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Abstract

Convexity and in particular convex bodies have been an important research field in recent decades,
based on the interaction between local Banach theory with convex geometry and probability. In this
work, we focus our study on the isotropic constant of convex bodies, which is a magnitude related with
the mass distribution of convex bodies.

Each convex body K C R”" is associated with an isotropic constant, denoted Lk, which indicates
the volume of the inertial ellipsoid of that element of its family of affine transformation, {a+TK ; a €
R", T € GL(n)}, which is in a specific position, called isotropic position. The main goal of this work
is to study the isotropic constant conjecture, which states that there exists an absolute constant C > 0
such that Lg < C, for every convex body K C R", for every n € N. In addition, we will prove that this
question is equivalent to the so-called hyperplane conjecture, which asks whether every centered convex
body of volumen 1 has a hyperplane section through the origin whose volume is greater than an absolute
constant ¢ > 0.

These questions have not been solved yet in all their generality, but for some families of convex
bodies the conjectures are known to be true. In this work, we present some examples of it. The study
of log-concave functions is essential in this study. As original result, we will improve some estimates
for log-concave functions when better concavity conditions are fulfilled, as in the case of some of the
functions appearing in the study.
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Resumen

La convexidad y en particular los cuerpos convexos han sido un importante campo de estudio en
las dltimas décadas, basado en la interaccion entre la teoria local de espacios de Banach con geometria
convexa y probabilidad. En este trabajo centramos nuestro estudio en la isotropia de cuerpos convexos,
la cual es una magnitud relacionada con la distribucién de masa de cuerpos convexos.

A cada cuerpo convexo K C R" se le asocia una constante de isotropia, denotada Lk, que indica
el volumen del elipsoide de inercia de aquel elemento de su familia de transformaciones afines, {a +
TK;acR", T € GL(n)}, que estd en una posicion especifica, llamada posicién de isotropia. El objetivo
principal de este trabajo es estudiar la conjetura de la constante de isotropia, la cual plantea la existencia
de una constante absoluta C > 0 tal que Lg < C, para todo cuerpo convexo K C R”", para toda dimensién
n € N. Ademds, veremos que esta cuestion es equivalente a la conjetura del hiperplano, en la que se
plantea si existe una cota inferior ¢ > 0 absoluta, tal que todo cuerpo convexo de volumen 1 tenga una
seccién central con volumen al menos c.

Estas cuestiones atin no ha sido resultas en toda su generalidad, pero si en algunas familias de
cuerpos convexos. En este trabajo vamos a exponer algunos ejemplos de ello. El estudio de funciones
log-céncavas es esencial en trabajo. Como resultados originales, mejoraremos algunas estimaciones
para funciones log-céncavas cuando se satisfacen mejores condiciones de concavidad, como es el caso
de algunas de las funciones que aparecen en este estudio.
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Introduccion

El andlisis geométrico asintético se puede describir como el estudio de cuerpos convexos desde un
punto de vista geométrico y analitico, haciendo énfasis en la dependencia en la dimensién de algunos
pardmetros. Esta rama de las mateméticas se basa en el andlisis funcional, en particular en la teoria local
de espacios de Banach, y su interaccién con la geometria convexa y teoria de la probabilidad, las cua-
les estudian fendmenos en altas dimensiones. Esta drea de las matemdticas empezo a ganar relevancia a
finales del siglo pasado, y tuvo un gran crecimiento en parte por su relacién con otras ramas de las mate-
maticas, con fisica matemdtica e incluso con teoria de la computacion. El andlisis geométrico asintdtico
se centra en mostrar aquellos fendmenos sobre cuerpos convexos que ocurren en altas dimensiones.

En este trabajo vamos a abordar una de las cuestiones no resueltas mas importantes del anélisis geo-
métrico asintético: la conjetura de la constante de isotropia. Para ello, vamos a hacer una introduccién
al andlisis geométrico asintético, viendo algunos resultados fundamentales, para asi comprender qué es
la constante de isotropia de cuerpos convexos, y poder responder parcialmente a esta conjetura. Este
problema no esta resulto en su totalidad, pero si en ciertos casos particulares. Asi, en este trabajo vere-
mos algunas familias de cuerpos convexos en las que se satisface la conjetura. También enunciaremos la
conjetura del hiperplano y veremos que ambas conjeturas son equivalentes. Finalmente, haremos algu-
na aportacién original basada en el estudio de funciones ¢-céncavas, con la cual mejoraremos algunas
acotaciones relevantes en el estudio de cuerpos convexos.

Dado K C R”" un cuerpo convexo, denotamos Lk la constante de isotropia de K. Este parametro
estd asociado no solo a K sino a toda la familia de transformaciones afines de K, es decir, el conjunto
{a+TK;aecR" T € GL(n)}. La constante de isotropia esta relacionada con la distribucién de masa
de K, e indica el volumen del elipsoide de inercia de la transformacién lineal de K que cumple unas
ciertas condiciones, la cual se dice que estd en posicion de isotropia.

La conjetura de constante de isotropia plantea la existencia de una constante absoluta C > 0 tal que
Lk < C, para todo cuerpo convexo K C R”, para toda dimension n € N. Esta cuestion ha sido resuelta en
algunas clases de cuerpos convexos, como veremos en el capitulo 4. Sin embargo, no ha sido demostrada
para cuerpos convexos en general. Ademads, veremos que es equivalente a la conjetura del hiperplano,
en la que se plantea si existe una cota inferior ¢ > 0 absoluta, tal que todo cuerpo convexo de volumen
1 tenga una seccidn central con volumen al menos c.

La estructura del trabajo estd formada por cuatro capitulos.

En el capitulo 1, se presentan los conceptos y resultados que serdn fundamentales en el posterior
desarrollo de los contenidos, es decir, nociones béasicas de teoria de cuerpos convexos y de teoria asint6-
tica de espacios normados de dimension finita. En este capitulo, vamos a trabajar con cuerpos convexos:
conjuntos convexos cerrados y con interior no vacio; de los cuales veremos algunos funcionales que de
forma natural se utilizan para trabajar con ellos. Ademas, daremos algunas resultados fundamentales en
andlisis geométrico, como la desigualdad de Brunn-Minkowski, la cual relaciona la suma de los vold-
menes de cuerpos con el volumen de la suma de esos cuerpos; el volumen de las p-bolas, es decir, bolas
unidad en R" de la norma || - || ,; o la posicién de John de un cuerpo convexo K, en la cual el elipsoide
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X Introduccion

de mayor volumen contenido en K es la bola unidad.

Los capitulos 2 y 3 tienen como principal objetivo el estudio del resultado que da nombre a esta
memoria: la constante de isotropia de cuerpos convexos y la conjetura del hiperplano. Para ello, en
primer lugar definiremos en el capitulo 2 la constante de isotropia de un cuerpo convexo. Haremos
una minuciosa descripcion de sus propiedades, asi como de su existencia. Con esto, formularemos la
conjetura de la constante de isotropia. Seguidamente, mediante unos conjuntos asociados a funciones
log-céncavas llamados cuerpos de Ball, daremos un resultado por el cual para cada cuerpo convexo K C
R" no necesariamente simétrico, podemos acotar la constante de isotropia de K mediante la constante
de isotropia de un cuerpo de Ball simétrico asociado a una funcién log-céncava determinada por K.
Finalmente, acabaremos este capitulo dando un resultado original para en funciones a-céncavas, en
el que mejoramos la desigualdad con la que se acota la constante de isotropia de un cuerpo convexo,
mediante la constante de isotropia de un cuerpo de Ball asociado. Una implicacion de este resultado, es
que si se prueba la conjetura de la constante de isotropia para cuerpos simétricos, entonces se satisface
para cuerpos convexos en general.

En el capitulo 3, presentaremos la conjetura del hiperplano. Mediante una desigualdad entre la
constante de isotropia de un cuerpo convexo K C R" y el volumen de sus secciones centrales, veremos
que ambas conjeturas son equivalentes. Es decir, si una de las conjeturas se cumple, la otra se satisface
también. Utilizando funciones a-concavas, daremos una mejora original en las constantes que aparecen
en dicha desigualdad.

Por dltimo, en el capitulo 4, veremos algunos ejemplos de familias de cuerpos convexos en los que
se satisface la conjetura del hiperplano. En primer lugar, veremos dos clases de cuerpos convexos en
los que podemos acotar la constante de isotropia por una constante. Estos son los cuerpos convexos
incondicionales y cuerpos 2-convexos. Ambos satisfacen ciertas condiciones de convexidad o simetria
que hacen posible la acotacién de la constante de isotropia. Seguidamente, veremos que en politopos
(envoltura convexa de un nimero finito de puntos), podemos acotar la constante de isotropia por una
cantidad que depende del nimero de puntos con los que se define el politopo. Finalmente, daremos
una cota para la constante de isotropia de politopos aleatorios Gaussianos con probabilidad muy alta,
simplificando la demostracién general conocida.

En resumen, en este trabajo se realizan las siguientes aportaciones:

= Se ve una exposicion estructurada y autocontenida de los conceptos y resultados necesarios para
entender la conjetura de la constante de isotropia y la conjetura del hiperplano, ademas de dar
algunos ejemplos de familias de cuerpos convexos que las satisfacen.

= Se presentan, con una notacion unificada y de un modo claro, las demostraciones de los resultados
anteriormente mencionados, y se se ofrecen demostraciones originales de ciertos resultados que,
aunque conocidos y aceptados, no hemos podido encontrar en la literatura.

= En los capitulos 2 y 3, a partir del estudio de funciones con condiciones mas fuertes que la
log-concavidad, que es la propiedad que generalmente se ha utilizado en el estudio de cuerpos
convexos, se recogen algunos resultados originales basados en funciones o-concavas.

= En el capitulo 4, si bien la acotacién de la constante de isotropia para politopos aleatorios ya ha
sido estudiada, en este trabajo damos una acotacion original para politopos Gaussianos, a partir
de estudiar algunas propiedades de vectores aleatorios Gaussianos.



Capitulo 1

Geometria asintotica convexa

En este capitulo vamos a dar las nociones basicas de teoria de cuerpos convexos y de teoria asinto-
tica de espacios normados de dimensidn finita. Comenzaremos en la seccién 1.1, dando los conceptos
basicos de cuerpos convexos, asi como la suma de Minkowsi de cuerpos convexos, el cuerpo polar (o
dual) y el funcional de Minkowski de un cuerpo convexo.

En la seccién 1.2, veremos una desigualdad cldsica en geometria convexa: la desigualdad de Brunn-
Minkowski. Esta desigualdad relaciona la suma de los volimenes de cuerpos convexos, con el volumen
de la suma de esos cuerpos.

En la seccién 1.3, vamos a calcular el volumen de las bolas p en R”, es decir, el volumen de la bola
unidad en R” con la norma p. Las bolas p en R" se denotan como B}, = {x € R"; [|x]|, < 1}.

Por dltimo, en la seccién 1.4, definiremos la posicién de John y la posiciéon de Lowner de un cuerpo
convexo. Estas posiciones cldsicas satisfacen una ecuacién funcional que nos serd util para trabajar con
CUerpos convexos.

1.1. Introduccion a la convexidad

Vamos a centrar nuestro estudio en R” equipado con el producto escalar Euclideo (-,-), y su corres-
pondiente norma Euclidea || - ||2. Denotamos Bj a la bola Euclidea centrada en el origen y de radio 1,
es decir, B = {x € R" : ||x|| < 1}; y denotamos $"~! a la esfera centrada en el origen y de radio 1, es
decir, "~ '{x € R" : ||x|l2 = 1}. Denotamos el volumen de un cuerpo con |- |. Denotamos la proyeccién
ortogonal de R” en un subespacio F' como Pp.

1.1.1. Primeras definiciones

El principal punto estudio de este trabajo recae sobre los conjuntos convexos. Definimos ahora qué
se entiende por conjunto convexo.

Definiciéon 1.1. Se dice que un conjunto K C R" es convexo si Vx,y € K, y VA € (0,1), se tiene que
(I-A)x+Ay€eK.

Ademas, las intersecciones de conjuntos convexos son convexas.

Definicién 1.2. Se dice que un conjunto K C R” es estrictamente convexo si Vx,y € K, y VA € (0,1),
se tiene que (1 —A)x+ Ay € intK.
Notar que todo conjunto estrictamente convexo es, en particular, convexo.

Definicién 1.3. La suma de Minkowski de dos conjuntos A,B C R”" se define como A+B={a+b:ac
A,b € B}, y para cualquier i € R se define uA = {ua:a € A}.

Notar que ambas operaciones preservan la convexidad. Ademads, se tiene que A es convexo si y sélo
si paratodo A € (0,1), (1 —A)A+ AA = A. En general, para cualquier A C R" y A € (0,1) se tiene que
AC (1-1)A+AA.
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Definicion 1.4. Se dice que un conjunto A es simétrico si x € A implica que —x € A.

En particular, en este trabajo nos centraremos en cuerpos Convexos.

1.1.2. Cuerpos Convexos

Definicion 1.5. Un cuerpo convexo es un subconjunto convexo K C R” compacto y con interior no
vacfo.

En este trabajo, denotaremos la clase de cuerpos convexos en R” como .%;,.

Definicion 1.6. Decimos que K € %, es centrado, si el baricentro,

1
bar(K) = Il / xdx,
Jk

estd en el origen.

Del mismo modo, si f es una funcién medible, decimos que f es centrada si

/Rnxf(x)dx: 0.

Definiciéon 1.7. Un cono (convexo) es un subconjunto convexo C C R” no vacio, tal que si x € C,
entonces Ax € C para todo A > 0.

Es decir, un cono es un subconjunto no vacio de R” cerrado para la suma y el producto por nimeros
reales no negativos.

Definiciéon 1.8. Dado un conjunto arbitrario X, se define la envoltura convexa de X, y se representa
como conv(X ), como la interseccion de todos los subconjuntos convexos en R” que contienen a X.

La envoltura convexa de un conjunto X es el menor convexo que contiene a X. En este trabajo tienen
especial interés los conjuntos que se obtienen como envoltura convexa de un ndmero finito de puntos.

Definicion 1.9. Un cuerpo convexo K C R” se llama politopo, si es la envoltura convexa de un niimero
finito de puntos.

Veamos ahora una serie de normas y funciones asociadas a cuerpos convexos.

Definiciéon 1.10. Sea K C R” un cuerpo convexo con 0 € intK. Entonces, se define el funcional de
Minkowski de K como

|x|lx = inf{A >0; x € AK}.
Notar que si A C B, entonces || - |[4 > || - || 5-

Proposicion 1.1. Sea K un cuerpo convexo y simétrico en R" con 0 € intK. Entonces, el funcional de
Minkowski de K,

|||k, es una norma en R".

Por tanto, cualquier cuerpo convexo K simétrico con 0 € intK define una norma en R" dada por su
funcional de Minkowski, con K como bola unidad, es decir,

K={xeR"|x||x <1}.
Reciprocamente, para cualquier norma || - || en R”, se tiene que su bola unidad,
{x e R x| < 13,

es un cuerpo convexo simétrico y centrado en el origen.
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Definiciéon 1.11. Sea K un cuerpo convexo en R” con 0 € intK. Denotamos pg (x) = sup{A > 0;Ax € K}
la funcién radial de K.

Se puede ver que para todo x # 0, la funcién radial y el funcional de Minkowski de un cuerpo
convexo K quedan inversamente relacionados:

A

1 1 1
—suplA>0xe K\ = -
S“P{ > Hxes } Mmf{A>0xeAK]  |xlx

p(x) = sup{A > 0:Ax € K} — sup{/m S Oxe 11(}

Si pg es continuo, se dice que K es un cuerpo estrellado. Para calcular el volumen de un cuerpo
estrellado K, mediante integracién en coordenadas polares, se tiene que

K| =183 [ pi(6)do(e)

con o la medida de probabilidad invariante rotacional de S"~!.

Definicion 1.12. Se define la funcién suporte de un cuerpo convexo (o en general de un conjunto con-
vexo) de R” como

hi(x) = sup{(x,y);y € K}.

Se puede ver que hg es una funciéon homogénea positiva y convexa. Al contrario de lo que ocurria
con el funcional de Minkowski, se tiene que si A C B, entonces hy < hp. El reciproco también es cierto:
si hy < hg, entonces A C B. Dado 6 € §* !, se llama anchura de K en la direccién 0 a la cantidad
hx(0) +hg(—0).

Definicion 1.13. Sea K un cuerpo convexo en R” con 0 € intK. Se define el cuerpo polar (o dual) de K
como

K’ = {ye R"; sup(x,y) < 1}.
xeK

Se puede ver facilmente que K° es también un cuerpo convexo.

Proposicion 1.2. Sea K un cuerpo convexo en R" con 0 € intK. Entonces, para todo r > 0, se tiene que
(rK)° = (1/r)K.

Como el cuerpo polar de la bola unidad es ella misma, se tiene que (rB3)? = (1/r)(B5)° = (1/r)B}.
De manera mas general tenemos la siguiente proposicion.

Proposicion 1.3. Sea K un cuerpo convexo en R" con 0 € intK. Para todo T € GL(n) se tiene que
(TK)? = (T")"'K°.

Demostracion. Como T € GL(n), es claro que
(TK)’ ={xeR"; (x,y) <1, Ve TK} ={xeR"; (x,Ty) <1, Vy €K}
={(T") '"T'xeR"; (T'x,y) <1, W e K}
={(T")"2eR"; (zy) <1, Wy e K} = (T")'K".
O

Terminamos esta seccion introduciendo las funciones log-concavas y o-céncavas, las cuales apare-
ceran de forma natural cuando trabajemos con volimenes o secciones.

Definicion 1.14. Se dice que una funcién f es log-concava, si log(f) es una funcién concava.

Definicion 1.15. Se dice que una funcién f es a-céncava, si f* es una funcién céncava.
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1.2. Desigualdad de Brunn-Minkowski

Una de las desigualdades mds importantes en convexidad es la desigualdad de Brunn-Minkowski.
Esta desigualdad relaciona el volumen de la suma de Minkowski de conjuntos convexos con los vold-
menes de dichos conjuntos.

Teorema 1.1 (Brunn-Minkowski). Las siguientes desigualdades son equivalentes. Sean T,K C R" con-
juntos no vacios y compactos, entonces

K+T|"/" > K|V 1|, (1.1)
Equivalentemente, para todo A € [0, 1], se tiene que
IAK + (1= )T | > LK)+ (1= A)|T| /" (1.2)
y también
AK+(1=2)T| > |k} [T (1.3)
Para demostrar este resultado, necesitamos el siguiente Teorema.

Teorema 1.2 (Prékopa-Leindler). Sean f,g,h: R" — R" funciones integrables, y sea A € (0,1). Si se
cumple que para todo x,y € R"

h(Ax+(1=A)y) > f(x)* - g(y)' ™,

entonces se tiene que

[ h(o)dx > ( 5 f(x)dx>l. < /R n g(x)dx>u. (1.4)

Demostracion. Procedemos por induccién en la dimension. Empezamos con n = 1. Supongamos que
f,& son continuas y estrictamente positivas. Definimos las funciones x,y : (0, 1) — R por las ecuaciones

/x:)fzt/Rf (15)
@

[ e=t]e (1.6)

Como f y g son integrables y estrictamente positivas, es claro que x,y estdn bien definidas. Aplicando
el Teorema fundamental del célculo integral y el Teorema de derivacién de la funcién inversa a los
miembros de la izquierda y derivando, se tiene que para todo z € (0, 1),

X (0 f(x(0)) /R ¥ (1.7)

Y (t)gy(1)) /R g (1.8)
Para cada A € (0, 1), definimos z,, : (0,1) — R por

2 (1) = Ax(1) + (1= A)y(0).

Es claro que para todo A € (0,1), como x,y son estrictamente crecientes, z es estrictamente creciente.
Asf, aplicando la desigualdad Aritmético-Geométrica,

GO =Ax(@0)+ (1= () = W (@O)*- ()
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Por tanto, mediante el cambio de variables s = z; (¢), se tiene que

/R h(s)ds = /0 he)Z (1)t

> /01 h(Ax(t)+(1—=2A)y(1))- ((x/(t))l i (y/(t))1*/1> U

Luego, (1.4) es cierta para n = 1. Supongamos que es cierta para dimensién 2,3,...,n — 1. Sean f,g,h
como en el enunciado del teorema. Para todo s € R, definimos A, : R"~! — R* dado por h (w) = h(w,s).
De forma andloga se definen f;, g, : R"~! — R*. Por hipétesis, para todo x,y € R"

h(Ax+(1=1)y) > f(x)*-g(n)' 2.

Por tanto, para todo &,7 € R"~!, y 59,51 € R, se tiene que

WA (Es1) + (1= 2)(3,50)) = F((Fs1)*-8((550)'

Es decir, para todo %,7 € R" !, y 59,51 € R

h},ﬁ‘l’(l*lm)(z’j—k (1 - A)57) Z fsl (i)l : gSO ('f)lil

H:/ h, F:/ fy G:/ g
Rn—1 Rn—1 Rn—1

Por tanto, por la hipétesis de induccidn se tiene que

Definimos

H(Asi+(1—2A)so) > F*(51)G'*(s0).

Por tanto, aplicando la misma hipétesis de induccién a H, F, G, con n = 1, se tiene que

/Rnh:/RHZ</RF>A-</RG>IA:(/nf>l.</ng)ll‘

Asi, se tiene el resultado. O

Observacion. La desigualdad de Brunn-Minkowski adimensional (1.3), es consecuencia de la desigual-
dad de Prékopa-Leindler. Sean T, K C R" conjuntos no vacios y compactos, y sea A € (0, 1). Definimos

f=2xx, g=2xry h=Xokra-2)1-

donde x4 es la fucion caracteristica en el conjunto A. Como f, g, h solo pueden tomar los valores 1 o 0,
esclaroquesix ¢ Koy ¢ T, entonces

h(Ax+(1=Ay) > f(x)*g(y)' ™ =0.
Y six € Kyye T, entonces por definicién
h(Ax+(1=2A)y) = f(0 g()' * =1.

Por tanto, se cumple la hipétesis de la desigualdad de Prékopa-Leindler, y se tiene que

IAK+(1—-A)T| = /ﬂ‘vh(x)dxz < Rnf(x)dx>/l. <Ang(x)dx>l—k — KR TR
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Como hemos probado (1.3), para demostrar el resto de desigualdades del Teorema de Brunn-Minkowski
1.1, basta con ver que (1.1), (1.2) y (1.3) son equivalentes.

Demostracion del Teorema 1.1. Veamos que las siguientes desigualdades son equivalentes
(1) |[K+T"" > K|\ +|T|Y/" VK, T C R* compactos no vacios.
(2) [AK+(1—=A)T|"/" > AIK|Y" + (1 —4)|T|"/", VK, T C R" compactos no vacios y VA € [0,1].
(3) |AK+(1—=A)T| > |K|*-|T|'~*, VK, T C R" compactos no vacios y VA € [0,1].
(1 = 2): Tomamos K’ = AK y T' = (1 — A)T. Entonces, aplicando (1), se tiene que

|7LK—|—(1—A)T|1/n:|K/—|-T/|l/n2 |K"l/n—|—|T/|l/n:|AK|1/n—|—|(1—A)T|]/n
= MKV (1=2)|T|V",

(2 = 3): Utilizando la desigualdad aritmético-geométrica, se tiene que
ARV (L= 2TV = KA A,
Asi, si se cumple (2), se tiene que
AK+(1— )T = (|/1K+(1_;L)Tyl/")" > (/I|K]‘/”+(1—7L)\T|‘/">n

> (I r|0-2m)”

= [K|* ||
(3= 1): Tomamos
K T K|/
K=—— T = = co,1].
ke T A kg © O

Notar que K’ y T’ son convexos no vacios de volumen 1. Entonces, por un lado, por (3) se tiene que
AK +(1=A)T'| > |K'|* |7 = 1.
Por otro lado,

|K|]/n K |K|l/n+’T|]/n_|K|l/n T K+T

AK +(1-MT' = . . = ,
+( ) |K‘]/n_‘_’T‘]/n |K‘]/n ’K|1/"—HT|1/" ’T‘]/” ‘K’l/”+|T|l/”

Entonces, con estas dos desigualdades se tiene que

K+T

K+T|
’ K[V [T

(K[| )

I<|AK +(1-)T'| =

Por tanto, se tiene que
n
K+T| > (JKIV 7))

Equivalentemente,

\K+T|V" > |k|\m 4 |T|'/".
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1.3. Volumen de las bolas p

En esta seccién vamos a calcular el volumen de las bolas p, es decir, la bola unidad en R” de la
norma || - || ,. Las bolas p en R" se denotan B7,.

Teorema 1.3. Para cualquier p € [1,], el volumen de B), es

(ar(1+;))"

F(H—%) ) Sip€[1,°°)

B, =
2" sip=oo
Demostracion. Utilizando el Teorema de Fubini, se tiene que

/ oI5 gy — / e Tl gy — / el bl bl g iy
n Rn n
_ [ eV dx, /m e P2l dx, -'/w e Pl dx,
—oooo ;oo _ —o0 .
= (/ expdx) = <2/ e|x|pdx> .
oo 0
Mediante el cambio de variable x” = ¢, se tiene que
= 1\ 2 [ " 2 1" 1"
(2/ ex]dx> = </ e’tll’_ldt> = <r <>> = (2F (1+>> . (1.9)
0 pJo p \p p
Por otro lado, notar que

*Hx”gd o / /°° 1y _ / /oo »
e x = e 'dtdx = e X x,t)dtdx.
/]Rn n quﬁ n Jo {t>‘|x|‘;}( )

Mediante el Teorema de Fubini, se tiene que
J) e R oz = [ [ e R
:/ / e_’dxdt:/ e’

0 Jil/rBy 0

o n
— 8| [ b= pmyir (142).

Igualando esta expresién a la igualdad 1.9, se tiene que
1 n
<2r<1+>> . \Bg\r<1+”> ,
p p

(1+5)"
r(1+§)

Observacion. Por el Teorema anterior, tomando p = 2, se tiene que
ar(1+3)" a2
r(1+1%) C(1+%)
Tomando raices n-ésimas y utilizando la férmula de Stirling, tenemos que
Bl — VT . VT o V2me
P9 () e Vi

Y por tanto, si n tiende a infinito, \/n |B}| 1/" tiende asintéticamente a v/27e.

1
- ph
tan dt

de donde se deduce que

[B;] =

B3| =
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1.4. Elipsoide de John

El elipsoide de John de un cuerpo convexo K C R" es el elipsoide de méximo volumen contenido
en K. Reciprocamente, el elipsoide de Lowner, es el elipsoide de minimo volumen que contiene a K. La
existencia y unicidad de estos elipsoides fue demostrada por John en [13]. En esta seccidn, veremos que
si el elipsoide de Lowner de K es B}, entonces podemos obtener una descomposicion de la identidad
mediante una combinacién lineal de productos tensoriales de vectores u, con u; € dK N s=1

Definicion 1.16. Se dice que un cuerpo K en R” estd en posicién de John si el elipsoide de mayor
volumen contenido en K es B). Y se dice que estd en posicion de Lowner si el elipsoide de minimo
volumen que contiene a K es B. Cuando K C R" es un cuerpo simétrico, dicho elipsoide estd centrado
en 0.

Mediante las propiedades de los cuerpos polares se puede ver que, en efecto, hay una dualidad entre
la posicion de John y la posicién de Lowner.

Proposicion 1.4. Un cuerpo convexo simétrico K estd en posicion de John si y sdlo si el polar de K,
K?°, estd en posicion de Lowner.

Demostracion. Supongamos que K estd en posicion de John. Entonces |K| < |TK| paratodo T € GL(n)
tal que B C TK. Como B C K, se tiene que K° C (B})? = Bj. Supongamos que K no estd en posicion
de Lowner. Entonces, existe un 7 € GL(n) tal que |TK?| > |T°| con TK® C Bj. Por tanto, |detT| > 1.
Como (TK?)° = (T")"'(K°)° = (T")~ 'K, tenemos que

(T") K| = [det(T")| " |K| =

K| < [K]|.
qer K1 <K

Por tanto, (T") 'K tiene volumen menor que K y cumple que B} C (77) 'K, luego K no puede estar en
posicién de John. Asi, se contradice la hipétesis de que K° no estd en posicion de Lowner.
El reciproco de demuestra de forma andloga. O

Sea K un cuerpo convexo en R” con 0 € int(K). Entonces definimos

Wi(k) = [ P itu)do(u).

n

El objetivo de esta seccidn es maximizar el conjunto
{Wi(TK);0€ TK C By, T € GL(n)}, (1.10)

y caracterizar qué ocurre cuando 7' = I, produce el méximo del conjunto, es decir, cuando W;(K) es el
maximo.

Lema 1.1. Sea K un cuerpo convexo en R" con 0 € int(K). Para i < n se tiene que

) - n—i dx
(i) s Wi(k) =" [ =&
n Jk |x|
N n—i dx
i) : Wi(TK) =~ |detT
(il)  W(TK) =" |det |/K‘Tx‘l

Para i = 0, es claro que W;(K) es el volumen de K. Por tanto, para i = 0, maximizar el conjunto 1,10
es encontrar el 7 € GL(n) tal que TK estd contenido en B} y tiene el maximo volumen posible. En ese
caso, TK esté en posicion de Lowner. Veamos la demostracién de este Lema.
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Demostracion. Para ver que (i) es cierto, basta con hacer un cambio de variable a polares en el miembro

de la derecha,
n—i n—i P (6 |
—_— = " drdo (0
n \x\l /sn 1/ |r9\l rdo (0)

;/ | / Lo (6)
Sn
== [ pii(e)do(6) = Wi(K).
Sn— ]
Para ver (ii) aplicamos la igualdad que hemos obtenido en (i) y hacemos el cambio de variables x = Ty,

W/,'(TK):n_l/ dx_n \dtT|/
T

n K |x|f

|Ty|"
O

Como hemos dicho al principio de la seccidn, si el elipsoide de Lowner de K es B}, entonces po-
demos obtener una descomposicion de la identidad mediante una combinacion lineal de productos de
vectores uj, con uj € KN §"~1, Esto serd el caso particular de i = 0 del siguiente Teorema.

Teorema 1.4. Sea K un cuerpo convexo en R" con0 € K C By, yi<n. Si {Wi(TK);0 € TK C B} , T € GL(n)}
se maximiza en T = I, entonces existen puntos de contacto wy,...,ws € IKNS" ' con s <n(n+1)/2,
y constantes Ay, ...,A;s >0 con Yi | A = 1 tales que

In:i-/S 1u<§§>u~du(1/t)—i-(n—i) Y Aw;@w;,
n— j:l

donde
px ' (u)
du(u) = £ do(u).
Jor1pg ' (u) -do(u)
Para demostrar este Teorema, necesitamos el siguiente resultado, llamado Teorema de John [13,

Th.1]

Teorema 1.5 (Teorema de John). Sea Q C R™ abierto no vacioy F : Q — R de clase C 1), Sea Q) C R!
abierto no vacio, S C Q1 compactoy G : Q x Q — Rde clase CV). Sea A= {x € Q; G(x,y) >0, Vy € S}.
Si F alcanza su minimo en xy € A, entonces existen yi,...,ys €Sy Agy...,AsE Rcon0<s<my Ay >0,
Aly.oy As > 0 tales que

(1) : G(X(),yl) == G(X(),ys) =0
\Y (ZOF(XO) +Zj-:1 le(xo,yj)) =0.

Demostracion del Teorema 4.2. Siguiendo la notacién del Teorema de John, sea Q) =R"y S =K un
cuerpo convexo en R” con 0 € K C B/, en posicion de John. Sea Q C R"(**+1)/2 definido como

Q=17 ERH(I’!-H)/Z dx oo b
k [Tl =

Sea G : Q x Q; — R la funcién definida por G(T,x) = 1 — |Tx|>. Notar que si T = I, entonces G(T, x)
se anula si y solo si x € §"~!. Definimos el conjunto

A={TeQ;G(T,x)>0,VxeK}.

Es decir, A es el conjunto de los T' € € tales que TK estd contenido en B;. Por tanto, es claro que A es
un compacto.

Si i < n, tomamos F(T) = —W;(TK). Por tanto, si W;(TK) alcanza su maximo en T = I,, se tiene
que F(T) = —W;(TK) alcanza su minimo en T = I,. Asi, por el Teorema de John se tiene que existen
Viyeos Vs EKY Agyees As ERcon 0 < s <my Ay >0, Aq,..., A, > 0 tales que
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(1) : G(Inyyl) = G( nays) =0
(2) : V(AF(1, )+ L5 1 AiG(I,y;)) = 0.

Elitem (1) implica que 1 —|y;|> = ... = 1 — |ys|*> = 0. Asi, y1,...,y; € KNS~ !, Pero como K C BY,
en particular se tiene que yi,...,y; € KNS 1.

Vamos a calcular (2). Por computacion directa, se tiene que

dG(T,x
8(T )(In,yi):)’i@)yi-
Del mismo modo, se tiene que
JdF (T) - z—
8T()W /HH—Z x®x)d

Por tanto, el Teorema de John implica que existen y,...,ys € IKNS" 'y Ag,..; Ak ERcon0<s<m
y A >0, Aq,..., Ay > 0 tales que

%(W,-(K)Iﬁl"/ iJlrz(x@x)dx)—i-Z?kak@yk:O. (1.11)
n Jx |x| =

Vamos a tomar la traza de esta expresién. Notar que ’— Jx \X\’” (x®x)dx es una matriz n X n cuyo
elemento en posicion (u,v) es

z—n/ —i d
— | ——=xuxdx.
n K |x|l+2 17244%
Por tanto, la traza de =" [ — o =i (x®@x)dx es

. . . . L. o) o)

i—n —i 5 i—n —i 5 —i(i—n) / X[+ ..x;,

— | — . dx = : dx
" /K |x|l+2x1 n /K ‘x‘wzxn * n K x]*2

—i(i—n) \x\z
n x [x[2

RETEY N
n K |x|f

Por la propiedad (i) del Lema 1.1,

i—n —i _—ili-n) [ 1
Tr <n‘/K‘x‘l+2(x®X)de> = 7/ Midx
_ —i(i—n) n n—i
on / |t

_ z(l—n) Wik

n n—i

= —i-Wi(K).

Por otro lado, es claro que la traza de W;(K)1I, es n-W;(K). Y por tltimo,

Tr (Z )Lk)’k®)7k> =Y Al =Y A,
k=1 k=1

k=1

yaque |yg| =1, paratodo k =1,....s
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Asi, tomando la traza de la expresion (1.11), se tiene que
- N
Aoln—Wi(K) + Y A4 =0,
k=1

Parak=1,...,s tomamos

A
Ao(n—i)Wi(K)'

Es claro que #; > 0,y Y3, % = 1. Reformulando la expresion 1,11 con los #, se tiene que

ty =

I, i X®x dx 5
i—n nJk XTWK) ,;"y" Yk

Finalmente, tomando coordenadas polares en esta expresion, se tiene el resultado. O
El reciproco de este Teorema también es cierto.

Teorema 1.6. Sea K C B, un cuerpo convexo en R" con 0 € intK. Si existen puntos de contacto
Wi, ...,ws € IKNS" ! cons <n(n+1)/2, y constantes Ay,...,As >0 con Y3_, A; = 1 tales que

In:i-/S 1M®M‘dﬂ(u)+(n—i)ijWj@Wj,
n— j:l
donde

du(u) P ),

s PR ()-do(u)

entonces para todo T € GL(n) tal que TK C B3, se tiene que W;(TK) < W;(K).

En particular, si i = 0, este Teorema indica que si existe una descomposicién de la identidad con
puntos de contacto w; € dK N Bj de un cuerpo convexo K C Bj, y unos escalares Ai,...,A, > 0 con
Y A, =1, de la forma

s
I, :nZAjo(X)Wj,
=

entonces podemos asegurar que K estd en posicion de Lowner. No vamos a demostrar este resultado, ya
que no es un objetivo principal de este trabajo. Sin embargo, su demostracién puede encontrarse en [6].






Capitulo 2

La constante de isotropia

En este capitulo presentamos uno de los principales problemas de este trabajo: la conjetura de la
constante de isotropia. Esta conjetura plantea la existencia de una constante absoluta adimensional C > 0
que cumpla que

Ly <C

para todo cuerpo K isotrépico, siendo Lk la constante de isotropia del cuerpo K. En la seccion 2.1 defini-
remos la constante de isotropia, la cual como veremos no estd asociada s6lo a un cuerpo isotrépico, sino
a su familia de transformaciones afines. Ademds, veremos que en cada dimensién, es la bola euclidea
el cuerpo convexos que tiene la menor constante de isotropia posible. Por dltimo, daremos una serie de
acotaciones de la constante de isotropia que se han probado en los tltimos afios.

En la seccién 2.2, definiremos los cuerpos de Ball K,,(f): conjuntos convexos generados a partir de
una funcién f y un valor p > 0, los cuales veremos que en on cuerpos convexos si f es una funcién
log-céncava, y simétricos si f es par. Utilizando los cuerpos de Ball, daremos una acotacién de la
constante de isotropia de cuerpos convexos, mediante la constante de isotropia de cuerpos simétricos.
Estos implica que si la conjetura de la constante de isotropia se cumple para cuerpos simétricos, entonces
es cierta en general.

Por ultimo, teniendo en cuenta que los resultados sobre los cuerpos de Ball se aplican a una funcién
con mejores condiciones de convexidad que la log-concavidad, en la seccién 2.3 daremos un resultado
original, en el cual acotamos acotamos la constante de isotropia de cuerpos convexos, por la constante
de isotropia de cuerpos de Ball asociados a funciones ¢t-concavas.

2.1. Posicion isotrépica de un cuerpo convexo

En esta seccién vamos a definir la posicién de isotropia de un cuerpo convexo centrado K, y la
constante de isotropia Lx como un invariante de la clase lineal asociada a K. Para todo cuerpo convexo
K C R” centrado, existe una transformacioén lineal T € GL(n) tal que TK estd en posicién de isotro-
pia. Ademds, esta transformacion lineal es unica, salvo transforamciones ortogonales. Por tanto, como
veremos, la constante de isotropia asociada tanto a TK (en posicién de isotropia), a K y a RK, con
R € GL(n), es la misma.

2.1.1. Posicion isotrépica de un cuerpo convexo

Definicién 2.1. Un cuerpo convexo K C R” se llama isotrdpico si tiene volumen 1, esta centrado (tiene
baricentro en el origen) y existe una constante o > 0 tal que

[ 2= o yI3

para todo y € R". En ese caso, llamamos a & (y denotamos Lk) constante de isotropia de K.

13
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Notar que si un cuerpo K satisface la condicién de entropia, entonces

2 - 2 - 2 2
d:/ e dx = / e\ dx =not”.
/K||x||2 x Kigi(xe} X ; K(xe} x=n

Vamos a ver una serie de definiciones equivalentes para caracterizar cuerpos isotropicos.
Teorema 2.1. Sea K un cuerpo convexo en R". Entonces, las siguientes condiciones son equivalentes.

(1) : Para todoy € R",
[ e = a2 3.
K
(2) : Denotando x = (x1,...,x,) € R", para todo i,j=1,...,n,
/le-xjdx = (X25i7j.
(3) : Paratodo T € L(R"),
/ (x, Tx)dx = a*(trT).
K
Demostracion. (1 =-2):Sii= j, es claro que
/xi,x,-zdx: / (x,e;)%dx = o?||ej]|5 = o>
K K
Si i # j, notar que
/ (x,- —l—xj)2dx = / <x, €; +ej>2dx = OCZHE,' +€j||% = 2062.
K K
Ademds, se tiene que
/(xi—I—xj)zdx:/x,-zdx+/x§dx+2/xixjdx:a2+a2+2/xl-xj.dx
K K K K K
Por tanto, si i # j,
/ xixjdx = 0.
K
(2=3):SeaT = (t;;)] ., se tiene que
/ x, Tx) a’x-/ Zx, Ztl jxjdx = Z t,]/xlxjdx.
i,j=1
Aplicando el apartado (2), es claro que
Z t ,/ xixjdx = Zti,,-az = 062(trT).
i,j=1 i=1
(3= 1): Sea T la matriz con t; ; = y;y,. Entonces,
/ny 2dx—/ Zx,y,Zx]y]dx— Z y,yj/Kx,-xjdx:/K(x,Tx>dx.
i,j=1

Como 17T = Y, y? = ||y||3, aplicando (3), se tiene que

[ wPds= [ (nTodx=a2(0rT) = a2|y|B,
K K
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Observacion 2.1. Sea K un cuerpo isotrdpico y U € O(n) una transformacion ortogonal, entonces UK
sigue siendo isotrépico. Ademds, su constante de isotropia no cambia, es decir, Lyx = Lg. En efecto,
para cualquier y ¢ R" y U € O(n),

[ eoar= [ WxsPdx= [ (x0y)2ar= L3103 = L

Es decir, si K es isotropico existe una clase lineal de cuerpos isotrépicos con la misma constante de
isotropia, {UK;U € O(n)}.

2.1.2. Existencia

En el siguiente resultado veremos que para cualquier cuerpo convexo K centrado, existe una trans-
formacion lineal T € GL(n) tal que TK es isotrépico. En ese caso, decimos que TK estd en posicion
isotropica. Asi, en esta seccion demostraremos que todo cuerpo convexo K centrado tiene una posiciéon
K que es isotrépica.

Teorema 2.2. Sea K C R" un cuerpo convexo y centrado. Entonces, existe una transformacion lineal
T € GL(n) tal que TK es isotrdpico.

Demostracion. Sea M € L(R") el operador definido por M(y) = [ (x,y)xdx. Los elementos (M; ;)
de la matriz M vienen dados por

Mi,j:eﬁMej:/(x,ei)(x,ej>dx:/xixjdx.
K K

Luego, es claro que M es simétrica. Ademds, para todo y € R"\ {0},

yMy= /K (x,y) (x, y)dx = /K (x,y)2dx >0,

luego M es deinida positiva. Por tanto, existe una matriz ortogonal U € O(n) y una matriz diagonal
D =diag(A},...,A?) conlos A; > 0, tal que M = UDU".
Tomamos S = UD'/?U", con D'/? = diag(A4, ..., A,). Es claro que §* = M:

n
17121

s? = (Ubp'*u"(UDp'*U") =UD"*D'*U" = UDU' = M.
Es ficil ver que ™' = Udiag(A,; ',..., A, U™
Ss~! = (Udiag(A1, ..., ) U") (Udiag(A; ..., A, YU = Udiag(1,...,1)U") = I,.
Notar que S~! es simétrica. Consideramos la imagen lineal K = S~!K de K. Entonces, para todo y € R”,
/S ()= [dets ™| /K (571x,y)2dx = |detS| ! /K (571x,y)2dx = |detS| ! /K (6, (571)'y) 2dx

— |dets| ™! /K<x,s*1y>2dx

= |detS| ™! </K<x,S_1y>xdx,S_1y>

Por definicién de M, es claro que
/K<x,S_1y>xdx =MS'y.
Por lo que se sigue que
|detS] " </K(x,Sly)xdx, S1y> = |detS| " (MS~1y,$71y) = |detS| ' (MS~ 1y, 57 1y)

= |detS] " <SilMSfly,y>
= |dets| ™ lv]3-
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En el tltimo paso hemos utilizado que S~!MS~! = I,. Asf, tenemos que
[ ) = et~ I3
por lo que K /|K|'/" es isotrépico. O

Acabamos de ver que todo cuerpo K C R” convexo y centrado tiene una posicién K que es isotrépica,
con K = TK para algtin T € GL(n). Como hemos visto en la observacién 2.1, para cualquier U € O(n) se
tiene que UT K también es isotropico. En la siguiente proposicién vamos a ver que, en efecto, la posicién
isotrépica de un cuerpo convexo estd unicamente determinada, salvo por transformacién ortogonal, y de
hecho se puede encontrar como la solucién a un problema de minimizacién.

Teorema 2.3. Sea K C R" un cuerpo convexo y centrado de volumen 1. Definimos

B(K) = inf{/ |x||5dx; T € SL(n)} .
TK
Entonces, una posicion Ky de K es isotropica si'y solo si
2
| xlBax = B(K).
K,

Ademds, si K| y K son posiciones isotropicas de K, entonces Ky = UK, para algiin U € O(n).

Demostracion. Sea K una posicion isotrépica de K. Por el Teorema 2.1, se tiene que
/ (x,Tx)dx = L%(] (¢rT)
K
para todo 7' € L(R"). Entonces, para todo 7' € SL(n),

/ x| 2dx = / T x| 2dx = / (Tx, Tx)?dx = / (x, T/ Tx) dx
TK, K K K;

= [ (x,T'Tx)*dx
K;
= Lg, (tr(T'T)).

1/n

Usando la desigualdad aritmético-geométrica, se tiene que tr(7'T) > n[det(T'T)] '". Por tanto,

/TK |Ix||3dx = Lg tr(T'T) > Lg n [det(T'T)] s nLg, :/K || x[|3dx. (2.1)
1 1

Luego, si K; estd en posicion de isotropfa, B(K) = [, ||| 3dx.

Reciprocamente, si K> = TK; es una posicién de K con B(K) = [, [|x[|3dx, entonces la desigualdad
(2.1) indica que tr(T'T) =n [det(T’T)]l/”, porlo que T'T =1I,, y por tanto T € O(n).

Ademds, si K| y K> son posiciones de isotropia de K, como K| = TK; para alguna T € GL(n), en
particular 7 € O(n). O

Como consecuencia, para todo cuerpo convexo K C R" centrado podemos definir su constante de
isotropia, Lg, como la constante de isotropia de la posicion isotrépica de K.
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2.1.3. Acotacion de la constante de isotropia

Nos podemos preguntar qué cuerpos maximizan y minimizan la constante de isotropia para cada
dimension. El siguiente resultado muestra que para cada n, el cuerpo que minimiza la constante de
isotropia en R" es la bola euclidea.

Teorema 2.4. Sea K C R" un cuerpo isotrépico. Entonces,
Cc S LB; S LK;
para alguna constante absoluta ¢ > 0.

Demostracion. Por la invarianza rotacional de B, se tiene que para todo y € R”,

/B<x y)*dx = Mz/ (x, Ty ’>2dx_ \y\z/ (x,e1)%dx.

2

Tomando r, = |B3|~!/", es claro que r, B} es isotrépico. Notar que si x € r, B3, entonces ||x||2 < r,,. Asi,

ik = [ Ilax= [ \xu2dx+/ ]x|]2dx>/ HxH2dx—|—/ r2dx
K KN, Bl ;L
_/ el K\ Y.
Como K y r,B; son ambos cuerpos isotrépicos, por un lado
1 =|K| = [KN7B;|+ K\ r,By|.
Por otro lado,
1= [ruB3| = |raBy N K|+ [raB3 \ K]

Luego, |K \ r,Bj| = |r,Bj \ K|. Procediendo como antes, se tiene que
Jo Bt Nt = [l K = [ e [l
KN ,1B KN Nr,B 2

_/ I3 = nL3,.

n

'n

Asti, para todo K C R" isotrépico, Lx > Lpy.
Veamos que existe una constante absoluta ¢ > 0 tal que ¢ < L2g para todo n € N. Mediante el cambio
de variables a polares, se tiene que

1 1= .
y=~ [ Iiar= [* [ 7 1813 (Ir0ll)d6dr

By
1

T'n
= [T [ aear
n.Jo sn—1

1 rll ]
= 7/ 7" n|BS|dr
nJjo

— (r")n+2 ‘ n‘ —
T on42 T a2
Como +/n- |B3|'/" tiende asintSticamente a v/27e, si n — o, entonces es claro que

1
lim —— (B3] A= _—_
n—oo 42 2me

B[ 2",

Por tanto, sea ¢ > 0 la constante definida por
1
Cc = fnf{m|Bg|_2/n yne N} 5

se tiene que ng > ¢, paratodon € N. O
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Del mismo modo que se tiene que la bola B5 normalizada es la que minimiza la constante de iso-
tropia, nos podemos preguntar cual es el cuerpo isotrépico que la maximiza. De hecho, la pregunta que
plantea la existencia de una constante absoluta que la acote superiormente sigue abierta. Aunque ha
sido resuelta para grandes clases de cuerpos convexos, como veremos en el Capitulo 4, la pregunta no
ha sido resuelta en toda su generalidad. Esta cuestién es uno de los principales objetos de estudio de
este trabajo, y queda enunciada en la siguiente conjetura.

Conjetura 2.1 (Conjetura de la constante de isotropia). Existe una constante absoluta C > 0 que cumple
que

Lg <C
para todo cuerpo isotropico K C R", y todon > 1.

Observacioén. La conjetura de la constante de isotropia no ha sido probada, pero en los dltimos afios se
han conseguido dar algunas cotas. Una muestra de ello son los siguientes resultados.

= En el articulo [8], Bourgain demostré que la constante de isotropia de cuerpos convexos en R” se
puede acotar por Cn'/* log(n), para alguna constante absoluta C > 0.

= En el articulo [14], Klartag mejor6 la cota de Bourgain quitando el logaritmo, y demostré la
acotacién Lg < Cn'/*, para alguna constante absoluta C > 0.

= En el articulo [9], todavia no publicado, Yuansi Chen ha demostrado una acotacién para la conje-
tura de Kannan-Lovasz-Simonovits, que implica una acotacién para la conjetura del hiperplano.
Esto da como resultado la acotacién Ly < Cn°(!), donde C > 0 es una constante absoluta, y o(1)
es una sucesion que tiende a 0.

2.2. Cuerpos convexos simétricos

En esta seccién vamos a definir unos conjuntos, K,(f), definidos a partir de una funcién f asociada
y un valor p > 0. Veremos que estos conjuntos son convexos, y en particular, si f es una funcién log-
concava, son cuerpos convexos, llamados cuerpos de Ball, ya que los defini6é Keith Ball en [4]. Ademds,
si la funcién f es par, el cuerpo de Ball K,(f) es simétrico. Estos cuerpos convexos son mas grandes
seglin aumenta el valor de p, es decir, para 0 < p < ¢, K,(f) C K,(f).

Para cada cuerpo isotrépico K, vamos a definir una funcién F asociada a K. Esta funcién F es en
particular una medida de probabilidad, y guardard cierta relacién con el cuerpo de Ball asociado a F,
K,(F). En concreto, nos servird para relacionar las constantes de isotropfa de un cuerpo isotrépico K
en R” con un cuerpo de Ball definido a partir de él. Para cada cuerpo K C R" isotrépico, si tomamos
p =n+2, larelacion entre las constantes de isotropia de K y K,,+2(F) es

V2CLk < L, ,(r) < V2Lk

para cierta constante absoluta C. Esta acotacion reduce la bisqueda de la constante que satisfaga la
conjetura de la constante de isotropia s6lo a cuerpos simétricos.

En primer lugar, vamos a definir la funcién F asociada a un cuerpo convexo K.

Teorema 2.5. Sea K C R" un cuerpo convexo centrado con volumen 1. Sea F(x) = |KN (x+ K)|.
Entonces, V0 € §" 1,

/ (x,0)°F (x)dx =2 /K (x,0)2dx. 2.2)

Para cada x, F(x) es el volumen de la interseccion del cuerpo convexo K consigo mismo desplazado,
x+ K. Antes de realizar la demostracion de este teorema, veamos una serie de propiedades de la funcién
F.



La Constante de Isotropia y la Conjetura del Hiperplano 19

Proposicion 2.1. F es una densidad de probabilidad.

Demostracion. Para ver que es F una densidad de probabilidad basta con ver que su integral en R" es
1.

[ F@dr= [ kn@rRlde= [ ] g0)zent)dyd
Aplicando el Teorema de Fubini, se tiene que
LFear= [ [ )zt 23
Comoyex+K&sy—xeK&s —xe—y+ K& xey—K, tenemos que Vx,y € R”,

Xerk (V) = Xy-k (%) 24)

Luego,
/nF(x)dx:/n/R” Xk (¥) Xy—k (x)dxdy
= /Rn xx(y) /Rn Xy—k (x)dxdy
:/RHXK(}’)‘)’—KM);

= IK| [ xe()ay

=|K|-|K|=1.
O
Proposicion 2.2. F es una funcion par.
Demostracion. Veamos que F (x) = F(—x):
F(—x)=|KN(—x+K)|=|x+K)N(x—x+K)| =|(x+K)NK| = F(x).
O

Con estas propiedades vamos a demostrar el teorema 2.5.

Demostracion del Teorema 2.5.
| o2F@dx= | [ (x0)2x(0)zxO)dxdy
Utilizando el mismo razonamiento que en (2.4) y aplicando el Teorema de Fubini, se tiene que
| o2F@dx= | [ (x.6)x(0)z-x(@dxdy
= [ [0+ (=), 0P260) 2 (x)dxdy
= [ (0002 4200.0)(x=3.0) + (v =3,0)%) 2 (¥) 2, (¥)ixdy
Separando esta integral en 3 integrales, tenemos
02 F(dr= [ :0)2zc0dyiK|+2 [ [ (5.6)(x =50 1x(5)2,x(x)dxdy

+/n/n<X7y’6>ZXK(V)%)PK(X)dxdy
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Aplicamos el cambio de variables x —y = z,

(O Fdx= | (7.0)%dy+2 | [ (v.0)(z.0)%dzdy+ | | (z.0)%dzdy
R K KJ—-K KJ-K
:/I{<y,9>2dy+0+/1;(z,9>2dz
:2/K(x,9>2dx
O

Para aplicar esta funciéon més adelante necesitamos la log-concavidad de F'. El siguiente resultado
nos dice que F es una funcién L-céncava, luego en particular es una funcién log-céncava en su soporte.

n

Proposicion 2.3. F es una funcion %—co’ncava en su soporte.

Demostracion. Sean x1,x, € R" tales que KN (x; +K) #0y KN (x2+K) #0,ysea A € (0,1). Veamos
que se cumple que

(1= [KNx+K)]+AKN(x2+K)] C[KN((1=A)x; +Axy +K)]. (2.5)

Seay; € KN(x;+K),y» € KN(x2+K). Como K es convexo, (1 —A)y; +Ay, € K.
Como y; € x1 +K, se tiene que y; = x| 4z, para algin z; € K. Del mismo modo, y> € x; + K, luego
Yo = Xxp + 20, para algin zp € K. Asi,

(I=ADyi+Ayp=10-A)(x1+z1)+A(2+2)=(1-A)x;+Axo+ (1 —2A)z1 + Az.
Como (1 —A)z; + Az, € K por la convexidad de K, se tiene que
(I=A)y1+Ay € (1—=A)x; +Axy +K.
Luego, se cumple la inclusién (2.5). Asi, mediante la desigualdad de Brunn-Minkowski se tiene que
KO (1= A)x1+Ax + K" > (1= A)[KN (1 +K)] + AK N (2 +K)]|#
> (1= A) KN (x4 K)|" + 4K N (k2 +K)| 7
Por tanto, podemos concluir que
F((1= M) +Ax2)" > (1= A)F(x1)7 +AF (x2)7

para todo xj,x; € R"y A € (0,1). O

2.2.1. Cuerpos de Ball

En esta seccién vamos a presentar los cuerpos de Ball, K,,(f): una familia de cuerpos convexos
asociados a funciones positivas medibles. En esta seccién, vamos a ver que los cuerpos de Ball son, en
efecto, cuerpos convexos y centrados en el origen, cuando f es una funcién log-céncava. Ademds son
simétricos si f es par.

Definicion 2.2. Sea f : R” — [0, +o0) medible con f(0) # 0. Dado p > 0, se define el cuerpo de Ball
asociado a f con pardmetro p como

K,(f)= {xe R": /Omf(rx)r”_ldrz f;())}
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De la definicién es claro que 0 € K,(f), ya que [y £(0)r"~'dr diverge. Dado u € $"~!, veamos
cuando Au € K,(f). Mediante el cambio de variables Ar = u, se tiene que

AueKy(f) & /wa(mu)rp—ldr > f;O)

1 5]
p—1
lp/o f(su)s?™"ds >

<A< (f(l()) /prsplf(su)ds>l/p.

Por tanto, K,,(f) es un cuerpo estrellado con funcién radial

1 oo 1 1/p
Px,(f) (1) = (f(())/o ps? f(su)ds) . (2.6)

Proposicién 2.4. Sea f: R" — [0, 4o0) una funcion medible par con f(0) # 0. Entonces, K,(f) es un
conjunto Simétrico.

f(0)
p

Demohztrac)ién. Para ver que K,(f) es simétrico, basta con ver que para cada u € S"°!, Pk, ( pu) =
p Ky (f) —u-

proin (-0 = (g [ po (s ) e (57 [ stsuas) W)

O
Proposicién 2.5. Para todo 6 € ",
[ twear= L [ tx.0) 7 @7
Kuv1(f) 7 f(O) 7 ' '
Demostracion. Integrando en coordenadas polares, se tiene que para cualquier p >0y 6 € §"~ !,
/ (x,0) dx—/ / frat ru, 0)r"'dr-n|Bi|do(u)
n+l f sl
1 (0 (1)
_ <u,6>/ O | B do ()
sl 0
n+1
_ (P () ()
= [ (n.0) D niByldo )
Aplicando la ecuacién (2.6) para la funcién radial, se tiene que
1 “n+1
x,0 dx:/ u, 0 —/ ——s"f(su)ds-n|B5|do(u
Jo = [ we) e [ s niBYldo ()
70) / 1/ (su,0)f(su)ds-n|By|do(u)
Sll
5 o9
£(0)
O

Por tanto, este resultado indica que K, (f) es centrado si y solo si f es una funcién centrada. De
forma andloga, tenemos el resultado para los momentos de orden p.



22 Capitulo 2. La constante de isotropia

Proposicién 2.6. Para todo 6 € S" 'y p >0,

/ (e 0)7dr = / I(x v, 2.8)
Koof)

Demostracion. Procedemos andlogamente a la demostracién de la proposicién anterior. Integrando en
coordenadas polares, se tiene que para cualquier p >0y 6 € §"~1,

g P, ,<'>(”)
Jop 0= [ [ oy nigtidotu
n+p
P pKrHrp(f)(u) n+p—1 n
— [ w0 / P g | B o (1)
0

gn—1
n+p
= | [u6) (”Kn+ﬂ<f>(”))
gn—1 ’ n+p

n|By|do (u).
Aplicando la ecuacién (2.6) para la funcion radial, se tiene que

1 “n—+p _
x,0 de:/ u,6 Pi/ — Lt f(su)ds - n|B3|d o (u
/1(n+1)(f)< >‘ Snfl |< >‘ f(O) 0 n_’_p ( ) ’ 2’ ( )

s oy
oy

(su,0)|” f(su)ds-n|By|do(u)

§t 1
0) (x,0)|” f (x)dx.

O]

En los siguientes resultados, demostraremos que si f : R" — [0,00) es una funcién log-céncava con
£(0) # 0, entonces el cuerpo de Ball asociado a f con pardmetro p > 0, K,,(f), es un cuerpo convexo.

Definicion 2.3. Sea A € (0,1), y € R. Si (a,b) es un par de nimeros reales positivos, se define la media
de orden ¥ con coeficiente A como

M (a,b) = (Aa”+(1—2)b")'/Y
Si y =0, se define M{ (a,b) = a*b'*. Sia=00b =0, se define M} (a,b) = 0.

Teorema 2.6. Sea y> 0y A,u > 0 tales que A+ = 1. Sea w,g,h : RT™ — R funciones integrables
tales que para todo par (r,s) € RT x Rt

sy pr7

h(MP (1)) = w(r) i g(s)Feur 29)

= ()

Demostracion. Suponemos que w y g son continuas y estrictamente positivas. Definimos las funciones

5 :[0,1] = R* mediante las ecuaciones
(1) 00
/ w= t/ w (2.10)
0 0

s(t) oo
/ g:t/ g Q.11
0 0

Entonces,
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Como w y g son integrables y estrictamente positivas, es claro que r y s estan bien definidas. Aplicando
la regla de Barrow a los miembros de la izquierda y derivando, se tiene que para todo ¢ € (0,1),

Aaw(r(o) = [ 1)
s(t)) = /:g. (2.13)

Definimos z : [0,1] — R™ como

Derivando z(t) se tiene que

T

Z(1)= _ly(lr(f)“rm(t)y)’y(l(—?’)r(t)“r'(f) +u(=7)s()77 (1))
_ Y _ N\ (A us()
= _—y <(/lr(t) T+ us(t)™) ) (r(t)y“ + s(t)”l)
— 1l <3~”/(I) n ps'(t) )

A (o

Aplicando (2.12) se tiene que

Zl(t):lv{(v:) (i)HIJrlgf(f) (g)Y—H
-2 Iw ((lr_VJr[,Ls_V)l/— ) fg ((lr_ij‘uS_y)]/_y)YH
o) g() s
. Jw [(Ar” Y—l—[.ts y7 ArY + s~
lw(r) ( ) ( = | )

s Grra) "+ {g> (Aﬂ:—ywy

AsY Jw sY 1y ur? [g 7Y 1y
AT+ ur? \ w(r) <7Ls7+,ur7’) +/ls7+,ur7’ g(s) <7Ls7+,ur7’) '

Utilizando la desigualdad aritmetico-geométrica, se tiene que

A
e [ (o NN (o Uy
“\w(r) \ AsY+pury g(s) \ AsY +pur? :

Por otro lado, haciendo el cambio de variables x = z(¢) y aplicando la hipétesis (2.9), se tiene que

/ dx—/ h(z)Zdz

AsY ¥
> [ () e (o) 7w e
0

1 AsY % Y e 7Y 1Y oo
> Mleer.ry s / / .
_/o 0 <<As7’—|—ur7 0 " ASY 4+ urY 0 &
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Finalmente, aplicando que M{} (a,b) > Mﬁy(a, b) y operando, se tiene que

/Owh(x)dxz/olefiﬂ ((W)l/yi/jw, (M)UY/:8>
1 As? §7 VY e\ 7 urr 7 Uy e NN\ VY
:/0 <157+“r7<<1sy+‘ury> /OW) +ks7+ur7<<7ts7’—l—[.tr7> /0g> >
L) (0))
= [ e)
s (L)

Teorema 2.7. Sea f : R" — [0,00) una funcion log-céncava tal que f(0) > 0. Para todo p > 0, K,(f)
es un conjunto convexo.

O

Demostracion. Sea p > 0. Sean x,y € K,(f), por definicién se tiene que

/ f(rx)rP~ dr > £(0) / f(ry)r’~tdr > £(0) (2.14)
Sean A, u > 0 tales que A + 1 = 1. Fijamos Y= 1/p y definimos w, g, h: R — R™* como
w(r) =f(r'x), g(s) = f(s"x),  h(t) = f(t7(Ax+py)). (2.15)

Aplicando que f es log-concava, se tiene que para todo par (r,s) € RT x R,

n () = £ (2 7+ us )V 7) (ki)
=/ (M(lx—l—.u)’))

AsY ur?
— Y Y
! <7Ls7’—|—,ur7’r X )LsY—i—,UrYs y)

AsY ur?
> f(r1) T (st T

AsY ur?
— W(r) AsTV+ur? . g(s) AsV+ur? .

Asi, h,wy g satisfacen las condiciones del teorema 2,6. Por tanto,

/0 h(r)dr > (l ( /O ww(r)dr) T n ( /0 ) g(r)dr) _y> IH. (2.16)

Elevando ambos miembros a la potencia —7, y aplicando las definiciones de (2.15), se tiene que

</Omf(ry(7tx+.uy))dr> B <A </Omf(r7x)dr> _y+u (/Ooof(ﬂy)dr> _y' 2.17)

Haciendo el cambio de variables ¢ = r? y aplicando que x,y € K, (f), se tiene que

-1/p

(p/ooot”lf(t(liruy))df)

oo 71/ eS) 71/
<A (p/o tl’—lf(tx)dt> p—{—[.t (p/o tl’—lf(ty)dt> ’

<A(F(0) P4 u (f(0) 7P = f(0)P.
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Por tanto, se tiene que

p [ A+ pay)dr = 1 (0), (2.18)
asi que Ax+ uy € K,(f), luego K,(f) es un conjunto convexo. O

Falta por ver que K, (f) es un cuerpo convexo, es decir, es compacto y tiene interior no vacio, cuando
f es una funcion log-concava integrable con integral positiva.

Lema 2.1. Sea f: R" — [0, ) una funcion medible tal que f(0) > 0. Entonces,

1
K= 5 L P

En particular, si f es log-concava y tiene integral finita positiva, entonces K,(f) es un cuerpo convexo.

Demostracion. Procediendo como en 2.6,

Pra(r) (@) .
]Kn(f)\:/ dx:/ / 7Ly n|BY|do ()
K,l(f) sn=1.J0

- /5an (pKn(f) (M))nn|Bg|dG(”)

n

Aplicando la ecuacién (2.6) para la funcidn radial, se tiene que

1 ®n
K, = —/ —s"" f(su)ds - n|B%|do(u
K= [ gy ) e s nlB3ldo
o)/
=—— 1 f(x)dx.
7(0) Juu T
Por tanto, si f es integrable y positiva, es claro que K, (f) es un cuerpo convexo. O

2.2.2. Inclusién entre los cuerpos de Ball 1

En esta seccién vamos a ver la relacién de inclusion entre los conjuntos de Ball K, (f) y K,(f) para
0 < p < g. Para ello, veremos que la funcién radial asociada al cuerpo K,(f) es mayor o igual que la
funcién radial asociada al cuerpo K, (f), para 0 < p < g. Asf, se deduce que K,(f) C K,(f).

Lema 2.2. Sea f: [0,00) — [0,00) una funcion log-concava. Entonces la funcion
1/p

F(p) = (,Jf"m /Omxplf(x)dx> (2.19)

es creciente en (0,).

Demostracion. Podemos suponer sin pérdida de generalidad que || f|| = 1. Si no, aplicamos el mismo
procedimiento a g = f/|| f||~ que tendrd norma infinito 1 y es una funcién log-céncava.
Para cualquier 0 < p<gy a >0,

Fla)t

. :/waqlf(x)dx:/oaxqlf(x)dx—f—/:quf(x)dx

= /axqflf(x)dx+/ooxpflxq*pf(x)dx.
0 o
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Comog—p>0yoa>0,x"7> a9 Pen (a,o), se tiene que

F(qq)q > /Oaxq_lf(x)dx+ o?™P /:x”_lf(x)dx
= /aquf(x)dx— o?P /axplf(x)dx—l— (xqf"/wx”’lf(x)dx
0 0 0

:/axq_lf(x)dx—a”’_”/ax”_lf(x)deraq‘pW.
0 0 p

Aplicamos el cambio de variable x = oy, y tenemos

F(g)? F(p)? ! :
(qq) Zaq—p?+an yq_lf(ocy)dy—aq/o ¥ f(oy)dy

_ aqu(pp)p _ aq/ol(ypl — ) fay)dy.

Comoy € (0,1)y p < g, es claro que y?~! —y9~1 > 0. Ademds, la norma infinito de f es menor o igual
que 1, luego es claro que paray € (0,1), (y?~! —y9=1) f(ay) < (y?~1 —y471). Asi,

q p 1 p
F(q) > aq—pF(p) _aq/ (yp—l _yq—l)dy: aq—pm —ob (1 _1> .
0 p P g

Si tomamos o = F(p), tenemos que

F(q)? F(p)? 1 1 F(p)?
(9) > F(p)i-? (p) CF(p) < B ) _F)*
q p P q q
Luego, para todo 0 < p < g, se tiene que F(p) < F(q), asi que F es creciente en (0,o). O

Notar que si f(x) = xo,4)(x) para algtin A > 0, tenemos que

oo 1/p A 1/p
F(p) = (P/ xp_ll[aA](x)dx) = <p/ x”“dx) =A
0 ' 0

para cualquier p > 0. Es decir, para la funcién caracteristica, F es constante. Podemos generalizar este
resultado para funciones caracteristicas en cuerpos convexos. En general, sea f : R" — [0,0) tal que
f(x) = xx(x) con K un cuerpo convexo, para cualquier p > 0, tenemos que K,(xx) = K:

Demostracion. Aplicando la férmula de la funcién radial (2.6), para cualquier u € ",

o0 1/p Pk (1) 1/p
P, () (1) = (fé)()) /0 sPUf (su)ds> = <p /0 sf"lds) = px (u).
Luego, K,(xx) =K, Vp € (0,00). O

Procediendo del mismo modo, podemos ver la relacién de contenidos entre los cuerpos de Ball
asociados a funciones log-céncavas:

Teorema 2.8. Sea f : R" — [0,00) una funcion log-céncava con || f||« = f(0). Para cualesquiera 0 <
p < g, se tiene que K, (f) C K;(f).

Demostracién. Bs claro que para cada u € S"~!, la funcién fi : [0,00) — [0,00) definida como fi(x) =
f(xu) es una funcién log-céncava. Luego, para cada u € S*~! definimos F(p) como
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Asi, por el Lema 2.2, para 0 < p < ¢, F(p) < F(q). Aplicando esto a la férmula radial (2.6) del cuerpo
de Ball K,(f), para cadau € S"!,

p - 1/p B
prin ) = (o [ touras) = F(p
o 1/q
<Fl@) = (i [T owas) = i)
Luego, K, (f) C K;(f)- O

2.2.3. Inclusion entre los cuerpos de Ball 2

Hemos visto que segiin crece ¢, los cuerpos de Ball K, ( f) son més grandes, y contienen a los demds
K,(f) con p < q. En esta seccién vamos a ver que K,(f) crece de manera controlada segiin aumenta
g. Es decir, vamos a probar la existencia de una constante dependiente de p y g, Cp, 4, para la cual
CpqoKy(f) CKy(f), paratodo 0 < p <gq.

Teorema 2.9. Sea f: [0,00) — [0,00) una funcion log-céncava con f(0) > 0. Entonces la funcion

oo 1/

1 1/p

G(p) = (JW /Omxp_lf(x)dx>

es decreciente en (0,00).

Demostracion. Sin pérdida de generalidad podemos suponer que f(0) = 1. Si £(0) fuera distinto a 1,
aplicamos el mismo razonamiento a g = ﬁ, que cumple que g(0) = 1y es log-céncava.
Sea p > 0. Mediante el cambio de variables Cx = y, para cualquier C > 0 se tiene que

- 1 [~ r
/ Wl Cax = — / YW le™Vdx = @. (2.21)
0 CP Jo cr

Si tomamos C), = ﬁ, con G(p) la funcién definida en el enunciado, aplicando esta tltima igualdad
tenemos que

e *p"x—r(p)— ”—M wxp* x)dx = wx”* x)dx
) 2t =g =TG) = g [ ax= [

Por la eleccién de C), esta igualdad muestra que

/ TPl gy = / ! f(x)dx. (2.22)

0 0

Por tanto, no puede ocurrir que e~»* < f(x) para todo x € (0, +oo). Asi, existe algtin x € (0, +oo) para
el cual e=* > f(x). Por tanto, el conjunto {x > 0:e~* > f(x)} no es vacio, asi pues tiene infimo.
Tomamos el infimo del conjunto

xo =inf{x>0:e " > f(x)}. (2.23)
Por la defincién de infimo, es claro que
e < f(x), Vx € (0,x0). (2.24)

Si x > xo, podemos encontrar un y € [x,x) tal que e~“»’ > f(y), y entonces aplicando la hipétesis de
log-concavidad de f,

e > iy :f<§x—|— (1 — i) -0) > f(x)ﬁf(O)F% = f(x)*,
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lo cual implica que

e " > f(x), Vx € (xo,%). (2.25)
Aplicando (2.25), es claro que para x € (xg,+o0),
/ e f(t)de < / T ple Gy, (2.26)
x x
Del mismo modo, aplicando (2.24), para x € (0,xp),
/Ox P () de > /Ox P~ e=Crl . (2.27)

Como se tiene que
/ xPf(x)dx = / e S f(x)dx,
0 0

las desigualdades (2.26) y (2.27) implican que para cualquier x € (0,+o0) se da la desigualdad (2.26).
Es decir, para todo x > 0,

/ P ()dr < / P~ e Crldr, (2.28)
X

X

Sea 0 < p < g, es claro que

J ) dx = / ) 2.29)
0 0

Aplicando el Teorema de Fubini,
/ x"_]f(x)dx:/ xp_lf(x)/ (q—p)tiP Ydrdx
0 0 0
= [ [ a= e pldade
0 Ji

= / (q—p)tr! / xP~ 1 f(x)dxdt.
0 f
Aplicamos la desigualdad (2.28), y se tiene

/ xqflf(x)dxg/ (q—p)tq*pfl/ xP~Le Crrdxdt
0 0 1
= /quflefcpxdx.
0

Por dltimo, aplicando (2.21),

4 I'(q)
x4 f(x)dx < (2.30)

) Gy

Por tanto, con este ultimo resulultado tenemos que
1 o 1/q I'(q) Vg
6= (i [t rwar) < () =& =6l
I'(q) Jo I(q) (Cp)* Cp

y podemos concluir que G es una funcién decreciente en (0, +o). O

Acabamos de ver que las funciones G(p) definidas a partir de funciones log-céncavas son decre-
cientes en (0, 4c0). Sin embargo, dependiendo de la eleccién f, la funcién G puede ser constante. Por
ejemplo, si f(x) = e ¥ para algiin A > 0, tenemos que para cualquier p > 0,

G(p) ( 1 /w b, A >1/p ( 1 /oo — >1/p 1
= == xP e X = e =—,
PI=\Tp) Jo r(p)ar Jo > y A

con el cambio de variables y = Ax.

Antes de dar la inclusi6n entre los cuerpos de Ball K, ( f) para funciones log-c6ncavas, veamos que
eligiendo cierto tipo de funciones log-céncavas relacionadas con cuerpos convexos K, para p > 0 se
tiene que K,,(f) = C,K. Es decir, el cuerpo de Ball asociado a f con p > 0 es el convexo K dilatado una
cierta constante dependiente de p.




La Constante de Isotropia y la Conjetura del Hiperplano 29

Proposicién 2.7. Sea K un cuerpo convexo y centrado. Definimos f : R" — [0, +o0) como f(x) = e~ IXlx,
Entonces, para cualquier p > 0, K,(f) = T(1+ p)'/PK.

Demostracién. Para cada u € §"~!, aplicando la férmula radial para cuerpos de Ball (2.6),

: (L[ (L e stilegy)
a0 = (g o ronas) = (g o e M)

Con el cambio de variables s||u||x =y, se tiene que

! — # R 1/17* M 1/17*Lf
e = (g b)) = (Fohe) -~ T~

Luego, K,(f) =T(1+p)'/PK. O

Vamos a generalizar este resultado para funciones log-céncavas, para ver otra relacién de inclusion
entre los cuerpos de Ball.

Teorema 2.10. Sea f: R" — [0, ) una funcion log-céncava con f(0) > 0. Para cualesquiera 0 < p < g,

se tiene que
(ratra) 50 () ot

Demostracion. Es claro que para cada u € ", la funcién f; : [0,00) — [0,0) definida como f; (x) =
f(xu) es una funcién log-céncava. Luego, para cada u € §"~! definimos G(p) como

oo 1/ oo
G(p) = <F(p)lf(0)/0 x”_lfl(X)dx) P: (F(1+I;))f(0)/o xp_lf(xu)dx>

Asi, por el Lema 2.9, para 0 < p < ¢, G(p) < G(q). Aplicando esto a la férmula radial (2.6) del cuerpo
de Ball K,(f), para cadau € S" !,

1/p

(Hfﬂﬂym :<f7 ﬁfl@wwfm=F@>
>F(q)= (fE]O) /wsq_lf(su)dS>l/q = <F(11+q)>l/qp,<q(f)(u).
Por tanto,
(r(11+q)>l/qK‘f(f) . (r(llmy/pr(f)- 231)

O

Teorema 2.11. Sea f : R" — [0,0) una funcion log-concava con f(0) = || f||. Entonces, si 0 < p < g,
se tiene que

1
DD KD € Ky ) € Kyl

Demostracion. Podemos asumir que f(0) = || f|| = 1. En caso contrario aplicamos el resultado a g =

f11(0).

Mediante los Teoremas 2.8 y 2.10 es directo ver que se cumple el enunciado. O
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2.2.4. Acotacion de la constante de isotropia

Teorema 2.12. Sea K C R" un cuerpo isotrdpico. Sea F(x) = |K N (x+ K)|. Entonces, para cada
dimension n € N existe una constante C, > 0 tal que

Colk < Lk, ,(r) < V2L,

V2

con limC, = —.
n—yoo e

Demostracion. Como hemos visto en la Proposicion 2.3, si K es un cuerpo isotrépico, la funcién F(x)
es 1 —céncava. Luego, en particular es log-céncava. Aplicando la Proposicién 2.6, se tiene que

1
.0)°d :—/ ,0)|? F(x)dx, 2.32
/KMFKx P ax= gy 1 O Pl (2.32)
con F(0) = 1. Aplicando el Teorema 2.5,

/ {x, 0)2F (x)dx =2 /K (x,0)%dx. (2.33)

Asi, se tiene que
/ (x, 0)|*dx = 2/ (x,0)2dx =2L2. (2.34)
K)1+2(F) K

Como hemos visto en la Proposicién 2.4, si f : R" — [0,0) es par, medible y £(0) # 0, entonces K, (f)
es simétrico para todo p > 0. Por tanto, K,»(F) es un cuerpo convexo simétrico. En caso de que
|Ky+2(F)| # 1, tomamos el cuerpo convexo

Kn+2(F)
| Ko (F)| 1

el cual es un cuerpo isotrépico.
Veamos la relacion entre las constantes de isotropia de K, »(F) y Lg. Es claro que

2 2
LKn+2(F) :/K,H_Z(F) |(x,0)]"dx.

K,y o (F)| /7

Tomando el cambio de variables x = y/(|K,2(F)|'/"), mediante la igualdad (2.34) se tiene que

202

|
12 :—/ 0 Pdx— — Kk 235
Kuy2 (F) |Kysn (F)|1+2/ K,,+2(F)’<X7 )" dx Ko (F)| 12/ (2.35)

Por un lado, el Teorema 2.8 indica que para cualquier f : R” — [0, ) log-céncava con f(0) > 0, se
tiene que K, (f) C K,+2(f). Por tanto, tomando f = F se tiene que |K,(F)| < |K,12(F)|. Ademas, el
Lema 2.1 dice que

1
KyF)l=—= /| Flx)dx=1
K = gy o PO =1,
por ser F una medida de probabilidad, como hemos visto al principio del capitulo. Asi,

L 2w
Kni2(F) |Kn+2(F)’1+2/n—|Kn(F)‘l+2/n K-

(2.36)

Por otro lado, utilizando el Teorema 2.10, es claro que

C(14n+42)Y/0+2)

K, »(F
+2( )C F(l-{—l’l)l/n

Ko (F).
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Tomando volimenes,

L(14n+2)/0+2)
L(1+n)t/n

(1 4n+2)"/0+2)
— A ).

(K2 (F)| < Ku(F)

Andlogamente al caso anterior,

2L2 F(l—{—n) 14+2/n
Ly, »(F) Kyya (F)[1F2/n = <r‘(1+n+2)n/(n+2)> 2Ly (2.37)

Si definimos

I(1+n) 142/n
2 — .
G = <r(1 + n42)n/(n+2) ) 2, (2.38)
es claro que
L ") > C2L%. (2.39)

n+2

Finalmente, mediante las desigualdades (2.36) y (2.39), tenemos que
CaLk < L, ,(r) < V2L, (2.40)

con la constante C,, > 0 definida en (2.38).
Simplificando C,,, se tiene que

C2_2 F(1+n) 1+2/Vl_2 F(1+n)l+2/n
" T\ 4 n42)n/(1+2) T\ D1+ n+2)0+2)/(42)

F(1+n)1+2/n (n!)l-‘rZ/n

F(1+n+2)  (n+2)!°

Si tomamos limites cuando n — oo, por la férmula de Stirling, tenemos que

I'(1+n) _ h,mz(n!)1+2/" _2

142/n
1 —-
s (1"(1 +n+2)"/ (1+2) ) n—e (n+2)! e?

Por tanto,

O]

Observacion 2.2. Notar que cualquier n > 0, la constante C, es estrictamente mayor que 0, y el limite
cuando n — o de C, es mayor que 0. Por tanto, si tomamos C como

. F(l—i—n) 1+2/n ‘
C—1nf{2 <F(1+n+2)”/("+2)> :n>0,, (2.41)

la desigualdad (2.40), nos dice que para toda dimension n € N y todo cuerpo convexo K C R", se tiene
que

VCLg < Lk, ,r) < V2Ly

con C la constante absoluta adimensional definida en (2.41). Por tanto, si la conjetura de la constante de
isotropia se cumpliera para cuerpos simétricos con constante C; > 0, entonces se cumple para cuerpos
convexos en general con constante Cy /(v/C) > Cre//2.
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2.3. Funciones o-concavas

En esta ultima seccién del capitulo, vamos a dar resultado original para funciones a-céncavas. De
forma andloga a la seccidn anterior, vamos a ver que podemos mejorar la inclusién entre los cuerpos de
Ball K,(f) y K;(f), para0 < p < g, si f es una funcién a-céncava.

En la seccién anterior, hemos visto que para todo cuerpo K C R" isotrdpico, la relacién entre las
constantes de isotropia de K'y K, 12 (F) es

VCLg < Ly, ) < V2Lk,

para cierta constante absoluta C < 2/¢%. Como consecuencia de la acotacién original para funciones
a-concavas que damos en esta seccidn, para toda dimensién n € N y todo cuerpo convexo K C R”,
existird una constante C, > 0 tal que

Colk < Lk, ,(r) < V2Lg.

Esta sucesion de constantes, (C,,);_;, tiende a \/m si n — co. Esta acotacion implica que si se demues-
tra la conjetura de la constante de isotropia para cuerpos simétricos, con constante Cp, entonces podemos
asegurar que la conjetura se cumple en general con constante C> > C; /2, mejorando asintGticamente la
acotacion existente hasta ahora.

2.3.1. Inclusién en los cuerpos de Ball

Como hemos visto en el Teorema 2.11, si f : R" — [0,0) es una funcién log-céncava con f(0) =
|| f ||, entonces existe una relacién de inclusion entre los cuerpos de Ball asociados a f dada por

(14 p)'/»

WKq(f) CKp(f) CKy(f),
con 0 < p < ¢q. En esta seccion vamos a dar la mejor relacion de inclusion posible para cuerpos de Ball,
en caso de que f sea una funcién a-céncava.

En primer lugar, vamos a ver que si f : [0,00) — [0,c0) es una funcién o-céncava, entonces para
0 < p < g se tiene

Ky (f) C Kqy(f)-
Lema 2.3. Sea f: [0,00) — [0,00) una funcion a-céncava. Entonces la funcion
p o0 1/p
F(p)= <!f\ / x”_lf(x)dx> (2.42)
(e} 0

es creciente en (0,00).

Demostracion. Notar que si f es a-concava, entonces f es log-concava. Por tanto, basta con aplicar el
Lema 2.2 y se tiene el resultado. O

Teorema 2.13. Sea f: R" — [0,0) una funcion o.-céncava con ||f||« = f(0). Para cualesquiera 0 <
p < q, se tiene que K,(f) C Ky(f).

Demostracion. Como f es o-coéncava, en particular es log-céncava. Por tanto, procediendo como en el
Teorema 2.8 y utilizando el Lema 2.3 se tiene el resultado. O

Veamos ahora la otra incusion. Si f : [0,00) — [0, ) es una funcién a-céncava, veamos que existe
una constante C,, ;, > 0 que cumple que

Cp.oKy(f) C Kp(f)-

para cualesquiera 0 < p < g.



La Constante de Isotropia y la Conjetura del Hiperplano 33

Teorema 2.14. Sea f : [0,00) — [0,0) una funcion a-concava en su soporte, integrable, no idéntica-
mente nula con f(0) # 0. Entonces, la funcion
/ pxP7Lf (x)dx)
0

1/p

Grlp) = <<é Zp> f(10)

Demostracion. Sin pérdida de generalidad podemos suponer que f(0) = 1. Si £(0) fuera distinto a 1,
aplicamos el mismo razonamiento a f; = %, que cumple que f;(0) = 1 y es a-céncava en su soporte.

es decreciente en p.

Por definicién, como f es una funcién a-concava, se tiene que f* es una funcién céncava. Como
ademds, f es integrable, se tiene que f¢ es integrable también. Asi, por ser c6ncava e integrable, la
funcién f* tiene soporte compacto, y por tanto f también tiene soporte compacto. Definimos

M = sup{x € (0,0) ; f(x) £0}.
Por lo tanto, se tiene que f(x) = 0, para todo x > M. Asi,

Gr(p) = (<é’:rp) /Ompx”_lf(x)dx>]/p — ((éﬂ;p) /OMpxp_lf(x)dx>1/p.

o o

Por otro lado, para alguna constante M; > 0, definimos la funcién g(z) como
1/a .
(I—MLI) , site[0,M]

g(t) =
0, sit € (M,+oo)

Notar que la funcién g*(¢) es afin en su soporte, y por tanto también es concava en su soporte. Asi, la
funcién g es o-concava en su soporte. Mediante el cambio de variables t = M| x, se tiene que

m}/®
_(atP pr/olx” L1 —x) % dx
_(@tP\,p (DT /a+1)
- >M1<r@+Ua+w>
B (p+1/a+1) C(p)L(1/a+1)
~ (e i) e (e ey )
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Por tanto, se tiene que G,(p) = G,4(g) para todo g # p. Luego G,(g) es constante, para todo ¢ > 0. Si
tomamos

M = Gy(p),
es claro que G4(p) = G¢(p). Es decir,

(.HP)/“’ 1 R
< A f(X)dX> —(( 1 )/O px g(X)dX>

o o

1/p

Equivalentemente,

/ ) pxPLf(x)dx = / ) pxP g (x)dx. (2.43)
0 0

Como estas dos integrales son iguales, y f(0) = g(0) = 1, no puede ocurrir que g(x) < f(x) para todo
x € (0,+00). Asi, existe algin x € (0, +o0) para el cual g(x) > f(x). Por tanto, el conjunto {x > 0: g(x) >
f(x)} no es vacio, asi pues tiene infimo. Tomamos el infimo del conjunto

/o
x():fnf{x>02 <1_x> zf(x)}. (2.44)
M,
Por la defincién de infimo, es claro que
g(x) < f(x), ¥Yx € (0,xp). (2.45)

Veamos que g(x) > f(x), para x > xo. Sea y > xp, tomamos A > 0 de forma que xo = A0+ (1 —A)y.
Asf, como f1/% es céncava 'y g!/* es afin, se tiene que

1% (x0) = £ R0+ (1= A)y) = AF1%(0) + (1= )% ()
g% (x0) = g"/#(A0+ (1= A)y) = 2g"/#(0) + (1~ A)g"/*(y).
Por eleccién de xp, se tiene que f(xp) = g(xp). Por lo tanto,
A8 *(0)+(1=2)g"*(y) = A £ (0) + (1= 2) f/(y).
Como £(0) = g(0) = 1.
g) = f)-

Por tanto, en general para cualquier y € (xp, o), se tiene que g(y) > f(y).
Retomando la igualdad (2.43), tenfamos que

LGy~ G = [ o (70) —gle))ar =0

(")

Q=

Por tanto,
X0 oo
| p o —gdr— [ pr s - r0)dr =0 (246)
X0
Asi, para g > p se tiene que

G,f(Q)(q;;q();g(Q)q _ /0 " (o) — glr))de

X0

= [T (0 g0y~ [ (gle) ~ )
-4 ( [ oo - gt~ [ pr e g —f(r))dr)

X0

0
< L ([ - topan— [ o) - o).

J xo
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Mediante la igualdad 2.46, es claro que
G —G.(g)? B X o
AP =GO o ([ e 10— tonar— i (o100 )
( a Tq) P 0 X0

a

—dar.g=o.
P

Por tanto, se tiene que para 0 < p < q,

Gr(q) — Gg(q) <0.

Por definicién de g, se tiene que G4(g) = G4(p) = G¢(p). Por tanto, podemos concluir que para 0 <
p<4gq,

Gr(q) —Gy(p) <0.

Asi, queda demostrado que la funcién G(p) es decreciente para p € (0,c0). O
Teorema 2.15. Sea f : R" — [0, ) una funcion o.-céncava con f(0) > 0. Para cualesquiera 0 < p < g,

se tiene que
1 1/q 1 1/p
o tp atp
(7)) ke (1) K.

o

[0

Demostracion. Andlogamente a la demostracién del Teorema 2.10, para cada u € §"~! definimos la
funcién fj : [0,00) — [0,00) por fj(x) = f(xu). Como f es una funcién a-céncava, es claro que f| es
una funcién a-céncava. Luego, para cada u € S"~! definimos G(p) como

cvu»=:((ézp)fénﬂfpﬁﬁﬂﬁumu>up::((ézp>f&»%fpw—71wﬁh>

Asi, por el Teorema 2.14, para 0 > p > ¢, G¢(p) < G(q). Aplicando esto a la férmula radial (2.6) del
cuerpo de Ball K,(f), para cada u € S"!,

R

1/p

L_i_q oo 1/q L+p 1/q
> Gy (q) ((aé )f(O)/o qsq—lf(su)ds> — <aé ) qu(f)(u)
Por tanto, ) y
1 + q 1 p
<a1 q) Ky(f) € <a1 p) Ky (f) (2.47)

Mediante los Teoremas 2.13 y 2.15, ya estamos preparados para ver la inclusion en los cuerpos de
Ball para funciones ¢t-concavas.

Teorema 2.16. Sea f : R" — [0,0) una funcion o.-concava con f(0) = || f||. Entonces, si0 < p < g,
se tiene que
Gyl
1
S K,(F) C K (f) CKy(f).
Ly /p
(aé )
Demostracion. Podemos asumir sin pérdida de generalidad que f(0) = ||f|| = 1. En caso contrario
aplicamos el resultado a g = f/f(0).
Mediante los Teoremas 2,13 y 2,15 es directo ver que se cumple el enunciado. O
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2.3.2. Acotacion de la constante de isotropia

En esta seccién vamos a acotar superior e inferiormente la constante de isotropia de de un cuerpo
isotrépico, por la constante de isotropia de un cuerpo de Ball que asociaremos a él. Este resultado es
original, y mejora las constantes que se utilizaban en la acotacion.

Teorema 2.17. Sea K C R" un cuerpo isotrdpico y sea F(x) = |KN (x+ K)|. Entonces, para cada
dimension n € N existe una constante C, > 0 tal que

. 1
con r}glgocn = \/;

Demostracion. Como hemos visto en la Proposicion 2,3, si K es un cuerpo isotrépico, la funcién F(x)
es 1 —céncava. Luego, en particular es o-céncava, con o = % Aplicando la Proposicién 2,6, se tiene

1
que

CuLk < Lk, ,(r) < V2L,

2 g 2
/KM(F)Kx,eM = 55 /R |(x,0)]* F (x)dx, (2.48)

con F(0) = 1. Aplicando el Teorema 2,5,

/n<x,6)2F(x)dx: Z/K(x,9>2dx. (2.49)

Asi, se tiene que
/ (x, 0)|*dx = 2/ (x,0)2dx =2L%. (2.50)
K)1+2(F) K

Como hemos visto en la Proposicion 2,4, si f : R" — [0,0) es par, medible y f(0) # 0, entonces K, (f)
es simétrico para todo p > 0. Por tanto, K,»(F) es un cuerpo convexo simétrico. En caso de que
|Ky+2(F)| # 1, tomamos el cuerpo convexo

Kn+2(F)
‘Kn+2(F)’1/n7

el cual es un cuerpo isotrépico.
Veamos la relacion entre las constantes de isotropia de K,,»(F) y Lg. Es claro que

2 2
LKn+2(F) = MKLQH dx.

Koy (1|1
Tomando el cambio de variables x = y/(|K,2(F)|'/"), mediante la igualdad (2.50) se tiene que

) 1 212

L = O dx=— K 2.51
Kyi2(F) ’Kn+2(F)‘]+2/n[(n+2(F)’<x’ )|"dx Ko (F)|172m (2.5D)

Por un lado, el Teorema 2.13 indica que para cualquier f : R” — [0,00) a-céncava con f(0) > 0, se
tiene que K, (f) C K,+2(f). Por tanto, tomando f = F se tiene que |K,(F)| < |K,12(F)|. Ademas, el
Lema 2.1 dice que

KF)| = 7 L, P = 1.

por ser F una medida de probabilidad, como hemos visto al principio del capitulo. Asi,

212 212
2 _ K < K — 22
LKn+2(F) |Kppio(F) 142/ = |K,(F)|1+2/7 2Ly (2.52)
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Por otro lado, como F es una funcion a-concava, con o¢ = %, utilizando el Teorema 2.15, es claro
que

(éJrn) l/n 1/
i o
Kn+2(F) - (é+n+2) 1/(n+2) Kn (F) - (n+n+2) 1/(n+2) Kn (F)
1 n
Tomando volimenes,
n 1/n 2n
) _ G
|[Kn2(F)| < (2,1+2)1/(,,+2)Kn(F) = W K (F)]-

n n

Andlogamente al caso anterior,

02 anayn/(n42) \ T
L2 o= Li ) 2L%. (2.53)
wi2(F) |Kpin (F)[142/n = (znn)
Por tanto, tomando
sy 42 1+2/n
C,% == 2 ~ 1 2 )
()
es claro que , -
LKM(F) >C,Lg. (2.54)
Finalmente, mediante las desigualdades (2.52) y (2.54), tenemos que
CuLx < Lk, ,r) < V2Lk. (2.55)
Simplificando C2, se tiene que
(2n+2) n/(n+2) 142/n (2n+2)
C,% -9 n : n
1+2/n"
() (22

Si tomamos limites cuando n — oo, aplicando la férmula de Stirling, tenemos que

2n+2) 1

o N
r}g{}oz 2n TJFZ/" o 5
()

, 1
=3

Este resultado original mejora la relacién que entre las constantes de isotropia de cuerpos simétricos
y cuerpos no necesariamente simétricos.

Por tanto,

O]

Observacion. Notar que cualquier n > 0, la constante C, es estrictamente mayor que 0, y el limite
cuando n — oo de C, es 1/2. Por tanto, si tomamos C como

(2n+2)
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es claro que C > 0. Asi, mediante la desigualdad (2.55), se tiene que para toda dimensién n € N y todo
cuerpo convexo K C R”,

VCLx < Ly, ,(r) < V2Lg (2.57)

con C la constante absoluta adimensional definida en (2.56). Como consecuencia de la desigualdad
(2.57), si la conjetura de la constante de isotropia se cumpliera para cuerpos simétricos con constante
C; > 0, entonces se cumple para cuerpos convexos en general con constante mayor o igual a Cy / (\@ ) >

CiV2.



Capitulo 3

La conjetura del hiperplano

En este capitulo vamos a presentar otra de las principales cuestiones de este trabajo: la conjetura
del hiperplano. Esta conjetura afirma que todo cuerpo convexo centrado de volumen 1 tiene una seccién
que pasa por el origen, cuyo volumen es mayor o igual a una constante absoluta ¢ > 0.

En este capitulo veremos que esta conjetura estd muy relacionada con la conjetura de la constante
de isotropia que presentamos en el capitulo anterior. De hecho, veremos que son equivalentes. Es decir,
si una de las conjeturas se cumple, la otra se satisface también. Para ello, daremos una desigualdad
entre la constante de isotropia de un cuerpo convexo y de sus secciones centrales, la cual mejoraremos
utilizando funciones q-céncavas.

3.1. Momentos de Inercia y secciones de hiperplanos maximales

En esta seccién vamos a explicar la relacién entre los momentos de inercia de un cuerpo convexo y
el volumen de secciones del cuerpo mediante hiperplanos pasando por el origen.

Teorema 3.1. Sea K un cuerpo isotrépico en R". Para todo 6 € S"~! se tiene
— < |KNnoe~-| <= 3.1
L<lknet <2 6.1

donde ci,cy > 0 son constantes absolutas.

Por lo tanto, si K es un cuerpo isotrépico, todas las secciones que pasan por el origen tienen un
volumen similar. Este resultado procede de una serie de observaciones en los resultados siguientes. En
este caso, vamos a demostrar este teorema para cuerpos isotrépicos simétricos. En el caso de cuerpos
isotrépicos no simétricos, se tiene la prueba en [7, Th. 3.1.2] .

Para demostrar este Teorema, vamos a demostrar primero la siguiente desigualdad.

Teorema 3.2. Sea K C R" un cuerpo convexo simétrico de volumen 1. Entonces, para cualquier g > 0

se tiene que
1 1 Y4 c.min{g,n}
< 0)|? < — 32

2(q+1)1/f1\1m6i_</1<’<x’ >’> - |Kn6t| (3-2)

para alguna constante C > 0.
Para probar este Teorema, vamos a comenzar probando primero la cota inferior.

Teorema 3.3. Sea K un cuerpo simétrico de volumen 1 en R". Para todoq >0y 6 € 8" !,

1/51 1 1
)4 > .
</K'<x’ 4 ) = 2(q+ )1/ [KN O]

39
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Demostracion. Por el Lema 2,2, sabemos que si f : [0,+e0) — [0,4o0) es una funcion log-céncava,

entonces
1/p

Fp) = <, i / wx”f(x)dx) (3.3)

es una funcién creciente. Sea 0 € §*~!, vamos a aplicar este resultado a la funcion

F(#) = Xjo, e () - KN {(x, 0) = 1}, 34

Esta funcién se puede ver facilmente que es log-céncava aplicando la desigualdad de Brunn-Minkowski.
Ademds, ||f = f(0) = |KN 6| Asi,

B g+1 [ B 1/(g+1)
Flg+1)= (Hf”m/o ﬂym{<x,e>_t}ydt>
ZF(I):”fl’w/O KO {(x,0) = 1}|de

1 oo
- |Imei|/o KN {(x,0) =1}|dr.

Como K es simétrico y

JRLGIC R

es claro que
|k {Gw0) =eylar =
0

Por tanto, para todo g > 0,

qg+1 / q 1 1
_— t1KN{(x,0) =t}|dt > — 3.5
(Hflloo 0 [KNo+|2
Como K es simétrico, con el cambio de variable t = —s, es claro que

oo 0
/Ot‘/me{<x,9>:t}]dt:/ (—$)9|K N {(x,0) = —s}|ds

= [ 1K (45,60) = s}lds

Por tanto, es claro que

/:O\t]ﬂl(ﬂ{(x,@ :s}|ds:2/0°°zq\1m{<x,e> — 1} |dt

Aplicando esto a la igualdad (3.5), se tiene que

I 1 _(q+11 /g t1)
Knet2= <HfH 2 W’KQW 9>_t}’dt>

1/(g+1)
qg+1
_<]K09i|2 |x9|dx> :

Tomando la potencia (¢ + 1) de la expresion, se tiene que

1 1 g+1 (s
KAOL[a 291 = K6 2 bl
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Equivalentemente,

1 1
< 0)|%dx.

Tomando la raiz g-ésima de ambos miembros, se tiene que

1 g 1/q
KoL -2(q+1)7a = /'x O)ffdx) .

O]

Observacion. Si tomamos K = %B{,’o y 6 = ey, con e un vector de la base candnica, la desigualdad del
Teorema 3.3 pasa a ser una igualdad. Como ‘%B’; N GL‘ =1, se tiene que

2

1 1
NY=2 .
/lgn xenl / 20 q+1) ~20(g+1) [1BLn o[

En [7, Prop. 3.1.4], podemos encontrar un resultado similar al Teorema 3.3 para cuerpos no necesa-
riamente simétricos.

Lema 3.1. Sea K un cuerpo convexo y centrado de volumen 1 en R". Para todo g >0y 0 € §"~1,

1/q 1 1
6)|? > .
(/1<|<x’ /| > ~ 2e(qg+1)a|KNOL|

Veamos ahora la cota superior de la desigualdad 3.2.

Teorema 3.4. Sea K un cuerpo centrado y simétrico de volumen 1 en R". Para todo ¢ >0y 6 € §"~ !,

se tiene que
1/q .
C-min{q,n}
6)|1 < —
(flwonr) << omit:

para alguna constante absoluta C > 0.
Demostracion. De forma andloga a la demostracion del Teorema 3.3, sea 0 € §"~1 consideramos la
funcion
J(t) = Xjo,100) (1) - KN {(x,0) =1}].
que es log-céncava, y alcanza su maximo en 0, es decir, || f||~ = f(0). El Teorema de Brunn Minkowski

nos dice que esta funcién es en particular ﬁ—céncava. Por lo tanto, aplicando el Teorema 2.14 a f,
tenemos que la funcién

610 = (", 57 ) ol ) "

n 1/p
<FF(( )+(p>) ‘mel/ UK A {(x, 9>—t}|dt)

es decreciente. Por tanto,

. - 1(g+)
Gylg+1)= < +ZI++11 xnor ) t‘1|Kﬂ{(x,6>:t}|dt)
<G(1) = F((”)+(1)) ImeLy/ KO {(x,0) = 1}di

- TaaT /0 KN {(x,0) = 1}|dt
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Razonando como en la demostracién del Teorema anterior, como |K| = 1,

[ KA {(x,0) = r}[di = 1.

Ademads, como K es simétrico, es claro que

) 1 0
/O K0 {(x,0) = r}ldr = 5 :/_m|Kﬂ{<x,6> — 1}dr. (3.6)

Por tanto, para todo g > 0,

T(ntqg+1) 1 /m a+D) no1
t1NKN{{x,0) =t}|dt < — . 3.7
<FMﬂYq+l)KﬂQi]o KO, 0) =131 =KkneL|2 S
Razonando como en Teorema anterior, como K es simétrico, con el cambio de variable t = —s, es claro

que

o0 0
/ﬂ;m{@,e)::};m:/ (=5)9K N {(x,0) = —s}|ds
O —0Q
0
= [ 11K {(x,0) = 5}ds

Por tanto, es claro que

/:O\t|"|Kﬂ{(x,9> :s}|ds:2/0°°ﬂ\1m{<x,e> —(}|dt

Aplicando esto a la igualdad (3.7), se tiene que
n (n+q+1) 1 1/°° 1/(g+1)
> = [ tIKN{(x,0) =t}|dt
|Kﬁ6i\2_(l“(n) Fg+1) koL 2 ) K0 =}

r 1 1 1/(g+1)
(n+g+1) /|x 0)|9dx .
T (q+1) [KN61| 2

Tomando la potencia (¢ + 1) de la expresion, se tiene que

pat+l 1 I'n4+q+1) /|x 8) [1dx.
|[KNOL|a+1 29+ = T(n)[(g+1) ylmeLyz

Equivalentemente,

nq+1 1 F(n)r(q 1)
P > q
KN6L|92¢ T(n+q+1) —/ |(x,0)|9dx

Tomando la raiz g-ésima de ambos miembros, se tiene que

(g+1)/ 1/q 1/q
K

KNOL[2\ T(n+q+1)

Vamos a acotar la funcién

(WM>1/q.n<q+w/q_ (F("H)F(ﬁl))‘”.n.
F(n—l—q—H) F(l’l—i—q—l—l)
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Utilizando la férmula de stirling, existe una constante C > 0 tal que

‘n

1
(F(n+ DI(g+ 1))1/4% oy qle”1\2mqg n"e "\/21n e
F(n—l—q—I— 1) - (n—|—q)(”+11)e—("+‘1) 27t(n—|—q)

1/q
_( TTL')IMC qn 1 < nq >
n+q(1+%)"/‘1 n+q

Notar que si n > ¢, entonces

g\n/a — 7’
(1+1)
n

ya que es estrictamente decreciente en n, y su limite cuando n — e« es 1/e. Y si ¢ > n, como

1
lim 1

g—oo (H—%)H/q -

existe una constante C; > 0, tal que esta expresion es menor que C;. Asi, tomando C, = max{Cy,1/2}
y C3 = Cv/2m, se tiene que

C(n+1)0(g+1) " 1 L\ Ve
(Crovern ) ngcﬁ(w)( +> |

1.1
q n q n

| 2/q
T, 1 < min{n7‘1}2/q < qZ/q_
a7t

Notar que

< min{n,q}.
n >_ {n,q}

=
31—

Asi, sin > g,

Esta funcién es asintdticamente equivalente a 1, luego se puede acotar por una constante C4 > 0. De
forma anéloga, si ¢ > n, entonces

1 1
a7

| 2/q
( > < ml’n{n,q}z/q <n?1< nz/”,

que también se puede acotar por una constante Cs > 0. Por tanto, si definimos Cs = max{Cy,Cs}, se
tiene que

<F(n+ DI(g+1

) 1/q )
-n<CGC .
F(n+q+ 1) n<oqQy 3m1n{n,q}C6

Asf, volviendo a la expresion (3.8), podemos asegurar que existe una constante absoluta C > 0 tal que

Y4 c.min{n,q}
(/K‘<x79>|qu> < W (3.9)

O]
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Observacion. En [7, Prop. 3.1.5], podemos encontrar un resultado similar en el que solo se tiene en
cuenta la log-concavidad de f, y con ello se obtiene la cota

1/‘] C
-q
0)|4 < - 2
(/Kr<x, >|) <ol

para alguna constante C > 0 absoluta. En este trabajo, gracias al estudio que hemos hecho de funciones
a-concavas, hemos mejorado esa acotacién, teniendo en cuenta que dado un cuerpo convexo K C R”,
la funcién f(¢) dada por

F(@) = Xjo 1) (1) - [K N {{x, 0) = 1}]
1

es .—7—concava, mejorando asintéticamente la cota superior existente de los momentos centrales de

orden gq.

Con estos 2 teoremas, hemos acotado los momentos de orden ¢ de un cuerpo convexo, centrado y
simétrico K. Es claro que si K es isotrépico, y tomamos g = 2,

12
(/K<x,9>|2dx) —12. (3.10)

Por tanto, aplicando estos teoremas, vamos a obtener las cotas necesarias para demostrar el Teorema
3.1.

Demostracion del Teorema 3.1. Sea K isotrépico y simétrico en R”. Sea 6 € §"~!, si tomamos g =2 en
la desiguldad del Teorema 3.3, se tiene que

) 1/2 1 1
Lx = > .
K </K|<x’9>‘ ) —2(3)1/2 ‘Kﬂel‘

Equivalentemente,
1
KNnet|> ——. 3.11
Kno|z G
Por otro lado, tomando g = 2 en la desigualdad del Teorema 3,4,
1/2 c.2
Lx = )] <—.
K (/K|<x’ >’> _|Kﬂ9L|
Equivalentemente,
., C-2
KN+ < ——=. (3.12)
Ly

Por tanto, las desigualdades (3.11) y (3.12), aseguran que existen constantes absolutas cy, ¢, tales que
para cualquier 6 € ",

A <iknet| <2 (3.13)
Lx Lx

O

3.2. La conjetura del hiperplano

En esta seccién presentamos la conjetura del hiperplano, y la relacionamos con la conjetura de la
constante de isotropia.

Conjetura 3.1. (Conjetura del hiperplano). Existe una constante absoluta ¢ > 0 que satisface la si-
guiente propiedad: para todo n > 1 y para todo cuerpo convexo centrado K de volumen 1, existe
0 € "' tal que

KN+ >c (3.14)
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Esta conjetura es equivalente a la conjetura de la constante de isotropia. Es decir, una respuesta
afirmativa en alguno de los dos implicaria que la otra conjetura es cierta. Supongamos que la conjetura
del hiperplano es cierta. Si K es un cuerpo isotrépico, el teorema 3.1 muestra que para todo 8 € §"~!,

C1l 1 (&)
— < |KNo—| < —.
LK_| ‘_LK

Como existe un 0 para el cual (3.14) se cumple, para ese 6 tenemos que

c<|Knet| < 2,
Lg

Lg < 2. (3.15)
C

De la misma forma, si existe una cota superior C para la constante de isotropia, entonces se satisface
la conjetura del hiperplano. Una forma de demostrarlo es utilizando el elipsoide de inercia de Binet.

Definicion 3.1. Sea K un cuerpo convexo de volumen 1 y centrado. El elipsoide de Binet de K es la
bola unidad de la norma dada por

Dl = ( [t 616

Asi, el elipsoide de Binet de K es

G(K) = {y R [ (ry)?dx <1}

:{yGR”‘[((ixiyi) (ixiyi) dx <1}

n
={yeR" Z y,-yj/x,-xjdxg 1}
ij=1 'K

={y e R"|(y,My) < 1},

donde M es una matriz n X n cuya posicion (i, j) es

(M)i,j:AXindx. (317)

Por tanto, es claro que (M); ; = (M) ;,; para todo i, j, luego M es simétrica. Ademds, podemos expresar
la norma asociada al elipsoide de Binet como

91,0 = [ (5312dx = 3.M), (3.18)

por lo que es claro que M es una matriz definida positiva. Asi pues, existe D, una matriz diagonal n X n,

y U, una matriz ortogonal n x n tal que M = U'DU. Definimos D'/ como la matriz diagonal D'/2 que
1/2

cumple que D; ;" es la raiz cuadrada de D;;, paratodoi=1,...,n. Asi, A = U'D'/?U satisface que

M =U'DU =U'D'*(UU")D'*U = (U'D'*U)(U'D*U) = (U'D'?U) (U'D'?U) = A'A
Por tanto, podemos expresar &5(K) en términos de A:
ép(K) ={y e R"|(y,My) < 1}
={y eR"|(»,A'Ay) < 1}
={y e R*{Ay,Ay) < 1}
={A 7€ R"(z,2) < 1}
=AYzeR"||ZP <1} =A""B.
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Tomando volimenes, tenemos que

B B
‘(D@B(K”_ | 2| _ ‘ 2‘

|det(A)| T \/|det(M)]

Sea K un cuerpo convexo centrado y de volumen 1,y T € SL(n). Entonces, aplicando (3.18) se tiene
que

(3.19)

/ (x,y)%dx = / (Tz,y)*dz = / (x,T'y) dy
TK K K
= (T'y,MT'y) = (y,TMT'y).

Es decir, andlogamente a (3.18), la matriz M(TK) asociada la norma generada por &5(TK) es TMT',
con M la matriz asociada a la norma generada por &3(K). Asi, procediendo como en (3.19), tenemos
que

185 B3 __ B

VI (M(TK)]  \/|det(T'MT)[  \/|det(M)]
Por tanto, el volumen del elipsoide de Binet asociado a una transformacién lineal de un cuerpo convexo
K mediante una matriz T € SL(n), es igual al volumen del elipsoide de Binet asociado al cuerpo convexo
K.

Si K es isotropico,

|&3(TK)| = |&5(K)| (3.20)

[ (x.0)%ax = L3,
K
para todo 6 € §"~!. Asf,
M;;= / xPdx = / (x,e))%dx = L%,
K K

y para i 7 j,
Mivj :/Kxixjdx:0

por las propiedades vistas de los cuerpos isotrépicos. Asi, aplicando (3.19), si K es un cuerpo isotrépico,

’@([}B(K)‘_ ‘Bg‘ _ ’Bg’ _%.

Ve Jr T

Como hemos visto en el Teorema 2.2, si K es un cuerpo convexo centrado de volumen 1, existe una
transformacidn lineal T tal que TK estd en posicidn isotrépica. Por tanto, mediante el resultado (3.20),
tenemos que esta ultima igualdad, (3.21), se cumple para cualquier cuerpo convexo K de volumen 1y
centrado.

Por otro lado,

(3.21)

B3| Psgkye) i
=l = [ [T arnigsidoe)
K
- B3]
= |, (Payx)(6)) IBzIdG(G)z/f o —do(6)
sn—1 gn—1 || ||(§3(K)

185

T mingegn HGHHgB(K)

siendo p g, x)(0) la funcion radial en &3(K), que por definicion es igual a (||0]|,x)) !, Por tanto,

min |0 < Lg. 3.22
Jmin {18l x) < Lx (3.22)
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Es decir,

gcs—1

1/2
min ( / (x,9>2dx) < L. (3.23)
JK

Podemos ver ahora que la conjetura de la constante de isotropia implica la conjetura del hiperplano.
Supongamos que se satisface la conjetura de la constante de isotropia. Sea K C R" es un cuerpo convexo
centrado de volumen 1. Este tltimo resultado, (3.23), implica que existe un 8 € S"~! tal que

1/2
( /K (x, 9>2dx> <Lg <C. (3.24)
Por tanto, el Lema 3.1 muestra que
1 1 1/2

para algtin € §"~!. Y por tanto, para todo convexo K centrado y de volumen 1 existe un 8 € §"~! para

el cual
1
2¢C\/3 .

KNnoet| > (3.26)






Capitulo 4

Respuestas parciales

La conjetura de la constante de isotropia, si bien no ha sido demostrada en toda su generalidad, se
puede probar para ciertas clases de cuerpos convexos. En este capitulo vamos a ver algunas respuestas
parciales afirmativas a esta conjetura.

En las secciones 4.1 y 4.2 vamos a ver que en ciertas clases de cuerpos simétricos podemos acotar su
constante de isotropia por una constante absoluta. En la seccion 4.1, trabajaremos con cuerpos convexos
incondicionales. Este resultado es consecuencia de la simetria que tienen esta clase de cuerpos respecto
de cualquier hiperplano coordenado. Para ello, basaremos la demostracion en la desigualdad de Loomis-
Whitney. En la seccién 4.2 trataremos con cuerpos 2-convexos simétricos: un clase de cuerpos que
cumple ciertas condiciones de convexidad. En este caso, su constante de isotropia se puede acotar por
una constante dependiente del tipo de 2-convexidad del cuerpo.

En las secciones 4.3 y 4.4 trabajaremos con politopos simétricos. En la seccién 4.3, veremos que
para politopos simétricos de N vértices, podemos acotar su constante de isotropia por una funcién del
orden de log(N). En la seccién 4.4, trataremos con politopos aleatorios gaussianos. Es decir, cuyos
vértices son generados por variables aleatorias gaussianas. En ese caso, con probabilidad muy alta,
podemos acotar por una constante absoluta su constante de isotropia.

Por tltimo, veremos otras acotaciones de la constante de isotropia para politopos aleatorios no ne-
cesariamente gaussianos.

4.1. Cuerpos convexos incondicionales

En esta seccioén estudiaremos el caso de cuerpos convexos incondicionales. Esta clase de cuerpos
convexos cumple que si x = (xy,...,x,) € K, entonces x = (€xy, ..., £,X,) € K para toda eleccion de & =
+1. Geométricamente, esto es que si x = (xy,...,x,) € K, entonces todo el rectangulo [T7, [—|xi|, [x:]]
estd contenido en K. Esta propiedad implica que para todo vector de la base canénica e, con j =
1,...,n, la proyeccién de K sobre el hiperplano ef, Pej; (K), es igual a la seccién de K intersectada con

el hiperplano eJ*, KN ej*. Por tanto, si K es un cuerpo incondicionalmente convexo, para cualquier e;,
con j=1,...,n, se tiene que

Pef(K)‘ - ‘Imej’.

4.1.1. Desigualdad de Loomis-Whitney

Antes de demostrar la acotacién de la constante de isotropia, veamos la demostracién de la des-
igualdad de Loomis-Whitney. Este resultado relaciona el volumen de un cuerpo convexo K en R” con
el producto de los volimenes n — 1-dimensionales de sus proyecciones en los hiperplanos ortogona-
les a los vectores candnicos de R". Vamos a probar este resultado utilizando una técnica discreta de
demostracion.

49
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Teorema 4.1 (Desigualdad de Loomis-Witney [17]). Para todo cuerpo convexo K en R”,

n
‘K’nfl < H
i=1

Demostracion. Sea B una unién de N cubos distintos de lado 1 con vértices en Z". Como cada cubo
tiene volumen 1, es claro que |B| = N. Asi, B es unién de cubos de la forma

Py (K)‘

[ajl,ajl + 1] X [ajz,ajz—é—l} X ... X [ajn,ajn —l-l] c R

Por tanto, podemos identificar cada cubo con el punto (a;,,aj,,..,a;,) € Z".
Sea N; el niimero de cubos en P, (B), es decir, el nimero de cubos n — 1-dimensionales que aparecen
1

en la proyeccién sobre el hiperplano e;-. Asi, parar todo iy, ...,n tenemos que N; = |P, (B)|. Veamos por
induccién que

n
N <] (4.1)
i=1

Sin =2, es claro que N < NNy, ya que B C P, (B) x Py (B). Supongamos la desigualdad cierta
para n— 1, y veamos que entonces se cumple para n.
Agrupamos los elementos de B en k conjuntos de la siguiente forma:

» Sea z; € Z la primera coordenada de algiin elemento de B. Definimos B; como el subconjunto de
B cuyos elementos son los z € B tales que la primera la coordenada de z es z;. Definimos b; como
el nimero de elementos de B;.

= Sea z; € Z, la primera coordenada de algin elemento de B tal que z # z;. Definimos B, como
el subconjunto de B cuyos elementos son los z € B tales que la primera la coordenada de z es z;.
Definimos b, como el nimero de elementos de Bs.

» Sea z3 € Z, la primera coordenada de algtn elemento de B tal que z3 # z1 y 23 7 z2. Definimos B3
como el subconjunto de B cuyos elementos son los z € B tales que la primera la coordenada de z
es z3. Definimos b3 como el nimero de elementos de Bs.

= En general, para definir el conjunto B;, tomamos un z; € Z que sea la primera coordenada de
algiin elemento de B tal que z; # 21,22, ...,2j—1. Definimos B; como el subconjunto de B cuyos
elementos son los z € B tales que la primera la coordenada de z es z;. Definimos b; como el nimero
de elementos de B,.

Como B es finito, habrd un ndmero k finito de numeros enteros diferentes que sean la primera
coordenada de algiin elemento de B. Asi, habrd k € Z conjuntos, By, .., By. Es facil ver que son disjuntos,
ya que para cualesquiera a; € B;, y ax € B;,, por definicién de los conjuntos B;, y B;,, la primera
coordenada de a; es diferente a la de a, luego a; # a,. Por tanto, es claro que

k
B =Y b.
=1

Para cualquier / € {1,..,k}, los elementos del conjunto B; tienen su primera coordenada igual, y
alguna de las demds coordenadas diferentes (ya que en caso de que tuvieran todas las coordenadas
iguales, serfan el mismo elemento). Por tanto, cada elemento de B tendrd una proyeccién sobre e;-
diferente. Asi, tenemos que |Pe|L (B;)| = by. Por tanto, como B C B paratodo / € {1,..,k}, se tiene que,
para cualquier / € {1,..,k},

bi =[P, (B1)| < |P,.(B)| = Ni. (4.2)

Definimos ahora, para [ € {1,..,k} y j € {2,..,n}, b; ; como el nimero de proyecciones diferentes
del conjunto B, sobre el hiperplano ej*. Es decir,

bij = P (B)l- (43)
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Como la primera coordenada de los elementos de B, es distinta de la primera coordenada de los ele-
mentos de By,, si lj # [, es claro que

=[P, (B >|—Z|PL B) |—sz,

Para cada ! € {1,..,k}, si aplicamos la hipétesis de induccién a b, tenemos que
b2 <bjabys...b, (4.4)
Asi, para cadal € {1,..,k}, utilizando la desigualdad (4.2), se tiene que
b <bybyoby3...b1 0 < Nibjobys...by . (4.5)
Luego,

1

k k
it 1
Z Nibiob3...by )T = Z (b12)"T(b13)"

---(bl,n) n-

||
I M»

1

k =1
(Zbl’j> = (N1)7T (N2) T .. (N,) 71

1 n

()

| /\

n
1

n:]

utlizando en (x) la desigualdad de Holder. Asi,
N"' <N|N,..N,

como queriamos probar. Luego para cualquier unién de cubos B de volumen 1 se tiene que

B]"

B) ’ . 4.6)

Si B es unién de cubos de lado § > 0 con vértices en 87", entonces tomamos B; = +B. Es claro que
Bj es unién de cubos de volumen 1. Por un lado,

| 1 1 n(n—1)
Bi|" ' =|<B|l=| = B|.
mr=|se = (5) W

n(n—1) pn
1 1
(52)-(5) O

Por otro lado,

n

[1

i=1

Pe,.L<Bl>\:i1i P.(8)|.

Asi, como B; cumple (4.6), se tiene que

En general, podemos aproximar cualquier boreliano de R” por uniones de cubos de lado & > 0 casi
disjuntos: la interseccién de cualesquiera dos es de medida nula. Sea A C R", dado € > 0 existe un
abierto B unién de cubos de radio 6 >0 tal que A C By |A\ B| < € tal que

A)‘.

Como |B|" ' = |A\ (A\B)|"' > (JA| — )" !, si &€ — 0, se tiene el resultado. O

|B|"”
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4.1.2. Aplicacion a la conjetura del hiperplano

Como hemos visto en la introduccién de esta seccidn, si K es un cuerpo convexo incondicional,
P, (K)| =K Nej|
e,- 1

para todo i € {1,..,n}. Aplicando la desigualdad de Loomis-Whitney, se tiene que

n n
KPP <TTIP. (K)| =TIk Net| < max [KNet|"
K < T (0= [Tk < i K]
Si |K| =1, se tiene que existe un i € {1,..,n} tal que

1< |KNej|.

Ast, la conjetura del hiperplano se cumple para cuerpos convexos incondicionales con constante 1.

4.2. Cuerpos 2-convexos

El objetivo de esta secidn es acotar la constante de isotropia de cuerpos isotrépicos simétricos que
cumplen ciertas condiciones de convexidad. Los cuerpos que vamos a tratar son los 2-convexos. Para
ellos definimos el médulo de convexidad uniforme, 8g, como una medida de “cudn convexo” es un
cuerpo. Un cuerpo se dice 2-convexo de pardmetro o, si se cumple que V7 € [0,2],

Sk (1) > ar’.

En esta seccién vamos a ver que para un cuerpo K isotrépico y simétrico, si 8x(t) > at?, Vt € [0,2],
entonces podemos acotar la constante de isotropia de K como Lg < ¢/+/a, donde ¢ > 0 es una constante
absoluta. Este resultado se ha obtenido del ariculo [16] .

4.2.1. Moédulo de convexidad uniforme

Sea K C R”" un cuerpo convexo y simétrico, definimos el médulo de convexidad uniforme de K
como la funcién & (7) : (0,2] — R* tal que

xX+y

&m:nﬁ1

ekl i)
K

Si K es convexo, (x+y)/2 € K, y por tanto es claro que ||(x+)/2||x < 1. No es dificil ver que dado
un ¢t > 0, ||(x+y)/2| alcanzard su supremo cuando x,y estén en la frontera de K. Equivalentemente,
1 —||(x+y)/2|| alcanzard su infimo para valores x,y € JK. Si suponemos que x,y son valores de la
frontera de K, de forma intuitiva se puede ver que si la distancia de x,y es 7, es decir, ||x —y||x =1,
entonces su punto medio estard mas cerca de la frontera que si en cambio ||x — y||x > 7. Por tanto,
|l(x+y)/2|| serd mayor cuando ||x —y||x = ¢, lo cual implica que 1 — ||(x+y)/2|| sea menor. Asi, se
puede simplificar la definicién de médulo de convexidad a

xX+y

Ok (t) = ’nf{l -

5y € aK,nx—ynK:r}.
K

Veamos una serie de observaciones del médulo de convexidad uniforme para ayudar a caracterizarlo.

Observacion 4.1. Para t > 0 fijo, sea (1 — 8k(t))K un dilatado de K. Para cualquier seccion S de K
que no corte a (1 — 8k (t))K, se tiene que el didmetro de S es menor a t, entendiendo didmetro como
max{[lx -y ; x,y € S}.
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Es decir, (1 — 6x(¢))K cumple que todas las secciones de K de didmetro mayor o igual a ¢ cortan a
(1 — k(1)K al menos en un punto.

Observacion 4.2. Si K no es estrictamente convexo, entonces Ok (t) = 0 para valores de t suficiente-
mente pequerios. Y si K es estrictamente convexo, Ok (t) > 0, para todo t.

Notar que si K no es estrictamente convexo, existen x,y en la frontera de K tales que su punto medio
estd en la frontera de K. Es decir, |3 | x = L. Asi, O (t) = 0, para algiin t > 0.

Observacion 4.3. Para cualquier subespacio M del espacio total, Sxrw(t) > Ok (t), para todo t.

En esta tltima observacion se incluyen espacios de dimension infinita. Es por ello que nos podemos
plantear cual es el médulo de convexidad uniforme de la bola unidad de un espacio de Banach de
dimensidn infinita. Veamos qué ocurre en el espacio de Banach H = I, con su norma euclidea asociada.

Sean x,y € H. Usando la identidad del paralelogramo tenemos que

2 2

Xty
2

XYy
2

_ 3+ 13
2 2 .

2

Si x,y € H cumplen que ||x||3 = ||x||3 = 1, y ||x —||2 > ¢, entonces

cy|P_ 1kl [aoy|f 2
2 |, 2 2 |,~ 4
Equivalentemente,
x+y

2

2\ 1/2
g(l_’) |
’ 4

Por tanto, para cualesquiera x, y en la frontera de la bola unidad tales que ||x —y|[» > 1, se tiene que

12 1/2
Zl_<1_> )
2 4
t2

1/2
; X,y € OBy, |[x =y, > t} >1- (1 - )
2

xtry

1—

En particular, tomando infimos,

., +
SBH(I):mf{l—szy 4

Esta dltima expresién es equivalente a t> /8 cuando ¢ — 0. Por tanto,

) 1/2 12

sit — 0. De forma andloga, se puede obtener el mismo resultado para espacios de Banach de dimensién
finita con la norma euclidea. Es decir, para cualquier n > 0,

) 1/2 2
SBg(t)21—<1—4> zg

sit — 0. Por tanto, la bola euclidea de un espacio de Banach de dimensién finita o infinita es 2-convexa,
es decir, existe algtin o > 0 tal que para todo 7 € (0,2]

Sp(t) > ar®.

Este resultado se puede exteneder a espacios L? de funciones.
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Teorema 4.2. Sit — 0, se tiene que

%tz, sipe(1,2]

6Blﬁ =~

p%ﬂ’ , SIpE[2,+)

Antes de ver la demostracién, vamos a enunciar dos desigualdades funcionales que vamos a necesi-
tar. Estas son la desigualdad de Clarkson y la desigualdad de Bynum-Drew.

Proposicion 4.1 (Desigualdad de Clarkson). Si2 < p < ey f,g € L), entonces se tiene

p _
+Hfzg
P

1B+l

B S

)4
p
Proposicion 4.2 (Desigualdad de Bynum-Drew). Si 1 <p <2y f,g € L, entonces se tiene

2 2 2
< M+ Nlslly

' 2

f+g
2

f—gl|
(p—l)H :
2 p

No vamos a demostrar estas desigualdades funcionales, ya que no son objeto de estudio de este
trabajo. La demostracion de la desigualdad de Clarkson se puede encontrar en [10, Th.2], y la de Bynum-
Drew en [5, Prop.3].

Con estos resultados, ya estamos listos para probar el Teorema 4.2.

Demostracion del Teorema 4.2. Veamos primero el caso de p € [2,+oo]. Sea f, g € L?, tales que || f|| , =
llgll, =1y | f—gll, >t utilizando la desigualdad de Clarkson 4.1, se tiene que

'f+g ”+Hf—g " I+ llslle
2, 2, 2
Equivalentemente,
fre|” o 1A+ llslly || f —s]|”
2 0, 2 2 p'

Como [/, = [lglly =1y |f gl > 1. se tiene que

p p
<1+1 t

' 2 2p

tp l/p
()"
p

Tomando infimos, en ambos miembros de la desigualdad, tenemos que

PN\ U/p
6BLp<r>=fnf{1—Hf§g ;f,geaBLp,nx—ynpzt}zl—<1—f) .

Esta tltima expresion se comporta asintéticamente como 1/(p2?)s? cuando t — 0, luego

ft+g
2

Por tanto, es claro que

p

1
p-2p

0p,, (1) 2 tP
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sip€[2,4e)yt—0.

Veamos el caso p € (1,2]. Sea f,g € L?, tales que || f||, = ||gll, =1 y ||f —gl|, > t. Utilizando la
desigualdad de Bynum-Drew (Proposicién 4.2), se tiene que

2 2 2 2 2
+ — 1+1 t
p p
Por tanto, es claro que
1/2
e
1—Hf+g 21—<l—(p—1)> .
2, 4

Tomando infimos a ambos miembros, se tiene que

85,0 (1) :fnf{l - Hf;g

12 1/2
s f,8 € 9B, |x—yl, =1 21—(1—(p—1)4> _
p

Esta tiltima expresién se comporta asintéticamente como (p — 1) /812 si t — 0. Por tanto, siz — 0, para
p € (1,2], tenemos que el médulo de convexidad uniforme de la bola unidad en el espacio L? es

—1
85, (1) 2 P2,
8
]

Acabamos de ver que si p € (1,2], los espacios L” son 2-convexos, es decir, existe alguna o > 0 tal
que para todo ¢,

85, (1) > .

La observacién 4.3 indica que cualquier subespacio de L” cumplird la misma condicién, luego serd
también 2-convexo. Asi, en particular para p € (1,2], B, es 2-convexa, para cualquer n € N.

4.2.2. Acotacion de Lg en cuerpos 2-convexos

Vamos a utilizar los resultados obtenidos en el apartado anterior para acotar la constante de isotropia
de cuerpos 2-convexos por una constante. Este resultado, que fue demostrado originalmente en [16], se
obtendrd como consecuencia de los siguientes lemas.

Lema 4.1. Sea K un cuerpo simétrico en R" de volumen 1. Fijado 6 € §"~! yt > 0, se tiene que

[{x € K;{x,0) > 1} <exp {nSK (HF)IIIK)}

con ||0]|ge = hi(6).

Demostracion. Definimos A(t) = [{x € K;(x,0) >t}| y B= |{x € K;(x,0) < 0}|. Como el cuerpo K
es simétrico, |B| = 1/2. Tomamos x € A, y € B. Por un lado,

<X—y,9> = <x19>_<y79> >t—0=r.
Por otro lado, notar que

(0 =2,8) <|x—=ylx- 6]k
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Combinando estas desigualdades, tenemos que para x € A(t), y € B,
< (x=y0) <|x=ylx-[6]lx,

y asi se tiene que

t
lx=yllk > -
161

Por tanto, para cualesquiera x € A(t), y € B, utilizando la defincién de médulo de convexidad uniforme

se tiene que
=125 (o)
—| >k —— |-
2 16]]x

Equivalentemente, para cualesquiera x € A(t), y € B,

— S 1= 57— |-
2 16]]x

AOLE (1_5K (Het‘K>>K

Tomamos volimenes en ambos miembros, y tenemos que

= o () = (0 (e ))

Por un lado, utilizando la desigualdad 1 —x < e™ para x € R en esta dltima expresion, tenemos que

1—

y por tanto,

A(r) +b' [ < t )]
<exp|-nbg|-——|]. @.7
‘ 2 16]]x
Por otro lado, utilizando la desigualdad de Brunn-Minkowski y teniendo en cuenta que [B| = 1 > |A(t)],
A(t)+B
‘ 5 ’ > @) B2 = 1A0)]'2 (A0 = [A(@)]. (4.8)

Por tanto, combinando las desigualdades (4.7) y (4.8), se tiene que

[{x € K; (x,0) > 1} = A(1) < exp [—nSK <||9t!1<>} .

Observacion 4.4. En particular; si §x(t) > at* para todo t € (0,2),

2
{x € K;(x,0) >t}| <exp [—natz] .
161l

Utilizaremos este Lema para demostrar el siguiente Lema, que nos llevard al resultado principal de
la seccion.

Lema 4.2. Sea K un cuerpo isotrépico en R" de volumen 1 tal que 8k (t) > out? para alguna constante
a > 0. Entonces, para alguna constante absoluta ¢ > 0,

cvav/nLg-B5 C K.
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Demostracion. Definimos A(t) = {x € K;(x,0) >t}, y B(t) = {x € K;(x,0) <t} = K\ A(¢). Defini-
mos f(¢t) = |B(t)|. Como el volumen de K es 1, es claro que f(¢) = |B(¢)| = 1 — |A(¢)|. Utilizando el
Lema 4.1 y la Observacién 4.4 se tiene que

t2
f(t) =|B(t)] > 1 —exp [_WHGH%@] : (4.9)

Podemos expresar f(¢) como una integral,

t
(1) :/ {x € K;(x,0) = s}|ds,
y nos damos cuenta de que

f)=HxeK;(x,0) =1t}

Por la desigualdad de Brunn-Minkowski, f(7) es una funcién log-céncava. En este caso, como K es
simétrico, f’(¢) es una funcién par. Asi, f'(¢) alcanza su maximo en el 0, en el que

£1(0)={xeK:(x,0) =0}| = [Kn6*|.
Utilizando el Teorema 3,1, se tiene que

F10)=|knet <=2 (4.10)
Lk

para alguna constante absoluta ¢; > 0. Por el Teorema del valor medio, se tiene que para algtin § € (0,1),

f() = f(0)+1£'(E) < f(0) +1£(0).

Es claro que f(0) = |[{x € K;(x,0) < 0}| = 1/2, ya que K es simétrico. Asi, aplicando la desigualdad
(4.10),

Si tomamos t = f—K se tiene que
2

L 1 L c 1 1
f< K>§+K.2: 4o =

4er
Por otro lado, tomando ¢t = % en la desigualdad (4.9),

Lk L2 L}
2 ) >1—exp|-na——K | =1—exp|-na
! <4cz> = e"p[ " 42c%reu%J e"p[ "ol

para alguna constante absoluta C > 0. Combinando estas dos tltimas desigualdades, se tiene que

L2 3
1 —exp [—na K2 ] <.
Cll6lx.] — 4

Equivalentemente,

B Li B
exp | —n > —.
Cl6llk. ]~ 4

Tomando logaritmos, de esta expresion se deduce que

2
K
no—-— > Cj
161%
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para alguna constante Cj. Esto implica que
16]lke > Cov/nv/ oLy
para alguna constante C. Como || 0|2 = 1, esta tltima desigualdad es equivalente a
16]|ke > Cav/nv/ oLk | 6]
Como ||6]|g = hg(0), se tiene que

1
°C ——B5.
Cz\/ﬁ\/ oLk 2

Finalmente, aplicando la propiedad 1.2 de cuerpos polares, se tiene que

K

Cov/nyvalgBs C K
para alguna constante C, > 0. U
Con estos dos lemas ya estamos preparados para demostrar el Teorema principal de esta seccion.

Teorema 4.3. Sea K un cuerpo isotropico y simétrico de volumen 1 en R". Si K es 2 convexo con
constante @, es decir, 5 (t) > at?, para todo t € (0,2], entonces

c
Lg < —

Vo
para alguna constante absoluta ¢ > 0.

Demostracion. Por el Lema 4,2, sabemos que existe una constante ¢ > 0 tal que
cv/a/nLg B C K.
Tomando volimenes y elevando a 1/n a ambos miembros, se tiene que
1= |K|"" > ev/a/nLg - By /"

Como +/n - |Bj| 1/7 tiende asint6ticamente a /27e, si n — oo, existe una constante ¢’ > 0 tal que

1 > C/\/aLK.
Por tanto,
/
c
Ly < —.
Ja
para alguna constante absoluta ¢/ > 0. U

4.3. Politopos

Como hemos definido en el capitulo 1, un politopo convexo en R” es la envoltura convexa de una
cantidad finita de puntos {P;,---,P,} en R", y se denota conv{P;,---,P,}. En esta seccién veremos
que en un politopo convexo simétrico, es decir, cuyos vértices son pares de puntos opuestos, podemos
acotar la constante de isotropia por C-log(N), con C una constante absoluta y N el nimero de parejas
de puntos opuestos que generan el politopo. Esta acotacion no resuelve la conjetura del hiperplano, pero
si es un primer punto de partida para obtener una cota superior para la constante de isotropia.
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4.3.1. Acotacion de la constante de isotropia

La acotacién que vamos a dar, estd basada en el articulo [1].

Teorema 4.4. Sea K = {P,,—Py,--- ,Py,—Py} un politopo simétrico de 2N vértices, entonces,
Lx <C-log(N) (4.11)
donde C es un constante absoluta.

Supongamos que K es isotropico y Lk es la constante de isotropia de K. Entonces, VT € GL(n) con
T simétrica definida positiva, aplicando el teorema 2.1,

1
2= / Txjdx < -
K TI"(T) K<x’ x)dx

Para todo y € K, existen A1, ..., Ay tales que Zﬁil IAil =1, y=Y", AP. Asi, paratodo y € K,

(x,Tx)|dx < —— /max] x, Ty)|dx.
T yeK

=

|06 Ty)| = [ Y A, TR)| < ) 1Al |(x, TR

i=1

Il
_

N
< YA mi (5. T7)] = mix |(5.77)
Por tanto,
< ! /maxy< Ty)|dx = — /méx \(x, TP)|d
X X = X i X
K=Tr(T) Ji yex 07 Tr(T) Jximtow 0 0

TP,
|TP;|dx
'|TP]
TP,
<x, l> ’ dx
ITF]
Como T es una matriz simétrica definida positiva, podemos expresar T como T = UDU?, con U una

matriz ortogonal y D una matriz diagonal con valores dy,--- ,d, en su diagonal, que son los valores
propios de T. Asi, por la desigualdad aritmético-geométrica,

1 )
~ Tr(T) /]{i:l,),(

maxi1, TR [
- Tr(T) Ki=1..N

n 1

1 1 1 = ln
det(T)|» = |det(UDUT)|» = |det(D)|r = -
|det(T)|» = |det( )| =|det(D)|" =] ]dr n;

i=1

v

Por tanto, se tiene que
1 1

Tr(T) = n|det(T)|n

Asi, podemos acotar la constante de isotropia de K por

X = TP, TP
12 < M N TR <x’ : > N
n|det(T)|» JKi=L..N TP
max;—;, . n|T P ) < TP >
=01 ([ max |\ X, dx
n|TK|» ki=1..N |\ | TP

para cualquier 7 € GL(n) simétrica definida positiva.
El siguiente Lema nos va a permitir acotar la integral de esta dltima expresién por una funcién del
orden de log(N).
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Lema 4.3. Sea 0;,---,0y € S"! y sea K isotrépico tal que V0 € ",

16,8l ::inf{t>0 : /Kexp<|<x’9>’)agz} <B Ly

t

para alguna constante B > 0, y a € [1,2]. Entonces,

méx |(x,8;)| < C-B-Ly(log(N))#
Ki=1,...N

donde C > 0 es una constante absoluta.

Demostracion. Por la definicién anterior, como

o
fnf{t>0:/exp(|<x’t9>|) gz}gB.LK,
K
o
/exp<\<x79>|> <.
K B- Lk

Utilizando esta ultima desigualdad junto con la desigualdad de Markov, Vi=1,...,N, y V¢ > 0,
x, 0\ ¢ t ¢
Hxe K:|(x,0;)| >t} = erl(:exp <’2L2’> > exp <B~LK> }
o a
t 6;
<exp|— /exp [(x, 69| dx
B-Lg K B-Lg
t o
< - 2
=P [ (B'LK> }

Luego, para todo ¢ > 0, aplicando el resultado anterior se tiene que

en particular se tiene que

N
H{xeK: igllé.),(NKxﬁiH >t} < ;\{xe K:|(x,6;)] > 1} (4.12)

1

< 2Nexp {— <B ’L > } (4.13)
LK

Fijamos un A > 0 que elegiremos después. Por el Teorema de Fubini es claro que

A ) | dx = K: A ,0)| >t} dt
[ i |(x.6)dx /0|{xe i, |(x,60)| > 1}

A (o]
:/ [{x € K: max ](x,@,-)]Zt}\dl—i—/ {x € K: max |(x,6;)| > t}|dr.
0 i=1,..,N A i=1,..,.N

Vamos a acotar estas dos integrales. Por un lado, como |K| = 1, es claro que para cualquier 7 > 0,

H{xeK: ,n}éxN](x,G,-H >t <|K|=1.
i=1,..,

)

Ast, se tiene que

A A
/ {xeK: mix \<x,9,->\zt}ydtg/ di = A,
0 i=1,..,.N 0

Para la otra integral, utilizando la desigualdad (4.12), se tiene que

o
(oo} o t
- mé N o> < 2N - .
/A {xe K ig?i(Nux,elﬂ_t}\dt_/A exp[ (B.LK> }
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Asi, tenemos que fijando cualquier A > 0,

) ~ t A\
Kigll,a.l.),(N‘<x’6i>|dx§A+/A 2Nexp [ (B-LK) ]

En particular, con A = 4BLg (log(N))'/# se tiene que

n oo t a
mé ,6;)|dx < 4BLx(log(N))"/* + 2Ne [— () ] 4.14
[ max |(x, 6)|dx < 4BL (log(N)) AL il Vv (4.14)

Vamos a acotar esta tltima integral. Mediante el cambio de variable ¢ = As,

ABLK(log(N))l/a P [ (B-LK> ] . k (log(N))"/* -exp[—4%slog(N)] ds

< 4BLg (log(N))/® /] " exp [—4slog(N)]ds

_ o 1/a [ €xp[—4slog(N)] ]~
snt s | 2
1/a€xp[—4log(N)]
41og(N)
1
N*log(N)"

— 4BLy (log(N)

= BLg(log(N))"/*

Como (N*log(N))~! tiende a 0, si N — oo, es claro que podemos acotar (N*log(N))~! por alguna
constante C > 0. Asi,

2Nexp |— < CBLg(log(N))"/®, 4.15
/43LK<log<N>>l/a eXp[ <B'LK> ]_ x(log(V)) 4.15)

Por tanto, con este resultado, podemos acotar la desigualdad (4.14) como

mix |(x,6;)[dx < (4+ C)BLg (log(N))"/“. (4.16)
Ki=1,..,

Veamos que si o = 1, la hipétesis del Lema 4.3 se cumple para cualquier 6 € §"~!. Es decir, en las
condiciones del Lema, para cualquier direccién 8 € §"~!, existe una constante absoluta B tal que

inf{t >0 : /exp (W) §2} <B-Lg. “4.17)
K

Si K es isotrépico y simétrico en R”, el Teorema 3.4 nos asegura que para todo g > 0y todo 6 € S~ !,

(/,<‘<x76>lq>l/q < Cmining) _Ceq

IKN6+| — |[KNo-t|

para alguna constante absoluta C > 0. Mediante el Teorema 3.1, podemos acotar inferiormente el tér-
mino |KN OH por ¢ /L, para alguna constante absoluta ¢; > 0. Por tanto, con estos dos Teoremas,
tenemos que para todo ¢ > 0y para todo 8 € §"~!,

1/q
C-q C-qg-Lg
0)|? < < =c-q-L 4.18
<A<x7 >‘ > = ‘KQGL‘ = i ¢c-q-LK, ( )
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definiendo ¢ = C/cy. Sea t > 0, si desarrollamos la exponencial de la desigualdad (4.17) en serie de
potencias, tenemos que

/Kexp<|< 9>>dt_1+2/| ig] d_1+2 q‘/]x9|th

Elevando a ¢ ambos miembros de la acotacién (4.18), es claro que
[ o) < tgi L

Por tanto,

|(x,6)] -~ q'Lic
dt <1 E .
/Kexp< ; <1+ p

|

Vamos a acotar este expresion, utilizando la desigualdad g! > (g/e)?. Esta desigualdad es cierta para
todo g > 0, ya que

oo oo oo q
q'=T(g+1)= / tle "dt > / tle dt > / gle 'dt = q.
0 q q el

Aplicando este resultado,

|(x,0)] = eldqiLy eIl > ecLK
Jew (B - E ST e LS e B

g=1
(;)4 - 1—11/2 -

Si tomamos t = 2celg,

|(x, 6)1
dt <1
/Kexp ( 2ceLk =

Acabamos de ver que con t = 2cely,

i

lo cual implica que para o = 1,

9 o
H<.,9>\Wa:1’nf{t>0 : /Kexp<’<x’t >|> §2}§2ce-LK. (4.19)

Retomando la acotacién de la constante de isotropia de un politopo simétrico de 2N vértices, que hemos
visto al principio del capitulo, teniamos que si K = conv{Py,—P\, ..., Py, —Py} politopo simétrico de 2N
vértices, VT € GL(n) simétrica y definida positiva,
TP,
X dx. 4.20
(mim) @

Identificando 6; con TP;/|T P,|, como hemos visto en la desigualdad (4.19), se cumplen las hipédtesis del
Lema 4,3, con B = 2ce, para alguna constante ¢ > 0. Asi que podemos acotar la integral de la expresién

(4.20) por
/ ) < TP, >
max |({ x,
Ki=1,.,N | l|

méx;—1, n|TP

2

; “max
n|TK|n  JKi=1.N

L2

IN

dx < C2ceLglog(N) = MLglog(N)
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para alguna constante absoluta M > 0. Aplicando esta cota a (4.20),

L2 < mé.X,':]V,A,N ’TP,’

: MLglog(N),
n|TK|»

< 1 1,..,N | l|

2 p10g(v), 4.21)
n|TK|n

para alguna constante absoluta M > 0. Vamos a elegir T € GL(n) de forma que tengamos una buena
cota para Lg. En particular, elegimos T tal que el elipsoide de minimo volumen que contiene a TK sea
la bola unidad B}, es decir, elegimos T € GL(n) tal que TK esté en posicion de Lowner.

Recordamos que, se dice que un cuerpo convexo K C R” estd en posicién de Lowner si el elipsoide
de minimo volumen que contiene a K es B;. Como vimos en la seccion 1,4, el hecho de que un cuerpo
K esté en posiciéon de Lowner implica que existe una descomposicion de la identidad mediante una
combinacién lineal de productos tensoriales de vectores u, con u; € dKN §"~!. Esto se obtenia con el
Teorema 1.4, en donde sii =0, y K estd en posicion de Lowner, es decir, es la identidad la que maximiza
el conjunto de este Teorema, se tiene que

S
In:nleWj(@Wj (4.22)
J=1

para s puntos de contacto wi,...,ws € KNS~ y unas constantes A, ..., A; > 0 tales que Y3_; A; = 1.
Por la proposicién 1,4, como K esta en posicion de Lowner, se tiene que K estd en posicion de John.
Sea x € K, si multiplicamos x por la izquierda en ambos miembros de la igualdad, se tiene que

N
x:nZ’?Lj<)c,wj>-wj7
j=1
para todo x € K°. Asi,
S
x> = (x,x) = an)L X, W) - wj) = Z (o, wi) (x,wi)
]:

7Lj<x,wj>2.

& T

n

j=1

Por un lado w; € KN S para j=1,...,s, luego |wj| = 1. Por otro lado, K” es un convexo que tiene
los mismos puntos de contacto con §"~! que K. Como K° es convexo, para cada w i € SN K° existe
un hiperplano con vector normal w; tal que Vx € K°, (x,w;) < 1. Como K es simétrico, —w también es
punto de contacto de K con la esfera, y por tanto punto de contacto de K° con la esfera. Asi, Vx € K°,
(x,—wj) < 1. Combinando estas dos desigualdades, se tiene que para todo x € K, | (x,w;)| < 1. Esto se
cumple para cualquier w; punto de contacto de K’ con la esfera. Asi,

i = i (o <n i

Por tanto, podemos asegurar que
K’ C \/nBj.

Luego por dualidad, tomando los polares de ambos cuerpos se tiene que

5 CK.

R
NG
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Tomando volimenes,

Un 1 1/n c
K|"">|—B;| >-
| ‘ - ’\/;l 2 T n
para alguna constante ¢ > 0.
Volviendo a la desigualdad 4.21, tenemos que
AX;— TP,
< i N TR o)

n|TK|n

para alguna constante M > 0. Si tomamos T € GL(n) tal que TK esté en posicién de Lowner, como
acabamos de ver, |TK ]1/ "> c¢/n para alguna constante ¢ > 0. Ademas, como TK C Bj, es claro que
|TP,| <1, paratodo i =1,...,2N. En particular,

max |TP|<1.
i=1,..,N

Por tanto,

——Mlog(N) < CMlog(N) = C;log(N)
n|TK|»

para alguna constante absoluta C; > 0.

4.4. Politopo simplicial Gaussiano

Un politopo simplicial en R”, es un politopo que cumple que cada una de sus caras (n— 1)-
dimensionales es la envoltura convexa de n puntos que ademds son vértices. En esta seccién vamos
a trabajar con politopos simpliciales simétricos aleatorios de 2N puntos en R", con N un multiplo de n.
Un politopo es aleatorio si sus vértices se generan por vectores aleatorios. En este caso, estudiaremos
qué sucede cuando utilizamos vectores Gaussianos, es decir, estudiaremos politopos simpliciales simé-
tricos Gaussianos, para los cuales vamos a poder acotar su constante de isotropia por una constante con
probabilidad muy alta. Del mismo modo, al final de la seccién, comentaremos otras acotaciones para
politopos simpliciales aleatorios generados por otros vectores aleatorias o con dominios restringidos.

4.4.1. Politopos aleatorios

Klartag y Kozma, en el articulo [15], intentaron dar un contraejemplo de la conjetura de la constante
de isotropia utilizando cuerpos convexos aleatorios, ya que esta clase de cuerpos no esta generalmente
incluida en aquellos para los que si habia una respuesta afirmativa de la conjetura. Sin embargo, el
resultado obtenido ha acabado siendo una cota para la constante de isotropia con probabilidad muy alta.
Este resultado estd enunciado en el siguiente Teorema.

Teorema 4.5. Sea Ky = conv{£Xj,...,£Xy} C R" un politopo simplicial Gaussiano de 2N vértices.
Entonces, existe una constante absoluta ¢ > 0 tal que

2
Ly, <c.
con probabilidad mayor o igual que 1 — c1e= ", con cy,cy constantes absolutas.

La demostraciéon de este Teorema estd basada en el articulo de Klartag y Kozma que hemos men-
cionado.

Para demostrarlo, comenzaremos con el siguiente resultado, valido para politopos no necesariamen-
te aleatorios.
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Proposicion 4.3. Sea Ky = conv{£Xj,...,=Xy} C R" un politopo simplicial simétrico de 2N vértices.
Entonces,

1 1
nl: < . - max 8-X-2+
P T M S P M

i=1

Y &X;

icE

)

conE C{l,..,N}tal que |E|=n, y & = =+1.

Demostracion. Por el Teorema 2.3 sabemos que

1 1
nLy% = min T \x|2dx .
TeGL ITK| \TKP/" |TK|

Por tanto, para Ky se tiene que

1 1
nly < ———H-——. [ |x|%dx. (4.23)
Ky ’KN’2/n \Kn| Jxy
Sean Fy,...,F las caras (n— 1)-dimensionales de Ky. Es claro que Ky = U'_,conv{0,F;}. Como los
conos conv{0, F;} intersecan en conjuntos de volumen 0, se tiene que

! L |Fi|,_1d(0,F;
|Kn| = Z!COHV{O,E}IZZ’_1’ o J)- (4.24)

j=1 "

Vamos a acotar la integral de (4.23). Tomando la medida imagen, es claro que

dOF
T RS o A

d(O )

Hacemos el cambio de variable m -y = Xy tenemos que

5 L rd(0F) g+l N
x|%dx = / 7/ dy-dr
Ju WPas=X [ G g P

/

dy.
n+z‘ ”‘Zl e T e PP

Utilizando la igualdad (4.24), podemos acotar esta expresiéon como

2 2
J. e k] m {|F|n_/!y o} (4.25)

Cada Fj es una cara del politopo, es decir, F; = conv{Pj, ...,P]}, con cada P,-j € {£X1,...,£Xy} con
P #+ —Pk] para todo s, k. Es decir, en una misma cara no puede haber vértices opuestos. Para cada cara

F;, definimos 7;: una matriz n X n que en la columna i-ésima tiene el vector P/. Sea P/ (k) la componente
k-ésima del vector P/, entonces



66 Capitulo 4. Respuestas parciales

Si consideramos A" ! = conv{ey,...,e,}, es claro que
__gan—1
Fj=T,A" ",

Asi,

N\ S
1 SR J J
= |A’171| /Anfl kz:l[ lzlpl] (k) Ez(k) -xll xlz dx
=ll,b=

Si I =11, el valor de esta Ultima integral es
Wl|/n1xl' X dx = AT An—lxlldx Con(n+1)

Si I, # 1}, entonces se tiene que

1 1

Por tanto, sustituyendo estos valores, se tiene que

1 5 noon ] ) 1
‘Fj| /F |y| dy = Z ZZrIPljl(k)P/z(k)i‘An—ll /An—lxll -x;zdx
J ’)

k=11;,L=
n n 2 " on | ‘ '
1;11:1 <PZJ ) m+,§ll§2n(n+1) (Pljl (k>PIé(k)>
2 1 j2 n P
( 1) Z{ f +n(n—i—l) 11;;2 <P11 Plz>

Notar que

(Ern)- £ ()

n .
Y r
=1

I=1 Li#h
Por tanto, aplicando este resultado se tiene que
/ | |2d Z Pj 2 1 i Pj p/
yirdy =~ 1|t < I >
|F| l:l n(n+1) L#h 1
i" il* 1 i J 1 i J pJ
P+ Pl + (Pl.B])
) = ! n(n+1) = n(n+1) s hoth
1 n 2 1 n .
— P] P]
n(n—}—l)l:z‘i ! n(n+1) IZ’
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Aplicando esta desigualdad a la férmula 4.25, se tiene que

2 2
x|“dx < Ky| max / }
A” +ﬂthhmM btd

n n '2
+) F
=1

n 1
< Ky )
S el e, Z

2
= —|KN| max
(n+1)(n+2) j=1,.1

12
|+

n .
Y. P
=1

Finalmente, utilizando esta desigualdad en la férmula 4.23, concluimos que

1 1
nl% 5 | |x[Pdx (4.26)
|K | TNEE ’KN’ Kn
2
1 1 IKy| noo |
< P+ L 4.27)
|KN|2/" ]KN](n+1)(n+2 ] Z‘i ! 1:21 !
2
1 1 i fPT+fﬂ (4.28)
= . max .
|KN|2/" (n+1)(n+2) j=1..1 | (= ! = !
1 1 :
< : . méx lexi|*+ |} ex; (4.29)
K ) R | &R
conE C {l,..,N}talque |[E|=n,y & ==+1. O

Para poder acotar nL%(N por una constante, vamos a encontrar cotas de estas expresiones. En las
siguientes secciones acotaremos por debajo el volumen de Ky, y por arriba estos dos tltimos sumatorios
con probabilidad 1. Para ello, veremos antes una serie de herramientas de probabilidad.

4.4.2. Variables aleatorias Gaussianas

Vamos a dar una serie de Lemas probabilisticos que nos permitirdn mds adelante acotar Lk, con pro-
babilidad que tiende a 1 cuando la dimensién tiende a infinito. Estos resultados se centran en variables
aleatorias Gaussianas.

Lema 4.4. Para todot > 1 se tiene que

2 2
et /2 oo ) et /2
< L g 4.30
% /, ¢ =7 (4.30)
Por tanto, para todo t > 1, si g es una variable aleatoria gaussiana,

—12/2 —2/2

e 2e
<Plg>t) < . 4.31

22wt (g21) = 27t ( )

Demostracion. Definimos parat > 1,

20 1/2 —12/2

o)== [ gl = [T

Derivando ambas expresiones, tenemos que para todo ¢ > 1,

207722 41) e’ 12(12 4 2)
() =————+e ’/22—7t2 <0
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—12/2(42 /2,2 _q
Y i Gt VD i it VO
0, (1) =—e + 22 = 2 <0.

Como ademads, 1im,_, @1 (1) = lim; e ¢2(2) = 0, se tiene que @;(¢) y ¢2(7) son funciones positivas en
(1,400). Por tanto, se tiene (4.30).

Para ver que se cumple (4.31), basta con multiplicar a los miembros de la desigualdad (4.30) el
factor ﬁ, y notar que

sig~N(0,1). O

Definicioén 4.1. Sea X una variable aleatoria real. Definimos la funcion Ax (4) como

Ax(4) =log

EelX ’
. . . ., o )
En los siguientes Lemas, vamos a caracterizar esta funcién en los casos en que X = g 0 X = g%, con

g una variable aleatoria Gaussiana.

Lema 4.5. Sean X,X\,...,X, variables aleatorias independientes y idénticamente distribuidas en R.
Entonces, para todo o > 0,

1 n
P *ZX,‘>(X
iz

Demostracion. Sea A > 0 tal que Ax(A) < oo. Entonces,

1 1 1 n
P ( ZXi > Ot) =P (A ZXi > n?ux) =P (e’lzi:lx" > e”’la) )
ni3 =1

1

< exp <_n.ii%{m —Axu)})

Utilizando la desigualdad de Markov, se tiene que
1 & 0
Pl - ZXi >a | < e "Aaf [el):,-:le}
iz
Como las X; son independientes e idénticamente distribuidas,

P (i RE ) < oo n] - e (o] )

_ e (eAX(/l)>”

7n7then-AX (1)

=e
_ p—n(ad—ax(2)
Esta desigualdad se mantiene para cualquier A > 0. Luego podemos optimizar esta cota tomando el A
que minimiza el exponente. Asf,

P <1 iX,' > oc) < exp (-n'sup{la —AX(M}>
iz

A>0
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Lema 4.6. Sea g una variable aleatoria Gaussiana. Entonces,

Ag(A) := log‘]Ee’lg‘ zlog/i M

Demostracion.

oo e /2
[
—oo 2n

Aplicamos el cambio de variables u = x — 4, y tenemos

w0 —(x=1)2)2
dx = / 6/12/2 . eidx.
—oo V2T

52 2
/Oo elx-ex\/fdx ek e\/bizdu:e’lz/z.
—oo 2

Tomando logaritmos a ambos miembros, se tiene que
log /

Corolario 4.1. Sea g una variable aleatoria Gaussiana, y A, definido como en el enunciado del Lema
4.6. Entonces, Yo > 0 se tiene que

dx = loge*’ /2 = A%)2.

O]

2
sup(Aa—Ag(A)) = sup(Aa—A2/2) =2 — Z = &
A>0 A>0 2 2

Demostracién. Definimos la funcién fy (1) = Ao — A? /2. Derivando f,, se tiene que f4,(A) =0siy

s6lo si A = o. Como f3(A) < 0, es claro que f, alcanza su méximo en A, con fo (@) = %2. O

Lema 4.7. Sea g una variable aleatoria Gaussiana. Entonces,

Slog(1-24) ,siA <1/2

2 oo €7X2/2
Agp () zlog‘Ee’lg ‘zloglwelx : mdx:
o, siA>1/2
Demostracion. Sea A € (—e,1/2). Entonces,
0o —Xx /2 x”) /2
/ pt € dx = —dx.
—o0 \/

Aplicamos el cambio de variables u = xv/1 — 21, y tenemos

= . e—xz/Zd 1 o U /2 1
/_me BV TRV, Sy ) S-S, ey

Tomando logaritmos a ambos miembros, se tiene que

1 / < /2 =1 : -1 (1-22)
(0] 0g—F—=—10 — .
g &~ g loe

Si A > 1/2, entonces

diverge, y por tanto su logaritmo es —+oo. O
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Corolario 4.2. Sea g una variable aleatoria Gaussiana, y A, como en el Lema 4,71. Entonces, Vo > 1
se tiene que

a—1 1
sup(Aot —Ap(A)) = —— — = log(a)
A>0 § 2 2
Demostracion. Deﬁmmos la funcién fa( ) = Aa— 3log(1 —2A4). Derivando fq, se tiene que £} (1) =
0 si 1y sol? si A :1% — 5. Como f}, ( ; < 0, es claro que fy alcanza su maximo en % - 2—01‘, con
fal3-3) =% —3 log( )- O

4.4.3. Acotacion del volumen de Ky

Estos Lemas en primer lugar nos van a permitir acotar por debajo el volumen de Ky, con probabili-
dad que tiende a 1 con la dimension. En esta seccién vamos a ver que si n — oo, entonces la probabilidad
de que una bola de un cierto volumen esté contenida en Ky tiende a 1. Por tanto, el volumen de Ky serd
al menos el volumen de esa bola con probabilidad muy alta.

Proposicion 4.4. Sean G,...,Gy vectores aleatorios gaussianos independientes en R" con N > Cin
con Cy constante absoluta. Si Ky = conv{+£Gy,...,=Gy}, entonces

4 (N
IP( —log (> '21CKN> >1—e"
6 n

Demostracion. En primer lugar, veamos que Ky es simplicial. Es decir, con probabilidad 1 cada cara
(n— 1)-dimensional de Ky tiene n vértices. Sea Ky = conv{£Gj,...,=Gy} y sean Fy, ..., F; las caras de
Ky, con cada F; = com{G] ,...,G] }, con cada G| € {#+Gj,...,+Gy}. Entonces,

i

!
P (Ky no simplicial) < Z IP(F; contiene algin =+ G; distinto de los vértices de F;) = 0,
=1

ya que la probabilidad de que una cara F; = conv{ G! Gl’n} contenga algin vértice de Ky distinto de

"
GJ G] es 0. Por tanto, la probabilidad de que Ky sea simiplicial es 1.
Sea a > 0. Si aB; ¢ Ky, entonces existe una cara F; = conv{Gll, Gj '} de Ky y un vector 6; €

§"~! normal a la cara, tal que para todo Gy € {+Gy,...,+Gy} tal que Gy & {iGl17 iG{n},
(Gun6y)| < .

Siendo 6; el vector normal a la cara Fj, esto se cumple por la convexidad de Ky. Entonces,

P(aB) ¢ Ky) < <2,iv> (1{Gr, 6;)] < )" " = (2:])1?(\57] <o)V " (4.32)

con g un variable aleatoria Gaussiana, ya que si G es un vector aleatorio Gaussiano en R" y 6 € §"!,
entonces (G, 0) ~ N(0,1). Vamos a acotar esta ultima expresion. Aplicando el Lema 4.4,

—a?
— e _ 7(a2/2+log(a)+llog(2ﬂ:).)
Plglz o) =2P(gz ) > —— =e 2
To

Es claro que a2 /4 >> log(at) 4 3 log(27) si a — oo. Por tanto, existe un Cj tal que si & > Cy, entonces,

a2
P(lg|>a)>e 1.
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(2o () -7

Utilizamos la desigualdad 1 +x < ¢*, para todo x € R, y se tiene que

(et < < (N exp (~v-me ).

Acotamos el nimero combinatorio de 2N sobre n como

Asi, tenemos que

2N 2N)(2N—1)---(2N — 1 2N)" 2Ne\"
_ (@N)( )N —nt1) @N)" _ (2Ne)" 433)
n nn—1)---1 n! n
En la dltima desigualdad hemos utilizado que
o n n
el = Z v > n [ i < ¢
=n! ! n!l —n
Por tanto,
2N _ 2Ne\" a?
() <o < () exp (~v-me )
n n
302
= exp [—n (( — 1) e 4+ —log <2€)>}
n
3a
N No1)e s
=exp | —nlog (2e> (" ):, —
n log (2;6)
Si tomo o = %log (%), entonces
2N N y_
< >IP’(]g| <o)V <exp | —nlog <2e> ((") —1
n n N N
o log (257e)
Notar que
x—1
lim log(2 ———— 1| =
tmioses) | i -1
Por tanto, existe algin C; > 0 tal que six=N/n > Cy,
2N -
() Plel <o <o
n
Por tanto, la probabilidad de que una bola de radio & = %log (%) no esté contenidaen Ky, siN > Cj -n

para alguna constante absoluta Cj, es menor o igual que e™". Asi,
4 N
P( 6! <> ” CKN) s
n

Un c log(%) L
P |Ky| ZT >1—e (4.34)

Luego,

para alguna constante absoluta c. O

En las siguientes subsecciones nos dedicaremos a acotar los sumatorios de la desigualdad 4.26.
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2
4.4.4. Acotacionde Y] , ‘PZJ ‘

Lema 4.8. Sea G = (g1, ...,8n) un vector Gaussiano en R". Entonces, para todo o, > 1,

Utilizando el Lema 4,5 con X; = g;, se tiene que

P (yc;|2 > om) < exp <—n-sup{m —Agz(x)}> .

A>0

Finalmente, por el Corolario del Lema 4,7,

O

Proposicion 4.5. Sea Gy, ..., Gy vectores Gaussianos independientes en R". Entonces, para todo o > 1,

o—1 2eN
P| max &G,|> b > an® | <exp [—nz- ( - flog( )> —nlog < )]
(E,<s,->7_l {ezE } 2 2 n

conE C{l,..,N}tal que |E| =n,y &,....en = 1.

Demostracion. Es claro que el suceso max Z |&G; | > an’ % es igual a la unién de sucesos
E, (81) icE
de la forma Z \&-G[\z > an’ , para algin E } con |E| =n, y €,...,&y = £1. Por tanto, como las G;
i€E
son independientes e idénticamente distribuidas,

2 n
P( mix { Y &G b > an® | < ( N>IP’ Y |Gif* > an?
E)y |icE n Fy

Con las g; ; variables aleatorias Gaussianas independientes. Aplicando el Lema 4,5 es claro que

()2 (o £ ) = () o (- i)

con g ~ N(0,1).Y, por el Corolario del Lema 4,7, se tiene que

a—1 1
sup{Ao —A,(A)} = —— — —log().
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Asi, se sigue que

P <mb'§1x {; Is,-G,-IZ} > ocn2> < (2” exp (n2- <O‘2_1 - ;log(a)»
(B en (o (5 o)

2Ne a—1 1
= 1 e - 2 : - 71 .
exp (n 0g< . ) n ( 5 3 og(a)))
Tomando & = 2, se tiene que

2 1 1
P (méjx {é \S;G,-\z} < 2n2) >1—exp <nlog (f) —n*. <2 - 2log(2)>> (4.35)
S1_e (4.36)

para alguna constante absoluta ¢ > 0. O

12
4.4.5. Acotacion de ‘Z’f: 1 Plj‘

2
El argumento que vamos a utilizar en esta seccion para acotar |Y}_, P/ ‘ es el que se ha utilizado

para hacer acotaciones similares en el caso de otro tipo de politopos aleatorios, no necesariamente con
distribucién Gaussiana.

Observaciéon. Como Ky es un politopo gaussiano, podemos utilizar las propiedades de esta distribucién
para hallar una cota. Sean G, Gy, ..., G, vectores gaussianos independientes en R". Por simetria,

iS[G[ ~ iG,‘ ~ \/ﬁG
i=1 i=1

Razonando como en la seccion anterior, sea @ > 1,

2 2
2N "
Pl mix <|Y &Gi| p>an’| < >]P> Y G| >an’
E(&)}y | |icE n i=1
2N
= >]P>(]\/EG}2 > an2>
n
2N
- ( )]P’(]G|2 > an)
n
Aplicando el Lema 4.8,

(25)]1) (|G|2 > om) < <2’11V) exp {—n <a2—1 - ;log(a)ﬂ
o o5 b ()]

2Ne

n

4log(e)y—1 1 2N 2N
lim M — —log | 4log ) - log ) = +oo.
n—yeo 2 2 n n

utilizando la desigualdad (4.33). Si tomamos o = 4log ( ), se tiene que



74 Capitulo 4. Respuestas parciales

Por lo tanto, existe una constante absoluta C; > 0 tal que

4log (Be)—1 1 2N 2N
exp | —n M — —log( 4log ) - log e <e 1,
2 2 n n

Asi, podemos concluir que

2

P | max
E

Z &G;

icE

2N
<4log <e> | >1-—e".
n

12
Con esto podemos asegurar que si n — oo, entonces ’Z?:l Pl] ’ <4log (%) n* con probabilidad que
tiende a 1.

Ahora, vamos a demostrar este mismo resultado siguiendo el argumento que se usa cuando no se

trata necesariamente de una distribucién normal, ya que se trata de un argumento de interés.

Lema 4.9. Sea 0 € S"!, y Gy, ..., G, vectores aleatorios Gaussianos independientes en R". Entonces,

para todo a > 0,
n
P| () G.6
i=1

Demostracion. Por invarianza rotacional de la distribucién Gaussiana, se tiene que para todo o > 0,

P<‘<;Gi,6> >Om> —IP’( ;gi >Om>
P( gi>an>+P< gi<—an>
i=1 i=1

o?

> Otn) <2e "7

Utilizando el Lema 4,5, se tiene que

A>0

1 n
2P < Y gi> Ocn) < 2exp <—n-sup{la —Ag(/l)}> .
i
Finalmente, mediante el Corolario del Lema 4,6 se sigue que

2exp (—n -sup{Aa —Ag(l)}> < 2e’”a72.
A>0

O]

Lema 4.10. Sean Gy, ...,G,, vectores Gaussianos independientes en R". Entonces, para todo o > 0,

> Om> < e_"(%z_logs),

n

ya

i=1
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Demostracién. Veamos que podemos construir una €—red de cardinal < 5", de "' con & = % para
aproximar los vectores de la esfera. Es decir, veamos que podemos construir .4 con .4 C §" !y
|.#| < 5", tal que Vu € $"~! existe un 6 € ./ tal que |6 —u| < 3. El algoritmo para construirla es el
siguiente

» Tomamos 6; € §*!
» Tomamos 6, € §*~! tal que |8 — 6| > %
= Tomamos 65 € S" ! tal que [0, — 63| > 1,6, — 65| > 1

= En el la iteracién k, tomamos un 6 € S"~! tal que |6; — 6;| > %,...,|9k,1 — 6| > %

Este proceso se repite hasta que no se pueda encontrar ningtin Oy, ; € §"~! tal que Vi = 1,..., N se tenga
que |6; — Oy+1| > % Como S"~! es compacto, es claro que existe un 8y que cumple esta propiedad. Por
tanto, ./ = {6y, ...,6y} cumple que Vu € $"~!, existe un 6; € 4 con |6; —u| < 3.

Como |6; — 0;| > % para todo 6;,0; € .4 con 6; # 6;, es claro que B(6;, %)QIEB(Gj, %) =0,sii#].
Asi, se tiene que

1 1 1 1
S4By > A+ By =| | #(6,5)| = |4 — B
4 4 g 4 4
Por otro lado,
1 1 5 5"
s+ 48| < [y g8 2= || =
Asi, con estas dos desigualdades se tiene que
1 1 5"
’JV\'I,,\BQS s 1+ZB§ SE\BQ\-

Por tanto, 5" > |4/
Veamos que Vu € S"~!, existe una sucesién (Oj);f’:l C ./ con una sucesion asociada de eslacares

(sj)7= con0<s; < (%)jil, tales que

u—= i stJ-.
j=1

Dado u € §"!, existe 8; € .4 con |u— 6| < % Por tanto,
u=01+z

para algiin z; con |z1| < % Si z; = 0, ya estd probado.
En caso contrario, 71 /|z1| € $"~!, luego existe 6, € .4 con |z1/|z1]| — 61| < % Por tanto,

Z
2 0+ 2
|21
para algin z; con |z2] < % Si zp = 0, se tiene que
u= 61 + ‘Zl‘927

luego el resultado estd probado.



76 Capitulo 4. Respuestas parciales

zilzi]

s Tl e s luego existe un 63 € .4 con

En caso contrario

alal _ 0;| < 1. Por tanto,
|z2]z1] 2

z1lz1]
22|21

=03+2z3

. 1
para algtin z3 con |z3] < 3.
Procediendo de este modo, podemos representar # como

u=0;+ 21|16+ |z1]|z2103 + |z1]|22]|23] 64 + ...

con todo los 6; € .4, y el coeficiente que multiplica a cada 6; es |z1||z2| -+ |zj—1| < (%)jil.

Con este resultado, si se cumple que V60 € ./,

(£ee)

entonces se tiene que Vu € §"~!, descomponiendo « en suma de 0N,

(Fore) - (o goe) -2 (5o

< on,

IA
s
&

—
s L
{
\‘Q
~Z_—

.
Il
N

A
™M
\VJ
Q
S

A
e
Q‘ﬂ

oan =2on.
Por tanto, aplicando este ultimo resultado, tenemos que

n
P ( > 2an> =P (méx < G,-,u> > 20m>
- ues i

Y Gi,6
n
<5"P ZG,-,O >aon | .
i=1
Con el Lema 4,9, concluimos que

i=1
5"P <<iG,~,6> > ocn) < 52e% =20 (5 785),

i=1

M=

l
_

Lema 4.11. Sean Gy, ...,Gy vectores Gaussianos independientes en R". Entonces, para todo o > 0,

a2
mix b <oan | > 2 (502 8)
E(sj)

conE C{1,..,N} tal que |[E|=n,y & = £1.

Y G

ek
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Z &G;

E~(5j)7:1 i€E

Demostracion. Es claro que el suceso { max {

j } > 20571} es igual a la unién de sucesos de

la forma Z &G

i/| >2an ,paraalginE ; con |[E| =n,y €,...,ey = £1. Por tanto, como las G; son
icE
idénticamente distribuidas,

(e o) < (e (B 22

Utilizamos el Lema 4,10 y la desigualdad
<2N ) ( 2N e) "
<\l— >
n n

yG|>2

i=1

ye

ickE

y tenemos que

y se sigue

<max{ ; } > 4n, log (1058)> < 2 Moe(*5%) (4.37)

siN € [cln, %e‘?"] para constantes absolutas cy,cy > 0. L]

Tomamos o = 24/log (1%¢),

) &G

icE

Retomando la desigualdad 4,26, se tenfa que

nl: < ! ! éx Pj’ +
Ky < Ky ‘2/" (n+1)(n+2) j= = ! ~

Con los resultados 4.34, 4.35 y 4.37, podemos concluir que con probabilidad mayor o igual a

l_efn_efcnz e —nlog( 1% ) >1—cye”
para alguna constante absoluta c3, se tiene que
1 1 il LN pi ’
‘KN‘2/n.(n+1)(n+2 g‘ Pl’ + Z;PI

1 1 10Ne
< : 2n* +16n°1o ( >> <
~ Clog(Y) (n+1)(n+2) < " s Ty =

para alguna constante absoluta c. Por tanto, se tiene que

L%( <c
para alguna constante absoluta c.

Observacion. De la misma forma en que Klartag y Kozma consiguieron acotar la constante de isotropia
de politopos gaussianos, en los dltimos afios se ha intentado hacer lo mismo con politopos generados
por otras variables aleatorias. Una muestra de ello son los siguientes resultados.
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En el articulo [2], se demostré que la constante de isotropia de politopos aleatorios generados por
puntos uniformemente distrubuidos sobre la esfera esta acotado con probabilidad alta.

En el articulo [11], se demostrd que que la constante de isotropia de politopos aleatorios gene-
rados por puntos unifomemente distribuidos en un cuerpo incondicional estd acotada con una
probabilidad alta

En el articulo [18], se demostré que la constante de isotropia de politopos aleatorios generados
por puntos distribuidos en la esfera de un cuerpo incondicional segtin la medida cono esta acotada
con probabilidad alta, extendiendo asf el resultado de la esfera.

En los articulos [3] y [12], se demostré de forma simultidnea e independiente una acotacién con
probabilidad alta para la constante de isotropia de politopos generados por puntos unifomemente
distribuidos en un cuerpo convexo.
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