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1. Abstract

En este trabajo abordamos el fenémeno de la corrupcién desde una perspectiva infectiva, en
analogia con modelos epidemiolégicos tradicionales. Nos centramos en el estudio de los efectos
de la competencia entre dos estados corruptos o bandas diferentes, excluyentes entre si, que se
disputan un mismo sistema. Para ello, establecemos en primer lugar unas reglas de interaccién
entre agentes que dan lugar a estados estables de supervivencia de ambas especies corruptas,
segun el estudio del comportamiento en campo medio. Se muestra también que la situacién
de convivencia resulta beneficiosa para los agentes honestos, cuya poblacién es mayor que en
el caso de sobrevivir una tnica banda. La implementacién del modelo sobre redes homogéneas
muestra un efecto de segregacion entre corruptos de diferentes bandas, dando lugar a regiones del
espacio donde habitan corruptos pertenecientes sélo a una de ellas, y que se puede caracterizar
matematicamente mediante unas métricas que comparan los entornos locales de los agentes con
los globales. Dependiendo de las caracteristicas de la red subyacente, los grupos corruptos pueden
llegar a ser lo suficientemente grandes como para que el comportamiento en su interior se pueda
aproximar por el que tendria el sistema si sélo existiese una banda, eliminando los beneficios de

la convivencia entre ambas.

2. Introduccion

Toda comunidad humana estd caracterizada por un conjunto de normas sociales, a menudo
explicitamente regladas, aunque en ocasiones unicamente de caracter cultural, que se asumen
de obligado cumplimiento para todos los individuos que forman parte de dicha comunidad. La
violacién de alguna de estas reglas conlleva una sancién, moral o penal, que tiene como objetivo
desincentivar los comportamientos asociales. Una de las conductas asociales paradigmaticas es la
corrupcién en sus multiples formas (econémica, politica, administrativa...), que ha impregnado
todas las sociedades y culturas a lo largo de la historia, y que asumiremos merecedora de castigo.
En este trabajo identificaremos la honestidad como el cumplimiento de las normas sociales,
la corrupcién como su incumplimiento, y el ostracismo como la sancién de la sociedad ante
comportamientos antisociales.

El estudio de la corrupcién desde una perspectiva economicista (y por tanto matemadtica
en tltima instancia) se ha abordado desde los campos de teoria de juegos y teoria de juegos
evolutiva, en los que se concibe el comportamiento asocial como una estrategia que permite
obtener un beneficio frente al resto de individuos, y su propagacion por la poblacion se explica por
conductas egoistas que buscan maximizar las ganancias individuales de los agentes [1]. De esta
manera, un individuo racional, dada una posibilidad de elecciéon y unos criterios de maximizacién
de beneficios, podria decidir adoptar un comportamiento corrupto. Este tipo de aproximaciones
da lugar con frecuencia a modelos muy complejos con gran cantidad de pardmetros y estrategias,
que dificultan el estudio exhaustivo de la influencia de cada uno de ellos.

Otra perspectiva de gran importancia a la hora de estudiar los fendémenos colectivos de
comportamientos sociales, que no adolece de los problemas anteriores, se basa en establecer una
analogia entre la propagacion de estos comportamientos y la propagacién de epidemias [2], campo



tradicionalmente estudiado en el contexto de redes complejas. En este sentido, se puede entender
la conducta corrupta como una epidemia con sus mecanismos propios de contagio y recuperacion,
v la poblacién honesta como individuos susceptibles de ser corrompidos. No obstante, el estudio
de la propagacion de comportamientos sociales como epidemias no se circunscribe al ambito de
modelos de corrupcién, sino que abarca una gran cantidad de fenémenos como la difusién de ideas
u opiniones, la segregacién urbana o cultural, o la propagacién de rumores [3, 4]. Sin embargo,
existen grandes diferencias entre los mecanismos propios de la propagacion de enfermedades y
los de la propagacién de fenémenos sociales, que deben ser debidamente incluidos y justificados
en los modelos.

Nuestro trabajo adopta esta tltima linea de investigacion para estudiar el comportamiento
de un sistema en el que se desarrolla la corrupcién. Partiendo de investigaciones anteriores [5,
6] en las que se analiza la evolucién de una poblacién formada por agentes honestos, corruptos
y en el ostracismo (sancionados), planteamos ahora qué ocurre cuando en esta misma poblacién
se dan dos conductas corruptas diferentes, enfrentadas y excluyentes. Necesitaremos entonces
definir unas nuevas interacciones entre individuos corruptos, y estudiaremos los efectos de la
existencia de competencia en el sistema, que se concreta en la existencia de dos gangs, o bandas.

La estructura de este trabajo es la siguiente: En la seccién 3 se presentan brevemente los
modelos compartimentales, y en la seccion 4 se discute el modelo original del que parte la
investigacién, que se conoce como HCO. En la seccién 5 se presenta la modificacién del modelo
que es objeto de estudio, y que denominamos como modelo HCCO, y sus principales resultados
en aproximacién de campo medio, simulaciones Montecarlo y dindmica markoviana. Por tltimo,

en la seccién 6 se discuten las conclusiones mas importantes del trabajo.

3. Modelos compartimentales

El estudio de la propagacién de enfermedades se ha abordado histéricamente haciendo uso
de modelos compartimentales. Desde esta perspectiva, los diferentes estadios de una enfermedad
se dividen en secciones o compartimentos, que caracterizan asi los estados posibles que puede
atravesar un agente. El estudio de la evolucién de la enfermedad se basard entonces en dividir la
poblacién del sistema en funcién de su estado infectivo, y definir unas reglas claras que regiran
el paso de estos agentes de uno a otro compartimento.

El ejemplo més sencillo de un modelo compartimental es el que se conoce como SIS (sano-
infectado-sano), en el que se consideran dos estados posibles: estar sano (S), o estar infectado (I).
Asi, dividimos a la poblacién en dos compartimentos, y podemos definir unas reglas sencillas que
gobiernan el paso de un compartimento a otro. Estas reglas deben ser reflejo de los fenémenos
infectivos reales que se produzcan en la enfermedad. Asi, generalmente se establece que, en una
interaccion entre un agente sano y un agente infectado, hay cierta probabilidad a de que el
infectado contagie al sano, en un proceso:

SH+I5T+1, (1)

mientras que el paso de infectado a sano no requiere de ninguna interaccién adicional, se produce



espontaneamente con cierta probabilidad 3:

1%s. 2)

Este es el modelo més simple de propagacién de epidemias que podemos considerar, y puede
representar todas aquellas enfermedades en las que, tras haber superado un contagio, podemos
volver a contagiarnos inmediatamente, como es el caso de algunas enfermedades de transmision
sexual como sifilis o gonorrea. Una de las variaciones més importantes es el conocido como modelo
SIR (Sano-Infectado-Recuperado), en el que, tras haber superado la enfermedad, pasamos a un
estado no susceptible de contraerla de nuevo (recuperado) con probabilidad 3, como ocurre con
la varicela, o el modelo SIRS (Sano-Infectado-Recuperado-Sano), en el que, tras un periodo de
tiempo en el estado no susceptible, podemos volver a contraer la enfermedad, como ocurre con
el virus de la gripe. Este ultimo paso depende en general inicamente del tiempo transcurrido
desde la ultima infeccién, y por ello se suele modelizar con una probabilidad:

RLS. (3)

Ahora bien, los fenémenos de transicién entre compartimentos de la propagacién de epidemias
no tienen por qué explicar los mecanismos propios de la propagacion de fenémenos sociales.
En este sentido, centrandonos en fenémenos como la propagacion de ideas o rumores, se han
propuesto mecanismos alternativos al paso de un agente de un estado propagador de la idea (I) a
un estado no propagador ni susceptible (R) mediante interaccién con otros agentes propagadores
[4]:

1+1%571+R. (4)

De esta manera, se establece que un agente podria dejar de intentar propagar una idea si se da
cuenta de que otros agentes de su entorno ya la conocen. Este es un ejemplo claro de las diferen-
cias que aparecen al pasar de modelizar epidemias a modelizar fenémenos sociales. Veremos a
continuacién cémo los modelos compartimentales anteriormente descritos deben ser modificados

para capturar los mecanismos caracteristicos de los fendmenos de propagacion de la corrupcion.

4. Modelo HCO

El modelo original [5, 6] trata de modelizar el fenémeno social de la corrupcién a partir del
modelo SIRS comentado anteriormente, identificando la corrupcién como un estado infectivo y
el ostracismo como un estado inmune al contagio. En este sentido, no se contempla la corrupcién
como un mecanismo de rédito para el agente corrupto, y su difusién no se rige por ganancias
esperadas. Se desarrolla entonces un modelo compartimental formado por tres estados: Hones-
tidad (H), Corrupcién (C), y Ostracismo (O), recibiendo asi el nombre de modelo HCO. Los
agentes del sistema se distribuyen entre ellos, y son capaces de transitar de uno a otro mediante
interaccion con otros agentes siguiendo unas las reglas impuestas. En su formulacién maés simple,

esto da lugar a los siguientes flujos:

= Flujo de corrupcién: Los agentes H pueden corromperse al interaccionar con sus vecinos

C, con un ratio f, dependiente de una probabilidad «:

H+CS%SC0+C. (5)



Flujo de corrupcion

Figura 1: Esquema compartimental y flujos del modelo HCO.

= Flujo de delacién: Los agentes C' pueden ser delatados al interactuar con sus vecinos H,
pasando al ostracismo con un ratio fg dado por cierta probabilidad 3. Este mecanismo es el
que difiere de los planteamientos tradicionales del modelo SIRS, al necesitar de la mediacién
de individuos honestos (sanos) para la recuperacién de los corruptos (infectados).

g+cbu+0. (6)

= Flujo de reinsercién: Los agentes O se reintegran en la poblacién honesta con cierto ratio r,

sin precisar de interaccion con sus vecinos.

O5 H. (7)

El ratio de reinsercién es, por tanto, constante e independiente del entorno, mientras que los
ratios de corrupcién f, y delacién fz dependen unicamente de procesos microscépicos en la
vecindad del agente: en una interaccién entre H y C, hay una probabilidad « de que el agente
H resulte corrompido, y una probabilidad 8 de que el agente C' sea delatado. De aqui se deduce
que los ratios fo y fg deben ser nulos en ausencia de agentes C'y H, respectivamente’.

Se observan asi las caracteristicas principales del modelo que lo relacionan con el fenémeno
social de la corrupcién: un agente honesto necesita de un corrupto para ser corrompido, y éste
se ve expulsado de la sociedad (ostracismo) al ser delatado por un honesto. Tras un cierto
periodo, se permite su regreso como un individuo honesto. El modelo compartimental completo
se encuentra resumido en la Figura 1. La publicacién original [5] considera ademds un flujo
adicional (O) de “advertencia a infractores” que permite a los agentes C' volver al estado H sin
pasar por O, incluyendo asi la posibilidad de que un infractor cambie su comportamiento por
miedo a ser castigado. No obstante, en nuestro caso esto no produce cambios cualitativos en el
comportamiento del sistema, y no lo contemplaremos.

'Nétese que el ratio f. serd nulo en todo momento a partir de la desaparicién de los agentes C, mientras que
el ratio fg puede ser restituido en caso de que en el sistema haya agentes O, que pueden transformarse en H.



4.1. Campo medio

El estudio del sistema en aproximacién de campo medio resulta muy tutil para determinar
su comportamiento cualitativo. Consiste en describir su evolucién dnicamente a partir de la
fraccién total de agentes en uno u otro compartimento, asumiendo que el entorno de cada
uno de ellos se asemeja a la composicién global del sistema. Definimos entonces las variables
0 = (pn, Pes Po) que representan las fracciones totales de H, C'y O respectivamente. Ademas,
teniendo en cuenta la condicién de normalizacion pg + po + po = 1, podemos expresar una de
estas fracciones en funcién de las otras dos. Esto significa que podemos describir el sistema en
un plano bidimensional de coordenadas pp, po. Las ecuaciones que rigen el flujo F = ﬁ entre

compartimentos resultan:

Fh(p_‘) = _fa(PC) Ph+Tpo = _[fa(PC) + 7"] Ph + T(l — Pe) 5 (8)
Fc(ﬁ) = fa(pc) Ph — fﬁ(ph) Pc - (9)

Ahora, los ratios son funcién de la fraccién total de honestos y corruptos del sistema gracias a la
asuncién de homogeneidad en la estructura de contactos de cualquier agente, y podemos obtener
su expresion matematica explicita. Tomando el caso del ratio de corrupcion f,, la probabilidad de
que un agente H sea corrompido al interactuar con otro agente viene dada por el producto entre
la probabilidad de encontrarse con un agente C, y la probabilidad o de que éste le corrompa,
dando lugar a una probabilidad total ap.. Considerando ademés que cada agente de la red tiene,
en promedio, k contactos en cada paso temporal, la probabilidad de que sea corrompido en al

menos uno de estos contactos es:

fa(PC) =1- (1 - ape)k . (10)

De manera completamente analoga, podemos ver que el ratio de delacion resulta:

fa(pn) =1— (1= Bpp)* . (11)

Volviendo a las ecuaciones de flujos, hallando el valor de g para el que alguno de ellos se

anula obtenemos las expresiones matematicas de las nulclinas del sistema. En este caso:

fa+7ﬂ

Frh=0=p.=1- Ph (12)

Fc:0:>faph:f[3pc- (13)

Los puntos de cruce entre ambas nulclinas corresponden a puntos fijos de equilibrio de la dinami-
ca, en los que las variaciones de poblacién son nulas. Este sistema de ecuaciones tiene dos so-
luciones triviales, dadas por los vértices (p, = 1, p. = 0) (equilibrio honesto, o Full H) y
(pr, = 0, p. = 1) (equilibrio corrupto, o Full C'), y una solucién no trivial, cuya expresién
matematica es no lineal debido a las dependencias con p. y pp, a través de f, y fg. Estas solucio-
nes pueden ser estables ante perturbaciones, si la dindmica del sistema en torno al punto fijo lo
atrae hacia él, o inestables, si ocurre lo contrario. Por tanto, las trayectorias del sistema tenderan
hacia puntos fijos estables, que determinardn la composicién en el equilibrio. Para estudiar la
estabilidad, debemos llevar a cabo una aproximacién lineal del comportamiento del sistema en



el entorno de un punto fijo (p;, pi) haciendo uso de la matriz jacobiana J [7], de manera que

asumimos una evolucién temporal descrita por:

0F, OFg
; 0 dpe
Pc ProPe) \ pe Probe oF. OFc

Ope 0P/ (gj00)

Los autovalores de J ‘(pi,pz) determinan la estabilidad: si son negativos, el sistema es estable en
la direccion de los respectivos autovectores, mientras que si son positivos, es inestable. Explici-
tamente, partiendo de las ecuaciones (10) y (11):

. _ <_(fa+r) _(f(,x—i_r)) (15)
(P} 02 fa fat 18/ (e )

En la situaciéon Full H, (p;, p;) = (1,0), los autovalores dan lugar a la siguiente condicién de
estabilidad:

fa0) < f5(1) - (16)

Si esto se cumple, el estado Full H es estable, y existird un conjunto de condiciones iniciales

tales que la dindmica del sistema siempre lleve al exterminio de los agentes C. Por otro lado, en
el caso de Full C":

fa(1) > £5(0) . (17)

Si se cumple, existird un conjunto de condiciones iniciales que evolucionaran hasta el dominio
de los agentes C. Vemos asi que la estabilidad de estos puntos viene determinada en ultima
instancia por los pardmetros a y 5. Con las expresiones matematicas explicitas en (10) y (11)
podemos hallar los valores criticos de ambos pardmetros en los que alguna de estas soluciones
deja de ser estable. En concreto, la condicién de estabilidad del estado completamente honesto
resulta:

_1-(1-pF

a< a(f) = — (18)

y la condicion de estabilidad del estado completamente corrupto es:

1—(1-a)k

B < Bc(a) = L

(19)

Se puede ver que las ecuaciones anteriores son incompatibles, y por tanto, no hay ninguna
eleccién de los pardmetros a y 5 para la que se produzca convivencia de puntos fijos estables.
Esto quiere decir que, dadas unas condiciones iniciales p(0) arbitrarias, la dindmica del sistema
en el campo medio tenderd siempre a un unico punto fijo dado por a y 3, y no podremos generar
ciclos de histéresis variando dichos pardmetros. En la Figura 2a se aprecia ademés que el tercer
punto fijo, no trivial, corresponde a un atractor global del sistema cuando ambos puntos Full
H y Full C son inestables. En la Figura 2b se muestran las fracciones pp, y p. que se obtienen
en el equilibrio para diferentes elecciones de los parametros a y 3, y se observan claramente los
umbrales a., 8. para los que las soluciones de dominio de alguna de las estrategias dejan de ser
estables.
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Figura 2: Modelo HCO. (a) Diagramas de flujo y nulclinas Fj, = 0 (azul), F, = 0 (amarillo), para k = 4,
r = 0.5 y diferentes elecciones de pardmetros « y 3. Los cortes entre ellas dan lugar a puntos fijos. Las
flechas representan la direccién del flujo, y la escala de color, su intensidad. (al) estado completamente
corrupto estable. (a2,a3) convivencia estable. (a4) estado completamente honesto estable. (b) Fracciones
totales, para r = 0.5, de individuos honestos (pp) en funcién de (bl) a y (b2) 3, y fracciones totales de
individuos corruptos (p.) en funcién de (b3) ay (b4) S.

El modelo HCO contempla asi la existencia de una inica banda corrupta y estudia su inter-
accién con los individuos honestos de la red, mostrando que la corrupcién es capaz de sobrevivir
e incluso imponerse para ciertos valores de los parametros del modelo. Se trata, por tanto, de
un modelo de competencia entre dos especies mutuamente excluyentes, honestos y corruptos,
que se disputan un mismo sistema. La generalizaciéon directa de este planteamiento pasa por
considerar la existencia de una especie corrupta adicional capaz de competir con las anteriores.

Este es el modelo HCCO, que desarrollamos a continuacién.

5. Modelo HCCO

Ahora, a la especie corrupta original, que pasamos a denotar como ¢;;,, Se suma una nueva
especie invasora cg que sigue sus mismas reglas en los procesos de delacién y corrupcion frente
a agentes honestos. Respecto a la nueva interaccion que aparece entre agentes corruptos de
diferentes bandas, asumimos que compiten entre ellos, y por tanto se delatan con probabilidad
S.

Cin+C S Cin + 0. (20)

Todos los agentes en el ostracismo se comportan segin las mismas reglas y se reintegran con

un mismo ratio r en la poblaciéon honesta, independientemente de la especie corrupta a la que



Flujos de corrupcion
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Figura 3: Modelo HCO. (a) Esquema compartimental y flujos.(b) Diagrama que representa el espacio
de estados del modelo HCCO. En azul: superficie sobre la que se desarrolla el comportamiento HCO, en
este caso con p.,, = 0. La otra cara del tetraedro, con p,, = 0, también se comporta como un HCO. En
naranja, regién de convivencia de bandas con una misma fraccién p.,, = pc,,, que denominamos como
«plano bisectriz» en el trabajo.

perteneciesen, o la especie de su delator. Estas reglas definen un nuevo esquema compartimental
y un diagrama de flujos que se muestran en la Figura 3a.

5.1. Campo medio

Volvemos a estudiar el sistema haciendo uso de la aproximacion de campo medio, que nos
proporciona informacion 1util acerca del comportamiento cualitativo. Consideramos ahora las
cuatro fracciones p'= (pn, Pe;,, » Pesr» Po) Que caracterizan la composicién de la poblacién. Con la
condicion de normalizacién podemos escribir una de estas fracciones en funcién de las otras tres,
y podemos representar el espacio de fases completo del sistema mediante un tetraedro, como se
muestra en la Figura 3b. En el limite en el que la fraccién de una de las especies corruptas es nula,
que corresponde a una de las caras del tetraedro, recuperamos el modelo HCO original. Por otro
lado, cuando las fracciones de corruptos de ambas bandas son iguales, el sistema se sitida sobre
el plano bisectriz que separa el tetraedro en dos partes iguales. El sistema es completamente
simétrico respecto de este plano, intercambiando p.,, y pe,, -

En cuanto a los ratios de conversién entre compartimentos, adoptamos las mismas reglas que
en el caso anterior, considerando ahora que la poblaciéon honesta se ve corrompida por ambas

bandas y que las poblaciones corruptas pueden ser delatadas también por la banda rival. Asi:

k
fa(pcma pcst) =1- [1 - a(pcin + pcst)] ) (21)
15 (P pes) = 1= [1 = Blon + pe,))* - (22)
El ratio fg“ se obtiene de manera analoga, intercambiando p.,, por p.,, . A la hora de calcular

los flujos entre compartimentos con estos ratios, es importante notar que f,(pe,,,, pec.;) establece

la fraccién honesta que se ve corrompida en un paso temporal, pero no cémo se reparte esta



poblacién entre ambas bandas. Para determinarlo, recurrimos a una funcién de combate t(x,y)

que asigna el reparto de manera proporcional a la presencia de cada banda en la red:

x
T4y

t(,y) = (23)

De esta manera, la banda Cj, recibe una fraccién t(pe;, , pe.,) fapn €n cada paso temporal, mien-
tras que la banda Cg recibe t(pe,,, pe.,, ) fapn- Es inmediato ver que t(y,z) = 1 — t(x,y), y por
tanto, las fracciones anteriores suman la fraccion total corrompida f,pp, como debe ser. Con

todo esto, podemos expresar las ecuaciones de flujo del modelo HCCO:

Fh(ﬁ) - _fa(pcin7p65t)ph+rp0 = _[fa(pcin7pcst) +7’] ph+T[1 - (pcm +pcst)] 3 (24)
Fe., () = fa(Peins Pest) HPeins Pest) PR — fﬁ(ﬂhv Peat) Pein s (25)
FCst (ﬁ) = foé(pcmvpcst) t(pcst’ pcm) Ph — fﬁ(pha pcin) Pest - (26)

Estudiamos ahora los puntos fijos del sistema. En primer lugar, cuando una de las fracciones
corruptas p. es nula, las ecuaciones se reducen a las del modelo HCO, y las trayectorias quedaran
confinadas a las caras laterales del tetraedro. Ademas, el flujo correspondiente a la especie extinta
cumplird F, = 0, y por tanto, la cara dada por p. = 0 formard parte de la nulclina de F,. De
esta manera, los puntos fijos del modelo HCO seran también puntos fijos del modelo HCCO, y
se comportaran igual que antes en el subespacio dado por la cara. Por otro lado, la simetria del
modelo invita a estudiar el comportamiento sobre el plano bisectriz, que cumple p.,, = pec., = Pe-
Las ecuaciones muestran que éste es invariante, y por tanto debe contener puntos fijos. Sobre
este plano se cumple F,, = Fi. , = F,, y los flujos resultan:

Fn(p) = =[fa(2pe) + 1] pn + (1 = 2pc) , (27)

Fo() = 5 fal2pe) pn— Solon + ) pe (28)

Este sistema muestra un gran parecido con el formado por las ecuaciones (8) y (9) del modelo
HCO. Sin embargo, existen dos diferencias fundamentales entre ambos debidas al mecanismo
de delacion cruzada entre bandas de corruptos: por un lado, el estado de dominacién corrupta
Full C' con coexistencia de bandas no puede ser nunca estable, y por otro, la fraccién total de
honestos es siempre mayor que en el caso del modelo HCO, porque a la delacién que sufren
ambas bandas corruptas por parte de los honestos cuando sus fracciones son iguales se suma
este mecanismo de delacién cruzada. Podemos observar en la Figura 4a las nulclinas sobre el
plano bisectriz (arriba) y dos secciones horizontales del tetraedro que conforma el espacio de
fases (abajo). Se ve claramente que el punto fijo sobre la bisectriz dado por el corte entre las
nulclinas ocurre para una fracciéon de honestos mayor (Figura 4a.3, p; = 0.505) que sobre la
cara (Figura 4a.4, p; = 0.46).

Por completitud, podemos estudiar cémo se comporta el punto de dominio honesto Full H.
Al estudiar el sistema mediante una aproximacién lineal en torno al punto fijo, hemos obtenido
el criterio de estabilidad sobre las caras. Por otro lado, los posibles efectos desestabilizadores
que tenga la convivencia entre bandas serdn de segundo orden en p., y por tanto, despreciables
frente al comportamiento lineal. Asi, el criterio de estabilidad del punto fijo Full H deberd ser
el del modelo HCO necesariamente.
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Figura 4: Diagramas de flujo y nulclinas F}, = 0 (azul), F,

Cin

= 0 (amarillo) y F,,, = 0 (negro), para
r = 0.5 y diferentes elecciones de pardmetros o y 8. (a) Modelo HCCO. Arriba: representacién del plano
bisectriz del tetraedro, correspondiente a coexistencia de bandas. Se muestra el punto fijo completamente
honesto (al), y el punto de convivencia (a2). Las nulclinas de C;,, y C; estdn superpuestas por simetria.
Abajo: secciones horizontales del tetraedro, a pp, = cte. Se observa el punto fijo sobre la bisectriz (a3) y
el punto fijo sobre la cara (a4) para una misma eleccién de pardmetros a y 8. (b) Modelo HCCO con
delacién selectiva. Se muestran los mismos planos que en la Figura (a). Ahora, se observa la alteracién en
la forma de las nulclinas debida a la funcién Boltzmann, y se aprecia el punto fijo sobre el plano bisectriz
(siempre estable) y el punto fijo sobre la cara (inestable para ciertos valores de a y f3).

Respecto al plano bisectriz, éste confina las trayectorias en su interior: dada cualquier con-
dicién inicial dentro del plano, el sistema nunca lograra abandonar la bisectriz. Esto es evidente
por simetria teniendo en cuenta que, si en un punto determinado del espacio de fases el sistema
logra abandonar la bisectriz, entonces debe poder hacerlo hacia la zona de mayoria de Cy o
de mayoria de Cjy, indistintamente. Por tanto, las trayectorias no podrian ser completamente
deterministas, algo que no tiene cabida en nuestro modelo. El punto fijo en la bisectriz, que
es Unico, debe ser asi estable en este subespacio. Sin embargo, fuera de la bisectriz este punto
resulta ser inestable. Se puede demostrar facilmente partiendo del punto fijo interior (pj, pf, ),
que cumple:

Fiv= = [fa(202) 7] i+ r(1 = 21) =0, (29)
Fo= 3 Ja(200000 — ol + ) =0. (30)

Ahora, una pequena perturbacién e que convierta a la especie Cj, en mayoritaria y nos sitie en

11



un punto (p}, pi + €, pi — €) da lugar a los flujos:

Fe,, = f3(pn + 02)(pr +€) — falpn + pr — €)(pe +€) (31)
Fe, = f5(pn + pe)(pz —€) — f5(ph + pe +€)(pe —€) , (32)

donde hemos usado que t(x £ e, F€) = (1 £¢/x)/2, y la relacion fo(20)p}/2 = f3(p} + p}),
que se puede obtener directamente de (30). Teniendo en cuenta que la funcién fz es monétona
creciente, tenemos que F., > 0y Fr, < 0, y por tanto el sistema tenderd a amplificar la
perturbacién alejandose del plano bisectriz. Se demuestra asi que este punto fijo es inestable, y
los inicos puntos fijos estables del espacio de fases se situaran sobre las caras. Recuperamos asi
un comportamiento que emula por completo al modelo HCO, y la generalizacién a dos especies
corruptas no lleva a ningun resultado nuevo de interés al no lograr sobrevivir ambas especies al
mismo tiempo.

Es preciso entonces plantear alguna modificacién que de lugar a coexistencia. Para ello,
optamos por alterar la regla de delacién de los agentes honestos: ahora, un agente honesto
delatard con menor probabilidad a un agente corrupto perteneciente a la banda minoritaria
(es decir, la que represente una menor fracciéon de poblacién) que a uno perteneciente a la
mayoritaria, favoreciendo asi la expansion de la minoritaria. Si bien este comportamiento de los
agentes honestos puede parecer arbitrario, encuentra justificacién en el hecho de que el punto
fijo en el caso de coexistencia de bandas tiene una fracciéon de poblaciéon honesta total mayor
que el caso con una tunica banda, como hemos visto anteriormente. Por tanto, para un agente
honesto, no delatar al corrupto minoritario es una estrategia inteligente desde un punto de vista
colectivo. De aqui en adelante, llamamos «<HCCO» a este nuevo modelo, y «<HCCO sin delacién
selectivar al anterior, que no contiene la nueva regla de delacién.

La modificacién de la regla se implementa en las ecuaciones a través de una nueva funcién

B(z,y) que regula la delacién de las bandas por parte de los honestos, de manera que los flujos

resultan:
Fh(ﬁ) = _[fa(Pcma pcst) + T] pr+T [1 - (pcm + pcst)] ) (33)
For (9) = fa(Peins Pest) t(Peins Pewt) Ph = F8(0nB(Peins Pewt)s Pews) Pein (34)
cht(m :fOt(pCin’pcst)t(pcsﬁpcin)ph_fﬁ(phB(pCsﬂpCin)’pcin) pcst . <35)

La forma explicita de la funcién B(x,y) depende del comportamiento que asumen los ho-
nestos cuando ambas bandas tienen fracciones de poblaciéon muy similares, y la determinacién
de la banda mayoritaria puede resultar algo difusa. En nuestro caso, aplicamos una funciéon de
Boltzmann para la especie minoritaria, mientras que la mayoritaria no se ve afectada por este
mecanismo:

1 six >y,

exp [% Ei;zﬂ siz<y.

T representa la temperatura, que tomaremos como 7' = 0.1 en todo el trabajo. Esta temperatura

B(z,y) = (36)

marca la delacién que sufrird la especie minoritaria: cuanto mayor sea, menos delacién sufrird
para una misma distancia hasta el plano bisectriz. Ademads, cuando la diferencia poblacional
x — y sea razonablemente grande, la delacién que soportarda la banda minoritaria por parte
de los agentes honestos serd nula, mientras que si ambas poblaciones son iguales, la delacién
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serd igual a la del modelo original para ambas. Esta eleccién de B(z,y) tiene dos ventajas
principales: la funcién es continua en z = y, y se conserva la posicion de los puntos fijos sobre
el plano bisectriz, al cumplirse B(z,z) = 1. Hay otras elecciones posibles, aunque no todas
mantienen las propiedades anteriores (ver anexo 1).

La funcién elegida resulta dificil de tratar analiticamente a la hora de estudiar el comporta-
miento de los puntos fijos. Para ello, tomaremos en los cédlculos que siguen el limite 7" — 0, en
el que obtenemos una funcién escalén. Las predicciones realizadas en este limite serdn validas
cuando la diferencia de poblaciones corruptas sea razonablemente grande. Tenemos asi:

1 siz>y,
B(z,y) = 0(z,y) = , (37)
0 siz<y.

Estudiamos ahora el comportamiento sobre la bisectriz. En esta ocasion, tras aplicar al estado
en el equilibrio dado por las relaciones (29) y (30) una pequena desviacién €, obtenemos unas
ecuaciones de flujo:

Fo,, = fa(oh + p2)(pe +€) — folpp + oz —€)(pe +€) >0, (38)
Fe. = fa(pn + pe)(pe —€) — falpe +€)(pz —€) > 0. (39)
Dado que € << 1, podemos asumir que p; > €, y podemos ver facilmente que F., > F,, porque

fa(py + pi —€) > fa(pi + €). Por tanto, el flujo tendera a restablecer la situacién de equilibrio,
y el punto fijo sobre la bisectriz se convierte en estable para cualquier eleccion de o y . Falta
estudiar entonces como afecta el cambio al punto fijo sobre la cara, en el que sdlo hay presente un
grupo corrupto. Para ello, tomamos las ecuaciones de flujo evaluadas en el punto fijo (pj, pi, 0):

Fn = —[falp) +7]pp +r(1—p) =0, (40)
Fe,, = fa(p2)pn — flon)pe =0, (41)
F.,=0. (42)

Ahora, situdandonos en un punto muy cercano al anterior, con una pequena fracciéon de corruptos
de la banda rival presentes (pj, p; — €, €), obtenemos las ecuaciones:

Fr=—[falpz) +rlpp +r(1—pz) =0, (43)
Fe,, = fs(pn) — folph +€)l (pz —€) , (44)
Fe., = [fs(pr) — falps —€)le, (45)

donde hemos usado que fo(p})p; = fs(py)pi, obtenido de la ecuacién (41). De nuevo, dado
que fg es una funcién mondtona creciente, y asumiendo € << 1, podemos ver que F,, < 0 en

general. Por otro lado, el signo de F, depende de la relacién entre p; y pi. En concreto, cuando

st
py > pi (P, < pi), tendremos que F,, > 0 (F,, < 0). Si el flujo de la especie minoritaria
es negativo, el sistema siempre acabara exterminandola y regresando a la cara, recuperando el
comportamiento HCO. Sin embargo, si el flujo F,,, es positivo, el sistema siempre tendera a la
coexistencia, y el punto fijo sobre la cara serd inestable.

Necesitamos encontrar entonces la condicién para que se cumpla p; = p;.. Dada la simetria

implicita en el modelo HCO, en el que corrupcién y delacién hacen uso de los mismos mecanismos
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de interaccién y el mismo tipo de funcién f,, fs con distintos pardmetros o y 3, es evidente
que esto se producird cuando o = . Por tanto, si @ < [, el punto fijo sobre la cara serd
inestable, y el tnico atractor global del sistema serd el punto fijo sobre la bisectriz, de coexistencia
de bandas. Por otro lado, cuando o > (3, los puntos fijos sobre las caras se convertiran en
estables, dando lugar a biestabilidad: la fraccion final de honestos y corruptos dependerd de
las condiciones iniciales del sistema, pudiendo darse convivencia entre bandas, con una mayor
fraccién de poblacién honesta, o dominio de una tnica banda, con una fracciéon honesta total
menor. Se puede ver entonces que en o = 3 se produce una bifurcacién transcritica, en la que los
puntos fijos inestables internos del sistema que separan las cuencas de atraccién de los puntos
fijos estables sobre la cara y la bisectriz colisionan con los puntos fijos sobre las caras. A partir
de ese momento, cuando a < 3, el punto fijo sobre la cara pasa a ser inestable, y el punto fijo
en el interior del sistema sale al exterior del tetraedro convertido en un punto estable.

Los diagramas de flujo del modelo modificado se muestran en la Figura 4b. Se puede ver
que la posicion del punto fijo sobre el plano bisectriz no ha cambiado, pero ahora es un atractor
global del sistema para cualquier eleccion de parametros. En cambio, el punto fijo sobre la cara
se convierte en inestable cuando o < 5. En la Figura 5 se observan las fracciones en equilibrio de
individuos honestos, corruptos (de ambas bandas), y en el ostracismo, para diferentes elecciones
de los pardmetros o y 8. Se puede ver que la fracciéon de poblacién honesta es sistematicamente
mayor en la situacién de convivencia (bisectriz) que en la situacién de supervivencia de una
tnica banda (cara), y ademds, se observa la condicién de estabilidad del punto fijo sobre la cara
comentado anteriormente y la biestabilidad existente cuando « > . De ahora en adelante nos
centraremos Unicamente en el comportamiento en el punto fijo de coexistencia de bandas, que es
la novedad de este modelo, porque la fenomenologia asociada al punto fijo con una tunica banda
ya ha sido desarrollada ampliamente en la bibliografia [5, 6].

5.2. Dinamica markoviana y simulaciones Montecarlo

Una vez estudiadas las ecuaciones del sistema que determinan la dindmica en campo medio,
pasamos a describir el comportamiento en redes. Para ello, hacemos uso del método de Monte-
carlo para simular la evolucién estocastica de un sistema formado por agentes que se relacionan
entre si. En cada paso temporal, todos los agentes interaccionan con sus respectivos vecinos y
modifican sus estados con ciertas probabilidades fijadas por su entorno:

= Un agente H, al interaccionar con un agente Cj, o Cy tiene una probabilidad « de co-
rromperse. Ademaés, dado que en cada paso temporal todos los agentes interaccionan con
todos sus vecinos, cabe la posibilidad de que este agente H haya sido corrompido por
mas de un vecino al mismo tiempo. En ese caso, el estado final del agente se asigna a
la especie Cj, con probabilidad t(ne,,, ne,,) = Ne,, /(Ne;,, + Ney, ), donde ng, representa el
nimero de eventos corruptivos exitosos de la especie Cy, o a la especie C's; con probabilidad

t(ncst’ nCin) =1- t(ncma ncst)'

» Un agente Cj, (Cy), al interaccionar con un agente Cy (Cjy,), tiene una probabilidad 5 de
ser delatado. Al interaccionar con un agente H, tiene una probabilidad 5 - B(N,, , N,,)
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(B : B(NcstaN

Cin

)), donde N, es el nimero total de agentes de la especie Cy, presentes en

la red.

= Un agente O tiene una probabilidad r de ser reintegrado en la sociedad como H, indepen-

dientemente de su entorno y sus interacciones.

Vemos asi que en la delacién interviene por un lado el vecindario del agente corrupto, que
puede delatarle, y por otro la situacién global de la red, que determina la probabilidad de delacion
por parte de los agentes honestos. En cambio, la corrupcién sélo depende del entorno cercano.
Teniendo esto en cuenta, dada una red {o;} (0; = H, Cyy, Cgt, O) formada por N agentes, cuyas
relaciones se encuentran codificadas en la matriz de adyacencia A;; (A;; = 1 si los agentes son
vecinos, A;; = 0 si no lo son), las probabilidades totales de corrupcion (f,) y delacién (fg) del

agente 7 son:

fa(i,O'j) =1-

=

[1— aAij(6s,,010 + 00;,00)] (46)
j=1

=

fﬁ(i,O‘i = Cm, O‘j) =1- [1 — ﬁAU (50].’0“ + B(Ncmv Ncst)50j7H)] . (47)

j=1
La probabilidad de delacién para los agentes Cg; se obtiene a partir de la de los agentes Cj,,
intercambiando Cj,, <> Cy;.

A este esquema de interaccion en términos de una simulacién Montecarlo se le puede asociar
directamente un proceso Markoviano, en el que el estado de cada nodo se ve descrito por la
probabilidad de que éste pertenezca a cada una de las especies en un momento determinado.
Asi, a cada agente i en un instante t se le asigna un vector p(i;t) de componentes:

p(ist) = (pn(i5t), pei, (51), pey, (i51), polist)) (48)

donde p,(i;t) representa la probabilidad de pertenecer a la especie z. La evolucién temporal
de las probabilidades del agente i viene determinada por las interacciones con sus vecinos, y se
describe facilmente mediante una matriz Q tal que pl(i,t + 1) = Q p(i,t), donde:

1— fa 0 0 T
at (45 Cin, Cs 1- 3 Cin 0 0
Q _ f t(Z t) fﬁ(z ) . ’ (49)
fat(z;csbcin) 0 1-—- fﬁ(ucst) 0
0 f5(i; Cin) f5(3; Cst) L—r

y fp(i; C;) representa el ratio de transicién entre p.; y p, del agente 4. Las expresiones de estos
ratios y la funcién de combate toman la forma:

N
fa(iv {ﬁ(j)}) =1- H [1 - aAij (pCln(]) + pcst(j))] ’ (50)
j=1
N
fﬁ(iv {ﬁ(])}, Cm) =1- H [1 - ﬁAz] (pcst(j) + B(pgnvpgt)ph(j))] ) (51)
j=1
Pes, (0)

t(Cin, Cst) = 5 (52)
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donde pz; representa la fraccién total de la especie C; en el sistema, y pz; (i) representa la fraccién
total en el entorno del agente i. La aplicaciéon de la dindamica markoviana en este sistema nos
permite obtener resultados libres de los fenémenos estocéasticos que gobiernan las simulaciones
Montecarlo. Dado que trabajamos en términos de las probabilidades de pertenencia a una u otra
especie que varian en el tiempo segin las probabilidades de contagio, estamos contemplando
simultdneamente el éxito o fracaso de todos los posibles eventos infectivos, y por tanto, todas
las posibles vias de evolucion del sistema. En este sentido, la dindmica markoviana representa
el promedio de infinitas simulaciones Montecarlo, dando una valiosa informacién acerca del
comportamiento del modelo.

Una vez descritas las reglas anteriores para la aplicacién del modelo en redes, pasamos a
estudiar los resultados. En primer lugar, recurrimos a una red regular aleatoria (RRN por sus
siglas en inglés) para comparar los resultados obtenidos en el apartado anterior en aproximacién
de campo medio. En este tipo de redes todos los nodos tienen el mismo grado k, y ademas el
sistema carece de estructura espacial definida: los links se reparten aleatoriamente entre todos
los nodos (conservando su grado), de manera que la distancia entre dos nodos cualesquiera, es
decir, el nimero de nodos intermedios que debemos atravesar para llegar de uno a otro, es muy
pequenia en comparacién con el tamafo total de la red. En este sentido, se habla también de
redes de mundo pequeno [8] (ver inset de la Figura 5d, donde se muestra un ejemplo de RRN).
La red que utilizamos en este trabajo estd formada por 10000 nodos de grado & = 4, y esta
caracterizada por un didmetro de 11 y una distancia promedio entre nodos de 7.7, es decir: la
mayor distancia minima que separa dos nodos cualesquiera de la red es 11, y la separacién media
minima entre dos nodos cualesquiera es 7.7. La cercania entre todos los nodos de la red y su
homogeneidad de grado hace esperar que su comportamiento se asimile al predicho en campo
medio, cuya principal asuncién es que el vecindario de un nodo es igual a la composicién global
del sistema, y que todos los nodos tienen un mismo niimero de vecinos en promedio.

En la Figura 5 se observan las fracciones de poblacién honesta en el equilibrio que se ob-
tienen al aplicar las dindmicas descritas anteriormente sobre la RRN que hemos comentado.
Salvo que se indique lo contrario, todos los resultados en redes se han obtenido como promedio
de 100 realizaciones del sistema para cada punto. Destaca el buen ajuste entre las predicciones
de campo medio y los resultados obtenidos con la dindmica markoviana, aunque se producen
algunas desviaciones apreciables para ciertos rangos de a y 8. En concreto, cuando las fracciones
de poblacién honesta son relativamente pequenas, la dindmica markoviana se aleja del compor-
tamiento campo medio en favor del comportamiento que muestra el sistema bajo simulaciones
Montecarlo. Este efecto se hace méas pronunciado cuanto menor es la fracciéon honesta total.
Una desviacién de este estilo en la dindmica markoviana es un indicio de que la estructura de
red sobre la que implementamos el modelo tiene una influencia clara y no despreciable en la
dindmica del sistema, que el campo medio es incapaz de contemplar. El hecho de que, ademas,
estas desviaciones coincidan casi a la perfeccién con el comportamiento de las simulaciones Mon-
tecarlo en algunas zonas, indica que el mecanismo subyacente que da lugar a la desviacién es
comun para ambos. Ademds, este fenémeno de desviacién en Markov no se da en el modelo
HCO, por lo que debe estar intimamente relacionado con la presencia de dos bandas corruptas
y el mecanismo de delacién modificado.

También es reseniable el hecho de que este comportamiento aparezca en una RRN, que es
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Figura 5: Fraccién de poblacién honesta (azul), corrupta total (roja) y en el ostracismo (gris) en el
equilibrio, para r = 0.5, k = 4. (a) Resultados de campo medio para § = 0.5, en funcién de «. (b)
Resultados de campo medio para o = 0.5, en funciéon de . Se muestran las fracciones sobre la cara,
cuando sélo sobrevive una banda corrupta (linea punteada) y sobre la bisectriz, cuando conviven ambas
bandas (linea continua). Mostramos también la fraccién honesta total sobre la bisectriz en RRN en funcién
de (¢) a y (d) B, y sobre redes lattice en funcién de (e) a y (f) 5. Ambas redes tienen 10000 nodos de
grado k = 4 con r = 0.5, para Markov y Montecarlo. Se compara con el resultado en campo medio. Los
resultados se han promediado sobre 100 ejecuciones para cada valor de o y 8 mostrado, con condiciones
iniciales (pn, Pe;p s Pers) = (0.4,0.3,0.3). En el caso de Markov, las fracciones iniciales en cada nodo son
aleatorias, pero dando lugar a la misma fraccién global. Inset: esquema de (d) una RRN y (f) una lattice.

el tipo de red que mas se asemeja al campo medio por sus caracteristicas. En este contexto,
nos preguntamos qué ocurre al implementar el modelo HCCO sobre una red con estructura
espacial bien definida, en la que las distancias entre nodos pueden hacerse extremadamente
grandes y el aspecto de las vecindades puede, por tanto, variar mucho entre distintas zonas
de la red. Esta red es la red cuadrada plana o lattice, que en su formulacién estdndar estd
formada por nodos de un mismo grado k = 4 conectados dando lugar a una cuadricula (ver
inset de la Figura 5e, donde se muestra una red lattice). Los resultados obtenidos se muestran
también en la Figura 5, donde podemos ver que las diferencias entre el comportamiento campo
medio y Montecarlo se acentiian, asemejandose de manera clara la dindmica markoviana a este
ultimo en un buen rango de valores de a y 3. Estos resultados parecen mostrar que la existencia
de correlaciones espaciales en la red acentia las desviaciones de los comportamientos respecto
del campo medio, ya de por si presentes incluso en redes con estructuras muy poco definidas.
Debemos identificar los mecanismos de interaccién entre nuestro modelo y la red que dan lugar

a estos comportamientos.



5.2.1. Segregacion

Estudiamos entonces los entornos locales de los nodos para encontrar las desviaciones res-
pecto del comportamiento campo medio. Para ello, podemos definir una métrica que compare la
composicién del vecindario de una especie determinada con la composicion que deberia tener en
caso de que la poblacion se distribuyese de manera homogénea. Esto se concreta en una medida
ozy que da idea de la segregacién que existe entre agentes de la especie x respecto de agentes
de la especie y, es decir, cuanto se desvia el vecindario de los agentes x en términos de agentes
y respecto al caso de poblacién homogénea. Si el valor de esta métrica es menor que 1, esto
significa que la especie z tiene, en promedio, un menor nimero de vecinos de la especie y de los
que deberia, y diremos que ambas especies estan disgregadas. En cambio, si es mayor que 1, el
vecindario de los agentes x estard compuesto por mas agentes y que los que corresponderia en
promedio, y decimos que ambas especies estan agregadas. Noétese que las especies x e y pueden
ser la misma, y en ese caso mediremos la segregacion de una especie consigo misma.

Matematicamente, esto se concreta de la siguiente manera en el caso de simulaciones Mon-
tecarlo: para todo agente ¢ que pertenezca a la especie x, contamos su nimero de vecinos de la
especie y, ny, y lo dividimos por el producto entre su grado k; y la fraccién total de agentes y
presentes en la red py. Promediamos finalmente este valor sobre todos los agentes x:

MC _
Oy o7 Z k; (53)
Py i1
donde hemos supuesto que cada agente puede tener un grado diferente. En el caso concreto de
redes homogéneas en las que todos los nodos tienen el mismo grado, que son las utilizadas en el
trabajo, la expresion anterior se puede simplificar, dando lugar a:

MG lay 1 gy N

- = 54
75 T N, pTk N, Nk’ (54)

donde [, representa el nimero total de enlaces entre agentes de la especie x y de la especie ,
y hemos usado que pz; = N,/N. Es evidente entonces que, en este caso concreto, oy = 0yy.
En el caso de la dindmica markoviana resulta un poco méas complicado definir esta métrica,
teniendo en cuenta que cada nodo contiene fracciones de todas las especies. Por tanto, en el
calculo de las métricas sumamos las fracciones ,0; de todos los vecinos del agente i , y pesamos
la contribucién de cada agente i a la métrica total por su fraccién p,. De esta manera, la expresion

resulta:
Z
MK _ y
Ty Z 2P T NE T T Zpypx ’ (55)
prp — g Nkp Py =
donde la ultima igualdad se cumple en el caso de redes homogéneas. Vemos asi que en este caso
también se cumple O'MK g{f

Nos centramos fundamentalmente en el estudio de las métricas entre bandas corruptas,
Ocimcin ¥ Ocin.cer» Dara caracterizar las interacciones que se producen al incluir dos bandas en
el modelo. Los resultados de la dindmica markoviana y de Montecarlo, tanto en RRN como en
lattice, se muestran en la Figura 6. En primer lugar, los resultados de simulaciones Montecarlo
muestran una segregacién muy acusada entre bandas, de manera que los agentes de una banda
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Figura 6: Métricas de segregacién entre bandas. (a) Resultados para 8 = 0.5. (b) Resultados para o = 0.5.
Arriba: métricas de agregacién de una banda (azul oscuro) y de segregacion con la banda contraria (rojo
oscuro), en el caso de Markov y Montecarlo, para RRN (lineas continuas) y lattice (lineas discontinuas).
Abajo: Resultados de la agregacién de una banda en RRN, para distintos valores de grado k de la red,
para (a3,b3) Markov y (a4,b4) Montecarlo.

tienden a rodearse en gran medida de agentes de su misma banda (o, ., > 1), y se alejan
mucho de los de la banda contraria (o,, ¢, < 1). Ademds, esta segregacién es mucho més pro-
nunciada en redes lattice que en RRN, lo que resalta la importancia de la estructura espacial.
Estos resultados implican que, en redes, la dinamica del sistema es tal que las bandas corruptas
se segregan dando lugar a entornos locales diferentes a la estructura general de la red, y por
tanto los resultados no se asemejan a los obtenidos en campo medio.

FEl estudio de la dindmica markoviana muestra claras diferencias entre una primera region
del espacio de parametros en la que los resultados coinciden con campo medio, y la regién en la
que se asemejan al comportamiento Montecarlo. En un principio, cabe esperar que la dindmica
markoviana sea tal que las probabilidades en cada nodo en el equilibrio sean iguales a las de los
demads nodos, e iguales a las fracciones en el equilibrio predichas por campo medio. Esta situacion
corresponde al caso en el que la composicién del entorno de cualquier agente del sistema es igual
que la del campo medio, y por tanto, las métricas 0., deben ser iguales a 1. En efecto, esto es
lo que se observa en la primera regiéon. En cambio, en la regiéon en la que el comportamiento se
asemeja al obtenido por Montecarlo, las métricas indican también la presencia de segregacion
entre bandas. Estos resultados son mucho méas pronunciados en el caso de redes lattice que en
RRN, al igual que ocurria en las simulaciones Montecarlo.

Una alteracién como esta en los entornos de los agentes de la red explica las desviaciones en
las poblaciones finales de cada especie, al dificultar el mecanismo de delacion entre diferentes
bandas. Se trata ademas de un efecto atribuible tnicamente a la estructura de la red, y por

tanto imposible de observar en campo medio. No obstante, sabemos que el comportamiento de
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Figura 7: Configuraciones lattice correspondientes a simulaciones Montecarlo del modelo HCCO. Se
muestran las cuatro especies: honestos (azul), corruptos Cj, (verde), corruptos Cs; (naranja) y en el
ostracismo (gris). Las configuraciones corresponden a (a) 8 = 0.2 < B¢ (b) 8 = 8. = 0.26 y (¢)
B8 =0.5> 0.

los modelos sobre redes se asemejan mas al comportamiento campo medio cuanto mayor es el
grado de la red, porque en una red mas interconectada, los entornos de los agentes se asemejan
mas entre ellos. Podemos estudiar entonces como se comporta la segregacion variando el grado.
Los resultados se muestran también en la Figura 6, y podemos observar claramente que conforme
aumenta el grado, la segregacién disminuye, llegando incluso a desaparecer por completo para
valores elevados de k.

5.2.2. Visualizacién de la segregacion

El hecho de que este fenémeno de segregaciéon venga provocado por la red subyacente su-
pone que no pueda ser explicado en términos analiticos. Para arrojar luz sobre los mecanismos
causantes, podemos aprovechar el hecho de que la lattice tiene una representacién espacial bien
definida que nos permite visualizar la composicién de la red, para ver las distribuciones locales
de cada especie. Representamos asf en la Figura 7 tres configuraciones Montecarlo de una lattice
en equilibrio, tomadas para diferentes valores de o y 3, aunque todas corresponden a situaciones
de convivencia entre bandas. La Figura 7c corresponde a un valor de $ mayor, y por tanto tiene
una mayor fraccién total de honestos. A simple vista se aprecia el fendmeno de segregacién que
hemos descrito, mediante la existencia de dos grandes grupos o agregados distribuidos en regio-
nes diferentes del espacio correspondientes a ambas bandas corruptas, y una frontera en medio
rica en agentes honestos y en el ostracismo. En el caso de § = 0.2 (Figura 7a), la totalidad de
los agentes honestos y en el ostracismo se sitiian en la frontera o cerca de ella, mientras que en el
caso de = 0.5 (Figura 7c), se encuentran distribuidos mds o menos homogéneamente por toda
la red. Esto implica que existe cierto valor critico . a partir del cual los honestos son capaces de
penetrar en los agregados corruptos, y sobrevivir por si mismos en el interior. Este valor critico
se situa en torno a B, = 0.26, como se observa en la Figura 7b, donde se ve que algunos agentes
honestos son capaces de sobrevivir dentro de los grupos corruptos.
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Figura 8: Configuraciones lattice correspondientes a la dindmica markoviana del modelo HCCO. Se
muestran las fracciones de las especies (a,d) Cyn, (be) Cs y (c,f) H, presentes en cada nodo. Las
configuraciones corresponden a (a-c) 8= 0.2 < ., y (d-f) 8 =0.5 > S..

Un fenémeno similar ocurre en el caso de Markov. Podemos ver en la Figura 8 que, para
una eleccion de parametros en la que se produce segregacién, aparecen dos grupos de corrup-
tos diferenciados separados por franjas ricas en honestos. Ademds, no se produce convivencia
entre bandas en el interior de estos agregados corruptos, es decir, los nodos del interior de los
agregados sélo contienen fracciones corruptas de una banda, y los pocos nodos que contienen
de ambas bandas se ven confinados a una pequenia regién de frontera. Para diferentes elecciones
de los pardmetros, las fracciones de honestos en el interior de los agregados corruptos, que son
aproximadamente homogéneas, van aumentando o disminuyendo hasta cierto valor limite 3. en
el que desaparecen por completo, como vemos por las diferencias de color entre ambos casos.
Cabe destacar también que las fracciones corruptas disminuyen conforme aumenta ( por este
fenémeno de penetracion de honestos en los agregados, y no por la aparicién de la otra banda
minoritaria.

Estas estructuras que observamos al analizar la composicién espacial local de la red plantean
dudas razonables acerca de los mecanismos que rigen en ultima instancia la composicion global
del sistema. Como hemos comentado, el hecho de que ambas bandas formen grandes agregados
con una interaccién minima en su frontera supone una desviacién evidente respecto de la filosofia
original del modelo, en la que las interacciones entre bandas provocaban excesos de honestos con
respecto al modelo HCO. Por tanto, para explicar correctamente el comportamiento en redes
debemos atender a las caracteristicas locales, lo que nos lleva a tener en cuenta dos hechos
importantes: primero, por el planteamiento del modelo, cuando las fracciones de corruptos de
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una y otra banda son muy similares, ambos grupos se ven delatados por honestos con casi la
misma probabilidad. Segundo, el comportamiento del sistema en el interior de los agregados
corruptos, donde tnicamente hay presencia de una banda, ignora los mecanismos de delacién
cruzada entre bandas. Estas dos propiedades llevan a pensar que la dindmica que se desarrolla
en el interior de los agregados corruptos se asemeja a un modelo HCO, y no a un HCCO como
esperabamos.

Hay varias maneras de validar esta suposicién. En primer lugar, hemos visto que existe cierto
umbral S., tanto en los resultados de Markov como en los de Montecarlo, que separa el caso
en el que los agentes honestos se ven confinados a la frontera y el caso en el que consiguen
penetrar en los agregados corruptos. Es razonable pensar que esta transiciéon se debe producir
cuando el valor de 8 sea tal que la situacion de convivencia de agentes honestos y corruptos
sea estable en el modelo HCO. En efecto, en la Figura 9a se puede ver claramente el cambio
de comportamiento en la fraccién total de honestos que se produce en el umbral de estabilidad
del punto de convivencia del HCO, dado por la aparicién de agentes honestos en el interior de
los grupos. El pequeno exceso de agentes honestos para § < 5. se debe tinicamente al efecto de
frontera que genera un fondo continuo de delaciones. Para valores pequenos de § por encima de
Be¢, la fraccién total de honestos es pequena y el comportamiento en Markov y Montecarlo sufre
ligeras desviaciones respecto al comportamiento del modelo HCO. Sin embargo, para valores
mayores de [, el comportamiento markoviano termina encajando casi a la perfeccién con el
obtenido en el modelo HCO, salvo por las pequenas desviaciones debidas a la frontera.

Algo distinto ocurre en el caso de simulaciones Montecarlo. Se puede observar que para
valores de § grandes, la fraccién de honestos en el modelo HCCO es menor que la que se obtiene
en el caso del HCO. Este resultado va ademaés en contra de las predicciones de campo medio,
en las que la fraccion de poblacién honesta debia ser siempre mayor debido al mecanismo de
delacion cruzada entre bandas, que desaparece por el fenémeno de la segregacién. Cabe recordar
que la convivencia entre bandas es un resultado del mecanismo de delacién selectiva por parte
de los honestos, que deciden no castigar a la banda minoritaria con el objetivo de que ésta les
ayude a delatar a la mayoritaria. El hecho de que ambas bandas se repartan en diferentes zonas
en la red invalida en gran medida la supuesta utilidad de la convivencia para los honestos, que
ahora se ven compitiendo como si se tratase de un modelo HCO, pero delatando a una de las
bandas con una probabilidad menor de la que deberia en cada paso temporal. Por tanto, en una
red lattice la estrategia de delacion inteligente consistiria en delatar a ambos grupos por igual
hasta exterminar a uno de ellos, alcanzando entonces un modelo HCO genuino.

Los resultados anteriores muestran claramente que en las simulaciones Montecarlo se produ-
cen situaciones analogas al HCO. Ahora, para terminar de validar que, ademaés de la segregacion,
el comportamiento HCO también esta presente en Markov, podemos estudiar la distribucién es-
pacial de las fracciones honestas de los nodos. Para ello, realizamos los histogramas que se
muestran en la Figura 9 correspondientes a las configuraciones detalladas en los inset, que indi-
can la frecuencia con la que aparecen nodos con cierta fraccién pp. Podemos ver que, si bien las
distribuciones abarcan varias composiciones posibles, se dan picos claros en la posicién corres-
pondiente a las poblaciones en el equilibrio del modelo HCO en campo medio, pECO = 0 cuando
B=02<f,y pgco = 0.33 cuando B = 0.5 > fB.. El primer caso corresponde a la situacién
en la que el punto fijo Full C es estable, y por tanto no deberia haber, en principio, fracciones
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Figura 9: Red lattice. (a) Fraccién de poblacién honesta en funcién de 8 para o = 0.5. Se muestran
los resultados en el modelo HCO de simulaciones Markov (linea verde) y Montecarlo (linea roja), y sus
contrapartes en el modelo HCCO (Tridngulos verdes y circulos amarillos, respectivamente). La linea negra
vertical marca la transicién de estabilidad del modelo HCO en lattices, en 8. = 0.26. Los rectangulos
azules muestran dos elecciones de 3, por encima y por debajo de la critica, en los que estudiamos la
distribucién de las poblaciones en la red mediante histogramas del nimero de nodos con cierta fraccién
honesta: (b) histograma para a = 0.5, § = 0.2, (c¢) histograma para a = 0.5, # = 0.5. Ambos histogramas

corresponden a las configuraciones que se muestran en los inset. Las lineas verticales azul oscuro marcan

el valor obtenido por campo medio en el modelo HCO, que se detalla en las etiquetas p,}llco.

honestas. Sin embargo, vemos que aparecen poblaciones no nulas en la red que se distribuyen
a lo largo de la frontera, dando lugar a un pico secundario para la fraccién de honestos que se
produce justo en el punto medio entre bandas. Algo similar ocurre en el segundo caso, en el que
la fraccion de honestos mayoritaria resulta ser, de nuevo, la correspondiente a las predicciones
campo medio del modelo HCO.

Sabemos entonces que, en efecto, se produce una segregaciéon entre bandas que da lugar
a comportamientos HCO. Si bien las consecuencias directas de lo anterior se pueden entender
facilmente, en principio la comprensién del origen de este fenémeno es mas complicada. Podemos
dar una explicacién cualitativa para justificarlo, basada en propiedades del modelo. En concre-
to, sabemos por los resultados del modelo HCCO sin delacion selectiva que las interacciones
entre bandas imposibilitan su convivencia, y el inico punto fijo estable se da en la situacién de
supervivencia de una banda. Por tanto, en un entorno local en el que coexistan ambas especies
corruptas con algunos agentes honestos que las delaten por igual (como es el caso del modelo que
utilizamos en este trabajo, en el que la delacién selectiva no tiene casi efecto si la poblacion de
ambas bandas es muy similar) necesariamente una de las dos debe desaparecer. En este sentido,
podriamos identificar el comportamiento del sistema en subregiones de la red como si se tratase
del HCCO sin delacién selectiva (en el que habria una probabilidad de delacién efectiva algo
menor que f3, pero igual para ambas bandas), suponiendo que el cambio de composicién de ese
subsistema no afecta al sistema global lo suficiente como para alterar en gran medida las proba-

bilidades de delacion por parte de honestos. De esta manera, en las subregiones se impondra una
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Figura 10: Red regular aleatoria (RRN). (a) Fraccién de poblacién honesta en funcién de 5 para a = 0.5.
Se muestran los resultados en el modelo HCO de simulaciones Markov (linea verde) y Montecarlo (linea
roja), y sus contrapartes en el modelo HCCO (Tridngulos verdes y circulos amarillos, respectivamente).
La linea negra vertical marca la transiciéon de estabilidad del modelo HCO en RRN, en . = 0.24.
Los rectangulos azules muestran dos elecciones de 3, por encima y por debajo de la critica, en los que
estudiamos la distribuciéon de las poblaciones en la red mediante histogramas del nimero de nodos con
cierta fraccién honesta: (b) Histograma para o = 0.5, 8 = 0.2, (¢) histograma para o = 0.5, 8 = 0.5.
Las lineas verticales azul oscuro marcan el valor obtenido por campo medio en el modelo HCO, que se
detalla en las etiquetas pgco_ El histograma (c) muestra que todos los nodos tienen una misma fraccién
honesta, y corresponde al caso del comportamiento campo medio del sistema HCCO.

banda u otra, dependiendo de qué banda tenga una poblacién mayor en la region. La explicacion
en el caso de Markov es similar: pequenos excesos en la poblacién de una u otra banda pueden
dar lugar a zonas de supervivencia de una tnica especie corrupta.

Los resultados mostrados hasta ahora describen correctamente el comportamiento en el caso
de una lattice, pero el fenémeno de segregacion es comun a otras redes con estructuras espaciales
mucho menos definidas o incluso inexistentes, como hemos visto en el caso de RRN. Cabe pre-
guntarse entonces si las desviaciones que se producen en este caso también se pueden entender
como efectos debidos a la aparicién de regiones de la red donde se desarrolla el modelo HCO.
Para ello, representamos de nuevo en la Figura 10a las poblaciones de honestos en Markov y
Montecarlo en funcién de §, junto con las distribuciones obtenidas en el modelo HCO. Se puede
ver ahora que no existe relacién aparente entre el umbral 5. del HCO y el comportamiento en
el modelo HCCO, poniendo en duda que este efecto sea relevante. No obstante, para valores de
B elevados las fracciones de poblacién honesta en simulaciones Montecarlo del modelo HCCO
coincide casi a la perfeccién con los resultados en HCO. En realidad, se compensan dos efectos:
la disminucién de la delacién por parte de honestos debido al mecanismo de delacion selectiva,
y el aumento debido a la delacién cruzada entre diferentes bandas corruptas. Asi, la segrega-
cién muestra tener influencia en el desarrollo de la dindmica, pero no da lugar a regiones de
comportamiento HCO genuino.

Por otro lado, observamos también en la Figura 10 los histogramas de nodos con una deter-
minada fraccién pp correspondientes a dos configuraciones RRN en el equilibrio, con valores de
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B por encima y por debajo de la critica. En esta ocasién, las fracciones honestas se desvian cla-
ramente del valor obtenido en el HCO, y muestran ademas poblaciones mucho mas homogéneas.
En el caso de 8 = 0.5 no llega a producirse la segregacién, y se alcanza un estado completamente
analogo al campo medio del HCCO, en el que todos los nodos tienen las mismas fracciones de
poblacién. Por tanto, podemos concluir que no hay regiones de la red en Markov que se com-
porten como si se tratase de un modelo HCO. Por otro lado, estos resultados son esperables a la
luz del comportamiento de la segregaciéon que se muestra en la Figura 6, donde se ve que ambas
bandas corruptas siguen estando expuestas a fracciones no despreciables de la otra banda en
RRN, mucho més que en lattices.

Esta diferencia de comportamientos entre diferentes estructuras de red resulta llamativa,
teniendo en cuenta ademds que en ambas se produce segregacion entre bandas. Este fenémeno
debe ir necesariamente ligado a la aparicién de agregados corruptos de cada especie en los que,
en principio, siempre deberia desarrollarse un HCO. El hecho de que en RRN no aparezca este
comportamiento nos lleva a estudiar la estructura de los agregados corruptos que se forman para
descubrir las diferencias que den lugar al cambio de comportamiento, para lo que recurrimos a
los resultados en Montecarlo. En la Figura 11a se muestra el tamano del agregado de corrup-
tos mayor en funcién de [ teniendo en cuenta ambas bandas, obtenido como promedio de 50
ejecuciones. Este tamano se obtiene contando el nimero de agentes corruptos que pertenecen a
un mismo grupo continuo, y seleccionando el grupo continuo con mayor nimero de estos. Po-
demos ver que existen claras diferencias respecto al comportamiento en el caso de redes lattice
y RRN. Por un lado, la meseta que aparece para valores pequenos de 3 en la lattice indica que
los agentes corruptos se reparten en dos grandes grupos que dominan la red, y hasta que 5 no
supera el valor del umbral de HCO, S, ~ 0.26, estas agregaciones no decaen. A partir de ahi,
los agentes honestos aumentan en numero, y se van uniendo hasta formar un gran grupo que
atraviesa la red representando una buena fraccion de la poblacion total. Por otro lado, en RRN
vemos que, si bien los agregados comienzan siendo muy grandes para 8 < f., disminuyen de
tamano rapidamente, teniendo los agregados mayores en torno a la mitad de tamano que en el
caso de la lattice cuando 8 = (.. Ademas, el crecimiento del grupo mayor de honestos comienza
mucho antes que en el caso anterior.

Los resultados parecen indicar por tanto que no existen, en principio, limitaciones al desa-
rrollo del comportamiento HCO en el caso de RRN, porque grupos de corruptos de en torno a
2000 individuos deberian ser capaces de albergar en su interior esta clase de comportamiento sin
intervencién de la banda rival. Sin embargo, el tamano del grupo no es lo inico que determina
el comportamiento en el interior de éste, sino que también debemos tener en cuenta los efectos
de frontera. Para ello, representamos de nuevo en la Flgura 11b el tamano del agregado mayor
en la misma escala que antes, pero en esta ocasién contabilizando tinicamente aquellos agentes
que se encuentren completamente rodeados por agentes de su misma especie. De esta manera,
eliminamos en primera aproximacion el efecto directo de frontera, y podemos comparar los in-
teriores de los grupos. Las diferencias de comportamiento son evidentes: mientras que en redes
lattice los agregados corruptos contienen en su interior espacio suficiente como para desarrollar
comportamiento HCO, en el caso de RRN préacticamente la totalidad de los agentes se encuen-
tran en la frontera. Por tanto, la dindmica viene dominada por interacciones entre bandas y con

honestos, incluso cuando éstos no deberian estar presentes segiin un modelo HCO. Asi, aunque
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Figura 11: Tamano del agregado mayor de la especie H, y el mayor de las especies C;,, y Cs, obtenidos
como promedio de 50 ejecuciones para cada valor de 5. (a) Tamano mayor teniendo en cuenta todos
los agentes de una misma especie que forman un grupo continuo. (b) Tamano mayor teniendo en cuenta
unicamente aquellos agentes que se encuentren completamente rodeados por agentes de su misma especie.

la segregacién entre bandas esté presente y juegue un papel importante en la composicion final
del sistema, no es suficiente como para romper el modelo HCCO en dos modelos HCO.

Estas diferencias de comportamiento se explican por la estructura espacial subyacente de
ambas redes. La RRN tiene la propiedad de mundo pequeno, que hemos comentado al principio,
segun la cual la distancia entre dos nodos cualesquiera de la red, en términos del niimero de nodos
que hay que atravesar para ir de uno a otro, es mucho menor que el tamano total. Esto quiere
decir que dos agentes cualquiera de una misma especie o de especies diferentes se encuentran,
de media, mucho més cerca que si formasen parte de una lattice. La consecuencia directa es
que es imposible formar regiones del espacio dominadas por una banda en las que se puedan
ignorar efectos de frontera, porque siempre habra agentes de la otra banda en las cercanias que
alteraran la dindmica. En definitiva, podemos entender las RRN como sistemas en los que sélo
hay frontera, provocada por la segregacién de las bandas y las pequenas distancias entre agentes.

Los mecanismos que dan lugar a la formacién de fronteras son, por tanto, iguales en RRN
y lattice, y la unica diferencia es la capacidad de producir grupos corruptos lo suficientemente
grandes. Esto tiene también influencia en el comportamiento markoviano del sistema, como
podemos ver en la Figura 6, atenuando y retrasando la aparicién de la segregaciéon en RRN.
La explicacién cuantitativa de este fenémeno, y concretamente de la existencia de un umbral
que separa las regiones de pardmetros en los que se produce o no segregacién, no es sencilla,
y queda abierta para futuras investigaciones. Puede estar relacionada con la fraccion total de
honestos en la red y el parametro « de corrupcion: para que las poblaciones de corruptos puedan
homogeneizarse dando lugar a comportamiento campo medio, es necesario que los corruptos
de una banda consigan expandirse lo suficiente sobre nodos vecinos dominados por la banda
contraria en cada paso temporal, de manera que al final ambas bandas logren un equilibrio
sobre cada nodo. Para ello, es necesario que haya una fracciéon honesta suficiente en el agente

vecino y un parametro « elevado que permita compensar las pérdidas por delacién. Cuando
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alguna de estas dos condiciones no se cumpla, una de las especies tendra que retroceder frente
a la otra hasta alcanzar una regién del espacio en la que puedan competir, dando lugar a una

frontera que separara dos zonas en las que no se producird convivencia.

6. Conclusiones

En este trabajo hemos explorado la generalizacion directa del modelo HCO, en el que se trata
la corrupcién como si fuese un estado infectivo, al caso en el que dos bandas corruptas diferentes
compiten. Hemos visto que no puede darse la situacion de convivencia de bandas corruptas,
y eventualmente se alcanza siempre un estado de supervivencia de una unica banda regido
por el modelo HCO. Para solventar este problema, modificamos el modelo de manera que los
honestos delaten con menor probabilidad a los corruptos de la banda minoritaria que a los de la
mayoritaria, cuando su diferencia de poblacién sea lo suficientemente grande. De esta manera, la
banda minoritaria se ve beneficiada y es capaz de crecer hasta competir con la mayoritaria. Asi,
el modelo HCCO modificado da lugar a un punto fijo siempre estable de convivencia de bandas,
y dos puntos fijos, estables para determinadas combinaciones de pardmetros, de supervivencia
de una tunica banda. Existen por tanto situaciones de biestabilidad en la red, en las que la
composicién final del sistema viene tnicamente determinada por la poblacién inicial.

Los resultados obtenidos mediante aproximacion de campo medio muestran que la poblacion
honesta en el caso de convivencia de bandas es sistemdaticamente mayor que en el caso de
supervivencia de una tunica banda. Esto se debe a que los corruptos de ambas bandas ayudan
a la creacién de nuevos honestos mediante el mecanismo de delacion cruzada, y por tanto la
existencia de dos bandas que compiten por un mismo sistema resulta beneficiosa para los honestos
justificando asi la modificacién del modelo desde un punto de vista inteligente: el honesto puede
decidir no delatar a un corrupto minoritario en busqueda del mejor resultado global.

La implementacién sobre redes del sistema da lugar a resultados diferentes segiin su topo-
logia. En el caso de redes regulares aleatorias, que poseen la propiedad de mundo pequeno, la
dindmica da lugar a resultados muy similares a los predichos en campo medio, siendo mayores
las desviaciones en el caso de simulaciones Montecarlo. En cambio, la implementacion del mo-
delo en redes lattice muestra un comportamiento que difiere claramente de los anteriores, dando
lugar a poblaciones muy diferentes. La representacion visual de algunas de las configuraciones
de equilibrio de sistemas lattice da la pista de los mecanismos que provocan estas desviaciones:
la aparicién de grandes agregados corruptos que segregan las bandas en regiones diferenciadas
de la red.

Este fenémeno se puede entender teniendo en cuenta que, cuando ambas bandas tienen la
misma poblacién, se ven delatadas por igual por parte de los agentes honestos. Entonces, si
dividimos el sistema en regiones pequenas en las que una de las bandas sea mayoritaria, en
principio la evolucién sera la esperada segtin el modelo HCCO sin delacion selectiva, en el que
los honestos delatan por igual a ambas bandas siempre. Por tanto, en esta region del espacio
Unicamente sobrevivira una de las bandas, y estas terminaran segregandose en grandes grupos.
La supervivencia de ambas en el sistema global viene garantizada por la asimetria en la delacién
por parte de los honestos.
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Para cuantificar la formacion de estos agregados, se han propuesto unas métricas que miden
la desviacion de la abundancia de cierta especie en el entorno de otra especie con respecto al
promedio de la red. Si esta métrica es mayor que 1, entonces ambas especies se encuentran
agregadas, y si es menor, se encuentran disgregadas. Estas métricas nos permiten observar que
la segregacién no sélo esta presente en caso de redes lattice, sino también en RRN, y las pequenas
desviaciones poblacionales observadas en este caso son atribuibles a ella. Hemos visto también
que la segregacion disminuye conforme aumenta el grado de la red, llegando incluso a desaparecer
por completo en el caso de Markov en RRN.

La aparicién de regiones en lattices en las que tnicamente se desarrolla una de las bandas
da lugar a comportamientos tipo HCO que dominan la dindmica, y relega la interaccién entre
bandas a una pequena regién de frontera con escasa influencia en el comportamiento global. Esto
provoca que las composiciones finales del sistema se acerquen mas a los resultados HCO que a
los de HCCO, al eliminar de manera efectiva la delacién entre bandas, uno de sus mecanismos
principales. Por otro lado, aunque este efecto también estd presente en RRN, por la propiedad
de mundo pequeno todo agente de una banda corrupta se encuentra muy cerca de cualquier otro
agente de la banda contraria, y el comportamiento de todo el sistema corresponde esencialmente
al de una frontera, sin llegar a producir un comportamiento HCO.

Por ultimo, merece la pena destacar que el fendémeno de la segregacién siempre penaliza a
los agentes honestos, que ven disminuida su fraccién en el sistema. En el caso de redes lattice, la
penalizacion es tal que llega incluso a empeorar los resultados con respecto al modelo HCCO sin
delacién selectiva, en el que los honestos delatan siempre a sus vecinos corruptos independien-
temente de su banda. Esto revela la importancia crucial que tienen los mecanismos de delacién
cruzada a la hora de valorar positiva o negativamente un posible cambio de estrategia en los
agentes honestos.

En definitiva, hemos comprobado que un sistema en el que conviven dos bandas corruptas
diferentes que compiten entre si muestra una gran riqueza en su comportamiento atribuible a
los nuevos mecanismos de interaccién entre ellas, y a la modificacion inteligente de la estrategia
delatora de los honestos. Las estructuras locales de la red han jugado también un papel fun-
damental en la dinamica del sistema, llegando incluso a separar de manera efectiva el modelo
HCCO de convivencia en dos modelos HCO situados en regiones diferenciadas de la red. Estos
resultados son un claro ejemplo de fenémenos emergentes, en los que los mecanismos locales de
un sistema condicionan su expresion global, y muestran el papel fundamental que juegan las es-
tructuras de red subyacentes a los modelos epidémicos, llegando incluso a invertir los resultados
de nuestras predicciones. Todo lo anterior invita a seguir explorando esta via haciendo uso de
nuevas topologias de red y nuevas modificaciones del modelo, para desvelar nuevos resultados
fruto de la competencia entre bandas corruptas.
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