
Anexos

Anexo 1. Elecciones para la función de delación

En el trabajo hemos tomado una regla de delación selectiva caracterizada por una función

de Boltzmann:

B(x, y) =

1 si x ≥ y ,

exp
[
1
T

(x−y)
(x+y)

]
si x < y ,

(1)

de manera que tenemos una función continua en la que, cuando ambas especies corruptas re-

presentan la misma fracción de población, ambas se ven delatadas por igual con probabilidad

β. Se muestra la representación de la función B(x, y) en la Figura 1a. Esta elección para la

función de delación no es la única posible, existen otras propuestas con ventajas y desventajas,

que discutiremos a continuación. En concreto, nos centramos en dos ejemplos: la función escalón

y la función de Fermi.

En primer lugar, la función escalón, o Heavyside, se puede obtener como un ĺımite de la

función de Boltzmann cuando T → 0:

θ(x, y) =

1 si x ≥ y ,

0 si x < y .
(2)

Su representación se muestra en la Figura 1b. Destacamos el hecho de que, cuando ambas

especies tienen la misma fracción, ambas sufren delación por igual. Esta función muestra una

discontinuidad en x = y, que da lugar a problemas a la hora de aplicar el modelo en redes

motivados por el hecho de que, en este caso, la banda minoritaria no sufre delación por parte de

los honestos, provocando oscilaciones en el sistema en torno a la bisectriz: en un paso temporal,

la fracción de población de la banda minoritaria aumenta considerablemente al no sufrir delación

por honestos, mientras que la banda mayoritaria pierde población. En el paso temporal siguiente,

la banda que era minoritaria es ahora mayoritaria, y viceversa. De nuevo, la minoritaria no sufre

delación y aumenta en gran medida su población. Este fenómeno provoca grandes excesos en la

población de agentes corruptos respecto al campo medio tanto en Markov como en Montecarlo,

como se observa en la Figura 1h, debido a que raramente se llega a delatar a ambas bandas a la

vez porque sus poblaciones casi nunca son iguales.

La tercera opción para la delación es utilizar una función tipo Fermi, de manera que:

F (x, y) =
1

1 + exp
[
1
T

−(x−y)
(x+y)

] . (3)

Ahora, tenemos una única función continua que abarca todas las posibles diferencias de po-

blación, como se muestra en la Figura 1c. El inconveniente de esta función es que, cuando

ρcin = ρcst , la delación que sufren ambas bandas por parte de honestos es igual a β/2. Esto

tiene dos grandes implicaciones: por un lado, la fracción de honestos en el equilibrio es menor

que en los casos anteriores, al menos considerando el campo medio. Por otro, el hecho de que

los honestos sean más permisivos con los corruptos minoritarios provoca de nuevo oscilaciones
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Figura 1: Las tres funciones de delación propuestas. Se muestra la forma de las funciones (a) Boltzmann,

(b) Heavyside, y (c) Fermi, aśı como secciones transversales del tetraedro de configuraciones, tomadas

para los valores de ρh correspondientes al punto fijo sobre la cara. Las funciones (d) Boltzmman y (e)

Heavyside tienen el punto fijo en el mismo lugar, pero la función (f) Fermi lo tiene desplazado frente a las

anteriores. Se muestran también las fracciones en el equilibrio obtenidas mediante campo medio (c.m.,

azul) en la bisectriz (ĺınea continua) y en la cara (ĺınea discontinua) para las tres funciones. Se muestran

también los resultados obtenidos sobre la bisectriz en dinámica markoviana (MK, morado) y simulaciones

Montecarlo (MC, azul oscuro) en RRN.
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importantes en torno a la bisectriz, de manera que para valores elevados de α, las grandes va-

riaciones de población de corruptos en cada paso temporal alejan al sistema de la situación de

igualdad de poblaciones corruptas. En cambio, cuando el parámetro de corrupción α es pequeño,

los resultados se ajustan muy bien al campo medio.

Se puede demostrar además a partir de las ecuaciones de flujo que la condición de estabilidad

del punto fijo de supervivencia de una única banda β = α, que sabemos que corresponde a

ρh = ρc, también hace coincidir la fracción de población honesta en la bisectriz y en la cara, lo

que significa que en α = β la delación selectiva no supone una ventaja para los honestos. Esto

se puede ver también gráficamente atendiendo a la Figura 1f, donde se muestra que el punto

fijo sobre la bisectriz y los puntos fijos inestables interiores al tetraedro tienen un mismo ρ∗h.

Cuando los puntos fijos inestables colisionen con los de las caras, estos pasarán a ser estables con

la misma fracción ρ∗h que el punto fijo en la bisectriz, produciéndose la bifurcación transcŕıtica.

Vemos aśı que las funciones de Heavyside y de Fermi provocan oscilaciones en torno al plano

bisectriz que alteran en gran medida las fracciones de población honesta en el equilibrio. Este

fenómeno no está presente con Boltzmann porque combina por un lado la delación completa de

la banda mayoritaria con el castigo a la minoritaria, de manera que las poblaciones de ambas no

sufren grandes variaciones para valores elevados de α, estabilizando las fracciones y acercándolas

al campo medio.

Anexo 2. Segregación fuerte y débil

En este trabajo hemos comprobado la importancia de la segregación en el modelo HCCO a la

hora de explicar las desviaciones de comportamiento respecto del campo medio. Esta segregación

aparece cuando los mecanismos propios de la delación selectiva pierden influencia, al ser ambas

poblaciones muy similares. En este contexto, ambas bandas se ven delatadas por igual con

cierta probabilidad β efectiva, algo menor que la β real, que da lugar a un modelo HCCO sin

delación selectiva en entornos locales de la red. Estos entornos tienden entonces al estado de

supervivencia de una única banda corrupta, y por tanto aparecen localmente acumulaciones de

una u otra especie.

Esto implica que la segregación espacial a gran escala es una propiedad exclusiva del modelo

HCCO con delación selectiva. Cabe destacar además que por segregación entendemos la acumu-

lación de cierta especie en una zona de la red, que es algo que podemos observar directamente en

redes lattice, y no únicamente al hecho de que una especie tenga, en promedio, un mayor número

de vecinos de su especie de los que debeŕıa. Evidentemente, ambas cosas están muy relacionadas,

y los valores desorbitados de las métricas medidas durante el trabajo son una prueba clara de

que la distribución de las especies por la red no es homogénea.

Estas métricas esconden aśı contribuciones de los dos efectos comentados: Primero, reflejan

el efecto de grandes segregaciones macroscópicas, porque la existencia de grandes espacios en la

red con ausencia de una banda hace disminuir mucho su fracción en campo medio, y en última

instancia, aumenta en gran medida el valor de las métricas1 (hasta en un factor 2, cuando las

1Esto muestra que las métricas, pese a ser cantidades definidas en base a los entornos locales, también carac-

terizan la estructura global.
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bandas se reparten en dos zonas iguales y separadas). Segundo, en el ámbito local, las métricas

son capaces de capturar las leves desviaciones en la composición de los entornos de los agentes.

Ingenuamente, teniendo en cuenta que la propagación de una especie se realiza generalmente

mediante interacción de individuos de esa misma especie con otros, podŕıamos pensar que las

diferentes especies se van a encontrar siempre algo agregadas. Podemos ver, por ejemplo, qué

ocurre con los agentes corruptos: dado que la propagación de la corrupción se produce en el

entorno de un corrupto cuando se encuentra a un honesto, es natural pensar que los corruptos

debeŕıan encontrarse normalmente agregados entre śı. Lo mismo debeŕıa ocurrir con los agentes

honestos, si la delación cruzada entre bandas no se produjese. Ambas segregaciones, local y

global, son cualitativamente diferentes, tienen oŕıgenes distintos, y provocan diferentes efectos en

el sistema. Por claridad, en este anexo hablaremos de ((segregación fuerte)) cuando nos refiramos

a la separación global de especies en distintas regiones de la red, y ((segregación débil)) cuando

nos refiramos a la presencia de desviaciones locales en los entornos de cada agente. Se trata de

una diferencia únicamente conceptual, porque ambas se miden con las mismas métricas.

El mecanismo de segregación débil puede estar presente entonces tanto en el modelo HCO

como en el HCCO. Dado que en el HCO no se da competencia entre bandas, en principio el

efecto de segregación fuerte no debeŕıa estar presente, y por tanto el estudio de las métricas

en HCO nos da información acerca de estos efectos de segregación débil. Representamos estas

métricas para simulaciones Montecarlo del modelo HCO en las Figuras 2a y 2b, en función de α

y β, para redes lattice y RRN. En el caso de la dinámica markoviana, el sistema siempre tiende

a la composición obtenida en campo medio, con fracciones finales de población homogéneas en

todos los nodos, y por tanto no se produce segregación.

En primer lugar, podemos ver que la segregación es notablemente más débil que en el HCCO,

siendo su influencia en las poblaciones finales mı́nima. Vemos además que los resultados son muy

similares para redes lattice y RRN en buena parte del espacio de parámetros, lo que indica que

esta segregación no encuentra su justificación en términos de la estructura espacial de la red,

o no está limitada por ésta. El pico inicial de agregación corrupta σc,c en las Figuras 2a, o de

agregación honesta σh,h en la Figura 2b que se producen justo en la transición desde la situación

de dominio de una estrategia (C o H) a la situación de convivencia se deben a que, al haber

una cantidad muy pequeña de individuos, si dos de ellos se encuentran, el valor de las métricas

se dispara porque en promedio no se debeŕıan ver nada.

Llama la atención inmediatamente que la especie corrupta no se encuentra agregada en la

mayoŕıa de ocasiones. De hecho, salvo en la región en la que la fracción de población corrupta

es muy pequeña, tenemos en general que σc,c < 1. Este resultado va en contra de la explicación

anterior, basada en los mecanismos de generación de corruptos, pero se puede entender teniendo

en cuenta también el fenómeno de delación: los agentes corruptos delatados dan lugar a agentes

en el ostracismo, que se generan al lado de otros agentes corruptos y entorpecen su propagación.

De hecho, los corruptos observan generalmente menos agentes C y H de los que debeŕıan,

porque observan un exceso de O. En cualquier caso, podemos ver que la segregación débil da

lugar a pequeñas desviaciones respecto del campo medio que en nada se asemejan a fenómenos

de separación de especies, como ocurre en el modelo HCCO, aunque este mecanismo también

debeŕıa estar presente aqúı. Para comprobarlo, en lugar de considerar las métricas de los honestos

con cada una de las bandas corruptas en la convivencia, lo consideramos con ambas a la vez,
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Figura 2: Métricas para simulaciones Montecarlo. Se muestran los resultados para redes lattice (ĺıneas

discontinuas) y RRN (ĺıneas continuas), obtenidas en (a,b) HCO, y en (c,d) HCCO. Se incluyen las

métricas entre honestos σh,h (azul), corruptos σc,c (verde) y honestos con corruptos σc,h (rojo). En el

modelo HCCO, se han considerado todos los corruptos juntos, cT = cin + cst.

ρcT = ρcin + ρcst . Los resultados se muestran en las Figuras 2c y 2d, y son semejantes a los

obtenidos con el modelo HCO. Esto es razonable, teniendo en cuenta que el modelo HCCO se

aproxima a dos HCO diferentes en redes, y que las únicas desviaciones se pueden producir en la

frontera, donde se genera un exceso de honestos, aunque su efecto no es fácilmente cuantificable

en términos de la segregación.

Estos resultados muestran que la segregación débil está siempre presente en la red, tanto en

el modelo HCO como en el HCCO, pero se diluye en este último caso ante el fenómeno de la

segregación fuerte. Los efectos de cada segregación son diferentes: mientras que la segregación

débil podŕıa dar lugar a pequeñas desviaciones poblacionales, la segregación fuerte dificulta en

gran medida el efecto de la delación cruzada. En cualquier caso, queda reforzada la hipótesis

de que el modelo HCCO se comporta localmente como un HCO, y además, que la segregación

global tiene su origen en la interacción entre las dos bandas, y se trata de un efecto genuino del

modelo HCCO.
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