de palabras en vez de caracteres.
Como en el caso de la LSTM, aqúı también hemos elegido el Word2Vec como
forma de representación vectorial de los datos textuales. Este cambio, nos limita
a la hora de intentar replicar el modelo original por caracteres, ya que por temas
de las dimensiones de los vectores que sustituyen a las frases, las matrices se van
reduciendo hasta que llegan a un punto que no pueden reducirse mas. Para evitar
este problema, introduciremos la técnica del padding en las capas de convolución.
Por lo demás se seguirán las mismas condiciones de entrenamiento:

La estrategia por la que se ha optado es la de estrategia por minibatch por
sus ventajas respecto a las demás.

La función de pérdida que mejor se adapta al problema es la de la entroṕıa
categórica cruzada.

La inicialización de pesos no puede ser otra que la de Xavier uniforme.

El algoritmo de optimización que se ha escogido es el Rmsprop, con su valor
por defecto ρ = 0,95.

Después de observar con unas pequeñas pruebas que el error de entrenamien-
to tend́ıa a subir se ha bajado la tasa da aprendizaje a η = 0,01.

El tamaño de los lotes elegido es de 64.

La mejor opción para las funciones de activación de la capa oculta sin duda
es la de la ReLU.

El error del barrido por cliente, cantidad de neuronas por capa y número
de épocas con estos hiperparámetros nos da la siguiente figura 4.10. A primera
vista todos los entrenamientos tienen bastante mala pinta porque la pérdida de
entrenamiento apenas decrece y la de la validación directamente no lo hace. El
único entrenamiento que se ve un poco mejor es el del cliente C, aunque en este
tampoco veamos mucho descenso del error. Los gráficos de precisión que se ven
en 4.11 no nos dan tampoco muchas esperanzas de que el entrenamiento haya
sido correcto. En estos observamos como el accuracy prácticamente se mantiene
constante durante todo el entrenamiento, indicándonos que el modelo no se mejora.
Estos resultados no son problema de la configuración de la red neuronal o de
los hiperpárametros usados, mas bien nos vienen a decir que probablemente este
modelo no sea apropiado para la generación de textos por palabras.

Los tiempos de ejecución de estos entrenamientos se muestran en la tabla 4.14.
Al igual que antes, es lógico concluir que como ahora por cada palabra obtenemos
un vector y antes cada palabra veńıa representado con un número de vectores igual
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Figura 4.10: Error de distintos modelos convolucionales por palabras según cliente,

número de neuronas por capa y épocas.

al número de caracteres que formaban la palabra, el tiempo de computación de
estos entrenamientos será inferior. Parece que ene este caso no se cumple tan bien
la relación de linealidad del tiempo de ejecución y el número de datos. Por otra
parte, se ve que el aumento de neuronas por capa cada vez tiene mas relevancia en
el peso. No obstante, este análisis no tiene mucha importancia debido a que por el
transcurso del entrenamiento y sus gráficos de error y precisión no somos capaces
de afirmar que algún modelo sea mejor que otro, aunque si que podemos afirmar
que todos son bastante malos.
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Figura 4.11: Precisión de distintos modelos convolucionales por palabras según

cliente, número de neuronas por capa y épocas.

neuronas por capa Cliente A Cliente B Cliente C

64 3 min 6 min 59 min

128 6 min 31 min 76 min

256 18 min 75 min 346 min

512 101 min 284 min 1951 min

Tabla 4.14: Tiempos de computación de distintos modelos convolucionales por

palabras según cliente y cantidad de neuronas por capa.

Generación de keywords

A pesar de no haber obtenido buenos resultados y de intuir que la generación
de palabras clave será bastante mala se procederá con la generación de keywords,
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en las tablas 4.15, 4.16 y 4.17. Para generar estas palabras clave se ha utilizado una
temperatura de una unidad, T = 1, en los modelos entrenados en 10 épocas de cada
cliente de 64 neuronas por capa con la misma estrategia de generación utilizada
hasta ahora. Esta elección se justifica entendiendo que el aumentar el número
de épocas de entrenamiento o la cantidad de neuronas no producirá modelos con
mayor accuracy. Como era de esperar, en estas tablas no observamos ni siquiera una
única generación de texto con coherencia. Además, las oraciones creadas destacan
por la repetición de ciertos tokens como el espacio vaćıo en las tablas 4.15 y 4.17,
y el token “iese” en la tabla 4.16.

complete para

ar de de sin

reafirmante crema

lancetas comprar de

bariéderm de de rebotica

optimum de para pasta

di y facial

aldem de crema manos

Tabla 4.15: Generación de keywords por palabras para el cliente A

on guardia para academia iese iese

este de iese iese iese iese

na de iese iese iese iese iese iese

ejercicio para iese iese

fabra oposiciones iese iese

bazan en para iese en iese iese

libro oposiciones oposiciones iese iese

duracion para auxiliar iese iese

Tabla 4.16: Generación de keywords por palabras para el cliente B
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24h en

camion de

plastico ropa

starbuck

d́ıa de

franquicia paqueteria

t4 trasporte

supermercats ropa de

Tabla 4.17: Generación de keywords por palabras para el cliente C

64



Caṕıtulo 5

Conclusiones y trabajo futuro

5.1. Conclusiones

En este Trabajo de Fin de Máster, se ha abordado el estudio de la generación
de keywords para campañas publicitarias en internet. Para realizar esta tarea se
han implementado distintos modelos y se han ido analizando uno a uno para tratar
de encontrar el mejor.

Como conclusión general, se puede afirmar que ni el modelo con LSTM, ni el
modelo de red convolucional han resultado muy útiles a la hora de generar keywords
palabra por palabra. En ambos casos los resultados han sido cuanto menos
decepcionantes ya que no se ha logrado generar frases con una coherencia mı́nima.
Esto puede deberse a principalmente dos factores: Las frases de entrenamiento y/o
los modelos utilizados. Las frases de entrenamiento están tomadas de búsquedas
realizadas por Google, que como se sabe y puede observarse, tienden a ser frases
mas simplificadas de lo habitual, que además, presentan estructuras sintácticas
no muy completas. Dado que el Word2Vec es una técnica que intenta representar
las palabras haciendo uso del contexto sintáctico y semántico de los textos es
posible que no haya logrado captar del todo bien estos contextos en las frases
utilizadas, y esto haya derivado en un mal funcionamiento de nuestros modelos.
Además, el hecho de que las propias frases presenten fallos de escritura y diferentes
declinaciones para las mismas palabras, hace aumentar el número de palabras y
por tanto su variabilidad lo que no ayuda en nada a dicha técnica. Por otro lado,
es posible también que los modelos utilizados no sean suficientemente complejos
como para aplicarlos en la generación por palabras, y que por ello, aunque se lograse
que la representación numérica de las palabras fuese mejor, estos no obtuviesen
mejores resultados. Con modelos más complejos, se hace referencia a combinaciones
de redes neuronales que por ejemplo permitiesen codificar los textos de manera que
se asegure que únicamente la información relevante se mantenga y decodificar esta
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información para predecir el siguiente token.

En cuanto a la generación por caracteres, se puede decir que los resultados han
sido más positivos que los de generación por palabras. Los modelos con LSTM han
ofrecido mejores resultados en cuanto precisión que los convolucionales, y esto se ha
notado en los keywords que se han generado con cada modelo. Otra ventaja que los
primeros tienen con los segundos es su forma mas coherente y natural de finalizar
las frases. Mientras que con LSTM los textos creados manteńıan coherencia y
sentido hasta el final, en la generación con redes convolucionales muchas veces se
observaba que algunas frases parećıan incompletas. Por lo tanto según el estudio
realizado, la generación carácter por carácter mediante redes LSTM es la mejor
opción (por lo menos entre las opciones que se ha puesto a prueba) a la hora de
crear keywords, y de hecho podŕıa resultar útil para automatizar las campañas
de publicidad. La generación de textos con redes convolucionales en cambio, no
ha resultado tan exitosa pero es una ĺınea de trabajo muy reciente y por eso hay
motivos suficientes para estar satisfechos con los resultados obtenidos.

Actualmente, la aplicación de técnicas de aprendizaje profundo en el campo de
generación de textos es bastante novedosa. El objetivo en este trabajo era analizar
distintos modelos y evaluar su funcionamiento para la generación automática
de palabras clave para campañas publicitarias. Aunque no se hayan logrado los
mejores resultados, se ha podido aportar un granito de arena y es por ello por lo
que se puede estar satisfecho.

5.2. Trabajo futuro

En cuanto al trabajo futuro parece bastante evidente cuales podŕıan ser las dos
ĺıneas que podŕıan tomarse después de este trabajo, y las dos son la continuación
del estudio de la generación de keywords por palabras :

La primera tiene que ver con el primer factor que comentábamos antes por
el que podŕıan no funcionar correctamente estos modelos: El Word2Vec.
Relacionado con esto, podŕıan haber distintas nuevas ĺıneas de trabajo futuro
como por ejemplo el probar con otras técnicas como las ya mencionadas
GloVe o FastText. No obstante, puede resultar más efectivo trabajar un poco
los textos de entrenamiento. Es decir, por ejemplo, como se mencionaba en
las conclusiones muchas palabras se presentan con fallos de escritura y/o
varias declinaciones lo que hace que el número de palabras se multiplique.
Por lo tanto, otra opción seŕıa centrarse en la fase de pre-procesamiento del
texto, ya sea corrigiendo los fallos de escritura, eliminando las stop words
y/o lematizando. De esta manera, además de conseguir simplificar el texto
original, permitiŕıa que el Word2Vec funcionase mejor y en consecuencia que
las redes neuronales pudieran ser entrenadas de una manera más correcta.
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Otra ĺınea de trabajo futuro por la que se podŕıa optar es la de analizar
modelos más complejos. Los resultados de los modelos estudiados indicaban
que el entrenamiento no se produćıa correctamente y comentábamos que
una de las razones podŕıa ser porque los modelos no eran suficientemente
complejos como para capturar la información de los textos. Con modelos
mas complejos no se refiere a por ejemplo aumentar el número de neuronas
o de capas, sino a combinar distintas redes. En los últimos años, ha habido
muchos avances en la generación de textos con aprendizaje profundo, y dos
modelos parecen haber resultado bastante buenos con esta tarea [9]: Los
denominados Variational Auto-Encoders (VAE) y los Generative Adversarial
Networks (GAN). Ambos, son modelos que utilizan redes neuronales, pero
son bastante más complejos que los que hemos usado en este trabajo. Viendo
que la rama de la generación de textos con deep-learning ha tomado ese
camino, probar con cualquiera de los dos modelos puede parecer una buena
opción de trabajo futuro.
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Anexos

Entrenamiento de modelo LSTM por caracteres

1

2 """

3 Created on Mon May 17 09:54:01 2021

4

5 @author: ina

6 """

7

8 import os

9 from pathlib import Path

10

11 import tensorflow.compat.v1 as tf1

12 tf1.disable_v2_behavior ()

13 tf_session = tf1.Session ()

14

15 from tensorflow.compat.v1.keras import backend as K

16 K.set_session(tf_session)

17

18 from tensorflow.keras.callbacks import ModelCheckpoint ,

CSVLogger

19 from tensorflow.keras.layers import Add , Dense , Input , LSTM

20 from tensorflow.keras.models import Model

21 from tensorflow.keras.preprocessing.text import Tokenizer

22

23 import numpy as np

24 import pandas as pd

25 import joblib

26

27 import datetime

28 import time

29 for o in range (10):
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30 try:

31 from keras.utils import np_utils

32 print(’Works!’)

33 break

34 except Exception as e:

35 print(e,o)

36 time.sleep (0.5)

37

38

39 # -------------------FUNCIONES Y CLASES

---------------------------------------

40

41 class TrainingLine:

42 def __init__(self , name , previous_line , lstm , n_tokens):

43 self.char_input = Input(shape=(None , n_tokens),

44 name=’char_input_ %s’ % name)

45

46 self.numberchar_input = Input(

47 shape =(1,),name=’numberchar_input_ %s’ % name)

48 self.numberchar_dense = Dense(

49 lstm.units , activation=’relu’, name=’

numberchar_dense_ %s’ % name)

50 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

51

52 self.lstm = LSTM(

53 latent_dim , return_state=True , return_sequences=True ,

name=’lstm_ %s’ % name)

54 initial_state = [self.numberchar_dense_output , self.

numberchar_dense_output]

55

56 self.lstm_out , self.lstm_h , self.lstm_c = lstm(

57 self.char_input , initial_state=initial_state)

58

59 self.output_dense = Dense(

60 n_tokens , activation=’softmax ’, name=’output_ %s’ %

name)

61 self.output = self.output_dense(self.lstm_out)

62

63 def create_training_model(latent_dim , n_tokens):

64 lstm = LSTM(latent_dim , return_state=True , return_sequences

=True , name=’lstm’)

65 lines = []

66 inputs = []
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67 outputs = []

68

69 previous_line = lines [-1] if lines else None

70 lines.append(TrainingLine(’line_0 ’, previous_line , lstm ,

n_tokens))

71 inputs += [lines [-1]. char_input , lines [-1]. numberchar_input

]

72 outputs.append(lines [-1]. output)

73

74 training_model = Model(inputs , outputs)

75 training_model.compile(optimizer=’rmsprop ’, loss=’

categorical_crossentropy ’)

76

77 return training_model , lstm , lines , inputs , outputs

78

79 class GeneratorLine:

80 def __init__(self , name , training_line , lstm , n_tokens):

81 self.char_input = Input(

82 shape =(None , n_tokens), name=’char_input_ %s’ % name

)

83

84 self.numberchar_input = Input(

85 shape =(1,), name=’numberchar_input_ %s’ % name)

86 self.numberchar_dense = Dense(

87 lstm.units , activation=’relu’, name=’

numberchar_dense_ %s’ % name)

88 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

89

90 self.h_input = Input(shape=(lstm.units ,), name=’

h_input_ %s’ % name)

91 self.c_input = Input(shape=(lstm.units ,), name=’

c_input_ %s’ % name)

92 initial_state = [self.h_input , self.c_input]

93

94 self.lstm = lstm

95

96 self.lstm_out , self.lstm_h , self.lstm_c = self.lstm(

97 self.char_input , initial_state=initial_state)

98

99 self.output_dense = Dense(

100 n_tokens , activation=’softmax ’, name=’output_ %s’ %

name)

101 self.output = self.output_dense(self.lstm_out)
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102

103 self.numberchar_dense.set_weights(

104 training_line.numberchar_dense.get_weights ())

105 self.lstm.set_weights(lstm.get_weights ())

106 self.output_dense.set_weights(training_line.

output_dense.get_weights ())

107

108

109 def entrenar(epochs =30, latent_dim =500, root_path="",name="259

_424_9086"):

110 sample_size = 1

111 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

112

113 output_dir = Path(’ %d_ %d_output_test_ %s’ % (latent_dim ,

epochs ,name))

114 try:

115 output_dir.mkdir ()

116 except:

117 pass

118 sample_size = 1

119 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

120

121

122 time_file = open(output_dir / ("inicial_time_ %s- %s.txt" % (

latent_dim ,epochs)),"a")

123 time_file.write(str(datetime.datetime.now().time()))

124 time_file.close()

125

126

127 df_raw = pd.read_csv(data_path)

128 df_raw = df_raw.sample(frac=sample_size)

129 conversions = np.array(df_raw["Conversions"])

130

131

132

133 df = df_raw[’Search term’].drop([np.where(conversions <1)

][0][0] , axis =0)

134 max_length = int(max([ df_raw["Search term"].str.len().

quantile (.99) ]))

135 df = pd.DataFrame(df[( df_raw[’Search term’].str.len() <=

max_length)].copy())

136 ncharacters = []

73



Ignacio Oscoz Villanueva

137 ncharacters = [len(df[’Search term’]. values[i]) for i in

range(len(df))]

138 df[’characters ’] = ncharacters

139

140 df[’in’] = (df[’Search term’].str [0] + df[’Search term’]).

str.pad(max_length +2, ’right’, ’\n’)

141 df[’out’] = df[’Search term’].str.pad(max_length +2, ’right’

, ’\n’)

142

143

144 inputs = df["in"]

145

146 tokenizer = Tokenizer(filters=’’, char_level=True)

147 tokenizer.fit_on_texts(inputs)

148 n_tokens = len(tokenizer.word_counts) + 1

149

150 # X is the input for each line in sequences of one -hot -

encoded values

151 X = np_utils.to_categorical ([

152 tokenizer.texts_to_sequences(inputs)

153 ], num_classes=n_tokens)

154

155 outputs = df["out"]

156

157 # Y is the output for each line in sequences of one -hot -

encoded values

158 Y = np_utils.to_categorical ([

159 tokenizer.texts_to_sequences(outputs)

160 ], num_classes=n_tokens)

161

162 # X_characters is the count of characters for each line

163

164 X_characters = df[[’characters ’]]. values

165

166

167

168

169 ## TRAINING MODEL

170 training_model , lstm , lines , inputs , outputs =

create_training_model(latent_dim , n_tokens)

171

172 if epochs ==60:

173

174 joblib.dump([ latent_dim , n_tokens , max_length ,
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tokenizer], str(output_dir / (’metadata_ %s- %s.pkl’ %

(latent_dim ,epochs)) ))

175

176 filepath = str(output_dir / ( " %s-{epoch :02d}-{loss :.2f

}-{val_loss :.2f}.hdf5" % latent_dim))

177

178 checkpoint = ModelCheckpoint(

179 filepath , monitor=’loss’, verbose=1, save_best_only

=True , mode=’min’,period =10)

180

181 csv_logger = CSVLogger(

182 str(output_dir / (’training_log_ %s- %s.csv’ % (

latent_dim ,epochs))), append=True , separator=’,’

)

183

184

185

186 callbacks_list = [checkpoint , csv_logger]

187 else:

188 callbacks_list = None

189

190

191 training_model.fit([

192 X[0], X_characters [:,0]], Y[0], batch_size =64, epochs=

epochs ,

193 validation_split =.1 ,callbacks=callbacks_list)

194

195 return lstm , lines , tokenizer , n_tokens , max_length

196

197

198

199

200

201 #--------------------------ENTRENAMIENTO

---------------------------------

202 root_path = os.path.abspath(os.path.dirname(__file__))

203 os.chdir(root_path)

204 dataframes = ["437 _910_0412","991 _035_4076","259 _424_9086"]

205 latent_dimension = [2000 ,4000 ,6000]

206 number_epoch = [60]

207 for dataframe_name in dataframes:

208 for n in latent_dimension:

209 for e in number_epoch:

210 latent_dim = n
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211 lstm , lines , tokenizer , n_tokens , max_length =

entrenar(

212 epochs=e,latent_dim=latent_dim ,root_path=root_path ,

name=dataframe_name)
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Módulo para generación por caracteres con modelo LSTM

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon May 17 12:09:58 2021

5

6 @author: ina

7 """

8

9

10 import tensorflow.compat.v1 as tf1 #new

11 tf1.disable_v2_behavior () #new

12 tf_session = tf1.Session ()

13

14 from tensorflow.compat.v1.keras import backend as K #new

15 # from keras import backend as K

16 K.set_session(tf_session)

17

18 from keras.layers import Add , Dense , Input , LSTM

19 from keras.models import Model

20 from keras.utils import np_utils

21

22 import numpy as np

23

24 from keras.layers import Add , Dense , Input , LSTM

25

26

27 def sample(preds , temperature =1.0):

28 preds = np.asarray(preds).astype(’float64 ’)

29 preds = np.log(preds) / temperature

30 exp_preds = np.exp(preds)

31 preds = exp_preds / np.sum(exp_preds)

32 probas = np.random.multinomial (1, preds , 1)

33 return np.argmax(probas)

34

35 class TrainingLine:

36 def __init__(self , name , previous_line , lstm , n_tokens):

37 self.char_input = Input(shape=(None , n_tokens), name=’

char_input_ %s’ % name)

38

39 self.numberchar_input = Input(shape =(1,), name=’

numberchar_input_ %s’ % name)
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40 self.numberchar_dense = Dense(lstm.units , activation=’

relu’, name=’numberchar_dense_ %s’ % name)

41 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

42

43 #self.lstm = LSTM(latent_dim , return_state=True ,

return_sequences=True , name=’lstm_ %s’ % name)

44 initial_state = [self.numberchar_dense_output , self.

numberchar_dense_output]

45

46 self.lstm_out , self.lstm_h , self.lstm_c = lstm(self.

char_input , initial_state=initial_state)

47

48 self.output_dense = Dense(n_tokens , activation=’softmax

’, name=’output_ %s’ % name)

49 self.output = self.output_dense(self.lstm_out)

50

51 def create_training_model(latent_dim , n_tokens):

52 lstm = LSTM(latent_dim , return_state=True , return_sequences

=True , name=’lstm’)

53 lines = []

54 inputs = []

55 outputs = []

56

57 previous_line = lines [-1] if lines else None

58 lines.append(TrainingLine(’line_0 ’, previous_line , lstm ,

n_tokens))

59 inputs += [lines [-1]. char_input , lines [-1]. numberchar_input

]

60 outputs.append(lines [-1]. output)

61

62 training_model = Model(inputs , outputs)

63 training_model.compile(optimizer=’rmsprop ’, loss=’

categorical_crossentropy ’)

64

65 return training_model , lstm , lines , inputs , outputs

66

67 class GeneratorLine:

68 def __init__(self , name , training_line , lstm , n_tokens):

69 self.char_input = Input(shape=(None , n_tokens), name=’

char_input_ %s’ % name)

70

71 self.numberchar_input = Input(shape =(1,), name=’

numberchar_input_ %s’ % name)
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72 self.numberchar_dense = Dense(lstm.units , activation=’

relu’, name=’numberchar_dense_ %s’ % name)

73 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

74

75 self.h_input = Input(shape=(lstm.units ,), name=’

h_input_ %s’ % name)

76 self.c_input = Input(shape=(lstm.units ,), name=’

c_input_ %s’ % name)

77 initial_state = [self.h_input , self.c_input]

78

79 self.lstm = lstm

80

81 self.lstm_out , self.lstm_h , self.lstm_c = self.lstm(

self.char_input , initial_state=initial_state)

82

83 self.output_dense = Dense(n_tokens , activation=’softmax

’, name=’output_ %s’ % name)

84 self.output = self.output_dense(self.lstm_out)

85

86 self.numberchar_dense.set_weights(training_line.

numberchar_dense.get_weights ())

87 #self.lstm.set_weights(lstm.get_weights ())

88 self.output_dense.set_weights(training_line.

output_dense.get_weights ())

89

90 class Generator:

91 def __init__(self , lstm , lines , tf_session , tokenizer ,

n_tokens , max_line_length):

92 self.tf_session = tf_session

93 self.tokenizer = tokenizer

94 self.n_tokens = n_tokens

95 self.max_line_length = max_line_length

96

97 self.lstm = LSTM(

98 lstm.units , return_state=True , return_sequences=

True ,

99 name=’generator_lstm ’

100 )

101 self.lines = [

102 GeneratorLine(

103 ’generator_line ’,

104 lines [0], self.lstm , self.n_tokens

105 )
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106 ]

107 self.lstm.set_weights(lstm.get_weights ())

108

109 def generate_haiku(self , numberchar =25, temperature =.1,

first_char=None):

110 output = []

111 h = None

112 c = None

113

114 if first_char is None:

115 first_char = chr(int(np.random.randint(ord(’a’),

ord(’z’)+1)))

116

117 next_char = self.tokenizer.texts_to_sequences(

first_char)[0][0]

118

119

120 line = self.lines [0]

121 s = self.tf_session.run(

122 line.numberchar_dense_output ,

123 feed_dict ={

124 line.numberchar_input: [[ numberchar ]]

125 }

126 )

127

128 if h is None:

129 h = s

130 c = s

131 else:

132 h = h + s

133 c = c + s

134

135 line_output = [next_char]

136 end = False

137 next_char = None

138 for i in range(self.max_line_length):

139

140 char , h, c = self.tf_session.run(

141 [line.output , line.lstm_h , line.lstm_c],

142 feed_dict ={

143 line.char_input: [[

144 np_utils.to_categorical(

145 line_output [-1],

146 num_classes=self.n_tokens
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147 )

148 ]],

149 line.h_input: h,

150 line.c_input: c

151 }

152 )

153 char = sample(char[0,0], temperature)

154 if char == 1 and not end:

155 end = True

156 if char != 1 and end:

157 next_char = char

158 char = 1

159

160 line_output.append(char)

161

162 cleaned_text = self.tokenizer.sequences_to_texts ([

163 line_output

164 ])[0]. strip() [1:]. replace(

165 ’ ’, ’\n’

166 ).replace(’ ’, ’’).replace(’\n’, ’ ’)

167

168 print(cleaned_text)

169 output.append(cleaned_text)

170

171 return output
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Entrenamiento de modelo convolucional por caracteres

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Jun 17 17:13:23 2021

5

6 @author: ina

7 """

8

9

10 import os

11

12 from tensorflow.keras.callbacks import ModelCheckpoint ,

CSVLogger

13 from tensorflow.keras.layers import Add , Dense

14 from tensorflow.keras.models import Model

15 from tensorflow.keras.preprocessing.text import Tokenizer

16

17 from pathlib import Path

18 import numpy as np

19 import pandas as pd

20 import joblib

21

22

23 from tensorflow.keras.layers import Dropout

24 from tensorflow.keras.layers import Conv2D , MaxPooling2D ,

Flatten

25 from tensorflow.keras import Sequential

26

27 import datetime

28 import time

29 for o in range (10):

30 try:

31 from keras.utils import np_utils

32 print(’Works!’)

33 break

34 except Exception as e:

35 print(e,o)

36 time.sleep (0.5)

37

38

39 def entrenar(epochs =30, neuronas_capa =512, kernel_size = 3,
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root_path="",name="259 _424_9086"):

40 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

41

42 output_dir = Path(’ %d_ %d_cnn_ %s’ % (neuronas_capa ,epochs ,

name))

43 try:

44 output_dir.mkdir ()

45 except:

46 pass # Percent of samples to use for training , might

be necessary if you’re running out of memory

47 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

48

49

50 time_file = open(output_dir / ("inicial_time_ %s- %s.txt" % (

neuronas_capa , name)),"a")

51 time_file.write(str(datetime.datetime.now().time()))

52 time_file.close()

53 df_raw = pd.read_csv(data_path)

54 # df_raw = df_raw.sample(frac=sample_size)

55 conversions = np.array(df_raw["Conversions"])

56

57

58

59 df = df_raw[’Search term’].drop([np.where(conversions <1)

][0][0] , axis =0)

60 max_length = int(max([ df_raw["Search term"].str.len().

quantile (.99) ]))

61 df = pd.DataFrame(df[( df_raw[’Search term’].str.len() <=

max_length)].copy())

62 ncharacters = []

63 ncharacters = [len(df[’Search term’]. values[i]) for i in

range(len(df))]

64 df[’characters ’] = ncharacters

65

66 search = np.array(df["Search term"])

67 inp_list = []

68 out_list = []

69 for i in range(len(search)):

70 for j in range(1,len(search[i])):

71 inp_list.append(search[i][0:j])

72 out_list.append(list(search[i][j]))

73 inputs = pd.DataFrame(inp_list)
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74 outputs = pd.DataFrame(out_list)

75 inputs [0] = inputs [0]. str.pad(max_length +2,"right","\n")

76

77 tokenizer = Tokenizer(filters=’’, char_level=True)

78 tokenizer.fit_on_texts(inputs [0])

79 n_tokens = len(tokenizer.word_counts) + 1

80 X = np_utils.to_categorical(np.array(tokenizer.

texts_to_sequences(inputs [0])), num_classes=n_tokens)

81 # Y = np_utils.to_categorical ([ tokenizer.texts_to_sequences

(outputs [0])])

82 Y = np_utils.to_categorical(tokenizer.texts_to_sequences(

outputs [0]), num_classes=n_tokens)

83 X = X.reshape(len(X),max_length +2,n_tokens ,1)

84

85 model = Sequential ()

86

87 #add model layers

88 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’, input_shape =( max_length +2,n_tokens ,1)

))

89 model.add(MaxPooling2D(pool_size = (2,2)))

90 model.add(Dropout (0.25))

91

92 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’))

93 model.add(MaxPooling2D(pool_size = (2,2)))

94 model.add(Dropout (0.25))

95

96 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’))

97 model.add(MaxPooling2D(pool_size = (2,2)))

98 model.add(Dropout (0.25))

99

100

101 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’))

102 model.add(Flatten ())

103 model.add(Dense(n_tokens , activation=’softmax ’))

104

105

106 model.compile(loss=’categorical_crossentropy ’, optimizer=’

rmsprop ’, metrics =[’acc’])

107

108
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109 joblib.dump([ neuronas_capa , n_tokens , max_length , tokenizer

], str(output_dir / (’metadata_ %s- %s.pkl’ % (

neuronas_capa , name)) ))

110

111 filepath = str(output_dir / ( " %s-{epoch :02d}-{loss :.2f}-{

val_loss :.2f}.hdf5" % neuronas_capa))

112

113 checkpoint = ModelCheckpoint(

114 filepath , monitor=’loss’, verbose=1,

save_best_only=True , mode=’min’,period =10)

115

116 csv_logger = CSVLogger(

117 str(output_dir / (’training_log_ %s- %s.csv’ % (

neuronas_capa , name))), append=True , separator=’,’)

118

119 callbacks_list = [checkpoint , csv_logger]

120

121

122 history = model.fit(

123 X, Y, batch_size=neuronas_capa ,epochs=epochs ,

124 validation_split =.1, callbacks=callbacks_list)

125 return model , history

126 #--------------------------ENTRENAMIENTO

---------------------------------------------

127

128 root_path = os.path.abspath(os.path.dirname(__file__))

129 os.chdir(root_path)

130 dataframes = ["259 _424_9086","437 _910_0412","991 _035_4076"]

131 neuronas_capa = [64 ,128 ,256 ,512]

132 number_epoch = [40]

133 for dataframe_name in dataframes:

134 for n in neuronas_capa:

135 for e in number_epoch:

136 model , history = entrenar(

137 epochs=e, neuronas_capa=n, kernel_size = 3,

root_path=root_path ,name=dataframe_name)
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Módulo para generación por caracteres con modelo convolucional

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon May 17 12:09:58 2021

5

6 @author: ina

7 """

8

9

10 import tensorflow.compat.v1 as tf1

11 tf1.disable_v2_behavior ()

12 tf_session = tf1.Session ()

13

14 from tensorflow.compat.v1.keras import backend as K

15 K.set_session(tf_session)

16

17 import numpy as np

18

19

20 import time

21 for o in range (10):

22 try:

23 from keras.utils import np_utils

24 print(’Works!’)

25 break

26 except Exception as e:

27 print(e,o)

28 time.sleep (0.5)

29

30 def sample(preds , temperature =1.0):

31 preds = np.asarray(preds).astype(’float64 ’)

32 preds = np.log(preds) / temperature

33 exp_preds = np.exp(preds)

34 preds = exp_preds / np.sum(exp_preds)

35 probas = np.random.multinomial (1, preds , 1)

36 return np.argmax(probas)

37

38 class Generator:

39 def __init__(self , tf_session , tokenizer , n_tokens ,

max_line_length , model):

40 self.tf_session = tf_session
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41 self.tokenizer = tokenizer

42 self.n_tokens = n_tokens

43 self.max_line_length = max_line_length

44 self.model = model

45 def generate_kword(self , temperature =.1, first_char=None ,

kw_length=None):

46 encoded_output = []

47 if first_char is None:

48 first_char = chr(int(np.random.randint(ord(’a’),

ord(’z’)+1)))

49 if kw_length is None:

50 kw_length = self.max_line_length -5

51

52 first_char_encoded = np_utils.to_categorical(

53 self.tokenizer.texts_to_sequences(first_char)

[0][0] , num_classes=self.n_tokens)

54 encoded_output.append(self.tokenizer.texts_to_sequences

(first_char)[0][0])

55 space = np_utils.to_categorical(

56 self.tokenizer.texts_to_sequences(’\n’),num_classes

=self.n_tokens).reshape(self.n_tokens ,1)

57 space2 = np_utils.to_categorical(

58 self.tokenizer.texts_to_sequences(’ ’),num_classes=

self.n_tokens).reshape(self.n_tokens ,1)

59

60 out = np.repeat(

61 space.reshape(1,self.n_tokens),self.max_line_length

+2,axis =0).reshape(

62 1,self.max_line_length +2,self.n_tokens ,1)

63 out [0][0] = first_char_encoded.reshape(self.n_tokens ,1)

64 encoded_output.append(self.tokenizer.texts_to_sequences

(first_char)[0][0])

65

66 for i in range(1, kw_length):

67 new_out = sample(self.model.predict(out)[0],

temperature)

68 encoded_output.append(new_out)

69 out [0][i] = np_utils.to_categorical(new_out ,

num_classes=self.n_tokens).reshape(self.n_tokens

,1)

70 if np.array_equal(space ,out [0][i]):

71 break

72 if not np.array_equal(space ,out [0][i]) :

73 for j in range (1,10):
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74 new_out = sample(self.model.predict(out)[0],

temperature)

75 encoded_output.append(new_out)

76 out [0][i+j] = np_utils.to_categorical(new_out ,

num_classes=self.n_tokens).reshape(self.

n_tokens ,1)

77 if np.array_equal(space2 ,out [0][i+j]):

78 break

79

80

81

82 output_raw = self.tokenizer.sequences_to_texts ([

encoded_output ])

83 output = output_raw [0]. strip() [1:]. replace(’ ’, ’\n’)

.replace(’ ’, ’’).replace(’\n’, ’ ’)

84 return output
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Entrenamiento de modelo LSTM por palabras

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon May 17 09:54:01 2021

5

6 @author: ina

7 """

8 import os

9 import gensim

10 from pathlib import Path

11

12 import tensorflow.compat.v1 as tf1

13 tf1.disable_v2_behavior ()

14 tf_session = tf1.Session ()

15

16 from tensorflow.compat.v1.keras import backend as K

17 K.set_session(tf_session)

18

19 from tensorflow.keras.callbacks import ModelCheckpoint ,

CSVLogger

20 from tensorflow.keras.layers import Add , Dense , Input , LSTM

21 from tensorflow.keras.models import Model

22 from tensorflow.keras.preprocessing.text import Tokenizer

23

24 import numpy as np

25 import pandas as pd

26 import joblib

27

28 import datetime

29 import time

30 for o in range (10):

31 try:

32 #from keras.utils import to_categorica

33 from keras.utils.np_utils import to_categorical

34 print(’Works!’)

35 break

36 except Exception as e:

37 print(e,o)

38 time.sleep (0.5)

39

40
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41 # -------------------FUNCIONES Y CLASES

-----------------------------------------

42

43 class TrainingLine:

44 def __init__(self , name , previous_line , lstm , n_tokens):

45 self.char_input = Input(shape=(None , 100),

46 name=’char_input_ %s’ % name)

47

48 self.numberchar_input = Input(

49 shape =(1,),name=’numberchar_input_ %s’ % name)

50 self.numberchar_dense = Dense(

51 lstm.units , activation=’relu’, name=’

numberchar_dense_ %s’ % name)

52 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

53

54 self.lstm = LSTM(

55 latent_dim , return_state=True , return_sequences=True ,

name=’lstm_ %s’ % name)

56 initial_state = [self.numberchar_dense_output , self.

numberchar_dense_output]

57

58 self.lstm_out , self.lstm_h , self.lstm_c = lstm(

59 self.char_input , initial_state=initial_state)

60

61 self.output_dense = Dense(

62 n_tokens , activation=’softmax ’, name=’output_ %s’ %

name)

63 self.output = self.output_dense(self.lstm_out)

64

65 def create_training_model(latent_dim , n_tokens):

66 lstm = LSTM(latent_dim , return_state=True , return_sequences

=True , name=’lstm’)

67 lines = []

68 inputs = []

69 outputs = []

70

71 previous_line = lines [-1] if lines else None

72 lines.append(TrainingLine(’line_0 ’, previous_line , lstm ,

n_tokens))

73 inputs += [lines [-1]. char_input , lines [-1]. numberchar_input

]

74 outputs.append(lines [-1]. output)

75
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76 training_model = Model(inputs , outputs)

77 training_model.compile(optimizer=’rmsprop ’, loss=’

categorical_crossentropy ’,metrics =[’categorical_accuracy

’,’accuracy ’])

78

79 return training_model , lstm , lines , inputs , outputs

80

81 class GeneratorLine:

82 def __init__(self , name , training_line , lstm , n_tokens):

83 self.char_input = Input(

84 shape =(None , 100), name=’char_input_ %s’ % name)

85

86 self.numberchar_input = Input(

87 shape =(1,), name=’numberchar_input_ %s’ % name)

88 self.numberchar_dense = Dense(

89 lstm.units , activation=’relu’, name=’

numberchar_dense_ %s’ % name)

90 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

91

92 self.h_input = Input(shape=(lstm.units ,), name=’

h_input_ %s’ % name)

93 self.c_input = Input(shape=(lstm.units ,), name=’

c_input_ %s’ % name)

94 initial_state = [self.h_input , self.c_input]

95

96 self.lstm = lstm

97

98 self.lstm_out , self.lstm_h , self.lstm_c = self.lstm(

99 self.char_input , initial_state=initial_state)

100

101 self.output_dense = Dense(

102 n_tokens , activation=’softmax ’, name=’output_ %s’ %

name)

103 self.output = self.output_dense(self.lstm_out)

104

105 self.numberchar_dense.set_weights(

106 training_line.numberchar_dense.get_weights ())

107 self.lstm.set_weights(lstm.get_weights ())

108 self.output_dense.set_weights(training_line.

output_dense.get_weights ())

109

110

111
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112 def entrenar(epochs =30, latent_dim =500, root_path="",name="259

_424_9086"):

113

114 sample_size = 1

115 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

116

117 output_dir = Path(’ %d_ %d_words_output_test_ %s’ % (

latent_dim ,epochs ,name))

118 try:

119 output_dir.mkdir ()

120 except:

121 pass # Percent of samples to use for training , might

be necessary if you’re running out of memory

122 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

123

124

125

126

127 time_file = open(output_dir / ("inicial_time_ %s- %s.txt" % (

latent_dim ,epochs)),"a")

128 time_file.write(str(datetime.datetime.now().time()))

129 time_file.close()

130

131 df_raw = pd.read_csv(data_path)

132 df_raw = df_raw.sample(frac=sample_size)

133 conversions = np.array(df_raw["Conversions"])

134

135 df = pd.DataFrame ()

136

137 df[’Search term’] = df_raw[’Search term’].drop([np.where(

conversions <1) ][0][0] , axis =0)

138 max_length = int(max([pd.Series ([ df_raw[’Search term’].

values[n]. count(’ ’)+1 for n in range(len(df_raw))]).

quantile (.99) ]))

139 df = pd.DataFrame(df[(df[’Search term’].str.count(’ ’) <=

max_length)].copy())

140 nwords = []

141 # ncharacters = [len(df[’Search term ’].values[i]) for i in

range(len(df))]

142 nwords = [df[’Search term’]. values[n]. count(’ ’)+1 for n in

range(len(df))]

143 df[’characters ’] = nwords
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144

145 df[’in’]= [df[’Search term’]. values[n]+ (1)*’ \n’ for n in

range(len(df[’Search term’]))]

146 df[’out’] = [df[’Search term’]. values[n]+ (max_length -df[’

Search term’]. values[n]. count(’ ’)+1)*’ \n’ for n in

range(len(df[’Search term’]))]

147

148

149 outputs = df["out"]

150 tokenizer = Tokenizer(filters=’’,lower=True , split=’ ’,

char_level=False)

151 tokenizer.fit_on_texts(outputs)

152 n_tokens = len(tokenizer.word_counts) + 1

153 tokenized_list = tokenizer.texts_to_sequences(outputs)

154 max_length = max([len(tokenized_list[n]) for n in range(0,

len(tokenized_list))])

155

156 inputs = np.array ([np.array(df[’in’])[n]. split(’ ’) for n

in range(len(np.array(df[’in’])))])

157 model_w2v = gensim.models.Word2Vec(inputs ,min_count =1,

window =5)

158 model_w2v.save(str(output_dir / ’model_w2v ’))

159 model_w2v = gensim.models.Word2Vec.load(str(output_dir / ’

model_w2v ’))

160 w2v = model_w2v.wv

161 X0 = []

162 X0 = np.array ([[ w2v[np.array(outputs)[n]. split(’ ’)[k]] for

k in range(len(np.array(outputs)[0]. split(’ ’)))] for n

in range(len(outputs))])

163 words_in_sentence = len(np.array(outputs)[0]. split(’ ’))

164 X = X0.reshape(1,len(X0),words_in_sentence ,100)

165

166

167 Y = to_categorical ([

168 tokenizer.texts_to_sequences(outputs)

169 ], num_classes=n_tokens)

170

171 # X_characters is the count of characters for each line

172

173 X_characters = df[[’characters ’]]. values

174

175

176

177
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178 ## TRAINING MODEL

179 training_model , lstm , lines , inputs , outputs =

create_training_model(latent_dim , n_tokens)

180

181

182 joblib.dump([ latent_dim , n_tokens , max_length , tokenizer],

str(output_dir / (’metadata_ %s- %s.pkl’ % (latent_dim ,

epochs)) ))

183

184 filepath = str(output_dir / ( " %s-{epoch :02d}-{loss :.2f}-{

val_loss :.2f}.hdf5" % latent_dim))

185

186 checkpoint = ModelCheckpoint(

187 filepath , monitor=’loss’, verbose=1,

save_best_only=True , mode=’min’,period =10)

188

189 csv_logger = CSVLogger(

190 str(output_dir / (’training_log_ %s- %s.csv’ % (

latent_dim ,epochs))), append=True , separator

=’,’)

191

192

193 callbacks_list = [checkpoint , csv_logger]

194

195 training_model.fit([

196 X[0], X_characters [:,0]], Y[0], batch_size =64, epochs

=epochs ,

197 validation_split =.1 ,callbacks=callbacks_list)

198

199 return lstm , lines , tokenizer , n_tokens , max_length

200

201

202 #--------------------------ENTRENAMIENTO

---------------------------------

203 root_path = os.path.abspath(os.path.dirname(__file__))

204 os.chdir(root_path)

205 dataframes = ["259 _424_9086","437 _910_0412","991 _035_4076"]

206 latent_dimension = [2000 ,4000 ,6000]

207 number_epoch = [40]

208 for dataframe_name in dataframes:

209 for n in latent_dimension:

210 for e in number_epoch:

211 latent_dim = n

212 lstm , lines , tokenizer , n_tokens , max_length =
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entrenar(

213 epochs=e,latent_dim=latent_dim ,root_path=root_path ,

name=dataframe_name)
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Módulo para generación por palabras con modelo LSTM

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon May 17 12:09:58 2021

5

6 @author: ina

7 """

8

9

10 import tensorflow.compat.v1 as tf1

11 tf1.disable_v2_behavior ()

12 tf_session = tf1.Session ()

13

14 from tensorflow.compat.v1.keras import backend as K

15 K.set_session(tf_session)

16

17 from tensorflow.keras.callbacks import ModelCheckpoint ,

CSVLogger

18 from tensorflow.keras.layers import Add , Dense , Input , LSTM

19 from tensorflow.keras.models import Model

20

21 import numpy as np

22 import time

23

24 for o in range (10):

25 try:

26 from keras.utils import np_utils

27 print(’Works!’)

28 break

29 except Exception as e:

30 print(e,o)

31 time.sleep (0.5)

32

33

34

35 def sample(preds , temperature =1.0):

36 preds = np.asarray(preds).astype(’float64 ’)

37 preds = np.log(preds) / temperature

38 exp_preds = np.exp(preds)

39 preds = exp_preds / np.sum(exp_preds)

40 probas = np.random.multinomial (1, preds , 1)
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41 return np.argmax(probas)

42

43 class TrainingLine:

44 def __init__(self , name , previous_line , lstm , n_tokens):

45 self.char_input = Input(shape=(None , n_tokens), name=’

char_input_ %s’ % name)

46

47 self.numberchar_input = Input(shape =(1,), name=’

numberchar_input_ %s’ % name)

48 self.numberchar_dense = Dense(lstm.units , activation=’

relu’, name=’numberchar_dense_ %s’ % name)

49 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

50

51 #self.lstm = LSTM(latent_dim , return_state=True ,

return_sequences=True , name=’lstm_ %s’ % name)

52 initial_state = [self.numberchar_dense_output , self.

numberchar_dense_output]

53

54 self.lstm_out , self.lstm_h , self.lstm_c = lstm(self.

char_input , initial_state=initial_state)

55

56 self.output_dense = Dense(n_tokens , activation=’softmax

’, name=’output_ %s’ % name)

57 self.output = self.output_dense(self.lstm_out)

58

59 def create_training_model(latent_dim , n_tokens):

60 lstm = LSTM(latent_dim , return_state=True , return_sequences

=True , name=’lstm’)

61 lines = []

62 inputs = []

63 outputs = []

64

65 previous_line = lines [-1] if lines else None

66 lines.append(TrainingLine(’line_0 ’, previous_line , lstm ,

n_tokens))

67 inputs += [lines [-1]. char_input , lines [-1]. numberchar_input

]

68 outputs.append(lines [-1]. output)

69

70 training_model = Model(inputs , outputs)

71 training_model.compile(optimizer=’rmsprop ’, loss=’

categorical_crossentropy ’,metrics =[’accuracy ’])

72
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73 return training_model , lstm , lines , inputs , outputs

74

75 class GeneratorLine:

76 def __init__(self , name , training_line , lstm , n_tokens):

77 self.char_input = Input(

78 shape =(None , 100), name=’char_input_ %s’ % name)

79

80 self.numberchar_input = Input(

81 shape =(1,), name=’numberchar_input_ %s’ % name)

82 self.numberchar_dense = Dense(

83 lstm.units , activation=’relu’, name=’

numberchar_dense_ %s’ % name)

84 self.numberchar_dense_output = self.numberchar_dense(

self.numberchar_input)

85

86 self.h_input = Input(shape=(lstm.units ,), name=’

h_input_ %s’ % name)

87 self.c_input = Input(shape=(lstm.units ,), name=’

c_input_ %s’ % name)

88 initial_state = [self.h_input , self.c_input]

89

90 self.lstm = lstm

91

92 self.lstm_out , self.lstm_h , self.lstm_c = self.lstm(

93 self.char_input , initial_state=initial_state)

94

95 self.output_dense = Dense(

96 n_tokens , activation=’softmax ’, name=’output_ %s’ %

name)

97 self.output = self.output_dense(self.lstm_out)

98

99 self.numberchar_dense.set_weights(

100 training_line.numberchar_dense.get_weights ())

101 self.lstm.set_weights(lstm.get_weights ())

102 self.output_dense.set_weights(training_line.

output_dense.get_weights ())

103

104 class Generator:

105 def __init__(self , lstm , lines , tf_session , tokenizer ,

n_tokens , max_line_length , wv):

106 self.tf_session = tf_session

107 self.tokenizer = tokenizer

108 self.n_tokens = n_tokens

109 self.max_line_length = max_line_length
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110

111 self.lstm = LSTM(

112 lstm.units , return_state=True , return_sequences=

True ,

113 name=’generator_lstm ’

114 )

115 self.lines = [

116 GeneratorLine(

117 ’generator_line ’,

118 lines [0], self.lstm , self.n_tokens

119 )

120 ]

121 self.lstm.set_weights(lstm.get_weights ())

122 self.wv = wv

123

124 def generate_kwords(self , nwords=5, temperature =.1):

125 output = []

126 h = None

127 c = None

128

129

130 # first_word = chr(int(np.random.randint(ord(’a ’), ord

(’z ’)+1)))

131

132 # next_char = self.tokenizer.texts_to_sequences(

first_char)[0][0]

133 next_char = np.random.randint(self.n_tokens)

134 line = self.lines [0]

135 s = self.tf_session.run(

136 line.numberchar_dense_output ,

137 feed_dict ={

138 line.numberchar_input: [[ nwords ]]

139 }

140 )

141

142 if h is None:

143 h = s

144 c = s

145 else:

146 h = h + s

147 c = c + s

148

149 line_output = [next_char]

150 end = False
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151 next_char = None

152 for i in range(self.max_line_length):

153 char , h, c = self.tf_session.run(

154 [line.output , line.lstm_h , line.lstm_c],

155 feed_dict ={

156 line.char_input:

157

158 [self.wv[self.tokenizer.

sequences_to_texts ([[ line_output

[ -1]]])]]

159

160 ,

161 line.h_input: h,

162 line.c_input: c

163 }

164 )

165

166 char = sample(char[0,0], temperature)

167 if char == 1 and not end:

168 end = True

169 if char != 1 and end:

170 next_char = char

171 char = 1

172

173 line_output.append(char)

174

175 cleaned_text = self.tokenizer.sequences_to_texts ([

176 line_output

177 ])[0]. strip() [0:]. replace(

178 ’ ’, ’\n’

179 ).replace(’\n’, ’ ’)

180

181 print(cleaned_text)

182 output.append(cleaned_text)

183

184 return output
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Entrenamiento de modelo convolucional por palabras

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Jun 17 17:13:23 2021

5

6 @author: ina

7 """

8

9

10 import os

11 import gensim

12 from tensorflow import keras

13 from pathlib import Path

14

15

16 from tensorflow.keras.callbacks import ModelCheckpoint ,

CSVLogger

17 from tensorflow.keras.layers import Add , Dense

18 from tensorflow.keras.models import Model

19 from tensorflow.keras.preprocessing.text import Tokenizer

20

21 import numpy as np

22 import pandas as pd

23 import joblib

24

25

26 from tensorflow.keras.layers import Dropout

27 from tensorflow.keras.layers import Conv2D , MaxPooling2D ,

Flatten

28 from tensorflow.keras import Sequential

29

30

31

32 import datetime

33 import time

34 for o in range (10):

35 try:

36 #from keras.utils import to_categorica

37 from keras.utils.np_utils import to_categorical

38 print(’Works!’)

39 break
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40 except Exception as e:

41 print(e,o)

42 time.sleep (0.5)

43

44

45 #-------------------------------FUNCION

---------------------------

46 def entrenar(epochs =30, neuronas_capa =512, kernel_size = 3,

root_path="",name="259 _424_9086"):

47

48 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

49

50 output_dir = Path(’ %d_ %d_cnn_ %s’ % (neuronas_capa ,epochs ,

name))

51 try:

52 output_dir.mkdir ()

53 except:

54 pass # Percent of samples to use for training , might

be necessary if you’re running out of memory

55 data_path = os.path.join(root_path ,"KW_ST_files", name ,"

st_report2020.csv")

56 sample_size = 1

57

58 time_file = open(output_dir / ("inicial_time_ %s- %s.txt" % (

neuronas_capa , name)),"a")

59 time_file.write(str(datetime.datetime.now().time()))

60 time_file.close()

61

62 df_raw = pd.read_csv(data_path)

63 df_raw = df_raw.sample(frac=sample_size)

64 conversions = np.array(df_raw["Conversions"])

65

66 df = pd.DataFrame ()

67

68 df[’Search term’] = df_raw[’Search term’].drop([np.where(

conversions <1) ][0][0] , axis =0)

69 max_length = int(max([pd.Series ([ df_raw[’Search term’].

values[n]. count(’ ’)+1 for n in range(len(df_raw))]).

quantile (.99) ]))

70 df = pd.DataFrame(df[(df[’Search term’].str.count(’ ’) <=

max_length)].copy())

71 nwords = []

72 # ncharacters = [len(df[’Search term ’].values[i]) for i in
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range(len(df))]

73 nwords = [df[’Search term’]. values[n]. count(’ ’)+1 for n in

range(len(df))]

74 df[’characters ’] = nwords

75

76

77

78 df[’in’]= [df[’Search term’]. values[n]+ ’ \n’ for n in

range(len(df[’Search term’]))]

79

80

81 w2v_inputs = np.array ([np.array(df[’in’])[n].split(’ ’) for

n in range(len(np.array(df[’in’])))])

82 model_w2v = gensim.models.Word2Vec(w2v_inputs ,min_count =1,

window =5)

83 model_w2v.save(str(output_dir / ’model_w2v ’))

84 model_w2v = gensim.models.Word2Vec.load(str(output_dir / ’

model_w2v ’))

85 w2v = model_w2v.wv

86 #------------------------

87

88 tokenizer = Tokenizer(filters=’’,lower=True , split=’ ’,

char_level=False)

89 tokenizer.fit_on_texts(df[’Search term’])

90 tokenizer.fit_on_texts(’\n’)

91 search = tokenizer.texts_to_sequences(df[’Search term’])

92 n_tokens = len(tokenizer.word_counts)+1

93

94

95

96

97 inp_list = []

98 out_list = []

99 for i in range(len(search)):

100 for j in range(1, max_length +1):

101 try:

102 search[i][j]

103 except:

104 search[i]. append(tokenizer.texts_to_sequences(’

\n’)[0][0])

105 inp_list.append(search[i][0:j])

106 out_list.append(search[i][j])

107 inputs = pd.DataFrame(inp_list)

108 outputs = pd.DataFrame(out_list)

103



Ignacio Oscoz Villanueva

109 inputs = inputs.fillna(int(tokenizer.texts_to_sequences(’\n

’)[0][0]))

110

111

112 X = np.array ([[w2v[tokenizer.sequences_to_texts ([[ inputs[k

][n]]])]for k in range(max_length)]for n in range(len(

inputs))])

113 Y = to_categorical(outputs , num_classes=n_tokens)

114 X = X.reshape(len(X),max_length ,100 ,1)

115

116 model = Sequential ()

117 #add model layers

118 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’, input_shape =(max_length ,100 ,1)))

119 model.add(MaxPooling2D(pool_size = (2,2)))

120 model.add(Dropout (0.25))

121

122 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’,padding=’same’))

123 model.add(MaxPooling2D(pool_size = (2,2)))

124 model.add(Dropout (0.25))

125

126 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’,padding=’same’))

127 model.add(MaxPooling2D(pool_size = (2,2)))

128 model.add(Dropout (0.25))

129

130 model.add(Conv2D(neuronas_capa , kernel_size=kernel_size ,

activation=’relu’,padding=’same’))

131 model.add(Flatten ())

132 model.add(Dense(n_tokens , activation=’softmax ’))

133

134

135 opt = keras.optimizers.RMSprop(learning_rate =0.0001)

136 model.compile(loss=’categorical_crossentropy ’, optimizer=

opt , metrics =[’categorical_accuracy ’,’accuracy ’])

137

138

139

140 joblib.dump([ neuronas_capa , n_tokens , max_length , tokenizer

], str(output_dir / (’metadata_ %s- %s.pkl’ % (

neuronas_capa , name)) ))

141

142 filepath = str(output_dir / ( " %s-{epoch :02d}-{loss :.2f}-{
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val_loss :.2f}.hdf5" % neuronas_capa))

143

144 checkpoint = ModelCheckpoint(

145 filepath , monitor=’loss’, verbose=1,

save_best_only=True , mode=’min’,period =10)

146

147 csv_logger = CSVLogger(

148 str(output_dir / (’training_log_ %s- %s.csv’ % (

neuronas_capa , name))), append=True , separator=’,’)

149

150 callbacks_list = [checkpoint , csv_logger]

151

152

153 history = model.fit(

154 X, Y, batch_size =64, epochs=epochs ,

155 validation_split =.1, callbacks=callbacks_list)

156 return model , history

157 #---------------ENTRENAMIENTO

---------------------------------------

158 root_path = os.path.abspath(os.path.dirname(__file__))

159 os.chdir(root_path)

160 dataframes = ["259 _424_9086","437 _910_0412","991 _035_4076"]

161 neuronas_capa = [64 ,128 ,256 ,512]

162 number_epoch = [40]

163 for dataframe_name in dataframes:

164 for n in neuronas_capa:

165 for e in number_epoch:

166 model , history = entrenar(

167 epochs=e, neuronas_capa=n, kernel_size = 3,

root_path=root_path ,name=dataframe_name)
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Módulo para generación por palabras con modelo convolucional

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon May 17 12:09:58 2021

5

6 @author: ina

7 """

8

9

10 import tensorflow.compat.v1 as tf1 #new

11 tf1.disable_v2_behavior () #new

12 tf_session = tf1.Session ()

13

14 from tensorflow.compat.v1.keras import backend as K #new

15 # from keras import backend as K

16 K.set_session(tf_session)

17

18

19 import numpy as np

20 import time

21

22 for o in range (10):

23 try:

24 from keras.utils import np_utils

25 print(’Works!’)

26 break

27 except Exception as e:

28 print(e,o)

29 time.sleep (0.5)

30

31 def sample(preds , temperature =1.0):

32 # helper function to sample an index from a probability

array

33 # From https :// github.com/llSourcell/keras_explained/blob/

master/gentext.py

34 preds = np.asarray(preds).astype(’float64 ’)

35 preds = np.log(preds) / temperature

36 exp_preds = np.exp(preds)

37 preds = exp_preds / np.sum(exp_preds)

38 probas = np.random.multinomial (1, preds , 1)

39 return np.argmax(probas)

106



Ignacio Oscoz Villanueva

40

41 class Generator:

42 def __init__(self , tokenizer , n_tokens , max_line_length ,

model , wv):

43 self.tokenizer = tokenizer

44 self.n_tokens = n_tokens

45 self.max_line_length = max_line_length

46 self.model = model

47 self.wv = wv

48 def generate_kword(self , temperature =.1, first_word=None ,

kw_length=None):

49 encoded_output = []

50 if first_word is None:

51 first_word = np.random.randint(self.n_tokens)

52 if kw_length is None:

53 kw_length = self.max_line_length -2

54

55

56 encoded_output.append(first_word)

57 end = False

58 space = np_utils.to_categorical(

59 self.tokenizer.texts_to_sequences(’\n’),num_classes

=self.n_tokens).reshape(self.n_tokens ,1)

60

61 space_w2v = self.wv[’\n’]

62

63 out = np.repeat(

64 space_w2v.reshape (1 ,100),self.max_line_length ,axis

=0).reshape(

65 1,self.max_line_length ,100 ,1)

66 out [0][0] = np.array(self.wv[first_word ]).reshape

(100 ,1)

67

68 for i in range(1, kw_length):

69

70 new_out = sample(self.model.predict(out)[0],

temperature)

71 encoded_output.append(new_out)

72 out [0][i] = np.array(self.wv[self.tokenizer.

sequences_to_texts ([[ new_out ]]) [0]]).reshape

(100 ,1)

73 if np.array_equal(space ,out [0][i]) and np.

array_equal(space ,out [0][i-1]) and not end:

74 end = True
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75 if np.array_equal(space ,out [0][i]) and end:

76 break

77 if not np.array_equal(space ,out [0][i]) :

78 for j in range (1,2):

79 new_out = sample(self.model.predict(out)[0],

temperature)

80 encoded_output.append(new_out)

81 out [0][i+j] = np.array(self.wv[self.tokenizer.

sequences_to_texts ([[ new_out ]]) [0]]).reshape

(100 ,1)

82 if np.array_equal(space ,out [0][i+j]):

83 break

84

85

86 output_raw = self.tokenizer.sequences_to_texts ([

encoded_output ])

87 output = output_raw [0]. strip() [0:]. replace(’ ’, ’\n’)

.replace(’\n’, ’ ’)

88 return output
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