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1. Abstract

En este trabajo abordamos el fenómeno de la corrupción desde una perspectiva infectiva, en

analoǵıa con modelos epidemiológicos tradicionales. Nos centramos en el estudio de los efectos

de la competencia entre dos estados corruptos o bandas diferentes, excluyentes entre śı, que se

disputan un mismo sistema. Para ello, establecemos en primer lugar unas reglas de interacción

entre agentes que dan lugar a estados estables de supervivencia de ambas especies corruptas,

según el estudio del comportamiento en campo medio. Se muestra también que la situación

de convivencia resulta beneficiosa para los agentes honestos, cuya población es mayor que en

el caso de sobrevivir una única banda. La implementación del modelo sobre redes homogéneas

muestra un efecto de segregación entre corruptos de diferentes bandas, dando lugar a regiones del

espacio donde habitan corruptos pertenecientes sólo a una de ellas, y que se puede caracterizar

matemáticamente mediante unas métricas que comparan los entornos locales de los agentes con

los globales. Dependiendo de las caracteŕısticas de la red subyacente, los grupos corruptos pueden

llegar a ser lo suficientemente grandes como para que el comportamiento en su interior se pueda

aproximar por el que tendŕıa el sistema si sólo existiese una banda, eliminando los beneficios de

la convivencia entre ambas.

2. Introducción

Toda comunidad humana está caracterizada por un conjunto de normas sociales, a menudo

expĺıcitamente regladas, aunque en ocasiones únicamente de carácter cultural, que se asumen

de obligado cumplimiento para todos los individuos que forman parte de dicha comunidad. La

violación de alguna de estas reglas conlleva una sanción, moral o penal, que tiene como objetivo

desincentivar los comportamientos asociales. Una de las conductas asociales paradigmáticas es la

corrupción en sus múltiples formas (económica, poĺıtica, administrativa...), que ha impregnado

todas las sociedades y culturas a lo largo de la historia, y que asumiremos merecedora de castigo.

En este trabajo identificaremos la honestidad como el cumplimiento de las normas sociales,

la corrupción como su incumplimiento, y el ostracismo como la sanción de la sociedad ante

comportamientos antisociales.

El estudio de la corrupción desde una perspectiva economicista (y por tanto matemática

en última instancia) se ha abordado desde los campos de teoŕıa de juegos y teoŕıa de juegos

evolutiva, en los que se concibe el comportamiento asocial como una estrategia que permite

obtener un beneficio frente al resto de individuos, y su propagación por la población se explica por

conductas egóıstas que buscan maximizar las ganancias individuales de los agentes [1]. De esta

manera, un individuo racional, dada una posibilidad de elección y unos criterios de maximización

de beneficios, podŕıa decidir adoptar un comportamiento corrupto. Este tipo de aproximaciones

da lugar con frecuencia a modelos muy complejos con gran cantidad de parámetros y estrategias,

que dificultan el estudio exhaustivo de la influencia de cada uno de ellos.

Otra perspectiva de gran importancia a la hora de estudiar los fenómenos colectivos de

comportamientos sociales, que no adolece de los problemas anteriores, se basa en establecer una

analoǵıa entre la propagación de estos comportamientos y la propagación de epidemias [2], campo
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tradicionalmente estudiado en el contexto de redes complejas. En este sentido, se puede entender

la conducta corrupta como una epidemia con sus mecanismos propios de contagio y recuperación,

y la población honesta como individuos susceptibles de ser corrompidos. No obstante, el estudio

de la propagación de comportamientos sociales como epidemias no se circunscribe al ámbito de

modelos de corrupción, sino que abarca una gran cantidad de fenómenos como la difusión de ideas

u opiniones, la segregación urbana o cultural, o la propagación de rumores [3, 4]. Sin embargo,

existen grandes diferencias entre los mecanismos propios de la propagación de enfermedades y

los de la propagación de fenómenos sociales, que deben ser debidamente incluidos y justificados

en los modelos.

Nuestro trabajo adopta esta última ĺınea de investigación para estudiar el comportamiento

de un sistema en el que se desarrolla la corrupción. Partiendo de investigaciones anteriores [5,

6] en las que se analiza la evolución de una población formada por agentes honestos, corruptos

y en el ostracismo (sancionados), planteamos ahora qué ocurre cuando en esta misma población

se dan dos conductas corruptas diferentes, enfrentadas y excluyentes. Necesitaremos entonces

definir unas nuevas interacciones entre individuos corruptos, y estudiaremos los efectos de la

existencia de competencia en el sistema, que se concreta en la existencia de dos gangs, o bandas.

La estructura de este trabajo es la siguiente: En la sección 3 se presentan brevemente los

modelos compartimentales, y en la sección 4 se discute el modelo original del que parte la

investigación, que se conoce como HCO. En la sección 5 se presenta la modificación del modelo

que es objeto de estudio, y que denominamos como modelo HCCO, y sus principales resultados

en aproximación de campo medio, simulaciones Montecarlo y dinámica markoviana. Por último,

en la sección 6 se discuten las conclusiones más importantes del trabajo.

3. Modelos compartimentales

El estudio de la propagación de enfermedades se ha abordado históricamente haciendo uso

de modelos compartimentales. Desde esta perspectiva, los diferentes estadios de una enfermedad

se dividen en secciones o compartimentos, que caracterizan aśı los estados posibles que puede

atravesar un agente. El estudio de la evolución de la enfermedad se basará entonces en dividir la

población del sistema en función de su estado infectivo, y definir unas reglas claras que regirán

el paso de estos agentes de uno a otro compartimento.

El ejemplo más sencillo de un modelo compartimental es el que se conoce como SIS (sano-

infectado-sano), en el que se consideran dos estados posibles: estar sano (S), o estar infectado (I).

Aśı, dividimos a la población en dos compartimentos, y podemos definir unas reglas sencillas que

gobiernan el paso de un compartimento a otro. Estas reglas deben ser reflejo de los fenómenos

infectivos reales que se produzcan en la enfermedad. Aśı, generalmente se establece que, en una

interacción entre un agente sano y un agente infectado, hay cierta probabilidad α de que el

infectado contagie al sano, en un proceso:

S + I
α−→ I + I , (1)

mientras que el paso de infectado a sano no requiere de ninguna interacción adicional, se produce
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espontáneamente con cierta probabilidad β:

I
β−→ S . (2)

Este es el modelo más simple de propagación de epidemias que podemos considerar, y puede

representar todas aquellas enfermedades en las que, tras haber superado un contagio, podemos

volver a contagiarnos inmediatamente, como es el caso de algunas enfermedades de transmisión

sexual como śıfilis o gonorrea. Una de las variaciones más importantes es el conocido como modelo

SIR (Sano-Infectado-Recuperado), en el que, tras haber superado la enfermedad, pasamos a un

estado no susceptible de contraerla de nuevo (recuperado) con probabilidad β, como ocurre con

la varicela, o el modelo SIRS (Sano-Infectado-Recuperado-Sano), en el que, tras un periodo de

tiempo en el estado no susceptible, podemos volver a contraer la enfermedad, como ocurre con

el virus de la gripe. Este último paso depende en general únicamente del tiempo transcurrido

desde la última infección, y por ello se suele modelizar con una probabilidad:

R
r−→ S . (3)

Ahora bien, los fenómenos de transición entre compartimentos de la propagación de epidemias

no tienen por qué explicar los mecanismos propios de la propagación de fenómenos sociales.

En este sentido, centrándonos en fenómenos como la propagación de ideas o rumores, se han

propuesto mecanismos alternativos al paso de un agente de un estado propagador de la idea (I) a

un estado no propagador ni susceptible (R) mediante interacción con otros agentes propagadores

[4]:

I + I
β−→ I +R . (4)

De esta manera, se establece que un agente podŕıa dejar de intentar propagar una idea si se da

cuenta de que otros agentes de su entorno ya la conocen. Este es un ejemplo claro de las diferen-

cias que aparecen al pasar de modelizar epidemias a modelizar fenómenos sociales. Veremos a

continuación cómo los modelos compartimentales anteriormente descritos deben ser modificados

para capturar los mecanismos caracteŕısticos de los fenómenos de propagación de la corrupción.

4. Modelo HCO

El modelo original [5, 6] trata de modelizar el fenómeno social de la corrupción a partir del

modelo SIRS comentado anteriormente, identificando la corrupción como un estado infectivo y

el ostracismo como un estado inmune al contagio. En este sentido, no se contempla la corrupción

como un mecanismo de rédito para el agente corrupto, y su difusión no se rige por ganancias

esperadas. Se desarrolla entonces un modelo compartimental formado por tres estados: Hones-

tidad (H), Corrupción (C), y Ostracismo (O), recibiendo aśı el nombre de modelo HCO. Los

agentes del sistema se distribuyen entre ellos, y son capaces de transitar de uno a otro mediante

interacción con otros agentes siguiendo unas las reglas impuestas. En su formulación más simple,

esto da lugar a los siguientes flujos:

Flujo de corrupción: Los agentes H pueden corromperse al interaccionar con sus vecinos

C, con un ratio fα dependiente de una probabilidad α:

H + C
α−→ C + C . (5)
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Figura 1: Esquema compartimental y flujos del modelo HCO.

Flujo de delación: Los agentes C pueden ser delatados al interactuar con sus vecinos H,

pasando al ostracismo con un ratio fβ dado por cierta probabilidad β. Este mecanismo es el

que difiere de los planteamientos tradicionales del modelo SIRS, al necesitar de la mediación

de individuos honestos (sanos) para la recuperación de los corruptos (infectados).

H + C
β−→ H +O . (6)

Flujo de reinserción: Los agentes O se reintegran en la población honesta con cierto ratio r,

sin precisar de interacción con sus vecinos.

O
r−→ H . (7)

El ratio de reinserción es, por tanto, constante e independiente del entorno, mientras que los

ratios de corrupción fα y delación fβ dependen únicamente de procesos microscópicos en la

vecindad del agente: en una interacción entre H y C, hay una probabilidad α de que el agente

H resulte corrompido, y una probabilidad β de que el agente C sea delatado. De aqúı se deduce

que los ratios fα y fβ deben ser nulos en ausencia de agentes C y H, respectivamente1.

Se observan aśı las caracteŕısticas principales del modelo que lo relacionan con el fenómeno

social de la corrupción: un agente honesto necesita de un corrupto para ser corrompido, y éste

se ve expulsado de la sociedad (ostracismo) al ser delatado por un honesto. Tras un cierto

periodo, se permite su regreso como un individuo honesto. El modelo compartimental completo

se encuentra resumido en la Figura 1. La publicación original [5] considera además un flujo

adicional 〈O〉 de “advertencia a infractores” que permite a los agentes C volver al estado H sin

pasar por O, incluyendo aśı la posibilidad de que un infractor cambie su comportamiento por

miedo a ser castigado. No obstante, en nuestro caso esto no produce cambios cualitativos en el

comportamiento del sistema, y no lo contemplaremos.

1Nótese que el ratio fα será nulo en todo momento a partir de la desaparición de los agentes C, mientras que

el ratio fβ puede ser restituido en caso de que en el sistema haya agentes O, que pueden transformarse en H.
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4.1. Campo medio

El estudio del sistema en aproximación de campo medio resulta muy útil para determinar

su comportamiento cualitativo. Consiste en describir su evolución únicamente a partir de la

fracción total de agentes en uno u otro compartimento, asumiendo que el entorno de cada

uno de ellos se asemeja a la composición global del sistema. Definimos entonces las variables

~ρ = (ρh, ρc, ρo) que representan las fracciones totales de H, C y O respectivamente. Además,

teniendo en cuenta la condición de normalización ρH + ρC + ρO = 1, podemos expresar una de

estas fracciones en función de las otras dos. Esto significa que podemos describir el sistema en

un plano bidimensional de coordenadas ρH , ρC . Las ecuaciones que rigen el flujo ~F = ~̇ρ entre

compartimentos resultan:

Fh(~ρ) = −fα(ρc) ρh + rρo = −[fα(ρc) + r] ρh + r(1− ρc) , (8)

Fc(~ρ) = fα(ρc) ρh − fβ(ρh) ρc . (9)

Ahora, los ratios son función de la fracción total de honestos y corruptos del sistema gracias a la

asunción de homogeneidad en la estructura de contactos de cualquier agente, y podemos obtener

su expresión matemática expĺıcita. Tomando el caso del ratio de corrupción fα, la probabilidad de

que un agente H sea corrompido al interactuar con otro agente viene dada por el producto entre

la probabilidad de encontrarse con un agente C, y la probabilidad α de que éste le corrompa,

dando lugar a una probabilidad total αρc. Considerando además que cada agente de la red tiene,

en promedio, k contactos en cada paso temporal, la probabilidad de que sea corrompido en al

menos uno de estos contactos es:

fα(ρc) = 1− (1− αρc)k . (10)

De manera completamente análoga, podemos ver que el ratio de delación resulta:

fβ(ρh) = 1− (1− βρh)k . (11)

Volviendo a las ecuaciones de flujos, hallando el valor de ~ρ para el que alguno de ellos se

anula obtenemos las expresiones matemáticas de las nulclinas del sistema. En este caso:

Fh = 0⇒ ρc = 1− fα + r

r
ρh , (12)

Fc = 0⇒ fαρh = fβρc . (13)

Los puntos de cruce entre ambas nulclinas corresponden a puntos fijos de equilibrio de la dinámi-

ca, en los que las variaciones de población son nulas. Este sistema de ecuaciones tiene dos so-

luciones triviales, dadas por los vértices (ρh = 1, ρc = 0) (equilibrio honesto, o Full H) y

(ρh = 0, ρc = 1) (equilibrio corrupto, o Full C), y una solución no trivial, cuya expresión

matemática es no lineal debido a las dependencias con ρc y ρh a través de fα y fβ. Estas solucio-

nes pueden ser estables ante perturbaciones, si la dinámica del sistema en torno al punto fijo lo

atrae hacia él, o inestables, si ocurre lo contrario. Por tanto, las trayectorias del sistema tenderán

hacia puntos fijos estables, que determinarán la composición en el equilibrio. Para estudiar la

estabilidad, debemos llevar a cabo una aproximación lineal del comportamiento del sistema en
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el entorno de un punto fijo (ρ∗h, ρ
∗
c) haciendo uso de la matriz jacobiana J [7], de manera que

asumimos una evolución temporal descrita por:

(
ρ̇h

ρ̇c

)
= J

∣∣
(ρ∗h,ρ

∗
c)

(
ρh

ρc

)
, J

∣∣
(ρ∗h,ρ

∗
c)

=


∂Fh
∂ρh

∂FH
∂ρc

∂Fc
∂ρc

∂FC
∂ρh


(ρ∗h,ρ

∗
c)

. (14)

Los autovalores de J |(ρ∗h,ρ∗c) determinan la estabilidad: si son negativos, el sistema es estable en

la dirección de los respectivos autovectores, mientras que si son positivos, es inestable. Expĺıci-

tamente, partiendo de las ecuaciones (10) y (11):

J
∣∣
(ρ∗h,ρ

∗
c)

=

(
−(fα + r) −(f ′α + r)

fα f ′α + fβ

)
(ρ∗h,ρ

∗
c)

. (15)

En la situación Full H, (ρ∗h, ρ
∗
c) = (1, 0), los autovalores dan lugar a la siguiente condición de

estabilidad:

f ′α(0) < fβ(1) . (16)

Si esto se cumple, el estado Full H es estable, y existirá un conjunto de condiciones iniciales

tales que la dinámica del sistema siempre lleve al exterminio de los agentes C. Por otro lado, en

el caso de Full C:

fα(1) > f ′β(0) . (17)

Si se cumple, existirá un conjunto de condiciones iniciales que evolucionarán hasta el dominio

de los agentes C. Vemos aśı que la estabilidad de estos puntos viene determinada en última

instancia por los parámetros α y β. Con las expresiones matemáticas expĺıcitas en (10) y (11)

podemos hallar los valores cŕıticos de ambos parámetros en los que alguna de estas soluciones

deja de ser estable. En concreto, la condición de estabilidad del estado completamente honesto

resulta:

α < αc(β) =
1− (1− β)k

k
, (18)

y la condición de estabilidad del estado completamente corrupto es:

β < βc(α) =
1− (1− α)k

k
. (19)

Se puede ver que las ecuaciones anteriores son incompatibles, y por tanto, no hay ninguna

elección de los parámetros α y β para la que se produzca convivencia de puntos fijos estables.

Esto quiere decir que, dadas unas condiciones iniciales ~ρ(0) arbitrarias, la dinámica del sistema

en el campo medio tenderá siempre a un único punto fijo dado por α y β, y no podremos generar

ciclos de histéresis variando dichos parámetros. En la Figura 2a se aprecia además que el tercer

punto fijo, no trivial, corresponde a un atractor global del sistema cuando ambos puntos Full

H y Full C son inestables. En la Figura 2b se muestran las fracciones ρh y ρc que se obtienen

en el equilibrio para diferentes elecciones de los parámetros α y β, y se observan claramente los

umbrales αc, βc para los que las soluciones de dominio de alguna de las estrategias dejan de ser

estables.
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(a) (b)

Figura 2: Modelo HCO. (a) Diagramas de flujo y nulclinas Fh = 0 (azul), Fc = 0 (amarillo), para k = 4,

r = 0.5 y diferentes elecciones de parámetros α y β. Los cortes entre ellas dan lugar a puntos fijos. Las

flechas representan la dirección del flujo, y la escala de color, su intensidad. (a1) estado completamente

corrupto estable. (a2,a3) convivencia estable. (a4) estado completamente honesto estable. (b) Fracciones

totales, para r = 0.5, de individuos honestos (ρh) en función de (b1) α y (b2) β, y fracciones totales de

individuos corruptos (ρc) en función de (b3) α y (b4) β.

El modelo HCO contempla aśı la existencia de una única banda corrupta y estudia su inter-

acción con los individuos honestos de la red, mostrando que la corrupción es capaz de sobrevivir

e incluso imponerse para ciertos valores de los parámetros del modelo. Se trata, por tanto, de

un modelo de competencia entre dos especies mutuamente excluyentes, honestos y corruptos,

que se disputan un mismo sistema. La generalización directa de este planteamiento pasa por

considerar la existencia de una especie corrupta adicional capaz de competir con las anteriores.

Este es el modelo HCCO, que desarrollamos a continuación.

5. Modelo HCCO

Ahora, a la especie corrupta original, que pasamos a denotar como cin, se suma una nueva

especie invasora cst que sigue sus mismas reglas en los procesos de delación y corrupción frente

a agentes honestos. Respecto a la nueva interacción que aparece entre agentes corruptos de

diferentes bandas, asumimos que compiten entre ellos, y por tanto se delatan con probabilidad

β.

Cin + Cst
β−→ Cin +O . (20)

Todos los agentes en el ostracismo se comportan según las mismas reglas y se reintegran con

un mismo ratio r en la población honesta, independientemente de la especie corrupta a la que
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(a) (b)

Figura 3: Modelo HCO. (a) Esquema compartimental y flujos.(b) Diagrama que representa el espacio

de estados del modelo HCCO. En azul: superficie sobre la que se desarrolla el comportamiento HCO, en

este caso con ρcin = 0. La otra cara del tetraedro, con ρst = 0, también se comporta como un HCO. En

naranja, región de convivencia de bandas con una misma fracción ρcin = ρcst , que denominamos como

((plano bisectriz)) en el trabajo.

perteneciesen, o la especie de su delator. Estas reglas definen un nuevo esquema compartimental

y un diagrama de flujos que se muestran en la Figura 3a.

5.1. Campo medio

Volvemos a estudiar el sistema haciendo uso de la aproximación de campo medio, que nos

proporciona información útil acerca del comportamiento cualitativo. Consideramos ahora las

cuatro fracciones ~ρ = (ρh, ρcin , ρcst , ρo) que caracterizan la composición de la población. Con la

condición de normalización podemos escribir una de estas fracciones en función de las otras tres,

y podemos representar el espacio de fases completo del sistema mediante un tetraedro, como se

muestra en la Figura 3b. En el ĺımite en el que la fracción de una de las especies corruptas es nula,

que corresponde a una de las caras del tetraedro, recuperamos el modelo HCO original. Por otro

lado, cuando las fracciones de corruptos de ambas bandas son iguales, el sistema se sitúa sobre

el plano bisectriz que separa el tetraedro en dos partes iguales. El sistema es completamente

simétrico respecto de este plano, intercambiando ρcin y ρcst .

En cuanto a los ratios de conversión entre compartimentos, adoptamos las mismas reglas que

en el caso anterior, considerando ahora que la población honesta se ve corrompida por ambas

bandas y que las poblaciones corruptas pueden ser delatadas también por la banda rival. Aśı:

fα(ρcin , ρcst) = 1− [1− α(ρcin + ρcst)]
k , (21)

f cinβ (ρh, ρcst) = 1− [1− β(ρh + ρcst)]
k . (22)

El ratio f cstβ se obtiene de manera análoga, intercambiando ρcst por ρcin . A la hora de calcular

los flujos entre compartimentos con estos ratios, es importante notar que fα(ρcin , ρcst) establece

la fracción honesta que se ve corrompida en un paso temporal, pero no cómo se reparte esta
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población entre ambas bandas. Para determinarlo, recurrimos a una función de combate t(x, y)

que asigna el reparto de manera proporcional a la presencia de cada banda en la red:

t(x, y) =
x

x+ y
. (23)

De esta manera, la banda Cin recibe una fracción t(ρcin , ρcst)fαρh en cada paso temporal, mien-

tras que la banda Cst recibe t(ρcst , ρcin)fαρh. Es inmediato ver que t(y, x) = 1 − t(x, y), y por

tanto, las fracciones anteriores suman la fracción total corrompida fαρh, como debe ser. Con

todo esto, podemos expresar las ecuaciones de flujo del modelo HCCO:

Fh(~ρ) = −fα(ρcin , ρcst) ρh + rρo = −[fα(ρcin , ρcst) + r] ρh + r [1− (ρcin + ρcst)] , (24)

Fcin(~ρ) = fα(ρcin , ρcst) t(ρcin , ρcst) ρh − fβ(ρh, ρcst) ρcin , (25)

Fcst(~ρ) = fα(ρcin , ρcst) t(ρcst , ρcin) ρh − fβ(ρh, ρcin) ρcst . (26)

Estudiamos ahora los puntos fijos del sistema. En primer lugar, cuando una de las fracciones

corruptas ρc es nula, las ecuaciones se reducen a las del modelo HCO, y las trayectorias quedarán

confinadas a las caras laterales del tetraedro. Además, el flujo correspondiente a la especie extinta

cumplirá Fc = 0, y por tanto, la cara dada por ρc = 0 formará parte de la nulclina de Fc. De

esta manera, los puntos fijos del modelo HCO serán también puntos fijos del modelo HCCO, y

se comportarán igual que antes en el subespacio dado por la cara. Por otro lado, la simetŕıa del

modelo invita a estudiar el comportamiento sobre el plano bisectriz, que cumple ρcin = ρcst ≡ ρc.
Las ecuaciones muestran que éste es invariante, y por tanto debe contener puntos fijos. Sobre

este plano se cumple Fcin = Fcst ≡ Fc, y los flujos resultan:

Fh(~ρ) = −[fα(2ρc) + r] ρh + r(1− 2ρc) , (27)

Fc(~ρ) =
1

2
fα(2ρc) ρh − fβ(ρh + ρc) ρc . (28)

Este sistema muestra un gran parecido con el formado por las ecuaciones (8) y (9) del modelo

HCO. Sin embargo, existen dos diferencias fundamentales entre ambos debidas al mecanismo

de delación cruzada entre bandas de corruptos: por un lado, el estado de dominación corrupta

Full C con coexistencia de bandas no puede ser nunca estable, y por otro, la fracción total de

honestos es siempre mayor que en el caso del modelo HCO, porque a la delación que sufren

ambas bandas corruptas por parte de los honestos cuando sus fracciones son iguales se suma

este mecanismo de delación cruzada. Podemos observar en la Figura 4a las nulclinas sobre el

plano bisectriz (arriba) y dos secciones horizontales del tetraedro que conforma el espacio de

fases (abajo). Se ve claramente que el punto fijo sobre la bisectriz dado por el corte entre las

nulclinas ocurre para una fracción de honestos mayor (Figura 4a.3, ρ∗h = 0.505) que sobre la

cara (Figura 4a.4, ρ∗h = 0.46).

Por completitud, podemos estudiar cómo se comporta el punto de dominio honesto Full H.

Al estudiar el sistema mediante una aproximación lineal en torno al punto fijo, hemos obtenido

el criterio de estabilidad sobre las caras. Por otro lado, los posibles efectos desestabilizadores

que tenga la convivencia entre bandas serán de segundo orden en ρc, y por tanto, despreciables

frente al comportamiento lineal. Aśı, el criterio de estabilidad del punto fijo Full H deberá ser

el del modelo HCO necesariamente.
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(a) (b)

Figura 4: Diagramas de flujo y nulclinas Fh = 0 (azul), Fcin = 0 (amarillo) y Fcst = 0 (negro), para

r = 0.5 y diferentes elecciones de parámetros α y β. (a) Modelo HCCO. Arriba: representación del plano

bisectriz del tetraedro, correspondiente a coexistencia de bandas. Se muestra el punto fijo completamente

honesto (a1), y el punto de convivencia (a2). Las nulclinas de Cin y Cst están superpuestas por simetŕıa.

Abajo: secciones horizontales del tetraedro, a ρh = cte. Se observa el punto fijo sobre la bisectriz (a3) y

el punto fijo sobre la cara (a4) para una misma elección de parámetros α y β. (b) Modelo HCCO con

delación selectiva. Se muestran los mismos planos que en la Figura (a). Ahora, se observa la alteración en

la forma de las nulclinas debida a la función Boltzmann, y se aprecia el punto fijo sobre el plano bisectriz

(siempre estable) y el punto fijo sobre la cara (inestable para ciertos valores de α y β).

Respecto al plano bisectriz, éste confina las trayectorias en su interior: dada cualquier con-

dición inicial dentro del plano, el sistema nunca logrará abandonar la bisectriz. Esto es evidente

por simetŕıa teniendo en cuenta que, si en un punto determinado del espacio de fases el sistema

logra abandonar la bisectriz, entonces debe poder hacerlo hacia la zona de mayoŕıa de Cst o

de mayoŕıa de Cin indistintamente. Por tanto, las trayectorias no podŕıan ser completamente

deterministas, algo que no tiene cabida en nuestro modelo. El punto fijo en la bisectriz, que

es único, debe ser aśı estable en este subespacio. Sin embargo, fuera de la bisectriz este punto

resulta ser inestable. Se puede demostrar fácilmente partiendo del punto fijo interior (ρ∗h, ρ
∗
c , ρ
∗
c),

que cumple:

Fh = − [fα(2ρ∗c) + r] ρ∗h + r(1− 2ρ∗c) = 0 , (29)

Fc =
1

2
fα(2ρ∗c)ρ

∗
h − fβ(ρ∗h + ρ∗c) = 0 . (30)

Ahora, una pequeña perturbación ε que convierta a la especie Cin en mayoritaria y nos sitúe en
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un punto (ρ∗h, ρ
∗
c + ε, ρ∗c − ε) da lugar a los flujos:

Fcin = fβ(ρ∗h + ρ∗c)(ρ
∗
c + ε)− fβ(ρ∗h + ρ∗c − ε)(ρ∗c + ε) , (31)

Fcst = fβ(ρ∗h + ρ∗c)(ρ
∗
c − ε)− fβ(ρ∗h + ρ∗c + ε)(ρ∗c − ε) , (32)

donde hemos usado que t(x ± ε, x ∓ ε) = (1 ± ε/x)/2, y la relación fα(2ρ∗c)ρ
∗
h/2 = fβ(ρ∗h + ρ∗c),

que se puede obtener directamente de (30). Teniendo en cuenta que la función fβ es monótona

creciente, tenemos que Fcin > 0 y Fcst < 0, y por tanto el sistema tenderá a amplificar la

perturbación alejándose del plano bisectriz. Se demuestra aśı que este punto fijo es inestable, y

los únicos puntos fijos estables del espacio de fases se situarán sobre las caras. Recuperamos aśı

un comportamiento que emula por completo al modelo HCO, y la generalización a dos especies

corruptas no lleva a ningún resultado nuevo de interés al no lograr sobrevivir ambas especies al

mismo tiempo.

Es preciso entonces plantear alguna modificación que de lugar a coexistencia. Para ello,

optamos por alterar la regla de delación de los agentes honestos: ahora, un agente honesto

delatará con menor probabilidad a un agente corrupto perteneciente a la banda minoritaria

(es decir, la que represente una menor fracción de población) que a uno perteneciente a la

mayoritaria, favoreciendo aśı la expansión de la minoritaria. Si bien este comportamiento de los

agentes honestos puede parecer arbitrario, encuentra justificación en el hecho de que el punto

fijo en el caso de coexistencia de bandas tiene una fracción de población honesta total mayor

que el caso con una única banda, como hemos visto anteriormente. Por tanto, para un agente

honesto, no delatar al corrupto minoritario es una estrategia inteligente desde un punto de vista

colectivo. De aqúı en adelante, llamamos ((HCCO)) a este nuevo modelo, y ((HCCO sin delación

selectiva)) al anterior, que no contiene la nueva regla de delación.

La modificación de la regla se implementa en las ecuaciones a través de una nueva función

B(x, y) que regula la delación de las bandas por parte de los honestos, de manera que los flujos

resultan:

Fh(~ρ) = −[fα(ρcin , ρcst) + r] ρh + r [1− (ρcin + ρcst)] , (33)

Fcin(~ρ) = fα(ρcin , ρcst) t(ρcin , ρcst) ρh − fβ
(
ρhB(ρcin , ρcst), ρcst

)
ρcin , (34)

Fcst(~ρ) = fα(ρcin , ρcst) t(ρcst , ρcin) ρh − fβ
(
ρhB(ρcst , ρcin), ρcin

)
ρcst . (35)

La forma expĺıcita de la función B(x, y) depende del comportamiento que asumen los ho-

nestos cuando ambas bandas tienen fracciones de población muy similares, y la determinación

de la banda mayoritaria puede resultar algo difusa. En nuestro caso, aplicamos una función de

Boltzmann para la especie minoritaria, mientras que la mayoritaria no se ve afectada por este

mecanismo:

B(x, y) =

1 si x ≥ y ,

exp
[
1
T

(x−y)
(x+y)

]
si x < y .

(36)

T representa la temperatura, que tomaremos como T = 0.1 en todo el trabajo. Esta temperatura

marca la delación que sufrirá la especie minoritaria: cuanto mayor sea, menos delación sufrirá

para una misma distancia hasta el plano bisectriz. Además, cuando la diferencia poblacional

x − y sea razonablemente grande, la delación que soportará la banda minoritaria por parte

de los agentes honestos será nula, mientras que si ambas poblaciones son iguales, la delación
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será igual a la del modelo original para ambas. Esta elección de B(x, y) tiene dos ventajas

principales: la función es continua en x = y, y se conserva la posición de los puntos fijos sobre

el plano bisectriz, al cumplirse B(x, x) = 1. Hay otras elecciones posibles, aunque no todas

mantienen las propiedades anteriores (ver anexo 1).

La función elegida resulta dif́ıcil de tratar anaĺıticamente a la hora de estudiar el comporta-

miento de los puntos fijos. Para ello, tomaremos en los cálculos que siguen el ĺımite T → 0, en

el que obtenemos una función escalón. Las predicciones realizadas en este ĺımite serán válidas

cuando la diferencia de poblaciones corruptas sea razonablemente grande. Tenemos aśı:

B(x, y) = θ(x, y) =

1 si x ≥ y ,

0 si x < y .
(37)

Estudiamos ahora el comportamiento sobre la bisectriz. En esta ocasión, tras aplicar al estado

en el equilibrio dado por las relaciones (29) y (30) una pequeña desviación ε, obtenemos unas

ecuaciones de flujo:

Fcin = fβ(ρ∗h + ρ∗c)(ρ
∗
c + ε)− fβ(ρ∗h + ρ∗c − ε)(ρ∗c + ε) > 0 , (38)

Fcst = fβ(ρ∗h + ρ∗c)(ρ
∗
c − ε)− fβ(ρ∗c + ε)(ρ∗c − ε) > 0 . (39)

Dado que ε << 1, podemos asumir que ρ∗h > ε, y podemos ver fácilmente que Fcst > Fcin porque

fβ(ρ∗h + ρ∗c − ε) > fβ(ρ∗c + ε). Por tanto, el flujo tenderá a restablecer la situación de equilibrio,

y el punto fijo sobre la bisectriz se convierte en estable para cualquier elección de α y β. Falta

estudiar entonces cómo afecta el cambio al punto fijo sobre la cara, en el que sólo hay presente un

grupo corrupto. Para ello, tomamos las ecuaciones de flujo evaluadas en el punto fijo (ρ∗h, ρ
∗
c , 0):

Fh = − [fα(ρ∗c) + r] ρ∗h + r(1− ρ∗c) = 0 , (40)

Fcin = fα(ρ∗c)ρ
∗
h − fβ(ρ∗h)ρ∗c = 0 , (41)

Fcst = 0 . (42)

Ahora, situándonos en un punto muy cercano al anterior, con una pequeña fracción de corruptos

de la banda rival presentes (ρ∗h, ρ
∗
c − ε, ε), obtenemos las ecuaciones:

Fh = − [fα(ρ∗c) + r] ρ∗h + r(1− ρ∗c) = 0 , (43)

Fcin = [fβ(ρ∗h)− fβ(ρ∗h + ε)] (ρ∗c − ε) , (44)

Fcst = [fβ(ρ∗h)− fβ(ρ∗c − ε)] ε , (45)

donde hemos usado que fα(ρ∗c)ρ
∗
h = fβ(ρ∗h)ρ∗c , obtenido de la ecuación (41). De nuevo, dado

que fβ es una función monótona creciente, y asumiendo ε << 1, podemos ver que Fcin < 0 en

general. Por otro lado, el signo de Fcst depende de la relación entre ρ∗h y ρ∗c . En concreto, cuando

ρ∗h > ρ∗c (ρ∗h < ρ∗c), tendremos que Fcst > 0 (Fcst < 0). Si el flujo de la especie minoritaria

es negativo, el sistema siempre acabará exterminándola y regresando a la cara, recuperando el

comportamiento HCO. Sin embargo, si el flujo Fcst es positivo, el sistema siempre tenderá a la

coexistencia, y el punto fijo sobre la cara será inestable.

Necesitamos encontrar entonces la condición para que se cumpla ρ∗h = ρ∗c . Dada la simetŕıa

impĺıcita en el modelo HCO, en el que corrupción y delación hacen uso de los mismos mecanismos
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de interacción y el mismo tipo de función fα, fβ con distintos parámetros α y β, es evidente

que esto se producirá cuando α = β. Por tanto, si α < β, el punto fijo sobre la cara será

inestable, y el único atractor global del sistema será el punto fijo sobre la bisectriz, de coexistencia

de bandas. Por otro lado, cuando α > β, los puntos fijos sobre las caras se convertirán en

estables, dando lugar a biestabilidad: la fracción final de honestos y corruptos dependerá de

las condiciones iniciales del sistema, pudiendo darse convivencia entre bandas, con una mayor

fracción de población honesta, o dominio de una única banda, con una fracción honesta total

menor. Se puede ver entonces que en α = β se produce una bifurcación transcŕıtica, en la que los

puntos fijos inestables internos del sistema que separan las cuencas de atracción de los puntos

fijos estables sobre la cara y la bisectriz colisionan con los puntos fijos sobre las caras. A partir

de ese momento, cuando α < β, el punto fijo sobre la cara pasa a ser inestable, y el punto fijo

en el interior del sistema sale al exterior del tetraedro convertido en un punto estable.

Los diagramas de flujo del modelo modificado se muestran en la Figura 4b. Se puede ver

que la posición del punto fijo sobre el plano bisectriz no ha cambiado, pero ahora es un atractor

global del sistema para cualquier elección de parámetros. En cambio, el punto fijo sobre la cara

se convierte en inestable cuando α < β. En la Figura 5 se observan las fracciones en equilibrio de

individuos honestos, corruptos (de ambas bandas), y en el ostracismo, para diferentes elecciones

de los parámetros α y β. Se puede ver que la fracción de población honesta es sistemáticamente

mayor en la situación de convivencia (bisectriz) que en la situación de supervivencia de una

única banda (cara), y además, se observa la condición de estabilidad del punto fijo sobre la cara

comentado anteriormente y la biestabilidad existente cuando α > β. De ahora en adelante nos

centraremos únicamente en el comportamiento en el punto fijo de coexistencia de bandas, que es

la novedad de este modelo, porque la fenomenoloǵıa asociada al punto fijo con una única banda

ya ha sido desarrollada ampliamente en la bibliograf́ıa [5, 6].

5.2. Dinámica markoviana y simulaciones Montecarlo

Una vez estudiadas las ecuaciones del sistema que determinan la dinámica en campo medio,

pasamos a describir el comportamiento en redes. Para ello, hacemos uso del método de Monte-

carlo para simular la evolución estocástica de un sistema formado por agentes que se relacionan

entre śı. En cada paso temporal, todos los agentes interaccionan con sus respectivos vecinos y

modifican sus estados con ciertas probabilidades fijadas por su entorno:

Un agente H, al interaccionar con un agente Cin o Cst tiene una probabilidad α de co-

rromperse. Además, dado que en cada paso temporal todos los agentes interaccionan con

todos sus vecinos, cabe la posibilidad de que este agente H haya sido corrompido por

más de un vecino al mismo tiempo. En ese caso, el estado final del agente se asigna a

la especie Cin con probabilidad t(ncin , ncst) = ncin/(ncin + ncst), donde ncx representa el

número de eventos corruptivos exitosos de la especie Cx, o a la especie Cst con probabilidad

t(ncst , ncin) = 1− t(ncin , ncst).

Un agente Cin (Cst), al interaccionar con un agente Cst (Cin), tiene una probabilidad β de

ser delatado. Al interaccionar con un agente H, tiene una probabilidad β · B(Ncin , Ncst)
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(β ·B(Ncst , Ncin)), donde Ncx es el número total de agentes de la especie Cx presentes en

la red.

Un agente O tiene una probabilidad r de ser reintegrado en la sociedad como H, indepen-

dientemente de su entorno y sus interacciones.

Vemos aśı que en la delación interviene por un lado el vecindario del agente corrupto, que

puede delatarle, y por otro la situación global de la red, que determina la probabilidad de delación

por parte de los agentes honestos. En cambio, la corrupción sólo depende del entorno cercano.

Teniendo esto en cuenta, dada una red {σi} (σi = H,Cin, Cst, O) formada por N agentes, cuyas

relaciones se encuentran codificadas en la matriz de adyacencia Aij (Aij = 1 si los agentes son

vecinos, Aij = 0 si no lo son), las probabilidades totales de corrupción (fα) y delación (fβ) del

agente i son:

fα(i, σj) = 1−
N∏
j=1

[
1− αAij(δσj ,Cin + δσj ,Cst)

]
, (46)

fβ(i, σi = Cin, σj) = 1−
N∏
j=1

[
1− βAij

(
δσj ,Cst +B(Ncin , Ncst)δσj ,H

)]
. (47)

La probabilidad de delación para los agentes Cst se obtiene a partir de la de los agentes Cin,

intercambiando Cin ↔ Cst.

A este esquema de interacción en términos de una simulación Montecarlo se le puede asociar

directamente un proceso Markoviano, en el que el estado de cada nodo se ve descrito por la

probabilidad de que éste pertenezca a cada una de las especies en un momento determinado.

Aśı, a cada agente i en un instante t se le asigna un vector ~ρ(i; t) de componentes:

~ρ(i; t) = (ρh(i; t), ρcin(i; t), ρcst(i; t), ρo(i; t)) (48)

donde ρx(i; t) representa la probabilidad de pertenecer a la especie x. La evolución temporal

de las probabilidades del agente i viene determinada por las interacciones con sus vecinos, y se

describe fácilmente mediante una matriz Q tal que ~ρ(i, t+ 1) = Q ~ρ(i, t), donde:

Q =


1− fα 0 0 r

fαt(i;Cin, Cst) 1− fβ(i;Cin) 0 0

fαt(i;Cst, Cin) 0 1− fβ(i;Cst) 0

0 fβ(i;Cin) fβ(i;Cst) 1− r

 , (49)

y fβ(i;Ci) representa el ratio de transición entre ρcj y ρo del agente i. Las expresiones de estos

ratios y la función de combate toman la forma:

fα(i, {~ρ(j)}) = 1−
N∏
j=1

[
1− αAij

(
ρcin(j) + ρcst(j)

)]
, (50)

fβ(i, {~ρ(j)};Cin) = 1−
N∏
j=1

[
1− βAij

(
ρcst(j) +B(ρTcin , ρ

T
cst)ρh(j)

)]
, (51)

t(Cin, Cst) =
ρTcin(i)

ρTcin(i) + ρTcst(i)
, (52)
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donde ρTcj representa la fracción total de la especie Cj en el sistema, y ρTcj (i) representa la fracción

total en el entorno del agente i. La aplicación de la dinámica markoviana en este sistema nos

permite obtener resultados libres de los fenómenos estocásticos que gobiernan las simulaciones

Montecarlo. Dado que trabajamos en términos de las probabilidades de pertenencia a una u otra

especie que vaŕıan en el tiempo según las probabilidades de contagio, estamos contemplando

simultáneamente el éxito o fracaso de todos los posibles eventos infectivos, y por tanto, todas

las posibles v́ıas de evolución del sistema. En este sentido, la dinámica markoviana representa

el promedio de infinitas simulaciones Montecarlo, dando una valiosa información acerca del

comportamiento del modelo.

Una vez descritas las reglas anteriores para la aplicación del modelo en redes, pasamos a

estudiar los resultados. En primer lugar, recurrimos a una red regular aleatoria (RRN por sus

siglas en inglés) para comparar los resultados obtenidos en el apartado anterior en aproximación

de campo medio. En este tipo de redes todos los nodos tienen el mismo grado k, y además el

sistema carece de estructura espacial definida: los links se reparten aleatoriamente entre todos

los nodos (conservando su grado), de manera que la distancia entre dos nodos cualesquiera, es

decir, el número de nodos intermedios que debemos atravesar para llegar de uno a otro, es muy

pequeña en comparación con el tamaño total de la red. En este sentido, se habla también de

redes de mundo pequeño [8] (ver inset de la Figura 5d, donde se muestra un ejemplo de RRN).

La red que utilizamos en este trabajo está formada por 10000 nodos de grado k = 4, y está

caracterizada por un diámetro de 11 y una distancia promedio entre nodos de 7.7, es decir: la

mayor distancia mı́nima que separa dos nodos cualesquiera de la red es 11, y la separación media

mı́nima entre dos nodos cualesquiera es 7.7. La cercańıa entre todos los nodos de la red y su

homogeneidad de grado hace esperar que su comportamiento se asimile al predicho en campo

medio, cuya principal asunción es que el vecindario de un nodo es igual a la composición global

del sistema, y que todos los nodos tienen un mismo número de vecinos en promedio.

En la Figura 5 se observan las fracciones de población honesta en el equilibrio que se ob-

tienen al aplicar las dinámicas descritas anteriormente sobre la RRN que hemos comentado.

Salvo que se indique lo contrario, todos los resultados en redes se han obtenido como promedio

de 100 realizaciones del sistema para cada punto. Destaca el buen ajuste entre las predicciones

de campo medio y los resultados obtenidos con la dinámica markoviana, aunque se producen

algunas desviaciones apreciables para ciertos rangos de α y β. En concreto, cuando las fracciones

de población honesta son relativamente pequeñas, la dinámica markoviana se aleja del compor-

tamiento campo medio en favor del comportamiento que muestra el sistema bajo simulaciones

Montecarlo. Este efecto se hace más pronunciado cuanto menor es la fracción honesta total.

Una desviación de este estilo en la dinámica markoviana es un indicio de que la estructura de

red sobre la que implementamos el modelo tiene una influencia clara y no despreciable en la

dinámica del sistema, que el campo medio es incapaz de contemplar. El hecho de que, además,

estas desviaciones coincidan casi a la perfección con el comportamiento de las simulaciones Mon-

tecarlo en algunas zonas, indica que el mecanismo subyacente que da lugar a la desviación es

común para ambos. Además, este fenómeno de desviación en Markov no se da en el modelo

HCO, por lo que debe estar ı́ntimamente relacionado con la presencia de dos bandas corruptas

y el mecanismo de delación modificado.

También es reseñable el hecho de que este comportamiento aparezca en una RRN, que es
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Figura 5: Fracción de población honesta (azul), corrupta total (roja) y en el ostracismo (gris) en el

equilibrio, para r = 0.5, k = 4. (a) Resultados de campo medio para β = 0.5, en función de α. (b)

Resultados de campo medio para α = 0.5, en función de β. Se muestran las fracciones sobre la cara,

cuando sólo sobrevive una banda corrupta (ĺınea punteada) y sobre la bisectriz, cuando conviven ambas

bandas (ĺınea continua). Mostramos también la fracción honesta total sobre la bisectriz en RRN en función

de (c) α y (d) β, y sobre redes lattice en función de (e) α y (f) β. Ambas redes tienen 10000 nodos de

grado k = 4 con r = 0.5, para Markov y Montecarlo. Se compara con el resultado en campo medio. Los

resultados se han promediado sobre 100 ejecuciones para cada valor de α y β mostrado, con condiciones

iniciales (ρh, ρcin , ρcst) = (0.4, 0.3, 0.3). En el caso de Markov, las fracciones iniciales en cada nodo son

aleatorias, pero dando lugar a la misma fracción global. Inset: esquema de (d) una RRN y (f) una lattice.

el tipo de red que más se asemeja al campo medio por sus caracteŕısticas. En este contexto,

nos preguntamos qué ocurre al implementar el modelo HCCO sobre una red con estructura

espacial bien definida, en la que las distancias entre nodos pueden hacerse extremadamente

grandes y el aspecto de las vecindades puede, por tanto, variar mucho entre distintas zonas

de la red. Esta red es la red cuadrada plana o lattice, que en su formulación estándar está

formada por nodos de un mismo grado k = 4 conectados dando lugar a una cuadŕıcula (ver

inset de la Figura 5e, donde se muestra una red lattice). Los resultados obtenidos se muestran

también en la Figura 5, donde podemos ver que las diferencias entre el comportamiento campo

medio y Montecarlo se acentúan, asemejándose de manera clara la dinámica markoviana a este

último en un buen rango de valores de α y β. Estos resultados parecen mostrar que la existencia

de correlaciones espaciales en la red acentúa las desviaciones de los comportamientos respecto

del campo medio, ya de por śı presentes incluso en redes con estructuras muy poco definidas.

Debemos identificar los mecanismos de interacción entre nuestro modelo y la red que dan lugar

a estos comportamientos.
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5.2.1. Segregación

Estudiamos entonces los entornos locales de los nodos para encontrar las desviaciones res-

pecto del comportamiento campo medio. Para ello, podemos definir una métrica que compare la

composición del vecindario de una especie determinada con la composición que debeŕıa tener en

caso de que la población se distribuyese de manera homogénea. Esto se concreta en una medida

σxy que da idea de la segregación que existe entre agentes de la especie x respecto de agentes

de la especie y, es decir, cuánto se desv́ıa el vecindario de los agentes x en términos de agentes

y respecto al caso de población homogénea. Si el valor de esta métrica es menor que 1, esto

significa que la especie x tiene, en promedio, un menor número de vecinos de la especie y de los

que debeŕıa, y diremos que ambas especies están disgregadas. En cambio, si es mayor que 1, el

vecindario de los agentes x estará compuesto por más agentes y que los que correspondeŕıa en

promedio, y decimos que ambas especies están agregadas. Nótese que las especies x e y pueden

ser la misma, y en ese caso mediremos la segregación de una especie consigo misma.

Matemáticamente, esto se concreta de la siguiente manera en el caso de simulaciones Mon-

tecarlo: para todo agente i que pertenezca a la especie x, contamos su número de vecinos de la

especie y, niy, y lo dividimos por el producto entre su grado ki y la fracción total de agentes y

presentes en la red ρTy . Promediamos finalmente este valor sobre todos los agentes x:

σMC
xy =

1

NxρTy

Nx∑
i=1

niy
ki

, (53)

donde hemos supuesto que cada agente puede tener un grado diferente. En el caso concreto de

redes homogéneas en las que todos los nodos tienen el mismo grado, que son las utilizadas en el

trabajo, la expresión anterior se puede simplificar, dando lugar a:

σMC
xy =

lxy
Nx

1

ρTy k
=
lxy
Nx

N

Nyk
, (54)

donde lxy representa el número total de enlaces entre agentes de la especie x y de la especie y,

y hemos usado que ρTy = Ny/N . Es evidente entonces que, en este caso concreto, σxy = σyx.

En el caso de la dinámica markoviana resulta un poco más complicado definir esta métrica,

teniendo en cuenta que cada nodo contiene fracciones de todas las especies. Por tanto, en el

cálculo de las métricas sumamos las fracciones ρiy de todos los vecinos del agente i , y pesamos

la contribución de cada agente i a la métrica total por su fracción ρx. De esta manera, la expresión

resulta:

σMK
xy =

1

NρTx ρ
T
y

N∑
i=1

ρiy
ki
ρix =

1

NkρTx ρ
T
y

N∑
i=1

ρiyρ
i
x , (55)

donde la última igualdad se cumple en el caso de redes homogéneas. Vemos aśı que en este caso

también se cumple σMK
x,y = σMK

y,x .

Nos centramos fundamentalmente en el estudio de las métricas entre bandas corruptas,

σcin,cin y σcin,cst , para caracterizar las interacciones que se producen al incluir dos bandas en

el modelo. Los resultados de la dinámica markoviana y de Montecarlo, tanto en RRN como en

lattice, se muestran en la Figura 6. En primer lugar, los resultados de simulaciones Montecarlo

muestran una segregación muy acusada entre bandas, de manera que los agentes de una banda
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(a) (b)

Figura 6: Métricas de segregación entre bandas. (a) Resultados para β = 0.5. (b) Resultados para α = 0.5.

Arriba: métricas de agregación de una banda (azul oscuro) y de segregación con la banda contraria (rojo

oscuro), en el caso de Markov y Montecarlo, para RRN (ĺıneas continuas) y lattice (ĺıneas discontinuas).

Abajo: Resultados de la agregación de una banda en RRN, para distintos valores de grado k de la red,

para (a3,b3) Markov y (a4,b4) Montecarlo.

tienden a rodearse en gran medida de agentes de su misma banda (σcin,cin > 1), y se alejan

mucho de los de la banda contraria (σcin,cst < 1). Además, esta segregación es mucho más pro-

nunciada en redes lattice que en RRN, lo que resalta la importancia de la estructura espacial.

Estos resultados implican que, en redes, la dinámica del sistema es tal que las bandas corruptas

se segregan dando lugar a entornos locales diferentes a la estructura general de la red, y por

tanto los resultados no se asemejan a los obtenidos en campo medio.

El estudio de la dinámica markoviana muestra claras diferencias entre una primera región

del espacio de parámetros en la que los resultados coinciden con campo medio, y la región en la

que se asemejan al comportamiento Montecarlo. En un principio, cabe esperar que la dinámica

markoviana sea tal que las probabilidades en cada nodo en el equilibrio sean iguales a las de los

demás nodos, e iguales a las fracciones en el equilibrio predichas por campo medio. Esta situación

corresponde al caso en el que la composición del entorno de cualquier agente del sistema es igual

que la del campo medio, y por tanto, las métricas σxy deben ser iguales a 1. En efecto, esto es

lo que se observa en la primera región. En cambio, en la región en la que el comportamiento se

asemeja al obtenido por Montecarlo, las métricas indican también la presencia de segregación

entre bandas. Estos resultados son mucho más pronunciados en el caso de redes lattice que en

RRN, al igual que ocurŕıa en las simulaciones Montecarlo.

Una alteración como esta en los entornos de los agentes de la red explica las desviaciones en

las poblaciones finales de cada especie, al dificultar el mecanismo de delación entre diferentes

bandas. Se trata además de un efecto atribuible únicamente a la estructura de la red, y por

tanto imposible de observar en campo medio. No obstante, sabemos que el comportamiento de
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Figura 7: Configuraciones lattice correspondientes a simulaciones Montecarlo del modelo HCCO. Se

muestran las cuatro especies: honestos (azul), corruptos Cin (verde), corruptos Cst (naranja) y en el

ostracismo (gris). Las configuraciones corresponden a (a) β = 0.2 < βc, (b) β = βc = 0.26 y (c)

β = 0.5 > βc.

los modelos sobre redes se asemejan más al comportamiento campo medio cuanto mayor es el

grado de la red, porque en una red más interconectada, los entornos de los agentes se asemejan

más entre ellos. Podemos estudiar entonces cómo se comporta la segregación variando el grado.

Los resultados se muestran también en la Figura 6, y podemos observar claramente que conforme

aumenta el grado, la segregación disminuye, llegando incluso a desaparecer por completo para

valores elevados de k.

5.2.2. Visualización de la segregación

El hecho de que este fenómeno de segregación venga provocado por la red subyacente su-

pone que no pueda ser explicado en términos anaĺıticos. Para arrojar luz sobre los mecanismos

causantes, podemos aprovechar el hecho de que la lattice tiene una representación espacial bien

definida que nos permite visualizar la composición de la red, para ver las distribuciones locales

de cada especie. Representamos aśı en la Figura 7 tres configuraciones Montecarlo de una lattice

en equilibrio, tomadas para diferentes valores de α y β, aunque todas corresponden a situaciones

de convivencia entre bandas. La Figura 7c corresponde a un valor de β mayor, y por tanto tiene

una mayor fracción total de honestos. A simple vista se aprecia el fenómeno de segregación que

hemos descrito, mediante la existencia de dos grandes grupos o agregados distribuidos en regio-

nes diferentes del espacio correspondientes a ambas bandas corruptas, y una frontera en medio

rica en agentes honestos y en el ostracismo. En el caso de β = 0.2 (Figura 7a), la totalidad de

los agentes honestos y en el ostracismo se sitúan en la frontera o cerca de ella, mientras que en el

caso de β = 0.5 (Figura 7c), se encuentran distribuidos más o menos homogéneamente por toda

la red. Esto implica que existe cierto valor cŕıtico βc a partir del cual los honestos son capaces de

penetrar en los agregados corruptos, y sobrevivir por śı mismos en el interior. Este valor cŕıtico

se sitúa en torno a βc = 0.26, como se observa en la Figura 7b, donde se ve que algunos agentes

honestos son capaces de sobrevivir dentro de los grupos corruptos.
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Figura 8: Configuraciones lattice correspondientes a la dinámica markoviana del modelo HCCO. Se

muestran las fracciones de las especies (a,d) Cin, (b,e) Cst y (c,f) H, presentes en cada nodo. Las

configuraciones corresponden a (a-c) β = 0.2 < βc, y (d-f) β = 0.5 > βc.

Un fenómeno similar ocurre en el caso de Markov. Podemos ver en la Figura 8 que, para

una elección de parámetros en la que se produce segregación, aparecen dos grupos de corrup-

tos diferenciados separados por franjas ricas en honestos. Además, no se produce convivencia

entre bandas en el interior de estos agregados corruptos, es decir, los nodos del interior de los

agregados sólo contienen fracciones corruptas de una banda, y los pocos nodos que contienen

de ambas bandas se ven confinados a una pequeña región de frontera. Para diferentes elecciones

de los parámetros, las fracciones de honestos en el interior de los agregados corruptos, que son

aproximadamente homogéneas, van aumentando o disminuyendo hasta cierto valor ĺımite βc en

el que desaparecen por completo, como vemos por las diferencias de color entre ambos casos.

Cabe destacar también que las fracciones corruptas disminuyen conforme aumenta β por este

fenómeno de penetración de honestos en los agregados, y no por la aparición de la otra banda

minoritaria.

Estas estructuras que observamos al analizar la composición espacial local de la red plantean

dudas razonables acerca de los mecanismos que rigen en última instancia la composición global

del sistema. Como hemos comentado, el hecho de que ambas bandas formen grandes agregados

con una interacción mı́nima en su frontera supone una desviación evidente respecto de la filosof́ıa

original del modelo, en la que las interacciones entre bandas provocaban excesos de honestos con

respecto al modelo HCO. Por tanto, para explicar correctamente el comportamiento en redes

debemos atender a las caracteŕısticas locales, lo que nos lleva a tener en cuenta dos hechos

importantes: primero, por el planteamiento del modelo, cuando las fracciones de corruptos de
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una y otra banda son muy similares, ambos grupos se ven delatados por honestos con casi la

misma probabilidad. Segundo, el comportamiento del sistema en el interior de los agregados

corruptos, donde únicamente hay presencia de una banda, ignora los mecanismos de delación

cruzada entre bandas. Estas dos propiedades llevan a pensar que la dinámica que se desarrolla

en el interior de los agregados corruptos se asemeja a un modelo HCO, y no a un HCCO como

esperábamos.

Hay varias maneras de validar esta suposición. En primer lugar, hemos visto que existe cierto

umbral βc, tanto en los resultados de Markov como en los de Montecarlo, que separa el caso

en el que los agentes honestos se ven confinados a la frontera y el caso en el que consiguen

penetrar en los agregados corruptos. Es razonable pensar que esta transición se debe producir

cuando el valor de β sea tal que la situación de convivencia de agentes honestos y corruptos

sea estable en el modelo HCO. En efecto, en la Figura 9a se puede ver claramente el cambio

de comportamiento en la fracción total de honestos que se produce en el umbral de estabilidad

del punto de convivencia del HCO, dado por la aparición de agentes honestos en el interior de

los grupos. El pequeño exceso de agentes honestos para β < βc se debe únicamente al efecto de

frontera que genera un fondo continuo de delaciones. Para valores pequeños de β por encima de

βc, la fracción total de honestos es pequeña y el comportamiento en Markov y Montecarlo sufre

ligeras desviaciones respecto al comportamiento del modelo HCO. Sin embargo, para valores

mayores de β, el comportamiento markoviano termina encajando casi a la perfección con el

obtenido en el modelo HCO, salvo por las pequeñas desviaciones debidas a la frontera.

Algo distinto ocurre en el caso de simulaciones Montecarlo. Se puede observar que para

valores de β grandes, la fracción de honestos en el modelo HCCO es menor que la que se obtiene

en el caso del HCO. Este resultado va además en contra de las predicciones de campo medio,

en las que la fracción de población honesta deb́ıa ser siempre mayor debido al mecanismo de

delación cruzada entre bandas, que desaparece por el fenómeno de la segregación. Cabe recordar

que la convivencia entre bandas es un resultado del mecanismo de delación selectiva por parte

de los honestos, que deciden no castigar a la banda minoritaria con el objetivo de que ésta les

ayude a delatar a la mayoritaria. El hecho de que ambas bandas se repartan en diferentes zonas

en la red invalida en gran medida la supuesta utilidad de la convivencia para los honestos, que

ahora se ven compitiendo como si se tratase de un modelo HCO, pero delatando a una de las

bandas con una probabilidad menor de la que debeŕıa en cada paso temporal. Por tanto, en una

red lattice la estrategia de delación inteligente consistiŕıa en delatar a ambos grupos por igual

hasta exterminar a uno de ellos, alcanzando entonces un modelo HCO genuino.

Los resultados anteriores muestran claramente que en las simulaciones Montecarlo se produ-

cen situaciones análogas al HCO. Ahora, para terminar de validar que, además de la segregación,

el comportamiento HCO también está presente en Markov, podemos estudiar la distribución es-

pacial de las fracciones honestas de los nodos. Para ello, realizamos los histogramas que se

muestran en la Figura 9 correspondientes a las configuraciones detalladas en los inset, que indi-

can la frecuencia con la que aparecen nodos con cierta fracción ρh. Podemos ver que, si bien las

distribuciones abarcan varias composiciones posibles, se dan picos claros en la posición corres-

pondiente a las poblaciones en el equilibrio del modelo HCO en campo medio, ρHCO
h = 0 cuando

β = 0.2 < βc, y ρHCO
h = 0.33 cuando β = 0.5 > βc. El primer caso corresponde a la situación

en la que el punto fijo Full C es estable, y por tanto no debeŕıa haber, en principio, fracciones
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Figura 9: Red lattice. (a) Fracción de población honesta en función de β para α = 0.5. Se muestran

los resultados en el modelo HCO de simulaciones Markov (ĺınea verde) y Montecarlo (ĺınea roja), y sus

contrapartes en el modelo HCCO (Triángulos verdes y ćırculos amarillos, respectivamente). La ĺınea negra

vertical marca la transición de estabilidad del modelo HCO en lattices, en βc = 0.26. Los rectángulos

azules muestran dos elecciones de β, por encima y por debajo de la cŕıtica, en los que estudiamos la

distribución de las poblaciones en la red mediante histogramas del número de nodos con cierta fracción

honesta: (b) histograma para α = 0.5, β = 0.2, (c) histograma para α = 0.5, β = 0.5. Ambos histogramas

corresponden a las configuraciones que se muestran en los inset. Las ĺıneas verticales azul oscuro marcan

el valor obtenido por campo medio en el modelo HCO, que se detalla en las etiquetas ρHCO
h .

honestas. Sin embargo, vemos que aparecen poblaciones no nulas en la red que se distribuyen

a lo largo de la frontera, dando lugar a un pico secundario para la fracción de honestos que se

produce justo en el punto medio entre bandas. Algo similar ocurre en el segundo caso, en el que

la fracción de honestos mayoritaria resulta ser, de nuevo, la correspondiente a las predicciones

campo medio del modelo HCO.

Sabemos entonces que, en efecto, se produce una segregación entre bandas que da lugar

a comportamientos HCO. Si bien las consecuencias directas de lo anterior se pueden entender

fácilmente, en principio la comprensión del origen de este fenómeno es más complicada. Podemos

dar una explicación cualitativa para justificarlo, basada en propiedades del modelo. En concre-

to, sabemos por los resultados del modelo HCCO sin delación selectiva que las interacciones

entre bandas imposibilitan su convivencia, y el único punto fijo estable se da en la situación de

supervivencia de una banda. Por tanto, en un entorno local en el que coexistan ambas especies

corruptas con algunos agentes honestos que las delaten por igual (como es el caso del modelo que

utilizamos en este trabajo, en el que la delación selectiva no tiene casi efecto si la población de

ambas bandas es muy similar) necesariamente una de las dos debe desaparecer. En este sentido,

podŕıamos identificar el comportamiento del sistema en subregiones de la red como si se tratase

del HCCO sin delación selectiva (en el que habŕıa una probabilidad de delación efectiva algo

menor que β, pero igual para ambas bandas), suponiendo que el cambio de composición de ese

subsistema no afecta al sistema global lo suficiente como para alterar en gran medida las proba-

bilidades de delación por parte de honestos. De esta manera, en las subregiones se impondrá una
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Figura 10: Red regular aleatoria (RRN). (a) Fracción de población honesta en función de β para α = 0.5.

Se muestran los resultados en el modelo HCO de simulaciones Markov (ĺınea verde) y Montecarlo (ĺınea

roja), y sus contrapartes en el modelo HCCO (Triángulos verdes y ćırculos amarillos, respectivamente).

La ĺınea negra vertical marca la transición de estabilidad del modelo HCO en RRN, en βc = 0.24.

Los rectángulos azules muestran dos elecciones de β, por encima y por debajo de la cŕıtica, en los que

estudiamos la distribución de las poblaciones en la red mediante histogramas del número de nodos con

cierta fracción honesta: (b) Histograma para α = 0.5, β = 0.2, (c) histograma para α = 0.5, β = 0.5.

Las ĺıneas verticales azul oscuro marcan el valor obtenido por campo medio en el modelo HCO, que se

detalla en las etiquetas ρHCO
h . El histograma (c) muestra que todos los nodos tienen una misma fracción

honesta, y corresponde al caso del comportamiento campo medio del sistema HCCO.

banda u otra, dependiendo de qué banda tenga una población mayor en la región. La explicación

en el caso de Markov es similar: pequeños excesos en la población de una u otra banda pueden

dar lugar a zonas de supervivencia de una única especie corrupta.

Los resultados mostrados hasta ahora describen correctamente el comportamiento en el caso

de una lattice, pero el fenómeno de segregación es común a otras redes con estructuras espaciales

mucho menos definidas o incluso inexistentes, como hemos visto en el caso de RRN. Cabe pre-

guntarse entonces si las desviaciones que se producen en este caso también se pueden entender

como efectos debidos a la aparición de regiones de la red donde se desarrolla el modelo HCO.

Para ello, representamos de nuevo en la Figura 10a las poblaciones de honestos en Markov y

Montecarlo en función de β, junto con las distribuciones obtenidas en el modelo HCO. Se puede

ver ahora que no existe relación aparente entre el umbral βc del HCO y el comportamiento en

el modelo HCCO, poniendo en duda que este efecto sea relevante. No obstante, para valores de

β elevados las fracciones de población honesta en simulaciones Montecarlo del modelo HCCO

coincide casi a la perfección con los resultados en HCO. En realidad, se compensan dos efectos:

la disminución de la delación por parte de honestos debido al mecanismo de delación selectiva,

y el aumento debido a la delación cruzada entre diferentes bandas corruptas. Aśı, la segrega-

ción muestra tener influencia en el desarrollo de la dinámica, pero no da lugar a regiones de

comportamiento HCO genuino.

Por otro lado, observamos también en la Figura 10 los histogramas de nodos con una deter-

minada fracción ρh correspondientes a dos configuraciones RRN en el equilibrio, con valores de
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β por encima y por debajo de la cŕıtica. En esta ocasión, las fracciones honestas se desv́ıan cla-

ramente del valor obtenido en el HCO, y muestran además poblaciones mucho más homogéneas.

En el caso de β = 0.5 no llega a producirse la segregación, y se alcanza un estado completamente

análogo al campo medio del HCCO, en el que todos los nodos tienen las mismas fracciones de

población. Por tanto, podemos concluir que no hay regiones de la red en Markov que se com-

porten como si se tratase de un modelo HCO. Por otro lado, estos resultados son esperables a la

luz del comportamiento de la segregación que se muestra en la Figura 6, donde se ve que ambas

bandas corruptas siguen estando expuestas a fracciones no despreciables de la otra banda en

RRN, mucho más que en lattices.

Esta diferencia de comportamientos entre diferentes estructuras de red resulta llamativa,

teniendo en cuenta además que en ambas se produce segregación entre bandas. Este fenómeno

debe ir necesariamente ligado a la aparición de agregados corruptos de cada especie en los que,

en principio, siempre debeŕıa desarrollarse un HCO. El hecho de que en RRN no aparezca este

comportamiento nos lleva a estudiar la estructura de los agregados corruptos que se forman para

descubrir las diferencias que den lugar al cambio de comportamiento, para lo que recurrimos a

los resultados en Montecarlo. En la Figura 11a se muestra el tamaño del agregado de corrup-

tos mayor en función de β teniendo en cuenta ambas bandas, obtenido como promedio de 50

ejecuciones. Este tamaño se obtiene contando el número de agentes corruptos que pertenecen a

un mismo grupo continuo, y seleccionando el grupo continuo con mayor número de estos. Po-

demos ver que existen claras diferencias respecto al comportamiento en el caso de redes lattice

y RRN. Por un lado, la meseta que aparece para valores pequeños de β en la lattice indica que

los agentes corruptos se reparten en dos grandes grupos que dominan la red, y hasta que β no

supera el valor del umbral de HCO, βc ≈ 0.26, estas agregaciones no decaen. A partir de ah́ı,

los agentes honestos aumentan en número, y se van uniendo hasta formar un gran grupo que

atraviesa la red representando una buena fracción de la población total. Por otro lado, en RRN

vemos que, si bien los agregados comienzan siendo muy grandes para β < βc, disminuyen de

tamaño rápidamente, teniendo los agregados mayores en torno a la mitad de tamaño que en el

caso de la lattice cuando β = βc. Además, el crecimiento del grupo mayor de honestos comienza

mucho antes que en el caso anterior.

Los resultados parecen indicar por tanto que no existen, en principio, limitaciones al desa-

rrollo del comportamiento HCO en el caso de RRN, porque grupos de corruptos de en torno a

2000 individuos debeŕıan ser capaces de albergar en su interior esta clase de comportamiento sin

intervención de la banda rival. Sin embargo, el tamaño del grupo no es lo único que determina

el comportamiento en el interior de éste, sino que también debemos tener en cuenta los efectos

de frontera. Para ello, representamos de nuevo en la FIgura 11b el tamaño del agregado mayor

en la misma escala que antes, pero en esta ocasión contabilizando únicamente aquellos agentes

que se encuentren completamente rodeados por agentes de su misma especie. De esta manera,

eliminamos en primera aproximación el efecto directo de frontera, y podemos comparar los in-

teriores de los grupos. Las diferencias de comportamiento son evidentes: mientras que en redes

lattice los agregados corruptos contienen en su interior espacio suficiente como para desarrollar

comportamiento HCO, en el caso de RRN prácticamente la totalidad de los agentes se encuen-

tran en la frontera. Por tanto, la dinámica viene dominada por interacciones entre bandas y con

honestos, incluso cuando éstos no debeŕıan estar presentes según un modelo HCO. Aśı, aunque
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(a) (b)

Figura 11: Tamaño del agregado mayor de la especie H, y el mayor de las especies Cin y Cst, obtenidos

como promedio de 50 ejecuciones para cada valor de β. (a) Tamaño mayor teniendo en cuenta todos

los agentes de una misma especie que forman un grupo continuo. (b) Tamaño mayor teniendo en cuenta

únicamente aquellos agentes que se encuentren completamente rodeados por agentes de su misma especie.

la segregación entre bandas esté presente y juegue un papel importante en la composición final

del sistema, no es suficiente como para romper el modelo HCCO en dos modelos HCO.

Estas diferencias de comportamiento se explican por la estructura espacial subyacente de

ambas redes. La RRN tiene la propiedad de mundo pequeño, que hemos comentado al principio,

según la cual la distancia entre dos nodos cualesquiera de la red, en términos del número de nodos

que hay que atravesar para ir de uno a otro, es mucho menor que el tamaño total. Esto quiere

decir que dos agentes cualquiera de una misma especie o de especies diferentes se encuentran,

de media, mucho más cerca que si formasen parte de una lattice. La consecuencia directa es

que es imposible formar regiones del espacio dominadas por una banda en las que se puedan

ignorar efectos de frontera, porque siempre habrá agentes de la otra banda en las cercańıas que

alterarán la dinámica. En definitiva, podemos entender las RRN como sistemas en los que sólo

hay frontera, provocada por la segregación de las bandas y las pequeñas distancias entre agentes.

Los mecanismos que dan lugar a la formación de fronteras son, por tanto, iguales en RRN

y lattice, y la única diferencia es la capacidad de producir grupos corruptos lo suficientemente

grandes. Esto tiene también influencia en el comportamiento markoviano del sistema, como

podemos ver en la Figura 6, atenuando y retrasando la aparición de la segregación en RRN.

La explicación cuantitativa de este fenómeno, y concretamente de la existencia de un umbral

que separa las regiones de parámetros en los que se produce o no segregación, no es sencilla,

y queda abierta para futuras investigaciones. Puede estar relacionada con la fracción total de

honestos en la red y el parámetro α de corrupción: para que las poblaciones de corruptos puedan

homogeneizarse dando lugar a comportamiento campo medio, es necesario que los corruptos

de una banda consigan expandirse lo suficiente sobre nodos vecinos dominados por la banda

contraria en cada paso temporal, de manera que al final ambas bandas logren un equilibrio

sobre cada nodo. Para ello, es necesario que haya una fracción honesta suficiente en el agente

vecino y un parámetro α elevado que permita compensar las pérdidas por delación. Cuando
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alguna de estas dos condiciones no se cumpla, una de las especies tendrá que retroceder frente

a la otra hasta alcanzar una región del espacio en la que puedan competir, dando lugar a una

frontera que separará dos zonas en las que no se producirá convivencia.

6. Conclusiones

En este trabajo hemos explorado la generalización directa del modelo HCO, en el que se trata

la corrupción como si fuese un estado infectivo, al caso en el que dos bandas corruptas diferentes

compiten. Hemos visto que no puede darse la situación de convivencia de bandas corruptas,

y eventualmente se alcanza siempre un estado de supervivencia de una única banda regido

por el modelo HCO. Para solventar este problema, modificamos el modelo de manera que los

honestos delaten con menor probabilidad a los corruptos de la banda minoritaria que a los de la

mayoritaria, cuando su diferencia de población sea lo suficientemente grande. De esta manera, la

banda minoritaria se ve beneficiada y es capaz de crecer hasta competir con la mayoritaria. Aśı,

el modelo HCCO modificado da lugar a un punto fijo siempre estable de convivencia de bandas,

y dos puntos fijos, estables para determinadas combinaciones de parámetros, de supervivencia

de una única banda. Existen por tanto situaciones de biestabilidad en la red, en las que la

composición final del sistema viene únicamente determinada por la población inicial.

Los resultados obtenidos mediante aproximación de campo medio muestran que la población

honesta en el caso de convivencia de bandas es sistemáticamente mayor que en el caso de

supervivencia de una única banda. Esto se debe a que los corruptos de ambas bandas ayudan

a la creación de nuevos honestos mediante el mecanismo de delación cruzada, y por tanto la

existencia de dos bandas que compiten por un mismo sistema resulta beneficiosa para los honestos

justificando aśı la modificación del modelo desde un punto de vista inteligente: el honesto puede

decidir no delatar a un corrupto minoritario en búsqueda del mejor resultado global.

La implementación sobre redes del sistema da lugar a resultados diferentes según su topo-

loǵıa. En el caso de redes regulares aleatorias, que poseen la propiedad de mundo pequeño, la

dinámica da lugar a resultados muy similares a los predichos en campo medio, siendo mayores

las desviaciones en el caso de simulaciones Montecarlo. En cambio, la implementación del mo-

delo en redes lattice muestra un comportamiento que difiere claramente de los anteriores, dando

lugar a poblaciones muy diferentes. La representación visual de algunas de las configuraciones

de equilibrio de sistemas lattice da la pista de los mecanismos que provocan estas desviaciones:

la aparición de grandes agregados corruptos que segregan las bandas en regiones diferenciadas

de la red.

Este fenómeno se puede entender teniendo en cuenta que, cuando ambas bandas tienen la

misma población, se ven delatadas por igual por parte de los agentes honestos. Entonces, si

dividimos el sistema en regiones pequeñas en las que una de las bandas sea mayoritaria, en

principio la evolución será la esperada según el modelo HCCO sin delación selectiva, en el que

los honestos delatan por igual a ambas bandas siempre. Por tanto, en esta región del espacio

únicamente sobrevivirá una de las bandas, y estas terminarán segregándose en grandes grupos.

La supervivencia de ambas en el sistema global viene garantizada por la asimetŕıa en la delación

por parte de los honestos.
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Para cuantificar la formación de estos agregados, se han propuesto unas métricas que miden

la desviación de la abundancia de cierta especie en el entorno de otra especie con respecto al

promedio de la red. Si esta métrica es mayor que 1, entonces ambas especies se encuentran

agregadas, y si es menor, se encuentran disgregadas. Estas métricas nos permiten observar que

la segregación no sólo está presente en caso de redes lattice, sino también en RRN, y las pequeñas

desviaciones poblacionales observadas en este caso son atribuibles a ella. Hemos visto también

que la segregación disminuye conforme aumenta el grado de la red, llegando incluso a desaparecer

por completo en el caso de Markov en RRN.

La aparición de regiones en lattices en las que únicamente se desarrolla una de las bandas

da lugar a comportamientos tipo HCO que dominan la dinámica, y relega la interacción entre

bandas a una pequeña región de frontera con escasa influencia en el comportamiento global. Esto

provoca que las composiciones finales del sistema se acerquen más a los resultados HCO que a

los de HCCO, al eliminar de manera efectiva la delación entre bandas, uno de sus mecanismos

principales. Por otro lado, aunque este efecto también está presente en RRN, por la propiedad

de mundo pequeño todo agente de una banda corrupta se encuentra muy cerca de cualquier otro

agente de la banda contraria, y el comportamiento de todo el sistema corresponde esencialmente

al de una frontera, sin llegar a producir un comportamiento HCO.

Por último, merece la pena destacar que el fenómeno de la segregación siempre penaliza a

los agentes honestos, que ven disminuida su fracción en el sistema. En el caso de redes lattice, la

penalización es tal que llega incluso a empeorar los resultados con respecto al modelo HCCO sin

delación selectiva, en el que los honestos delatan siempre a sus vecinos corruptos independien-

temente de su banda. Esto revela la importancia crucial que tienen los mecanismos de delación

cruzada a la hora de valorar positiva o negativamente un posible cambio de estrategia en los

agentes honestos.

En definitiva, hemos comprobado que un sistema en el que conviven dos bandas corruptas

diferentes que compiten entre śı muestra una gran riqueza en su comportamiento atribuible a

los nuevos mecanismos de interacción entre ellas, y a la modificación inteligente de la estrategia

delatora de los honestos. Las estructuras locales de la red han jugado también un papel fun-

damental en la dinámica del sistema, llegando incluso a separar de manera efectiva el modelo

HCCO de convivencia en dos modelos HCO situados en regiones diferenciadas de la red. Estos

resultados son un claro ejemplo de fenómenos emergentes, en los que los mecanismos locales de

un sistema condicionan su expresión global, y muestran el papel fundamental que juegan las es-

tructuras de red subyacentes a los modelos epidémicos, llegando incluso a invertir los resultados

de nuestras predicciones. Todo lo anterior invita a seguir explorando esta v́ıa haciendo uso de

nuevas topoloǵıas de red y nuevas modificaciones del modelo, para desvelar nuevos resultados

fruto de la competencia entre bandas corruptas.
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