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Abstract

Convexity and in particular convex bodies have been an important research field in recent decades,
based on the interaction between local Banach theory with convex geometry and probability. In this
work, we focus our study on the isotropic constant of convex bodies, which is a magnitude related with
the mass distribution of convex bodies.

Each convex body K ⊂ Rn is associated with an isotropic constant, denoted LK , which indicates
the volume of the inertial ellipsoid of that element of its family of affine transformation, {a+T K ; a ∈
Rn, T ∈ GL(n)}, which is in a specific position, called isotropic position. The main goal of this work
is to study the isotropic constant conjecture, which states that there exists an absolute constant C > 0
such that LK ≤C, for every convex body K ⊂ Rn, for every n ∈ N. In addition, we will prove that this
question is equivalent to the so-called hyperplane conjecture, which asks whether every centered convex
body of volumen 1 has a hyperplane section through the origin whose volume is greater than an absolute
constant c > 0.

These questions have not been solved yet in all their generality, but for some families of convex
bodies the conjectures are known to be true. In this work, we present some examples of it. The study
of log-concave functions is essential in this study. As original result, we will improve some estimates
for log-concave functions when better concavity conditions are fulfilled, as in the case of some of the
functions appearing in the study.
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Resumen

La convexidad y en particular los cuerpos convexos han sido un importante campo de estudio en
las últimas décadas, basado en la interacción entre la teoría local de espacios de Banach con geometría
convexa y probabilidad. En este trabajo centramos nuestro estudio en la isotropía de cuerpos convexos,
la cual es una magnitud relacionada con la distribución de masa de cuerpos convexos.

A cada cuerpo convexo K ⊂ Rn se le asocia una constante de isotropía, denotada LK , que indica
el volumen del elipsoide de inercia de aquel elemento de su familia de transformaciones afines, {a+
T K ; a∈Rn, T ∈GL(n)}, que está en una posición específica, llamada posición de isotropía. El objetivo
principal de este trabajo es estudiar la conjetura de la constante de isotropía, la cual plantea la existencia
de una constante absoluta C > 0 tal que LK ≤C, para todo cuerpo convexo K ⊂Rn, para toda dimensión
n ∈ N. Además, veremos que esta cuestión es equivalente a la conjetura del hiperplano, en la que se
plantea si existe una cota inferior c > 0 absoluta, tal que todo cuerpo convexo de volumen 1 tenga una
sección central con volumen al menos c.

Estas cuestiones aún no ha sido resultas en toda su generalidad, pero sí en algunas familias de
cuerpos convexos. En este trabajo vamos a exponer algunos ejemplos de ello. El estudio de funciones
log-cóncavas es esencial en trabajo. Como resultados originales, mejoraremos algunas estimaciones
para funciones log-cóncavas cuando se satisfacen mejores condiciones de concavidad, como es el caso
de algunas de las funciones que aparecen en este estudio.
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Introducción

El análisis geométrico asintótico se puede describir como el estudio de cuerpos convexos desde un
punto de vista geométrico y analítico, haciendo énfasis en la dependencia en la dimensión de algunos
parámetros. Esta rama de las matemáticas se basa en el análisis funcional, en particular en la teoría local
de espacios de Banach, y su interacción con la geometría convexa y teoría de la probabilidad, las cua-
les estudian fenómenos en altas dimensiones. Esta área de las matemáticas empezo a ganar relevancia a
finales del siglo pasado, y tuvo un gran crecimiento en parte por su relación con otras ramas de las mate-
máticas, con física matemática e incluso con teoría de la computación. El análisis geométrico asintótico
se centra en mostrar aquellos fenómenos sobre cuerpos convexos que ocurren en altas dimensiones.

En este trabajo vamos a abordar una de las cuestiones no resueltas más importantes del análisis geo-
métrico asintótico: la conjetura de la constante de isotropía. Para ello, vamos a hacer una introducción
al análisis geométrico asintótico, viendo algunos resultados fundamentales, para así comprender qué es
la constante de isotropía de cuerpos convexos, y poder responder parcialmente a esta conjetura. Este
problema no está resulto en su totalidad, pero sí en ciertos casos particulares. Así, en este trabajo vere-
mos algunas familias de cuerpos convexos en las que se satisface la conjetura. También enunciaremos la
conjetura del hiperplano y veremos que ambas conjeturas son equivalentes. Finalmente, haremos algu-
na aportación original basada en el estudio de funciones α-cóncavas, con la cual mejoraremos algunas
acotaciones relevantes en el estudio de cuerpos convexos.

Dado K ⊂ Rn un cuerpo convexo, denotamos LK la constante de isotropía de K. Este parámetro
está asociado no solo a K sino a toda la familia de transformaciones afines de K, es decir, el conjunto
{a+T K ; a ∈ Rn, T ∈ GL(n)}. La constante de isotropía está relacionada con la distribución de masa
de K, e indica el volumen del elipsoide de inercia de la transformación lineal de K que cumple unas
ciertas condiciones, la cual se dice que está en posición de isotropía.

La conjetura de constante de isotropía plantea la existencia de una constante absoluta C > 0 tal que
LK ≤C, para todo cuerpo convexo K ⊂Rn, para toda dimensión n∈N. Esta cuestión ha sido resuelta en
algunas clases de cuerpos convexos, como veremos en el capítulo 4. Sin embargo, no ha sido demostrada
para cuerpos convexos en general. Además, veremos que es equivalente a la conjetura del hiperplano,
en la que se plantea si existe una cota inferior c > 0 absoluta, tal que todo cuerpo convexo de volumen
1 tenga una sección central con volumen al menos c.

La estructura del trabajo está formada por cuatro capítulos.

En el capítulo 1, se presentan los conceptos y resultados que serán fundamentales en el posterior
desarrollo de los contenidos, es decir, nociones básicas de teoría de cuerpos convexos y de teoría asintó-
tica de espacios normados de dimensión finita. En este capítulo, vamos a trabajar con cuerpos convexos:
conjuntos convexos cerrados y con interior no vacío; de los cuales veremos algunos funcionales que de
forma natural se utilizan para trabajar con ellos. Además, daremos algunas resultados fundamentales en
análisis geométrico, como la desigualdad de Brunn-Minkowski, la cual relaciona la suma de los volú-
menes de cuerpos con el volumen de la suma de esos cuerpos; el volumen de las p-bolas, es decir, bolas
unidad en Rn de la norma ‖ · ‖p; o la posición de John de un cuerpo convexo K, en la cual el elipsoide
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X Introducción

de mayor volumen contenido en K es la bola unidad.

Los capítulos 2 y 3 tienen como principal objetivo el estudio del resultado que da nombre a esta
memoria: la constante de isotropía de cuerpos convexos y la conjetura del hiperplano. Para ello, en
primer lugar definiremos en el capítulo 2 la constante de isotropía de un cuerpo convexo. Haremos
una minuciosa descripción de sus propiedades, así como de su existencia. Con esto, formularemos la
conjetura de la constante de isotropía. Seguidamente, mediante unos conjuntos asociados a funciones
log-cóncavas llamados cuerpos de Ball, daremos un resultado por el cual para cada cuerpo convexo K ⊂
Rn no necesariamente simétrico, podemos acotar la constante de isotropía de K mediante la constante
de isotropía de un cuerpo de Ball simétrico asociado a una función log-cóncava determinada por K.
Finalmente, acabaremos este capítulo dando un resultado original para en funciones α-cóncavas, en
el que mejoramos la desigualdad con la que se acota la constante de isotropía de un cuerpo convexo,
mediante la constante de isotropía de un cuerpo de Ball asociado. Una implicación de este resultado, es
que si se prueba la conjetura de la constante de isotropía para cuerpos simétricos, entonces se satisface
para cuerpos convexos en general.

En el capítulo 3, presentaremos la conjetura del hiperplano. Mediante una desigualdad entre la
constante de isotropía de un cuerpo convexo K ⊂ Rn y el volumen de sus secciones centrales, veremos
que ambas conjeturas son equivalentes. Es decir, si una de las conjeturas se cumple, la otra se satisface
también. Utilizando funciones α-cóncavas, daremos una mejora original en las constantes que aparecen
en dicha desigualdad.

Por último, en el capítulo 4, veremos algunos ejemplos de familias de cuerpos convexos en los que
se satisface la conjetura del hiperplano. En primer lugar, veremos dos clases de cuerpos convexos en
los que podemos acotar la constante de isotropía por una constante. Estos son los cuerpos convexos
incondicionales y cuerpos 2-convexos. Ambos satisfacen ciertas condiciones de convexidad o simetría
que hacen posible la acotación de la constante de isotropía. Seguidamente, veremos que en politopos
(envoltura convexa de un número finito de puntos), podemos acotar la constante de isotropía por una
cantidad que depende del número de puntos con los que se define el politopo. Finalmente, daremos
una cota para la constante de isotropía de politopos aleatorios Gaussianos con probabilidad muy alta,
simplificando la demostración general conocida.

En resumen, en este trabajo se realizan las siguientes aportaciones:

Se ve una exposición estructurada y autocontenida de los conceptos y resultados necesarios para
entender la conjetura de la constante de isotropía y la conjetura del hiperplano, además de dar
algunos ejemplos de familias de cuerpos convexos que las satisfacen.

Se presentan, con una notación unificada y de un modo claro, las demostraciones de los resultados
anteriormente mencionados, y se se ofrecen demostraciones originales de ciertos resultados que,
aunque conocidos y aceptados, no hemos podido encontrar en la literatura.

En los capítulos 2 y 3, a partir del estudio de funciones con condiciones más fuertes que la
log-concavidad, que es la propiedad que generalmente se ha utilizado en el estudio de cuerpos
convexos, se recogen algunos resultados originales basados en funciones α-cóncavas.

En el capítulo 4, si bien la acotación de la constante de isotropía para politopos aleatorios ya ha
sido estudiada, en este trabajo damos una acotación original para politopos Gaussianos, a partir
de estudiar algunas propiedades de vectores aleatorios Gaussianos.



Capítulo 1

Geometría asintótica convexa

En este capítulo vamos a dar las nociones básicas de teoría de cuerpos convexos y de teoría asintó-
tica de espacios normados de dimensión finita. Comenzaremos en la sección 1.1, dando los conceptos
básicos de cuerpos convexos, así como la suma de Minkowsi de cuerpos convexos, el cuerpo polar (o
dual) y el funcional de Minkowski de un cuerpo convexo.

En la sección 1.2, veremos una desigualdad clásica en geometría convexa: la desigualdad de Brunn-
Minkowski. Esta desigualdad relaciona la suma de los volúmenes de cuerpos convexos, con el volumen
de la suma de esos cuerpos.

En la sección 1.3, vamos a calcular el volumen de las bolas p en Rn, es decir, el volumen de la bola
unidad en Rn con la norma p. Las bolas p en Rn se denotan como Bn

p = {x ∈ Rn ; ‖x‖p ≤ 1}.
Por último, en la sección 1.4, definiremos la posición de John y la posición de Löwner de un cuerpo

convexo. Estas posiciones clásicas satisfacen una ecuación funcional que nos será útil para trabajar con
cuerpos convexos.

1.1. Introducción a la convexidad

Vamos a centrar nuestro estudio en Rn equipado con el producto escalar Euclídeo 〈·, ·〉, y su corres-
pondiente norma Euclídea ‖ · ‖2. Denotamos Bn

2 a la bola Euclídea centrada en el origen y de radio 1,
es decir, Bn

2 = {x ∈ Rn : ‖x‖2 ≤ 1}; y denotamos Sn−1 a la esfera centrada en el origen y de radio 1, es
decir, Sn−1{x ∈ Rn : ‖x‖2 = 1}. Denotamos el volumen de un cuerpo con | · |. Denotamos la proyección
ortogonal de Rn en un subespacio F como PF .

1.1.1. Primeras definiciones

El principal punto estudio de este trabajo recae sobre los conjuntos convexos. Definimos ahora qué
se entiende por conjunto convexo.

Definición 1.1. Se dice que un conjunto K ⊂ Rn es convexo si ∀x,y ∈ K, y ∀λ ∈ (0,1), se tiene que
(1−λ )x+λy ∈ K.

Además, las intersecciones de conjuntos convexos son convexas.

Definición 1.2. Se dice que un conjunto K ⊂ Rn es estrictamente convexo si ∀x,y ∈ K, y ∀λ ∈ (0,1),
se tiene que (1−λ )x+λy ∈ intK.

Notar que todo conjunto estrictamente convexo es, en particular, convexo.

Definición 1.3. La suma de Minkowski de dos conjuntos A,B⊂Rn se define como A+B = {a+b : a ∈
A,b ∈ B}, y para cualquier µ ∈ R se define µA = {µa : a ∈ A}.

Notar que ambas operaciones preservan la convexidad. Además, se tiene que A es convexo si y sólo
si para todo λ ∈ (0,1), (1−λ )A+λA = A. En general, para cualquier A⊂ Rn y λ ∈ (0,1) se tiene que
A⊂ (1−λ )A+λA.

1



2 Capítulo 1. Geometría asintótica convexa

Definición 1.4. Se dice que un conjunto A es simétrico si x ∈ A implica que −x ∈ A.

En particular, en este trabajo nos centraremos en cuerpos convexos.

1.1.2. Cuerpos Convexos

Definición 1.5. Un cuerpo convexo es un subconjunto convexo K ⊂ Rn compacto y con interior no
vacío.

En este trabajo, denotaremos la clase de cuerpos convexos en Rn como Kn.

Definición 1.6. Decimos que K ∈Kn es centrado, si el baricentro,

bar(K) =
1
|K|

∫
K

xdx,

está en el origen.

Del mismo modo, si f es una función medible, decimos que f es centrada si∫
Rn

x f (x)dx = 0.

Definición 1.7. Un cono (convexo) es un subconjunto convexo C ⊂ Rn no vacío, tal que si x ∈ C,
entonces λx ∈C para todo λ > 0.

Es decir, un cono es un subconjunto no vacío de Rn cerrado para la suma y el producto por números
reales no negativos.

Definición 1.8. Dado un conjunto arbitrario X , se define la envoltura convexa de X , y se representa
como conv(X), como la intersección de todos los subconjuntos convexos en Rn que contienen a X .

La envoltura convexa de un conjunto X es el menor convexo que contiene a X . En este trabajo tienen
especial interés los conjuntos que se obtienen como envoltura convexa de un número finito de puntos.

Definición 1.9. Un cuerpo convexo K ⊂ Rn se llama politopo, si es la envoltura convexa de un número
finito de puntos.

Veamos ahora una serie de normas y funciones asociadas a cuerpos convexos.

Definición 1.10. Sea K ⊂ Rn un cuerpo convexo con 0 ∈ intK. Entonces, se define el funcional de
Minkowski de K como

‖x‖K = ı́nf{λ ≥ 0 ; x ∈ λK}.

Notar que si A⊂ B, entonces ‖ · ‖A ≥ ‖ ·‖B.

Proposición 1.1. Sea K un cuerpo convexo y simétrico en Rn con 0 ∈ intK. Entonces, el funcional de
Minkowski de K, ‖ · ‖K , es una norma en Rn.

Por tanto, cualquier cuerpo convexo K simétrico con 0 ∈ intK define una norma en Rn dada por su
funcional de Minkowski, con K como bola unidad, es decir,

K = {x ∈ Rn;‖x‖K ≤ 1}.

Recíprocamente, para cualquier norma ‖ · ‖ en Rn, se tiene que su bola unidad,

{x ∈ Rn;‖x‖ ≤ 1},

es un cuerpo convexo simétrico y centrado en el origen.
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Definición 1.11. Sea K un cuerpo convexo en Rn con 0∈ intK. Denotamos ρK(x) = sup{λ > 0;λx∈K}
la función radial de K.

Se puede ver que para todo x 6= 0, la función radial y el funcional de Minkowski de un cuerpo
convexo K quedan inversamente relacionados:

ρK(x) = sup{λ > 0;λx ∈ K}= sup
{

λ > 0;x ∈ 1
λ

K
}

= sup
{

λ > 0;x ∈ 1
λ

K
}
=

1
ı́nf{λ > 0;x ∈ λK}

=
1
‖x‖K

.

Si ρK es continuo, se dice que K es un cuerpo estrellado. Para calcular el volumen de un cuerpo
estrellado K, mediante integración en coordenadas polares, se tiene que

|K|= |Bn
2|
∫

Sn−1
ρ

n
K(θ)dσ(θ)

con σ la medida de probabilidad invariante rotacional de Sn−1.

Definición 1.12. Se define la función suporte de un cuerpo convexo (o en general de un conjunto con-
vexo) de Rn como

hK(x) = sup{〈x,y〉;y ∈ K} .

Se puede ver que hK es una función homogénea positiva y convexa. Al contrario de lo que ocurría
con el funcional de Minkowski, se tiene que si A⊂ B, entonces hA ≤ hB. El recíproco también es cierto:
si hA ≤ hB, entonces A ⊂ B. Dado θ ∈ Sn−1, se llama anchura de K en la dirección θ a la cantidad
hK(θ)+hK(−θ).

Definición 1.13. Sea K un cuerpo convexo en Rn con 0 ∈ intK. Se define el cuerpo polar (o dual) de K
como

Ko =

{
y ∈ Rn ; sup

x∈K
〈x,y〉 ≤ 1

}
.

Se puede ver fácilmente que Ko es también un cuerpo convexo.

Proposición 1.2. Sea K un cuerpo convexo en Rn con 0 ∈ intK. Entonces, para todo r > 0, se tiene que
(rK)o = (1/r)K.

Como el cuerpo polar de la bola unidad es ella misma, se tiene que (rBn
2)

o = (1/r)(Bn
2)

o = (1/r)Bn
2.

De manera más general tenemos la siguiente proposición.

Proposición 1.3. Sea K un cuerpo convexo en Rn con 0 ∈ intK. Para todo T ∈ GL(n) se tiene que
(T K)o = (T t)−1Ko .

Demostración. Como T ∈ GL(n), es claro que

(T K)o = {x ∈ Rn ; 〈x,y〉 ≤ 1, ∀y ∈ T K}= {x ∈ Rn ; 〈x,Ty〉 ≤ 1, ∀y ∈ K}
=
{
(T t)−1T tx ∈ Rn ; 〈T tx,y〉 ≤ 1, ∀y ∈ K

}
=
{
(T t)−1z ∈ Rn ; 〈z,y〉 ≤ 1, ∀y ∈ K

}
= (T t)−1Ko.

Terminamos esta sección introduciendo las funciones log-cóncavas y α-cóncavas, las cuales apare-
cerán de forma natural cuando trabajemos con volúmenes o secciones.

Definición 1.14. Se dice que una función f es log-cóncava, si log( f ) es una función cóncava.

Definición 1.15. Se dice que una función f es α-cóncava, si f α es una función cóncava.



4 Capítulo 1. Geometría asintótica convexa

1.2. Desigualdad de Brunn-Minkowski

Una de las desigualdades más importantes en convexidad es la desigualdad de Brunn-Minkowski.
Esta desigualdad relaciona el volumen de la suma de Minkowski de conjuntos convexos con los volú-
menes de dichos conjuntos.

Teorema 1.1 (Brunn-Minkowski). Las siguientes desigualdades son equivalentes. Sean T,K ⊂Rn con-
juntos no vacíos y compactos, entonces

|K +T |1/n ≥ |K|1/n + |T |1/n. (1.1)

Equivalentemente, para todo λ ∈ [0,1], se tiene que

|λK +(1−λ )T |1/n ≥ λ |K|1/n +(1−λ )|T |1/n (1.2)

y también

|λK +(1−λ )T | ≥ |K|λ · |T |1−λ . (1.3)

Para demostrar este resultado, necesitamos el siguiente Teorema.

Teorema 1.2 (Prékopa-Leindler). Sean f ,g,h : Rn→ R+ funciones integrables, y sea λ ∈ (0,1). Si se
cumple que para todo x,y ∈ Rn

h(λx+(1−λ )y)≥ f (x)λ ·g(y)1−λ ,

entonces se tiene que

∫
Rn

h(x)dx≥
(∫

Rn
f (x)dx

)λ

·
(∫

Rn
g(x)dx

)1−λ

. (1.4)

Demostración. Procedemos por inducción en la dimensión. Empezamos con n = 1. Supongamos que
f ,g son continuas y estrictamente positivas. Definimos las funciones x,y : (0,1)→R por las ecuaciones∫ x(t)

−∞

f = t
∫
R

f (1.5)∫ y(t)

−∞

g = t
∫
R

g (1.6)

Como f y g son integrables y estrictamente positivas, es claro que x,y están bien definidas. Aplicando
el Teorema fundamental del cálculo integral y el Teorema de derivación de la función inversa a los
miembros de la izquierda y derivando, se tiene que para todo t ∈ (0,1),

x′(t) f (x(t)) =
∫
R

f (1.7)

y′(t)g(y(t)) =
∫
R

g. (1.8)

Para cada λ ∈ (0,1), definimos zλ : (0,1)→ R por

zλ (t) = λx(t)+(1−λ )y(t).

Es claro que para todo λ ∈ (0,1), como x,y son estrictamente crecientes, z es estrictamente creciente.
Así, aplicando la desigualdad Aritmético-Geométrica,

z′
λ
(t) = λx′(t)+(1−λ )y′(t)≥ (x′(t))λ · (y′(t))1−λ



La Constante de Isotropía y la Conjetura del Hiperplano 5

Por tanto, mediante el cambio de variables s = zλ (t), se tiene que∫
R

h(s)ds =
∫ 1

0
h(z(t))z′(t)dt

≥
∫ 1

0
h(λx(t)+(1−λ )y(t)) ·

(
(x′(t))λ · (y′(t))1−λ

)
dt

≥
∫ 1

0
f (x(t))λ ·g(y(t))1−λ ·

( ∫
R f

f (x(t))

)λ

·
( ∫

R g
g(y(t))

)1−λ

=

(∫
R

f
)λ

·
(∫

R
g
)1−λ

·

Luego, (1.4) es cierta para n = 1. Supongamos que es cierta para dimensión 2,3, ...,n− 1. Sean f ,g,h
como en el enunciado del teorema. Para todo s∈R, definimos hs : Rn−1→R+ dado por hs(w) = h(w,s).
De forma análoga se definen fs,gs : Rn−1→ R+. Por hipótesis, para todo x,y ∈ Rn

h(λx+(1−λ )y)≥ f (x)λ ·g(y)1−λ .

Por tanto, para todo x̃, ỹ ∈ Rn−1, y s0,s1 ∈ R, se tiene que

h(λ (x̃,s1)+(1−λ )(ỹ,s0))≥ f ((x̃,s1))
λ ·g((ỹ,s0))

1−λ .

Es decir, para todo x̃, ỹ ∈ Rn−1, y s0,s1 ∈ R

hλ s1+(1−λ s0)(λ x̃+(1−λ )ỹ)≥ fs1(x̃)
λ ·gs0(x̃)

1−λ .

Definimos

H =
∫
Rn−1

h, F =
∫
Rn−1

f y G =
∫
Rn−1

g.

Por tanto, por la hipótesis de inducción se tiene que

H(λ s1 +(1−λ )s0)≥ Fλ (s1)G1−λ (s0).

Por tanto, aplicando la misma hipótesis de inducción a H,F,G, con n = 1, se tiene que∫
Rn

h =
∫
R

H ≥
(∫

R
F
)λ

·
(∫

R
G
)1−λ

=

(∫
Rn

f
)λ

·
(∫

Rn
g
)1−λ

.

Así, se tiene el resultado.

Observación. La desigualdad de Brunn-Minkowski adimensional (1.3), es consecuencia de la desigual-
dad de Prékopa-Leindler. Sean T,K ⊂Rn conjuntos no vacíos y compactos, y sea λ ∈ (0,1). Definimos

f = χK , g = χT y h = χλK+(1−λ )T .

donde χA es la fución característica en el conjunto A. Como f ,g,h solo pueden tomar los valores 1 o 0,
es claro que si x 6∈ K o y 6∈ T , entonces

h(λx+(1−λy)≥ f (x)λ g(y)1−λ = 0.

Y si x ∈ K y y ∈ T , entonces por definición

h(λx+(1−λ )y) = f (x)λ g(y)1−λ = 1.

Por tanto, se cumple la hipótesis de la desigualdad de Prékopa-Leindler, y se tiene que

|λK +(1−λ )T |=
∫
Rn

h(x)dx≥
(∫

Rn
f (x)dx

)λ

·
(∫

Rn
g(x)dx

)1−λ

= |K|λ · |T |1−λ .
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Como hemos probado (1.3), para demostrar el resto de desigualdades del Teorema de Brunn-Minkowski
1.1, basta con ver que (1.1), (1.2) y (1.3) son equivalentes.

Demostración del Teorema 1.1. Veamos que las siguientes desigualdades son equivalentes

(1) |K +T |1/n ≥ |K|1/n + |T |1/n, ∀K,T ⊂ Rn compactos no vacíos.

(2) |λK +(1−λ )T |1/n ≥ λ |K|1/n +(1−λ )|T |1/n, ∀K,T ⊂ Rn compactos no vacíos y ∀λ ∈ [0,1].

(3) |λK +(1−λ )T | ≥ |K|λ · |T |1−λ , ∀K,T ⊂ Rn compactos no vacíos y ∀λ ∈ [0,1].

(1⇒ 2): Tomamos K′ = λK y T ′ = (1−λ )T . Entonces, aplicando (1), se tiene que

|λK +(1−λ )T |1/n = |K′+T ′|1/n ≥ |K′|1/n + |T ′|1/n = |λK|1/n + |(1−λ )T |1/n

= λ |K|1/n +(1−λ )|T |1/n.

(2⇒ 3): Utilizando la desigualdad aritmético-geométrica, se tiene que

λ |K|1/n +(1−λ )|T |1/n ≥ |K|λ/n · |T |(1−λ )/n.

Así, si se cumple (2), se tiene que

|λK +(1−λ )T |=
(
|λK +(1−λ )T |1/n

)n
≥
(

λ |K|1/n +(1−λ )|T |1/n
)n

≥
(
|K|λ/n · |T |(1−λ )/n

)n

= |K|λ · |T |1−λ .

(3⇒ 1): Tomamos

K′ =
K
|K|1/n , T ′ =

T
|T |1/n y λ =

|K|1/n

|K|1/n + |T |1/n ∈ [0,1].

Notar que K′ y T ′ son convexos no vacíos de volumen 1. Entonces, por un lado, por (3) se tiene que

|λK′+(1−λ )T ′| ≥ |K′|λ · |T ′|1−λ = 1.

Por otro lado,

λK′+(1−λ )T ′ =
|K|1/n

|K|1/n + |T |1/n ·
K
|K|1/n +

|K|1/n + |T |1/n−|K|1/n

|K|1/n + |T |1/n · T
|T |1/n =

K +T
|K|1/n + |T |1/n .

Entonces, con estas dos desigualdades se tiene que

1≤ |λK′+(1−λ )T ′|=
∣∣∣∣ K +T
|K|1/n + |T |1/n

∣∣∣∣= |K +T |
(|K|1/n + |T |1/n)n .

Por tanto, se tiene que

|K +T | ≥
(
|K|1/n + |T |1/n

)n
.

Equivalentemente,

|K +T |1/n ≥ |K|1/n + |T |1/n.
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1.3. Volumen de las bolas p

En esta sección vamos a calcular el volumen de las bolas p, es decir, la bola unidad en Rn de la
norma ‖ · ‖p. Las bolas p en Rn se denotan Bn

p.

Teorema 1.3. Para cualquier p ∈ [1,∞], el volumen de Bn
p es

|Bn
p| =


(2Γ(1+ 1

p))
n

Γ(1+ n
p)

, si p ∈ [1,∞)

2n , si p = ∞

Demostración. Utilizando el Teorema de Fubini, se tiene que∫
Rn

e−‖x‖
p
pdx =

∫
Rn

e−∑
n
i=1 |xi|pdx =

∫
Rn

e−|x1|pe−|x2|p · · ·e−|xn|pdxn · · ·dx2dx1

=
∫

∞

−∞

e−|x1|pdx1

∫
∞

−∞

e−|x2|pdx2 · · ·
∫

∞

−∞

e−|xn|pdxn

=

(∫
∞

−∞

e−|x|
p
dx
)n

=

(
2
∫

∞

0
e−|x|

p
dx
)n

.

Mediante el cambio de variable xp = t, se tiene que(
2
∫

∞

0
e−|x|

p
dx
)n

=

(
2
p

∫
∞

0
e−tt

1
p−1dt

)n

=

(
2
p

Γ

(
1
p

))n

=

(
2Γ

(
1+

1
p

))n

. (1.9)

Por otro lado, notar que∫
Rn

e−‖x‖
p
pdx =

∫
Rn

∫
∞

‖x‖p
p

e−tdtdx =
∫
Rn

∫
∞

0
e−t

χ{t>‖x‖p
p}(x, t)dtdx.

Mediante el Teorema de Fubini, se tiene que∫
∞

0

∫
Rn

e−t
χ{t>‖x‖p

p}(x, t)dxdt =
∫

∞

0

∫
Rn

e−t
χ{t1/p>‖x‖p}(x, t)dxdt.

=
∫

∞

0

∫
t1/pBn

p

e−tdxdt =
∫

∞

0
e−t
∣∣∣t 1

p Bn
p

∣∣∣dt

=
∣∣Bn

p

∣∣∫ ∞

0
e−tt

n
p dt =

∣∣Bn
p

∣∣Γ(1+
n
p

)
.

Igualando esta expresión a la igualdad 1.9, se tiene que(
2Γ

(
1+

1
p

))n

=
∣∣Bn

p

∣∣Γ(1+
n
p

)
,

de donde se deduce que

∣∣Bn
p

∣∣=
(

2Γ

(
1+ 1

p

))n

Γ

(
1+ n

p

) .

Observación. Por el Teorema anterior, tomando p = 2, se tiene que

|Bn
2|=

(
2Γ
(
1+ 1

2

))n

Γ
(
1+ n

2

) =
πn/2

Γ
(
1+ n

2

) .
Tomando raíces n-ésimas y utilizando la fórmula de Stirling, tenemos que

|Bn
2|

1/n =

√
π

Γ
(
1+ n

2

)1/n ≈
√

π(n
2

)1/2 e−1/2(
√

πn)1/n
≈
√

2πe√
n

.

Y por tanto, si n tiende a infinito,
√

n |Bn
2|

1/n tiende asintóticamente a
√

2πe.
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1.4. Elipsoide de John

El elipsoide de John de un cuerpo convexo K ⊂ Rn es el elipsoide de máximo volumen contenido
en K. Recíprocamente, el elipsoide de Löwner, es el elipsoide de mínimo volumen que contiene a K. La
existencia y unicidad de estos elipsoides fue demostrada por John en [13]. En esta sección, veremos que
si el elipsoide de Löwner de K es Bn

2, entonces podemos obtener una descomposición de la identidad
mediante una combinación lineal de productos tensoriales de vectores u j, con u j ∈ ∂K∩Sn−1.

Definición 1.16. Se dice que un cuerpo K en Rn está en posición de John si el elipsoide de mayor
volumen contenido en K es Bn

2. Y se dice que está en posición de Löwner si el elipsoide de mínimo
volumen que contiene a K es Bn

2. Cuando K ⊂ Rn es un cuerpo simétrico, dicho elipsoide está centrado
en 0.

Mediante las propiedades de los cuerpos polares se puede ver que, en efecto, hay una dualidad entre
la posición de John y la posición de Löwner.

Proposición 1.4. Un cuerpo convexo simétrico K está en posición de John si y sólo si el polar de K,
Ko, está en posición de Löwner.

Demostración. Supongamos que K está en posición de John. Entonces |K| ≤ |T K| para todo T ∈GL(n)
tal que Bn

2 ⊂ T K. Como Bn
2 ⊂ K, se tiene que Ko ⊂ (Bn

2)
o = Bn

2. Supongamos que Ko no está en posición
de Löwner. Entonces, existe un T ∈ GL(n) tal que |T Ko| > |T o| con T Ko ⊂ Bn

2. Por tanto, |detT | > 1.
Como (T Ko)o = (T t)−1(Ko)o = (T t)−1K, tenemos que

|(T t)−1K|= |det(T t)|−1|K|= 1
|detT |

|K|< |K|.

Por tanto, (T t)−1K tiene volumen menor que K y cumple que Bn
2 ⊂ (T t)−1K, luego K no puede estar en

posición de John. Así, se contradice la hipótesis de que Ko no está en posición de Löwner.
El recíproco de demuestra de forma análoga.

Sea K un cuerpo convexo en Rn con 0 ∈ int(K). Entonces definimos

W̃i(K) =
1
n

∫
Sn−1

ρ
n−i
K (u)dσ(u).

El objetivo de esta sección es maximizar el conjunto{
W̃i(T K);0 ∈ T K ⊂ Bn

2 , T ∈ GL(n)
}
, (1.10)

y caracterizar qué ocurre cuando T = In produce el máximo del conjunto, es decir, cuando W̃i(K) es el
máximo.

Lema 1.1. Sea K un cuerpo convexo en Rn con 0 ∈ int(K). Para i < n se tiene que

(i) : W̃i(K) =
n− i

n

∫
K

dx
|x|i

(ii) : W̃i(T K) =
n− i

n
|detT |

∫
K

dx
|T x|i

Para i = 0, es claro que W̃i(K) es el volumen de K. Por tanto, para i = 0, maximizar el conjunto 1,10
es encontrar el T ∈ GL(n) tal que T K está contenido en Bn

2 y tiene el máximo volumen posible. En ese
caso, T K está en posición de Löwner. Veamos la demostración de este Lema.
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Demostración. Para ver que (i) es cierto, basta con hacer un cambio de variable a polares en el miembro
de la derecha,

n− i
n

∫
K

dx
|x|i

=
n− i

n

∫
Sn−1

∫
ρK(θ)

0

1
|rθ |i

rn−1drdσ(θ)

=
n− i

n

∫
Sn−1

∫
ρK(θ)

0
rn−1−idrdσ(θ)

=
1
n

∫
Sn−1

ρ
n−i
K (θ)dσ(θ) = W̃i(K).

Para ver (ii) aplicamos la igualdad que hemos obtenido en (i) y hacemos el cambio de variables x = Ty,

W̃i(T K) =
n− i

n

∫
T K

dx
|x|i

=
n− i

n
|detT |

∫
K

dy
|Ty|i

.

Como hemos dicho al principio de la sección, si el elipsoide de Löwner de K es Bn
2, entonces po-

demos obtener una descomposición de la identidad mediante una combinación lineal de productos de
vectores u j, con u j ∈ ∂K∩Sn−1. Esto será el caso particular de i = 0 del siguiente Teorema.

Teorema 1.4. Sea K un cuerpo convexo en Rn con 0∈K⊂Bn
2, y i< n. Si

{
W̃i(T K);0 ∈ T K ⊂ Bn

2 , T ∈ GL(n)
}

se maximiza en T = In, entonces existen puntos de contacto w1, ...,ws ∈ ∂K∩Sn−1 con s≤ n(n+1)/2,
y constantes λ1, ...,λs > 0 con ∑

s
i=1 λi = 1 tales que

In = i ·
∫

Sn−1
u⊗u ·dµ(u)+(n− i)

s

∑
j=1

λ jw j⊗w j,

donde

dµ(u) =
ρ

n−i
K (u)∫

Sn−1 ρ
n−i
K (u) ·dσ(u)

dσ(u).

Para demostrar este Teorema, necesitamos el siguiente resultado, llamado Teorema de John [13,
Th.1]

Teorema 1.5 (Teorema de John). Sea Ω⊂Rm abierto no vacío y F : Ω→R de clase C(1). Sea Ω1 ⊂Rl

abierto no vacío, S⊂Ω1 compacto y G : Ω×Ω1→R de clase C(1). Sea A= {x ∈Ω ; G(x,y)≥ 0, ∀y ∈ S}.
Si F alcanza su mínimo en x0 ∈ A, entonces existen y1, ...,ys ∈ S y λ0, ...,λs ∈R con 0≤ s≤m y λ0 ≥ 0,
λ1, ...,λs > 0 tales que

(1) : G(x0,y1) = ...= G(x0,ys) = 0

(2) : ∇
(
λ0F(x0)+∑

s
j=1 λ jG(x0,y j)

)
= 0.

Demostración del Teorema 4.2. Siguiendo la notación del Teorema de John, sea Ω1 = Rn y S = K un
cuerpo convexo en Rn con 0 ∈ K ⊂ Bn

2 en posición de John. Sea Ω⊂ Rn(n+1)/2 definido como

Ω =

{
T ∈ Rn(n+1)/2;

∫
K

dx
|T x|i

< ∞

}
.

Sea G : Ω×Ω1→ R la función definida por G(T,x) = 1−|T x|2. Notar que si T = In, entonces G(T,x)
se anula si y solo si x ∈ Sn−1. Definimos el conjunto

A = {T ∈Ω ; G(T,x)≥ 0, ∀x ∈ K} .

Es decir, A es el conjunto de los T ∈ Ω tales que T K está contenido en Bn
2. Por tanto, es claro que A es

un compacto.
Si i < n, tomamos F(T ) = −W̃i(T K). Por tanto, si W̃i(T K) alcanza su máximo en T = In, se tiene

que F(T ) = −W̃i(T K) alcanza su mínimo en T = In. Así, por el Teorema de John se tiene que existen
y1, ...,ys ∈ K y λ0, ...,λs ∈ R con 0≤ s≤ m y λ0 ≥ 0, λ1, ...,λs > 0 tales que
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(1) : G(In,y1) = ...= G(In,ys) = 0

(2) : ∇
(
λ0F(In)+∑

s
j=1 λ jG(In,y j)

)
= 0.

El item (1) implica que 1−|y1|2 = ...= 1−|ys|2 = 0. Así, y1, ...,ys ∈ K∩Sn−1. Pero como K ⊂ Bn
2,

en particular se tiene que y1, ...,ys ∈ ∂K∩Sn−1.
Vamos a calcular (2). Por computación directa, se tiene que

∂G(T,x)
∂T

(In,yi) = yi⊗ yi.

Del mismo modo, se tiene que

∂F(T )
∂T

(In) = W̃i(K)In +
i−n

n

∫
K

−i
|x|i+2 (x⊗ x)dx.

Por tanto, el Teorema de John implica que existen y1, ...,ys ∈ ∂K∩Sn−1 y λ0, ...,λs ∈ R con 0≤ s≤ m
y λ0 ≥ 0, λ1, ...,λs > 0 tales que

λ0

(
W̃i(K)In +

i−n
n

∫
K

−i
|x|i+2 (x⊗ x)dx

)
+

s

∑
k=1

λkyk⊗ yk = 0. (1.11)

Vamos a tomar la traza de esta expresión. Notar que i−n
n

∫
K
−i
|x|i+2 (x⊗ x)dx es una matriz n× n cuyo

elemento en posición (u,v) es

i−n
n

∫
K

−i
|x|i+2 xuxvdx.

Por tanto, la traza de i−n
n

∫
K
−i
|x|i+2 (x⊗ x)dx es

i−n
n

∫
K

−i
|x|i+2 x2

1dx+ ...+
i−n

n

∫
K

−i
|x|i+2 x2

ndx =
−i(i−n)

n

∫
K

x2
1 + ...x2

n

|x|i+2 dx

=
−i(i−n)

n

∫
K

|x|2

|x|i+2 dx

=
−i(i−n)

n

∫
K

1
|x|i

dx.

Por la propiedad (i) del Lema 1.1,

Tr
(

i−n
n

∫
K

−i
|x|i+2 (x⊗ x)dx f

)
=
−i(i−n)

n

∫
K

1
|x|i

dx

=
−i(i−n)

n
n

n− i
n− i

n

∫
K

1
|x|i

=
−i(i−n)

n
n

n− i
W̃i(K)

=−i ·W̃i(K).

Por otro lado, es claro que la traza de W̃i(K)In es n ·W̃i(K). Y por último,

Tr

(
s

∑
k=1

λkyk⊗ yk

)
=

s

∑
k=1

λk|yk|2 =
s

∑
k=1

λk,

ya que |yk|= 1, para todo k = 1, ...,s.



La Constante de Isotropía y la Conjetura del Hiperplano 11

Así, tomando la traza de la expresión (1.11), se tiene que

λ0(n− i)W̃i(K)+
s

∑
k=1

λk = 0.

Para k = 1, ...,s tomamos

tk =
λk

λ0(n− i)W̃i(K)
.

Es claro que tk > 0, y ∑
s
k=1 tk = 1. Reformulando la expresión 1,11 con los tk, se tiene que

In

i−n
− i

n

∫
K

x⊗ x
|x|i+1

dx
W̃i(K)

+
s

∑
k=1

tkyk⊗ yk = 0.

Finalmente, tomando coordenadas polares en esta expresión, se tiene el resultado.

El recíproco de este Teorema también es cierto.

Teorema 1.6. Sea K ⊂ Bn
2 un cuerpo convexo en Rn con 0 ∈ intK. Si existen puntos de contacto

w1, ...,ws ∈ ∂K∩Sn−1 con s≤ n(n+1)/2, y constantes λ1, ...,λs > 0 con ∑
s
i=1 λi = 1 tales que

In = i ·
∫

Sn−1
u⊗u ·dµ(u)+(n− i)

s

∑
j=1

λ jw j⊗w j,

donde

dµ(u) =
ρ

n−i
K (u)∫

Sn−1 ρ
n−i
K (u) ·dσ(u)

dσ(u),

entonces para todo T ∈ GL(n) tal que T K ⊂ Bn
2, se tiene que W̃i(T K)≤ W̃i(K).

En particular, si i = 0, este Teorema indica que si existe una descomposición de la identidad con
puntos de contacto w j ∈ ∂K ∩Bn

2 de un cuerpo convexo K ⊂ Bn
2, y unos escalares λ1, ...,λs > 0 con

∑λs = 1, de la forma

In = n
s

∑
j=1

λ jw j⊗w j,

entonces podemos asegurar que K está en posición de Löwner. No vamos a demostrar este resultado, ya
que no es un objetivo principal de este trabajo. Sin embargo, su demostración puede encontrarse en [6].





Capítulo 2

La constante de isotropía

En este capítulo presentamos uno de los principales problemas de este trabajo: la conjetura de la
constante de isotropía. Esta conjetura plantea la existencia de una constante absoluta adimensional C > 0
que cumpla que

LK ≤C

para todo cuerpo K isotrópico, siendo LK la constante de isotropía del cuerpo K. En la sección 2.1 defini-
remos la constante de isotropía, la cual como veremos no está asociada sólo a un cuerpo isotrópico, sino
a su familia de transformaciones afines. Además, veremos que en cada dimensión, es la bola euclidea
el cuerpo convexos que tiene la menor constante de isotropía posible. Por último, daremos una serie de
acotaciones de la constante de isotropía que se han probado en los últimos años.

En la sección 2.2, definiremos los cuerpos de Ball Kp( f ): conjuntos convexos generados a partir de
una función f y un valor p > 0, los cuales veremos que en on cuerpos convexos si f es una función
log-cóncava, y simétricos si f es par. Utilizando los cuerpos de Ball, daremos una acotación de la
constante de isotropía de cuerpos convexos, mediante la constante de isotropía de cuerpos simétricos.
Estos implica que si la conjetura de la constante de isotropía se cumple para cuerpos simétricos, entonces
es cierta en general.

Por último, teniendo en cuenta que los resultados sobre los cuerpos de Ball se aplican a una función
con mejores condiciones de convexidad que la log-concavidad, en la sección 2.3 daremos un resultado
original, en el cual acotamos acotamos la constante de isotropía de cuerpos convexos, por la constante
de isotropía de cuerpos de Ball asociados a funciones α-cóncavas.

2.1. Posición isotrópica de un cuerpo convexo

En esta sección vamos a definir la posición de isotropía de un cuerpo convexo centrado K, y la
constante de isotropía LK como un invariante de la clase lineal asociada a K. Para todo cuerpo convexo
K ⊂ Rn centrado, existe una transformación lineal T ∈ GL(n) tal que T K está en posición de isotro-
pía. Además, esta transformación lineal es única, salvo transforamciones ortogonales. Por tanto, como
veremos, la constante de isotropía asociada tanto a T K (en posición de isotropía), a K y a RK, con
R ∈ GL(n), es la misma.

2.1.1. Posición isotrópica de un cuerpo convexo

Definición 2.1. Un cuerpo convexo K ⊂Rn se llama isotrópico si tiene volumen 1, está centrado (tiene
baricentro en el origen) y existe una constante α > 0 tal que∫

K
〈x,y〉2dx = α

2‖y‖2
2

para todo y ∈ Rn. En ese caso, llamamos a α (y denotamos LK) constante de isotropía de K.

13
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Notar que si un cuerpo K satisface la condición de entropía, entonces∫
K
‖x‖2

2dx =
∫

K

n

∑
i=1
〈x,ei〉2dx =

n

∑
i=1

∫
K
〈x,ei〉2dx = nα

2.

Vamos a ver una serie de definiciones equivalentes para caracterizar cuerpos isotrópicos.

Teorema 2.1. Sea K un cuerpo convexo en Rn. Entonces, las siguientes condiciones son equivalentes.

(1) : Para todo y ∈ Rn, ∫
K
〈x,y〉2dx = α

2‖y‖2
2.

(2) : Denotando x = (x1, ...,xn) ∈ Rn, para todo i, j = 1, ...,n,∫
K

xix jdx = α
2
δi, j.

(3) : Para todo T ∈ L(Rn), ∫
K
〈x,T x〉dx = α

2(trT ).

Demostración. (1⇒ 2): Si i = j, es claro que∫
K

xi,x2
i dx =

∫
K
〈x,ei〉2dx = α

2‖ei‖2
2 = α

2.

Si i 6= j, notar que ∫
K
(xi + x j)

2dx =
∫

K
〈x,ei + e j〉2dx = α

2‖ei + e j‖2
2 = 2α

2.

Además, se tiene que∫
K
(xi + x j)

2dx =
∫

K
x2

i dx+
∫

K
x2

jdx+2
∫

K
xix jdx = α

2 +α
2 +2

∫
K

xix j.dx

Por tanto, si i 6= j, ∫
K

xix jdx = 0.

(2⇒ 3): Sea T = (ti, j)n
i, j=1, se tiene que∫

K
〈x,T x〉dx =

∫
K

n

∑
i=1

xi

n

∑
j=1

ti, jx jdx =
n

∑
i, j=1

ti, j
∫

K
xix jdx.

Aplicando el apartado (2), es claro que
n

∑
i, j=1

ti, j
∫

K
xix jdx =

n

∑
i=1

ti,iα2 = α
2(trT ).

(3⇒ 1): Sea T la matriz con ti, j = yiy j. Entonces,∫
K
〈x,y〉2dx =

∫
K

n

∑
i=1

xiyi

n

∑
j=1

x jy jdx =
n

∑
i, j=1

yiy j

∫
K

xix jdx =
∫

K
〈x,T x〉dx.

Como trT = ∑
n
i=1 y2

i = ‖y‖2
2, aplicando (3), se tiene que∫

K
〈x,y〉2dx =

∫
K
〈x,T x〉dx = α

2(trT ) = α
2‖y‖2

2.
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Observación 2.1. Sea K un cuerpo isotrópico y U ∈O(n) una transformación ortogonal, entonces UK
sigue siendo isotrópico. Además, su constante de isotropía no cambia, es decir, LUK = LK . En efecto,
para cualquier y ∈ Rn y U ∈ O(n),∫

UK
〈x,y〉2dx =

∫
K
〈Ux,y〉2dx =

∫
K
〈x,U ty〉2dx = L2

K‖U ty‖2
2 = L2

K‖y‖2
2.

Es decir, si K es isotrópico existe una clase lineal de cuerpos isotrópicos con la misma constante de
isotropía, {UK;U ∈ O(n)}.

2.1.2. Existencia

En el siguiente resultado veremos que para cualquier cuerpo convexo K centrado, existe una trans-
formación lineal T ∈ GL(n) tal que T K es isotrópico. En ese caso, decimos que T K está en posición
isotrópica. Así, en esta sección demostraremos que todo cuerpo convexo K centrado tiene una posición
K̃ que es isotrópica.

Teorema 2.2. Sea K ⊂ Rn un cuerpo convexo y centrado. Entonces, existe una transformación lineal
T ∈ GL(n) tal que T K es isotrópico.

Demostración. Sea M ∈ L(Rn) el operador definido por M(y) =
∫

K〈x,y〉xdx. Los elementos (Mi, j)
n
i, j=1

de la matriz M vienen dados por

Mi, j = et
iMe j =

∫
K
〈x,ei〉〈x,e j〉dx =

∫
K

xix jdx.

Luego, es claro que M es simétrica. Además, para todo y ∈ Rn \{0},

ytMy =
∫

K
〈x,y〉〈x,y〉dx =

∫
K
〈x,y〉2dx > 0,

luego M es deinida positiva. Por tanto, existe una matriz ortogonal U ∈ O(n) y una matriz diagonal
D = diag(λ 2

1 , ...,λ
2
n ) con los λi > 0, tal que M =UDU t .

Tomamos S =UD1/2U t , con D1/2 = diag(λ1, ...,λn). Es claro que S2 = M:

S2 = (UD1/2U t)(UD1/2U t) =UD1/2D1/2U t =UDU t = M.

Es fácil ver que S−1 =Udiag(λ−1
1 , ...,λ−1

n )U t :

SS−1 = (Udiag(λ1, ...,λn)U t)(Udiag(λ−1
1 , ...,λ−1

n )U t) =Udiag(1, ...,1)U t) = In.

Notar que S−1 es simétrica. Consideramos la imagen lineal K̃ = S−1K de K. Entonces, para todo y∈Rn,∫
S−1K
〈x,y〉2dx =

∣∣detS−1∣∣∫
K
〈S−1x,y〉2dx = |detS|−1

∫
K
〈S−1x,y〉2dx = |detS|−1

∫
K
〈x,(S−1)ty〉2dx

= |detS|−1
∫

K
〈x,S−1y〉2dx

= |detS|−1
〈∫

K
〈x,S−1y〉xdx,S−1y

〉
Por definición de M, es claro que ∫

K
〈x,S−1y〉xdx = MS−1y.

Por lo que se sigue que

|detS|−1
〈∫

K
〈x,S−1y〉xdx,S−1y

〉
= |detS|−1 〈MS−1y,S−1y

〉
= |detS|−1 〈MS−1y,S−1y

〉
= |detS|−1 〈S−1MS−1y,y

〉
= |detS|−1 ‖y‖2

2.



16 Capítulo 2. La constante de isotropía

En el último paso hemos utilizado que S−1MS−1 = In. Así, tenemos que∫
K̃
〈x,y〉2dx = |detS|−1 ‖y‖2

2

por lo que K̃/|K̃|1/n es isotrópico.

Acabamos de ver que todo cuerpo K⊂Rn convexo y centrado tiene una posición K̃ que es isotrópica,
con K̃ = T K para algún T ∈GL(n). Como hemos visto en la observación 2.1, para cualquier U ∈O(n) se
tiene que UT K también es isotrópico. En la siguiente proposición vamos a ver que, en efecto, la posición
isotrópica de un cuerpo convexo está únicamente determinada, salvo por transformación ortogonal, y de
hecho se puede encontrar como la solución a un problema de minimización.

Teorema 2.3. Sea K ⊂ Rn un cuerpo convexo y centrado de volumen 1. Definimos

B(K) = ı́nf
{∫

T K
‖x‖2

2dx ; T ∈ SL(n)
}
.

Entonces, una posición K1 de K es isotrópica si y solo si∫
K1

‖x‖2
2dx = B(K).

Además, si K1 y K2 son posiciones isotrópicas de K, entonces K1 =UK2 para algún U ∈ O(n).

Demostración. Sea K1 una posición isotrópica de K. Por el Teorema 2.1, se tiene que∫
K1

〈x,T x〉dx = L2
K1
(trT )

para todo T ∈ L(Rn). Entonces, para todo T ∈ SL(n),∫
T K1

‖x‖2
2dx =

∫
K1

‖T x‖2
2dx =

∫
K1

〈T x,T x〉2dx =
∫

K1

〈x,T tT x〉2dx

=
∫

K1

〈x,T tT x〉2dx

= L2
K1
(tr(T tT )).

Usando la desigualdad aritmético-geométrica, se tiene que tr(T tT )≥ n [det(T tT )]1/n. Por tanto,∫
T K1

‖x‖2
2dx = L2

K1
tr(T tT )≥ L2

K1
n
[
det(T tT )

]1/n ≥ nL2
K1

=
∫

K1

‖x‖2
2dx. (2.1)

Luego, si K1 está en posición de isotropía, B(K) =
∫

K1
‖x‖2

2dx.
Recíprocamente, si K2 = T K1 es una posición de K con B(K) =

∫
K2
‖x‖2

2dx, entonces la desigualdad

(2.1) indica que tr(T tT ) = n [det(T tT )]1/n, por lo que T tT = In, y por tanto T ∈ O(n).
Además, si K1 y K2 son posiciones de isotropía de K, como K1 = T K2 para alguna T ∈ GL(n), en

particular T ∈ O(n).

Como consecuencia, para todo cuerpo convexo K ⊂ Rn centrado podemos definir su constante de
isotropía, LK , como la constante de isotropía de la posición isotrópica de K.
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2.1.3. Acotación de la constante de isotropía

Nos podemos preguntar qué cuerpos maximizan y minimizan la constante de isotropía para cada
dimensión. El siguiente resultado muestra que para cada n, el cuerpo que minimiza la constante de
isotropía en Rn es la bola euclídea.

Teorema 2.4. Sea K ⊂ Rn un cuerpo isotrópico. Entonces,

c≤ LBn
2
≤ LK ,

para alguna constante absoluta c > 0.

Demostración. Por la invarianza rotacional de Bn
2, se tiene que para todo y ∈ Rn,∫

Bn
2

〈x,y〉2dx = |y|2
∫

Bn
2

〈x, y
|y|
〉2dx = |y|2

∫
Bn

2

〈x,e1〉2dx.

Tomando rn = |Bn
2|−1/n, es claro que rnBn

2 es isotrópico. Notar que si x ∈ rnBn
2, entonces ‖x‖2 ≤ rn. Así,

nL2
K =

∫
K
‖x‖2

2dx =
∫

K∩rnBn
2

‖x‖2
2dx+

∫
K\rnBn

2

‖x‖2
2dx≥

∫
K∩rnBn

2

‖x‖2
2dx+

∫
K\rnBn

2

r2
ndx

=
∫

K∩rnBn
2

‖x‖2
2dx+ r2

n |K \ rnBn
2| .

Como K y rnBn
2 son ambos cuerpos isotrópicos, por un lado

1 = |K|= |K∩ rnBn
2|+ |K \ rnBn

2| .

Por otro lado,

1 = |rnBn
2|= |rnBn

2∩K|+ |rnBn
2 \K| .

Luego, |K \ rnBn
2|= |rnBn

2 \K|. Procediendo como antes, se tiene que∫
K∩rnBn

2

‖x‖2
2dx+ r2

n |K \ rnBn
2|=

∫
K∩rnBn

2

‖x‖2
2dx+ r2

n |rnBn
2 \K|=

∫
K∩rnBn

2

‖x‖2
2dx+

∫
rnBn

2\K
‖x‖2

2dx

=
∫

rnBn
2

‖x‖2
2dx = nL2

Bn
2
.

Así, para todo K ⊂ Rn isotrópico, LK ≥ LBn
2
.

Veamos que existe una constante absoluta c > 0 tal que c≤ L2
Bn

2
para todo n∈N. Mediante el cambio

de variables a polares, se tiene que

L2
Bn

2
=

1
n

∫
rnBn

2

‖x‖2
2dx =

1
n

∫
∞

0

∫
Sn−1

rn−1‖rθ‖2
2χ[0,rn](‖rθ‖2)dθdr

=
1
n

∫ rn

0
rn+1

∫
Sn−1

dθdr

=
1
n

∫ rn

0
rn+1n|Bn

2|dr

=
(rn)

n+2

n+2
|Bn

2|=
1

n+2
|Bn

2|−2/n.

Como
√

n · |Bn
2|1/n tiende asintóticamente a

√
2πe, si n→ ∞, entonces es claro que

lı́m
n→∞

1
n+2

|Bn
2|−2/n =

1
2πe

.

Por tanto, sea c > 0 la constante definida por

c = ı́nf
{

1
n+2

|Bn
2|−2/n ; n ∈ N

}
,

se tiene que L2
Bn

2
≥ c, para todo n ∈ N.
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Del mismo modo que se tiene que la bola Bn
2 normalizada es la que minimiza la constante de iso-

tropía, nos podemos preguntar cual es el cuerpo isotrópico que la maximiza. De hecho, la pregunta que
plantea la existencia de una constante absoluta que la acote superiormente sigue abierta. Aunque ha
sido resuelta para grandes clases de cuerpos convexos, como veremos en el Capítulo 4, la pregunta no
ha sido resuelta en toda su generalidad. Esta cuestión es uno de los principales objetos de estudio de
este trabajo, y queda enunciada en la siguiente conjetura.

Conjetura 2.1 (Conjetura de la constante de isotropía). Existe una constante absoluta C > 0 que cumple
que

LK ≤C

para todo cuerpo isotrópico K ⊂ Rn, y todo n≥ 1.

Observación. La conjetura de la constante de isotropía no ha sido probada, pero en los últimos años se
han conseguido dar algunas cotas. Una muestra de ello son los siguientes resultados.

En el artículo [8], Bourgain demostró que la constante de isotropía de cuerpos convexos en Rn se
puede acotar por Cn1/4 log(n), para alguna constante absoluta C > 0.

En el artículo [14], Klartag mejoró la cota de Bourgain quitando el logaritmo, y demostró la
acotación LK <Cn1/4, para alguna constante absoluta C > 0.

En el artículo [9], todavía no publicado, Yuansi Chen ha demostrado una acotación para la conje-
tura de Kannan-Lovász-Simonovits, que implica una acotación para la conjetura del hiperplano.
Esto da como resultado la acotación LK <Cno(1), donde C > 0 es una constante absoluta, y o(1)
es una sucesión que tiende a 0.

2.2. Cuerpos convexos simétricos

En esta sección vamos a definir unos conjuntos, Kp( f ), definidos a partir de una función f asociada
y un valor p > 0. Veremos que estos conjuntos son convexos, y en particular, si f es una función log-
cóncava, son cuerpos convexos, llamados cuerpos de Ball, ya que los definió Keith Ball en [4]. Además,
si la función f es par, el cuerpo de Ball Kp( f ) es simétrico. Estos cuerpos convexos son más grandes
según aumenta el valor de p, es decir, para 0 < p < q, Kp( f )⊂ Kq( f ).

Para cada cuerpo isotrópico K, vamos a definir una función F asociada a K. Esta función F es en
particular una medida de probabilidad, y guardará cierta relación con el cuerpo de Ball asociado a F ,
Kp(F). En concreto, nos servirá para relacionar las constantes de isotropía de un cuerpo isotrópico K
en Rn con un cuerpo de Ball definido a partir de él. Para cada cuerpo K ⊂ Rn isotrópico, si tomamos
p = n+2, la relación entre las constantes de isotropía de K y Kn+2(F) es

√
2CLK ≤ LKn+2(F) ≤

√
2LK

para cierta constante absoluta C. Esta acotación reduce la búsqueda de la constante que satisfaga la
conjetura de la constante de isotropía sólo a cuerpos simétricos.

En primer lugar, vamos a definir la función F asociada a un cuerpo convexo K.

Teorema 2.5. Sea K ⊂ Rn un cuerpo convexo centrado con volumen 1. Sea F(x) = |K ∩ (x + K)|.
Entonces, ∀θ ∈ Sn−1, ∫

Rn
〈x,θ〉2F(x)dx = 2

∫
K
〈x,θ〉2dx. (2.2)

Para cada x, F(x) es el volumen de la intersección del cuerpo convexo K consigo mismo desplazado,
x+K. Antes de realizar la demostración de este teorema, veamos una serie de propiedades de la función
F .
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Proposición 2.1. F es una densidad de probabilidad.

Demostración. Para ver que es F una densidad de probabilidad basta con ver que su integral en Rn es
1. ∫

Rn
F(x)dx =

∫
Rn
|K∩ (x+K)|dx =

∫
Rn

∫
Rn

χK(y)χx+K(y)dydx.

Aplicando el Teorema de Fubini, se tiene que∫
Rn

F(x)dx =
∫
Rn

∫
Rn

χK(y)χx+K(y)dxdy. (2.3)

Como y ∈ x+K⇔ y− x ∈ K⇔−x ∈ −y+K⇔ x ∈ y−K, tenemos que ∀x,y ∈ Rn,

χx+K(y) = χy−K(x). (2.4)

Luego, ∫
Rn

F(x)dx =
∫
Rn

∫
Rn

χK(y)χy−K(x)dxdy

=
∫
Rn

χK(y)
∫
Rn

χy−K(x)dxdy

=
∫
Rn

χK(y)|y−K|dy

= |K|
∫
Rn

χK(y)dy

= |K| · |K|= 1.

Proposición 2.2. F es una función par.

Demostración. Veamos que F(x) = F(−x):

F(−x) = |K∩ (−x+K)|= |(x+K)∩ (x− x+K)|= |(x+K)∩K|= F(x).

Con estas propiedades vamos a demostrar el teorema 2.5.

Demostración del Teorema 2.5.∫
Rn
〈x,θ〉2F(x)dx =

∫
Rn

∫
Rn
〈x,θ〉2χK(y)χx+K(y)dxdy

Utilizando el mismo razonamiento que en (2.4) y aplicando el Teorema de Fubini, se tiene que∫
Rn
〈x,θ〉2F(x)dx =

∫
Rn

∫
Rn
〈x,θ〉2χK(y)χy−K(x)dxdy

=
∫
Rn

∫
Rn
〈y+(x− y),θ〉2χK(y)χy−K(x)dxdy

=
∫
Rn

∫
Rn

(
〈y,θ〉2 +2〈y,θ〉〈x− y,θ〉2 + 〈x− y,θ〉2

)
χK(y)χy−K(x)dxdy

Separando esta integral en 3 integrales, tenemos∫
Rn
〈x,θ〉2F(x)dx =

∫
Rn
〈y,θ〉2χK(y)dy|K|+2

∫
Rn

∫
Rn
〈y,θ〉〈x− y,θ〉2χK(y)χy−K(x)dxdy

+
∫
Rn

∫
Rn
〈x− y,θ〉2χK(y)χy−K(x)dxdy
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Aplicamos el cambio de variables x− y = z,∫
Rn
〈x,θ〉2F(x)dx =

∫
K
〈y,θ〉2dy+2

∫
K

∫
−K
〈y,θ〉〈z,θ〉2dzdy+

∫
K

∫
−K
〈z,θ〉2dzdy

=
∫

K
〈y,θ〉2dy+0+

∫
K
〈z,θ〉2dz

= 2
∫

K
〈x,θ〉2dx

Para aplicar esta función más adelante necesitamos la log-concavidad de F . El siguiente resultado
nos dice que F es una función 1

n -cóncava, luego en particular es una función log-cóncava en su soporte.

Proposición 2.3. F es una función 1
n -cóncava en su soporte.

Demostración. Sean x1,x2 ∈Rn tales que K∩(x1+K) 6= /0 y K∩(x2+K) 6= /0, y sea λ ∈ (0,1). Veamos
que se cumple que

(1−λ )[K∩ (x1 +K)]+λ [K∩ (x2 +K)]⊂ [K∩ ((1−λ )x1 +λx2 +K)] . (2.5)

Sea y1 ∈ K∩ (x1 +K), y2 ∈ K∩ (x2 +K). Como K es convexo, (1−λ )y1 +λy2 ∈ K.
Como y1 ∈ x1+K, se tiene que y1 = x1+z1, para algún z1 ∈K. Del mismo modo, y2 ∈ x2+K, luego

y2 = x2 + z2, para algún z2 ∈ K. Así,

(1−λ )y1 +λy2 = (1−λ )(x1 + z1)+λ (x2 + z2) = (1−λ )x1 +λx2 +(1−λ )z1 +λ z2.

Como (1−λ )z1 +λ z2 ∈ K por la convexidad de K, se tiene que

(1−λ )y1 +λy2 ∈ (1−λ )x1 +λx2 +K.

Luego, se cumple la inclusión (2.5). Así, mediante la desigualdad de Brunn-Minkowski se tiene que

|K∩ ((1−λ )x1 +λx2 +K)|
1
n ≥ |(1−λ )[K∩ (x1 +K)]+λ [K∩ (x2 +K)]|

1
n

≥ (1−λ ) |K∩ (x1 +K)|
1
n +λ |K∩ (x2 +K)|

1
n .

Por tanto, podemos concluir que

F ((1−λ )x1 +λx2)
1
n ≥ (1−λ )F(x1)

1
n +λF(x2)

1
n

para todo x1,x2 ∈ Rn y λ ∈ (0,1).

2.2.1. Cuerpos de Ball

En esta sección vamos a presentar los cuerpos de Ball, Kp( f ): una familia de cuerpos convexos
asociados a funciones positivas medibles. En esta sección, vamos a ver que los cuerpos de Ball son, en
efecto, cuerpos convexos y centrados en el origen, cuando f es una función log-cóncava. Además son
simétricos si f es par.

Definición 2.2. Sea f : Rn→ [0,+∞) medible con f (0) 6= 0. Dado p > 0, se define el cuerpo de Ball
asociado a f con parámetro p como

Kp( f ) =
{

x ∈ Rn :
∫

∞

0
f (rx)rp−1dr ≥ f (0)

p

}
.
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De la definición es claro que 0 ∈ Kp( f ), ya que
∫

∞

0 f (0)rp−1dr diverge. Dado u ∈ Sn−1, veamos
cuando λu ∈ Kp( f ). Mediante el cambio de variables λ r = u, se tiene que

λu ∈ Kp( f )⇔
∫

∞

0
f (rλu)rp−1dr ≥ f (0)

p

⇔ 1
λ p

∫
∞

0
f (su)sp−1ds≥ f (0)

p

⇔ λ ≤
(

1
f (0)

∫
∞

0
psp−1 f (su)ds

)1/p

.

Por tanto, Kp( f ) es un cuerpo estrellado con función radial

ρKp( f )(u) =
(

1
f (0)

∫
∞

0
psp−1 f (su)ds

)1/p

. (2.6)

Proposición 2.4. Sea f : Rn→ [0,+∞) una función medible par con f (0) 6= 0. Entonces, Kp( f ) es un
conjunto simétrico.

Demostración. Para ver que Kp( f ) es simétrico, basta con ver que para cada u ∈ Sn−1, ρKp( f )(u) =
ρKp( f )(−u).

ρKp( f )(−u) =
(

1
f (0)

∫
∞

0
psp−1 f (−su)ds

)1/p

=

(
1

f (0)

∫
∞

0
psp−1 f (su)ds

)1/p

= ρKp( f )(u).

Proposición 2.5. Para todo θ ∈ Sn−1,∫
Kn+1( f )

〈x,θ〉dx =
1

f (0)

∫
Rn
〈x,θ〉 f (x)dx. (2.7)

Demostración. Integrando en coordenadas polares, se tiene que para cualquier p > 0 y θ ∈ Sn−1,∫
Kn+1( f )

〈x,θ〉dx =
∫

Sn−1

∫
ρKn+1( f )(u)

0
〈ru,θ〉rn−1dr ·n|Bn

2|dσ(u)

=
∫

Sn−1
〈u,θ〉

∫
ρKn+1( f )(u)

0
rndr ·n|Bn

2|dσ(u)

=
∫

Sn−1
〈u,θ〉

(
ρKn+1( f )(u)

)n+1

n+1
n|Bn

2|dσ(u).

Aplicando la ecuación (2.6) para la función radial, se tiene que∫
Kn+1( f )

〈x,θ〉dx =
∫

Sn−1
〈u,θ〉 1

f (0)

∫
∞

0

n+1
n+1

sn f (su)ds ·n|Bn
2|dσ(u)

=
1

f (0)

∫
Sn−1

∫
∞

0
sn−1〈su,θ〉 f (su)ds ·n|Bn

2|dσ(u)

=
1

f (0)

∫
Rn
〈x,θ〉 f (x)dx

Por tanto, este resultado indica que Kn+1( f ) es centrado si y solo si f es una función centrada. De
forma análoga, tenemos el resultado para los momentos de orden p.
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Proposición 2.6. Para todo θ ∈ Sn−1 y p > 0,∫
Kn+p( f )

|〈x,θ〉|p dx =
1

f (0)

∫
Rn
|〈x,θ〉|p f (x)dx. (2.8)

Demostración. Procedemos análogamente a la demostración de la proposición anterior. Integrando en
coordenadas polares, se tiene que para cualquier p > 0 y θ ∈ Sn−1,

∫
Kn+p( f )

|〈x,θ〉|p dx =
∫

Sn−1

∫
ρKn+p( f )(u)

0
|〈ru,θ〉|p rn−1dr ·n|Bn

2|dσ(u)

=
∫

Sn−1
|〈u,θ〉|p

∫
ρKn+p( f )(u)

0
rn+p−1dr ·n|Bn

2|dσ(u)

=
∫

Sn−1
|〈u,θ〉|p

(
ρKn+p( f )(u)

)n+p

n+ p
n|Bn

2|dσ(u).

Aplicando la ecuación (2.6) para la función radial, se tiene que∫
Kn+p( f )

|〈x,θ〉|p dx =
∫

Sn−1
|〈u,θ〉|p 1

f (0)

∫
∞

0

n+ p
n+ p

sn+p−1 f (su)ds ·n|Bn
2|dσ(u)

=
1

f (0)

∫
Sn−1

∫
∞

0
sn−1 |〈su,θ〉|p f (su)ds ·n|Bn

2|dσ(u)

=
1

f (0)

∫
Rn
|〈x,θ〉|p f (x)dx.

En los siguientes resultados, demostraremos que si f : Rn→ [0,∞) es una función log-cóncava con
f (0) 6= 0, entonces el cuerpo de Ball asociado a f con parámetro p > 0, Kp( f ), es un cuerpo convexo.

Definición 2.3. Sea λ ∈ (0,1), γ ∈R. Si (a,b) es un par de números reales positivos, se define la media
de orden γ con coeficiente λ como

Mλ
γ (a,b) = (λaγ +(1−λ )bγ)1/γ

Si γ = 0, se define Mλ
0 (a,b) = aλ b1−λ . Si a = 0 o b = 0, se define Mλ

γ (a,b) = 0.

Teorema 2.6. Sea γ > 0 y λ ,µ > 0 tales que λ + µ = 1. Sea w,g,h : R+→ R+ funciones integrables
tales que para todo par (r,s) ∈ R+×R+

h(Mλ
−γ(r,s))≥ w(r)

λ sγ

λ sγ+µrγ g(s)
µrγ

λ sγ+µrγ . (2.9)

Entonces, ∫
∞

0
h≥Mλ

γ

(∫
∞

0
w,
∫

∞

0
g
)

Demostración. Suponemos que w y g son contínuas y estrictamente positivas. Definimos las funciones
r,s : [0,1]→ R+ mediante las ecuaciones

∫ r(t)

0
w = t

∫
∞

0
w (2.10)∫ s(t)

0
g = t

∫
∞

0
g (2.11)
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Como w y g son integrables y estrictamente positivas, es claro que r y s están bien definidas. Aplicando
la regla de Barrow a los miembros de la izquierda y derivando, se tiene que para todo t ∈ (0,1),

r′(t)w(r(t)) =
∫

∞

0
w (2.12)

s′(t)g(s(t)) =
∫

∞

0
g. (2.13)

Definimos z : [0,1]→ R+ como

z(t) = Mλ
γ (r(t),s(t)) = (λ r−γ +(1−λ )s−γ)1/−γ

Derivando z(t) se tiene que

z′(t) =
1
−γ

(λ r(t)−γ +µs(t)−γ)
1+γ

−γ (λ (−γ)r(t)−γ−1r′(t)+µ(−γ)s(t)−γ−1s′(t))

=
−γ

−γ

(
(λ r(t)−γ +µs(t)−γ)

1
−γ

)1+γ
(

λ r′(t)
r(t)γ+1 +

µs′(t)
s(t)γ+1

)
= zγ+1

(
λ r′(t)
r(t)γ+1 +

µs′(t)
s(t)γ+1

)
.

Aplicando (2.12) se tiene que

z′(t) = λ

∫
w

w(r)

( z
r

)γ+1
+λ

∫
g

g(s)

(z
s

)γ+1

= λ

∫
w

w(r)

(
(λ r−γ +µs−γ)1/−γ

r

)γ+1

+λ

∫
g

g(s)

(
(λ r−γ +µs−γ)1/−γ

s

)γ+1

= λ

∫
w

w(r)

(
λ r−γ +µs−γ

r−γ

) γ+1
−γ

+λ

∫
g

g(s)

(
λ r−γ +µs−γ

s−γ

) γ+1
−γ

= λ

∫
w

w(r)

(
sγ

λ sγ +µrγ

) γ+1
γ

+λ

∫
g

g(s)

(
rγ

λ sγ +µrγ

) γ+1
γ

=
λ sγ

λ sγ +µrγ

( ∫
w

w(r)

(
sγ

λ sγ +µrγ

)1/γ
)
+

µrγ

λ sγ +µrγ

( ∫
g

g(s)

(
rγ

λ sγ +µrγ

)1/γ
)
.

Utilizando la desigualdad aritmetico-geométrica, se tiene que

z′(t)≥

( ∫
w

w(r)

(
sγ

λ sγ +µrγ

)1/γ
) λ sγ

λ sγ+µrγ

·

( ∫
g

g(s)

(
rγ

λ sγ +µrγ

)1/γ
) µrγ

λ sγ+µrγ

.

Por otro lado, haciendo el cambio de variables x = z(t) y aplicando la hipótesis (2.9), se tiene que

∫
∞

0
h(x)dx =

∫ 1

0
h(z)z′dz

≥
∫ 1

0
w(r)

λ sγ

λ sγ+µrγ g(s)
µrγ

λ sγ+µrγ z′dz

≥
∫ 1

0
M

λ sγ

λ sγ+µrγ

0

((
sγ

λ sγ +µrγ

)1/γ ∫ ∞

0
w,
(

rγ

λ sγ +µrγ

)1/γ ∫ ∞

0
g

)
.
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Finalmente, aplicando que Mλ
0 (a,b)≥Mλ

−γ(a,b) y operando, se tiene que∫
∞

0
h(x)dx≥

∫ 1

0
M

λ sγ

λ sγ+µrγ

−γ

((
sγ

λ sγ +µrγ

)1/γ ∫ ∞

0
w,
(

rγ

λ sγ +µrγ

)1/γ ∫ ∞

0
g

)

=
∫ 1

0

(
λ sγ

λ sγ +µrγ

((
sγ

λ sγ +µrγ

)1/γ ∫ ∞

0
w

)−γ

+
µrγ

λ sγ +µrγ

((
rγ

λ sγ +µrγ

)1/γ ∫ ∞

0
g

)−γ)1/−γ

=
∫ 1

0

(
λ

(∫
∞

0
w
)−γ

+µ

(∫
∞

0
g
)−γ

)1/−γ

=
∫ 1

0
Mλ
−γ

(∫
∞

0
w,
∫

∞

0
g
)

= Mλ
−γ

(∫
∞

0
w,
∫

∞

0
g
)

Teorema 2.7. Sea f : Rn→ [0,∞) una función log-cóncava tal que f (0) > 0. Para todo p > 0, Kp( f )
es un conjunto convexo.

Demostración. Sea p > 0. Sean x,y ∈ Kp( f ), por definición se tiene que

p
∫

∞

0
f (rx)rp−1dr ≥ f (0) , p

∫
∞

0
f (ry)rp−1dr ≥ f (0) (2.14)

Sean λ ,µ > 0 tales que λ +µ = 1. Fijamos γ = 1/p y definimos w,g,h : R+→ R+ como

w(r) = f (rγx), g(s) = f (sγx), h(t) = f (tγ(λx+µy)). (2.15)

Aplicando que f es log-cóncava, se tiene que para todo par (r,s) ∈ R+×R+,

h(Mλ
−γ(r,s)) = f

(((
λ r−γ +µs−γ

)1/−γ
)γ

(λx+µy)
)

= f
(

1
λ r−γ +µs−γ

(λx+µy)
)

= f
(

λ sγ

λ sγ +µrγ
rγx+

µrγ

λ sγ +µrγ
sγy
)

≥ f (rγx)
λ sγ

λ sγ+µrγ · f (sγy)
µrγ

λ sγ+µrγ

= w(r)
λ sγ

λ sγ+µrγ ·g(s)
µrγ

λ sγ+µrγ .

Así, h,w y g satisfacen las condiciones del teorema 2,6. Por tanto,∫
∞

0
h(r)dr ≥

(
λ

(∫
∞

0
w(r)dr

)−γ

+µ

(∫
∞

0
g(r)dr

)−γ
)1/−γ

. (2.16)

Elevando ambos miembros a la potencia −γ , y aplicando las definiciones de (2.15), se tiene que(∫
∞

0
f (rγ(λx+µy))dr

)−γ

≤ λ

(∫
∞

0
f (rγx)dr

)−γ

+µ

(∫
∞

0
f (rγy)dr

)−γ

. (2.17)

Haciendo el cambio de variables t = rγ y aplicando que x,y ∈ Kp( f ), se tiene que(
p
∫

∞

0
t p−1 f (t(λx+µy))dt

)−1/p

≤ λ

(
p
∫

∞

0
t p−1 f (tx)dt

)−1/p

+µ

(
p
∫

∞

0
t p−1 f (ty)dt

)−1/p

≤ λ ( f (0))−1/p +µ ( f (0))−1/p = f (0)−1/p.
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Por tanto, se tiene que

p
∫

∞

0
t p−1 f (t(λx+µy))dt ≥ f (0), (2.18)

así que λx+µy ∈ Kp( f ), luego Kp( f ) es un conjunto convexo.

Falta por ver que Kp( f ) es un cuerpo convexo, es decir, es compacto y tiene interior no vacío, cuando
f es una función log-cóncava integrable con integral positiva.

Lema 2.1. Sea f : Rn→ [0,∞) una función medible tal que f (0)> 0. Entonces,

|Kn( f )|= 1
f (0)

∫
Rn

f (x)dx.

En particular, si f es log-cóncava y tiene integral finita positiva, entonces Kn( f ) es un cuerpo convexo.

Demostración. Procediendo como en 2.6,

|Kn( f )|=
∫

Kn( f )
dx =

∫
Sn−1

∫
ρKn( f )(u)

0
rn−1dr ·n|Bn

2|dσ(u)

=
∫

Sn−1

(
ρKn( f )(u)

)n

n
n|Bn

2|dσ(u)

Aplicando la ecuación (2.6) para la función radial, se tiene que

|Kn( f )|=
∫

Sn−1

1
f (0)

∫
∞

0

n
n

sn−1 f (su)ds ·n|Bn
2|dσ(u)

=
1

f (0)

∫
Rn

f (x)dx.

Por tanto, si f es integrable y positiva, es claro que Kn( f ) es un cuerpo convexo.

2.2.2. Inclusión entre los cuerpos de Ball 1

En esta sección vamos a ver la relación de inclusión entre los conjuntos de Ball Kq( f ) y Kp( f ) para
0 < p < q. Para ello, veremos que la función radial asociada al cuerpo Kq( f ) es mayor o igual que la
función radial asociada al cuerpo Kp( f ), para 0 < p < q. Así, se deduce que Kp( f )⊂ Kq( f ).

Lema 2.2. Sea f : [0,∞)→ [0,∞) una función log-cóncava. Entonces la función

F(p) =
(

p
‖ f‖∞

∫
∞

0
xp−1 f (x)dx

)1/p

(2.19)

es creciente en (0,∞).

Demostración. Podemos suponer sin pérdida de generalidad que ‖ f‖∞ = 1. Si no, aplicamos el mismo
procedimiento a g = f/‖ f‖∞ que tendrá norma infinito 1 y es una función log-cóncava.

Para cualquier 0 < p < q y α > 0,

F(q)q

q
=
∫

∞

0
xq−1 f (x)dx =

∫
α

0
xq−1 f (x)dx+

∫
∞

α

xq−1 f (x)dx

=
∫

α

0
xq−1 f (x)dx+

∫
∞

α

xp−1xq−p f (x)dx.
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Como q− p > 0 y α > 0, xq−p ≥ αq−p en (α,∞), se tiene que

F(q)q

q
≥
∫

α

0
xq−1 f (x)dx+α

q−p
∫

∞

α

xp−1 f (x)dx

=
∫

α

0
xq−1 f (x)dx−α

q−p
∫

α

0
xp−1 f (x)dx+α

q−p
∫

∞

0
xp−1 f (x)dx

=
∫

α

0
xq−1 f (x)dx−α

q−p
∫

α

0
xp−1 f (x)dx+α

q−p F(p)p

p
.

Aplicamos el cambio de variable x = αy, y tenemos

F(q)q

q
≥ α

q−p F(p)p

p
+α

q
∫ 1

0
yq−1 f (αy)dy−α

q
∫ 1

0
yp−1 f (αy)dy

= α
q−p F(p)p

p
−α

q
∫ 1

0
(yp−1− yq−1) f (αy)dy.

Como y ∈ (0,1) y p < q, es claro que yp−1−yq−1 ≥ 0. Además, la norma infinito de f es menor o igual
que 1, luego es claro que para y ∈ (0,1), (yp−1− yq−1) f (αy)≤ (yp−1− yq−1). Así,

F(q)q

q
≥ α

q−p F(p)p

p
−α

q
∫ 1

0
(yp−1− yq−1)dy = α

q−p F(p)p

p
−α

p
(

1
p
− 1

q

)
.

Si tomamos α = F(p), tenemos que

F(q)q

q
≥ F(p)q−p F(p)p

p
−F(p)p

(
1
p
− 1

q

)
=

F(p)q

q
.

Luego, para todo 0 < p < q, se tiene que F(p)≤ F(q), así que F es creciente en (0,∞).

Notar que si f (x) = χ[0,A](x) para algún A > 0, tenemos que

F(p) =
(

p
∫

∞

0
xp−1

χ[0,A](x)dx
)1/p

=

(
p
∫ A

0
xp−1dx

)1/p

= A

para cualquier p > 0. Es decir, para la función característica, F es constante. Podemos generalizar este
resultado para funciones características en cuerpos convexos. En general, sea f : Rn → [0,∞) tal que
f (x) = χK(x) con K un cuerpo convexo, para cualquier p > 0, tenemos que Kp(χK) = K:

Demostración. Aplicando la fórmula de la función radial (2.6), para cualquier u ∈ Sn−1,

ρKp( f )(u) =
(

p
f (0)

∫
∞

0
sp−1 f (su)ds

)1/p

=

(
p
∫

ρK(u)

0
sp−1ds

)1/p

= ρK(u).

Luego, Kp(χK) = K, ∀p ∈ (0,∞).

Procediendo del mismo modo, podemos ver la relación de contenidos entre los cuerpos de Ball
asociados a funciones log-cóncavas:

Teorema 2.8. Sea f : Rn→ [0,∞) una función log-cóncava con ‖ f‖∞ = f (0). Para cualesquiera 0 <
p < q, se tiene que Kp( f )⊂ Kq( f ).

Demostración. Es claro que para cada u ∈ Sn−1, la función f1 : [0,∞)→ [0,∞) definida como f1(x) =
f (xu) es una función log-cóncava. Luego, para cada u ∈ Sn−1 definimos F(p) como

F(p) =
(

p
‖ f1‖∞

∫
∞

0
xp−1 f1(x)dx

)1/p

=

(
p

f (0)

∫
∞

0
xp−1 f (xu)dx

)1/p

.



La Constante de Isotropía y la Conjetura del Hiperplano 27

Así, por el Lema 2.2, para 0 < p < q, F(p)≤ F(q). Aplicando esto a la fórmula radial (2.6) del cuerpo
de Ball Kp( f ), para cada u ∈ Sn−1,

ρKp( f )(u) =
(

p
f (0)

∫
∞

0
sp−1 f (su)ds

)1/p

= F(p)

≤ F(q) =
(

q
f (0)

∫
∞

0
sq−1 f (su)ds

)1/q

= ρKq( f )(u).

Luego, Kp( f )⊂ Kq( f ).

2.2.3. Inclusión entre los cuerpos de Ball 2

Hemos visto que según crece q, los cuerpos de Ball Kq( f ) son más grandes, y contienen a los demás
Kp( f ) con p < q. En esta sección vamos a ver que Kq( f ) crece de manera controlada según aumenta
q. Es decir, vamos a probar la existencia de una constante dependiente de p y q, Cp,q, para la cual
Cp,qKq( f )⊂ Kp( f ), para todo 0 < p < q.

Teorema 2.9. Sea f : [0,∞)→ [0,∞) una función log-cóncava con f (0)> 0. Entonces la función

G(p) =
(

1
f (0)Γ(p)

∫
∞

0
xp−1 f (x)dx

)1/p

=

(
p

f (0)Γ(1+ p)

∫
∞

0
xp−1 f (x)dx

)1/p

(2.20)

es decreciente en (0,∞).

Demostración. Sin pérdida de generalidad podemos suponer que f (0) = 1. Si f (0) fuera distinto a 1,
aplicamos el mismo razonamiento a g = f

f (0) , que cumple que g(0) = 1 y es log-cóncava.
Sea p > 0. Mediante el cambio de variables Cx = y, para cualquier C > 0 se tiene que∫

∞

0
xp−1e−Cxdx =

1
Cp

∫
∞

0
yp−1e−ydx =

Γ(p)
Cp . (2.21)

Si tomamos Cp =
1

G(p) , con G(p) la función definida en el enunciado, aplicando esta última igualdad
tenemos que∫

∞

0
xp−1e−Cpxdx =

Γ(p)
(Cp)

p = Γ(p)G(p)p =
Γ(p)
Γ(p)

∫
∞

0
xp−1 f (x)dx =

∫
∞

0
xp−1 f (x)dx.

Por la elección de Cp, esta igualdad muestra que∫
∞

0
xp−1e−Cpxdx =

∫
∞

0
xp−1 f (x)dx. (2.22)

Por tanto, no puede ocurrir que e−Cpx < f (x) para todo x ∈ (0,+∞). Así, existe algún x ∈ (0,+∞) para
el cual e−Cpx ≥ f (x). Por tanto, el conjunto {x > 0 : e−Cpx ≥ f (x)} no es vacío, así pues tiene ínfimo.
Tomamos el ínfimo del conjunto

x0 = ı́nf{x > 0 : e−Cpx ≥ f (x)}. (2.23)

Por la definción de ínfimo, es claro que

e−Cpx < f (x), ∀x ∈ (0,x0). (2.24)

Si x > x0, podemos encontrar un y ∈ [x0,x) tal que e−Cpy ≥ f (y), y entonces aplicando la hipótesis de
log-concavidad de f ,

e−Cpy ≥ f (y) = f
(y

x
x+
(

1− y
x

)
·0
)
≥ f (x)

y
x f (0)1− y

x = f (x)
y
x ,
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lo cual implica que
e−Cpx ≥ f (x), ∀x ∈ (x0,∞). (2.25)

Aplicando (2.25), es claro que para x ∈ (x0,+∞),∫
∞

x
t p−1 f (t)dt ≤

∫
∞

x
t p−1e−Cptdt. (2.26)

Del mismo modo, aplicando (2.24), para x ∈ (0,x0),∫ x

0
t p−1 f (t)dt ≥

∫ x

0
t p−1e−Cptdt. (2.27)

Como se tiene que ∫
∞

0
xp−1 f (x)dx =

∫
∞

0
e−Cpx f (x)dx,

las desigualdades (2.26) y (2.27) implican que para cualquier x ∈ (0,+∞) se da la desigualdad (2.26).
Es decir, para todo x > 0, ∫

∞

x
t p−1 f (t)dt ≤

∫
∞

x
t p−1e−Cptdt. (2.28)

Sea 0 < p < q, es claro que ∫
∞

0
xq−1 f (x)dx =

∫
∞

0
xp−1 f (x)xq−pdx. (2.29)

Aplicando el Teorema de Fubini,∫
∞

0
xq−1 f (x)dx =

∫
∞

0
xp−1 f (x)

∫ x

0
(q− p)tq−p−1dtdx

=
∫

∞

0

∫
∞

t
(q− p)tq−p−1xp−1 f (x)dxdt

=
∫

∞

0
(q− p)tq−p−1

∫
∞

t
xp−1 f (x)dxdt.

Aplicamos la desigualdad (2.28), y se tiene∫
∞

0
xq−1 f (x)dx≤

∫
∞

0
(q− p)tq−p−1

∫
∞

t
xp−1e−Cpxdxdt

=
∫

∞

0
xq−1e−Cpxdx.

Por último, aplicando (2.21), ∫
∞

0
xq−1 f (x)dx≤ Γ(q)

(Cp)
q . (2.30)

Por tanto, con este último resulultado tenemos que

G(q) =
(

1
Γ(q)

∫
∞

0
xq−1 f (x)dx

)1/q

≤
(

Γ(q)
Γ(q)(Cp)

q

)1/q

=
1

Cp
= G(p),

y podemos concluír que G es una función decreciente en (0,+∞).

Acabamos de ver que las funciones G(p) definidas a partir de funciones log-cóncavas son decre-
cientes en (0,+∞). Sin embargo, dependiendo de la elección f , la función G puede ser constante. Por
ejemplo, si f (x) = e−Ax para algún A > 0, tenemos que para cualquier p > 0,

G(p) =
(

1
Γ(p)

∫
∞

0
xp−1e−Axdx

)1/p

=

(
1

Γ(p)Ap

∫
∞

0
yp−1e−ydy

)1/p

=
1
A
,

con el cambio de variables y = Ax.
Antes de dar la inclusión entre los cuerpos de Ball Kp( f ) para funciones log-cóncavas, veamos que

eligiendo cierto tipo de funciones log-cóncavas relacionadas con cuerpos convexos K, para p > 0 se
tiene que Kp( f ) =CpK. Es decir, el cuerpo de Ball asociado a f con p > 0 es el convexo K dilatado una
cierta constante dependiente de p.
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Proposición 2.7. Sea K un cuerpo convexo y centrado. Definimos f :Rn→ [0,+∞) como f (x) = e−‖x‖K .
Entonces, para cualquier p > 0, Kp( f ) = Γ(1+ p)1/pK.

Demostración. Para cada u ∈ Sn−1, aplicando la fórmula radial para cuerpos de Ball (2.6),

1
Γ(1+ p)1/p ρKp( f )(u) =

(
p

pΓ(p)

∫
∞

0
sp−1 f (su)ds

)1/p

=

(
1

Γ(p)

∫
∞

0
sp−1e−s‖u‖K ds

)1/p

.

Con el cambio de variables s‖u‖K = y, se tiene que

1
Γ(1+ p)1/p ρKp( f )(u) =

(
1

Γ(p)‖u‖p
K

∫
∞

0
yp−1e−ydy

)1/p

=

(
Γ(p)

Γ(p)‖u‖p
K

)1/p

=
1
‖u‖K

= ρK(u).

Luego, Kp( f ) = Γ(1+ p)1/pK.

Vamos a generalizar este resultado para funciones log-cóncavas, para ver otra relación de inclusión
entre los cuerpos de Ball.

Teorema 2.10. Sea f :Rn→ [0,∞) una función log-cóncava con f (0)> 0. Para cualesquiera 0< p< q,
se tiene que (

1
Γ(1+q)

)1/q

Kq( f )⊂
(

1
Γ(1+ p)

)1/p

Kp( f ).

Demostración. Es claro que para cada u ∈ Sn−1, la función f1 : [0,∞)→ [0,∞) definida como f1(x) =
f (xu) es una función log-cóncava. Luego, para cada u ∈ Sn−1 definimos G(p) como

G(p) =
(

1
Γ(p) f (0)

∫
∞

0
xp−1 f1(x)dx

)1/p

=

(
p

Γ(1+ p) f (0)

∫
∞

0
xp−1 f (xu)dx

)1/p

.

Así, por el Lema 2.9, para 0 < p < q, G(p)≤ G(q). Aplicando esto a la fórmula radial (2.6) del cuerpo
de Ball Kp( f ), para cada u ∈ Sn−1,

(
1

Γ(1+ p)

)1/p

ρKp( f )(u) =
(

p
f (0)

∫
∞

0
sp−1 f (su)ds

)1/p

= F(p)

≥ F(q) =
(

q
f (0)

∫
∞

0
sq−1 f (su)ds

)1/q

=

(
1

Γ(1+q)

)1/q

ρKq( f )(u).

Por tanto, (
1

Γ(1+q)

)1/q

Kq( f )⊂
(

1
Γ(1+ p)

)1/p

Kp( f ). (2.31)

Teorema 2.11. Sea f : Rn→ [0,∞) una función log-cóncava con f (0) = ‖ f‖∞. Entonces, si 0 < p < q,
se tiene que

Γ(1+ p)1/p

Γ(1+q)1/q Kq( f )⊂ Kp( f )⊂ Kq( f ).

Demostración. Podemos asumir que f (0) = ‖ f‖∞ = 1. En caso contrario aplicamos el resultado a g =
f/ f (0).

Mediante los Teoremas 2.8 y 2.10 es directo ver que se cumple el enunciado.
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2.2.4. Acotación de la constante de isotropía

Teorema 2.12. Sea K ⊂ Rn un cuerpo isotrópico. Sea F(x) = |K ∩ (x + K)|. Entonces, para cada
dimensión n ∈ N existe una constante Cn > 0 tal que

CnLK ≤ LKn+2(F) ≤
√

2LK ,

con lı́m
n→∞

Cn =

√
2

e
.

Demostración. Como hemos visto en la Proposición 2.3, si K es un cuerpo isotrópico, la función F(x)
es 1

n−cóncava. Luego, en particular es log-cóncava. Aplicando la Proposición 2.6, se tiene que∫
Kn+2(F)

|〈x,θ〉|2 dx =
1

F(0)

∫
Rn
|〈x,θ〉|2 F(x)dx, (2.32)

con F(0) = 1. Aplicando el Teorema 2.5,∫
Rn
〈x,θ〉2F(x)dx = 2

∫
K
〈x,θ〉2dx. (2.33)

Así, se tiene que ∫
Kn+2(F)

|〈x,θ〉|2 dx = 2
∫

K
〈x,θ〉2dx = 2L2

K . (2.34)

Como hemos visto en la Proposición 2.4, si f : Rn→ [0,∞) es par, medible y f (0) 6= 0, entonces Kp( f )
es simétrico para todo p > 0. Por tanto, Kn+2(F) es un cuerpo convexo simétrico. En caso de que
|Kn+2(F)| 6= 1, tomamos el cuerpo convexo

Kn+2(F)

|Kn+2(F)|1/n ,

el cual es un cuerpo isotrópico.
Veamos la relación entre las constantes de isotropía de Kn+2(F) y LK . Es claro que

L2
Kn+2(F) =

∫
Kn+2(F)

|Kn+2(F)|1/n

|〈x,θ〉|2 dx.

Tomando el cambio de variables x = y/(|Kn+2(F)|1/n), mediante la igualdad (2.34) se tiene que

L2
Kn+2(F) =

1
|Kn+2(F)|1+2/n

∫
Kn+2(F)

|〈x,θ〉|2 dx =
2L2

K

|Kn+2(F)|1+2/n . (2.35)

Por un lado, el Teorema 2.8 indica que para cualquier f : Rn→ [0,∞) log-cóncava con f (0)> 0, se
tiene que Kn( f ) ⊂ Kn+2( f ). Por tanto, tomando f = F se tiene que |Kn(F)| ≤ |Kn+2(F)|. Además, el
Lema 2.1 dice que

|Kn(F)|= 1
F(0)

∫
Rn

F(x)dx = 1,

por ser F una medida de probabilidad, como hemos visto al principio del capítulo. Así,

L2
Kn+2(F) =

2L2
K

|Kn+2(F)|1+2/n ≤
2L2

K

|Kn(F)|1+2/n = 2L2
K . (2.36)

Por otro lado, utilizando el Teorema 2.10, es claro que

Kn+2(F)⊂ Γ(1+n+2)1/(n+2)

Γ(1+n)1/n Kn(F).
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Tomando volúmenes,

|Kn+2(F)| ≤

∣∣∣∣∣Γ(1+n+2)1/(n+2)

Γ(1+n)1/n Kn(F)

∣∣∣∣∣= Γ(1+n+2)n/(n+2)

Γ(1+n)
|Kn(F)| .

Análogamente al caso anterior,

L2
Kn+2(F) =

2L2
K

|Kn+2(F)|1+2/n ≥
(

Γ(1+n)
Γ(1+n+2)n/(n+2)

)1+2/n

2L2
K . (2.37)

Si definimos

C2
n =

(
Γ(1+n)

Γ(1+n+2)n/(n+2)

)1+2/n

·2, (2.38)

es claro que
L2

Kn+2(F) ≥C2
nL2

K . (2.39)

Finalmente, mediante las desigualdades (2.36) y (2.39), tenemos que

CnLK ≤ LKn+2(F) ≤
√

2LK , (2.40)

con la constante Cn > 0 definida en (2.38).
Simplificando Cn, se tiene que

C2
n = 2

(
Γ(1+n)

Γ(1+n+2)n/(n+2)

)1+2/n

= 2

(
Γ(1+n)1+2/n

Γ(1+n+2)(n+2)/(n+2)

)

= 2
Γ(1+n)1+2/n

Γ(1+n+2)
=

(n!)1+2/n

(n+2)!
.

Si tomamos límites cuando n→ ∞, por la fórmula de Stirling, tenemos que

lı́m
n→∞

2
(

Γ(1+n)
Γ(1+n+2)n/(n+2)

)1+2/n

= lı́m
n→∞

2
(n!)1+2/n

(n+2)!
=

2
e2 .

Por tanto,

lı́m
n→∞

Cn =

√
2

e
.

Observación 2.2. Notar que cualquier n > 0, la constante Cn es estrictamente mayor que 0, y el límite
cuando n→ ∞ de Cn es mayor que 0. Por tanto, si tomamos C como

C = ı́nf

{
2
(

Γ(1+n)
Γ(1+n+2)n/(n+2)

)1+2/n

: n > 0

}
, (2.41)

la desigualdad (2.40), nos dice que para toda dimensión n ∈ N y todo cuerpo convexo K ⊂ Rn, se tiene
que

√
CLK ≤ LKn+2(F) ≤

√
2LK

con C la constante absoluta adimensional definida en (2.41). Por tanto, si la conjetura de la constante de
isotropía se cumpliera para cuerpos simétricos con constante C1 > 0, entonces se cumple para cuerpos
convexos en general con constante C1/(

√
C)≥C1e/

√
2.
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2.3. Funciones α-cóncavas

En esta última sección del capítulo, vamos a dar resultado original para funciones α-cóncavas. De
forma análoga a la sección anterior, vamos a ver que podemos mejorar la inclusión entre los cuerpos de
Ball Kp( f ) y Kq( f ), para 0 < p < q, si f es una función α-cóncava.

En la sección anterior, hemos visto que para todo cuerpo K ⊂ Rn isotrópico, la relación entre las
constantes de isotropía de K y Kn+2(F) es

√
CLK ≤ LKn+2(F) ≤

√
2LK ,

para cierta constante absoluta C ≤ 2/e2. Como consecuencia de la acotación original para funciones
α-cóncavas que damos en esta sección, para toda dimensión n ∈ N y todo cuerpo convexo K ⊂ Rn,
existirá una constante Cn > 0 tal que

CnLK ≤ LKn+2(F) ≤
√

2LK .

Esta sucesión de constantes, (Cn)
∞
n=1, tiende a

√
1/2 si n→∞. Esta acotación implica que si se demues-

tra la conjetura de la constante de isotropía para cuerpos simétricos, con constante C1, entonces podemos
asegurar que la conjetura se cumple en general con constante C2 ≥C1

√
2, mejorando asintóticamente la

acotación existente hasta ahora.

2.3.1. Inclusión en los cuerpos de Ball

Como hemos visto en el Teorema 2.11, si f : Rn→ [0,∞) es una función log-cóncava con f (0) =
‖ f‖∞, entonces existe una relación de inclusión entre los cuerpos de Ball asociados a f dada por

Γ(1+ p)1/p

Γ(1+q)1/q Kq( f )⊂ Kp( f )⊂ Kq( f ),

con 0 < p < q. En esta sección vamos a dar la mejor relación de inclusión posible para cuerpos de Ball,
en caso de que f sea una función α-cóncava.

En primer lugar, vamos a ver que si f : [0,∞)→ [0,∞) es una función α-cóncava, entonces para
0 < p < q se tiene

Kp( f )⊂ Kq( f ).

Lema 2.3. Sea f : [0,∞)→ [0,∞) una función α-cóncava. Entonces la función

F(p) =
(

p
‖ f‖∞

∫
∞

0
xp−1 f (x)dx

)1/p

(2.42)

es creciente en (0,∞).

Demostración. Notar que si f es α-cóncava, entonces f es log-cóncava. Por tanto, basta con aplicar el
Lema 2.2 y se tiene el resultado.

Teorema 2.13. Sea f : Rn→ [0,∞) una función α-cóncava con ‖ f‖∞ = f (0). Para cualesquiera 0 <
p < q, se tiene que Kp( f )⊂ Kq( f ).

Demostración. Como f es α-cóncava, en particular es log-cóncava. Por tanto, procediendo como en el
Teorema 2.8 y utilizando el Lema 2.3 se tiene el resultado.

Veamos ahora la otra incusión. Si f : [0,∞)→ [0,∞) es una función α-cóncava, veamos que existe
una constante Cp,q > 0 que cumple que

Cp,qKq( f )⊂ Kp( f ).

para cualesquiera 0 < p < q.
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Teorema 2.14. Sea f : [0,∞)→ [0,∞) una función α-cóncava en su soporte, integrable, no idéntica-
mente nula con f (0) 6= 0. Entonces, la función

G f (p) =

(( 1
α
+ p
1
α

)
1

f (0)

∫
∞

0
pxp−1 f (x)dx

)1/p

es decreciente en p.

Demostración. Sin pérdida de generalidad podemos suponer que f (0) = 1. Si f (0) fuera distinto a 1,
aplicamos el mismo razonamiento a f1 =

f
f (0) , que cumple que f1(0) = 1 y es α-cóncava en su soporte.

Por definición, como f es una función α-cóncava, se tiene que f α es una función cóncava. Como
además, f es integrable, se tiene que f α es integrable también. Así, por ser cóncava e integrable, la
función f α tiene soporte compacto, y por tanto f también tiene soporte compacto. Definimos

M = sup{x ∈ (0,∞) ; f (x) 6= 0} .

Por lo tanto, se tiene que f (x) = 0, para todo x > M. Así,

G f (p) =

(( 1
α
+ p
1
α

)∫
∞

0
pxp−1 f (x)dx

)1/p

=

(( 1
α
+ p
1
α

)∫ M

0
pxp−1 f (x)dx

)1/p

.

Por otro lado, para alguna constante M1 > 0, definimos la función g(t) como

g(t) =


(

1− t
M1

)1/α

, si t ∈ [0,M1]

0 , si t ∈ (M1,+∞)

Notar que la función gα(t) es afín en su soporte, y por tanto también es cóncava en su soporte. Así, la
función g es α-cóncava en su soporte. Mediante el cambio de variables t = M1x, se tiene que

Gg(p)p =

( 1
α
+ p
1
α

)∫
∞

0
pt p−1g(t)dt

=

( 1
α
+ p
1
α

)∫ M1

0
pt p−1

(
1− t

M1

)1/α

dt

=

( 1
α
+ p
1
α

)
1

M1/α

1

∫ M1

0
pt p−1 (M1− t)1/α dx (cv : t = M1x)

=

( 1
α
+ p
1
α

)
1

M1/α

1

∫ 1

0
p(M1x)p−1 (M1−M1x)1/α dxM1

=

( 1
α
+ p
1
α

)
1

M1/α

1

∫ 1

0
pMp−1

1 xp−1 (1− x)1/α (M1)
1/αdxM1

=

( 1
α
+ p
1
α

)
Mp

1 p
∫ 1

0
xp−1 (1− x)1/α dx

=

( 1
α
+ p
1
α

)
Mp

1 p
(

Γ(p)Γ(1/α +1)
Γ(p+1/α +1)

)
=

(
Γ(p+1/α +1)

Γ(1/α +1)Γ(p+1)

)
Mp

1 p
(

Γ(p)Γ(1/α +1)
Γ(p+1/α +1)

)
=

1
p

Mp
1 p = Mp

1 .
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Por tanto, se tiene que Gg(p) = Gg(q) para todo q 6= p. Luego Gg(q) es constante, para todo q > 0. Si
tomamos

M1 = G f (p),

es claro que Gg(p) = G f (p). Es decir,(( 1
α
+ p
1
α

)∫
∞

0
pxp−1 f (x)dx

)1/p

=

(( 1
α
+ p
1
α

)∫
∞

0
pxp−1g(x)dx

)1/p

.

Equivalentemente, ∫
∞

0
pxp−1 f (x)dx =

∫
∞

0
pxp−1g(x)dx. (2.43)

Como estas dos integrales son iguales, y f (0) = g(0) = 1, no puede ocurrir que g(x) < f (x) para todo
x∈ (0,+∞). Así, existe algún x∈ (0,+∞) para el cual g(x)≥ f (x). Por tanto, el conjunto {x> 0 : g(x)≥
f (x)} no es vacío, así pues tiene ínfimo. Tomamos el ínfimo del conjunto

x0 = ı́nf

{
x > 0 :

(
1− x

M1

)1/α

≥ f (x)

}
. (2.44)

Por la definción de ínfimo, es claro que

g(x)< f (x), ∀x ∈ (0,x0). (2.45)

Veamos que g(x) ≥ f (x), para x > x0. Sea y > x0, tomamos λ > 0 de forma que x0 = λ0+(1−λ )y.
Así, como f 1/α es cóncava y g1/α es afín, se tiene que

f 1/α(x0) = f 1/α(λ0+(1−λ )y)≥ λ f 1/α(0)+(1−λ ) f 1/α(y)

g1/α(x0) = g1/α(λ0+(1−λ )y) = λg1/α(0)+(1−λ )g1/α(y).

Por elección de x0, se tiene que f (x0) = g(x0). Por lo tanto,

λg1/α(0)+(1−λ )g1/α(y)≥ λ f 1/α(0)+(1−λ ) f 1/α(y).

Como f (0) = g(0) = 1,

g(y)≥ f (y).

Por tanto, en general para cualquier y ∈ (x0,∞), se tiene que g(y)≥ f (y).
Retomando la igualdad (2.43), teníamos que

1( 1
α
+p
1
α

) (G f (p)p−Gg(p)p) =
∫

∞

0
pt p−1( f (t)−g(t))dt = 0.

Por tanto, ∫ x0

0
pt p−1( f (t)−g(t))dt−

∫
∞

x0

pt p−1(g(t)− f (t))dt = 0. (2.46)

Así, para q > p se tiene que

G f (q)q−Gg(q)q( 1
α
+q
1
α

) =
∫

∞

0
qtq−1( f (t)−g(t))dt

=
∫ x0

0
qtq−1( f (t)−g(t))dt−

∫
∞

x0

qtq−1(g(t)− f (t))dt

=
q
p

(∫ x0

0
pt p−1tq−p( f (t)−g(t))dt−

∫
∞

x0

pt p−1tq−p(g(t)− f (t))dt
)

≤ q
p

xq−p
0

(∫ x0

0
pt p−1( f (t)−g(t))dt−

∫
∞

x0

pt p−1(g(t)− f (t))dt
)
.
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Mediante la igualdad 2.46, es claro que

G f (q)q−Gg(q)q( 1
α
+q
1
α

) ≤ q
p

xq−p
0

(∫ x0

0
pt p−1( f (t)−g(t))dt−

∫
∞

x0

pt p−1(g(t)− f (t))dt
)

=
q
p

xq−p
0 ·0 = 0.

Por tanto, se tiene que para 0 < p < q,

G f (q)−Gg(q)≤ 0.

Por definición de g, se tiene que Gg(q) = Gg(p) = G f (p). Por tanto, podemos concluir que para 0 <
p < q,

G f (q)−G f (p)≤ 0.

Así, queda demostrado que la función G f (p) es decreciente para p ∈ (0,∞).

Teorema 2.15. Sea f : Rn→ [0,∞) una función α-cóncava con f (0)> 0. Para cualesquiera 0 < p < q,
se tiene que ( 1

α
+ p
1
α

)1/q

Kq( f )⊂
( 1

α
+ p
1
α

)1/p

Kp( f ).

Demostración. Análogamente a la demostración del Teorema 2.10, para cada u ∈ Sn−1 definimos la
función f1 : [0,∞)→ [0,∞) por f1(x) = f (xu). Como f es una función α-cóncava, es claro que f1 es
una función α-cóncava. Luego, para cada u ∈ Sn−1 definimos G f (p) como

G f (p) =

(( 1
α
+ p
1
α

)
1

f (0)

∫
∞

0
pxp−1 f1(x)dx

)1/p

=

(( 1
α
+ p
1
α

)
1

f (0)

∫
∞

0
pxp−1 f (xu)dx

)1/p

.

Así, por el Teorema 2.14, para 0 > p > q, G f (p)≤ G f (q). Aplicando esto a la fórmula radial (2.6) del
cuerpo de Ball Kp( f ), para cada u ∈ Sn−1,( 1

α
+ p
1
α

)1/p

ρKp( f )(u) =

(( 1
α
+ p
1
α

)
1

f (0)

∫
∞

0
psp−1 f (su)ds

)1/p

= G f1(p)

≥ G f1(q) =

(( 1
α
+q
1
α

)
1

f (0)

∫
∞

0
qsq−1 f (su)ds

)1/q

=

( 1
α
+ p
1
α

)1/q

ρKq( f )(u).

Por tanto, ( 1
α
+q
1
α

)1/q

Kq( f )⊂
( 1

α
+ p
1
α

)1/p

Kp( f ). (2.47)

Mediante los Teoremas 2.13 y 2.15, ya estamos preparados para ver la inclusión en los cuerpos de
Ball para funciones α-cóncavas.

Teorema 2.16. Sea f : Rn→ [0,∞) una función α-cóncava con f (0) = ‖ f‖∞. Entonces, si 0 < p < q,
se tiene que ( 1

α
+q
1
α

)1/q

( 1
α
+p
1
α

)1/p Kq( f )⊂ Kp( f )⊂ Kq( f ).

Demostración. Podemos asumir sin pérdida de generalidad que f (0) = ‖ f‖∞ = 1. En caso contrario
aplicamos el resultado a g = f/ f (0).

Mediante los Teoremas 2,13 y 2,15 es directo ver que se cumple el enunciado.
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2.3.2. Acotación de la constante de isotropía

En esta sección vamos a acotar superior e inferiormente la constante de isotropía de de un cuerpo
isotrópico, por la constante de isotropía de un cuerpo de Ball que asociaremos a él. Este resultado es
original, y mejora las constantes que se utilizaban en la acotación.

Teorema 2.17. Sea K ⊂ Rn un cuerpo isotrópico y sea F(x) = |K ∩ (x+K)|. Entonces, para cada
dimensión n ∈ N existe una constante Cn > 0 tal que

CnLK ≤ LKn+2(F) ≤
√

2LK ,

con lı́m
n→∞

Cn =

√
1
2

.

Demostración. Como hemos visto en la Proposición 2,3, si K es un cuerpo isotrópico, la función F(x)
es 1

n−cóncava. Luego, en particular es α-cóncava, con α = 1
n . Aplicando la Proposición 2,6, se tiene

que ∫
Kn+2(F)

|〈x,θ〉|2 dx =
1

F(0)

∫
Rn
|〈x,θ〉|2 F(x)dx, (2.48)

con F(0) = 1. Aplicando el Teorema 2,5,∫
Rn
〈x,θ〉2F(x)dx = 2

∫
K
〈x,θ〉2dx. (2.49)

Así, se tiene que ∫
Kn+2(F)

|〈x,θ〉|2 dx = 2
∫

K
〈x,θ〉2dx = 2L2

K . (2.50)

Como hemos visto en la Proposición 2,4, si f : Rn→ [0,∞) es par, medible y f (0) 6= 0, entonces Kp( f )
es simétrico para todo p > 0. Por tanto, Kn+2(F) es un cuerpo convexo simétrico. En caso de que
|Kn+2(F)| 6= 1, tomamos el cuerpo convexo

Kn+2(F)

|Kn+2(F)|1/n ,

el cual es un cuerpo isotrópico.
Veamos la relación entre las constantes de isotropía de Kn+2(F) y LK . Es claro que

L2
Kn+2(F) =

∫
Kn+2(F)

|Kn+2(F)|1/n

|〈x,θ〉|2 dx.

Tomando el cambio de variables x = y/(|Kn+2(F)|1/n), mediante la igualdad (2.50) se tiene que

L2
Kn+2(F) =

1
|Kn+2(F)|1+2/n

∫
Kn+2(F)

|〈x,θ〉|2 dx =
2L2

K

|Kn+2(F)|1+2/n . (2.51)

Por un lado, el Teorema 2.13 indica que para cualquier f : Rn→ [0,∞) α-cóncava con f (0)> 0, se
tiene que Kn( f ) ⊂ Kn+2( f ). Por tanto, tomando f = F se tiene que |Kn(F)| ≤ |Kn+2(F)|. Además, el
Lema 2.1 dice que

|Kn(F)|= 1
F(0)

∫
Rn

F(x)dx = 1,

por ser F una medida de probabilidad, como hemos visto al principio del capítulo. Así,

L2
Kn+2(F) =

2L2
K

|Kn+2(F)|1+2/n ≤
2L2

K

|Kn(F)|1+2/n = 2L2
K . (2.52)
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Por otro lado, como F es una función α-cóncava, con α = 1
n , utilizando el Teorema 2.15, es claro

que

Kn+2(F)⊂

( 1
α
+n
1
α

)1/n

( 1
α
+n+2

1
α

)1/(n+2) Kn(F) =

(n+n
n

)1/n(n+n+2
n

)1/(n+2) Kn(F).

Tomando volúmenes,

|Kn+2(F)| ≤

∣∣∣∣∣∣
(2n

n

)1/n(2n+2
n

)1/(n+2) Kn(F)

∣∣∣∣∣∣=
(2n

n

)(2n+2
n

)n/(n+2)
|Kn(F)| .

Análogamente al caso anterior,

L2
Kn+2(F) =

2L2
K

|Kn+2(F)|1+2/n ≥

(2n+2
n

)n/(n+2)(2n
n

)
1+2/n

2L2
K . (2.53)

Por tanto, tomando

C2
n = 2

(2n+2
n

)n/(n+2)(2n
n

)
1+2/n

,

es claro que
L2

Kn+2(F) ≥C2
nL2

K . (2.54)

Finalmente, mediante las desigualdades (2.52) y (2.54), tenemos que

CnLK ≤ LKn+2(F) ≤
√

2LK . (2.55)

Simplificando C2
n , se tiene que

C2
n = 2

(2n+2
n

)n/(n+2)(2n
n

)
1+2/n

= 2

(2n+2
n

)(2n
n

)1+2/n .

Si tomamos límites cuando n→ ∞, aplicando la fórmula de Stirling, tenemos que

lı́m
n→∞

2

(2n+2
n

)(2n
n

)1+2/n =
1
2
.

Por tanto,

lı́m
n→∞

Cn =

√
1
2
.

Este resultado original mejora la relación que entre las constantes de isotropía de cuerpos simétricos
y cuerpos no necesariamente simétricos.

Observación. Notar que cualquier n > 0, la constante Cn es estrictamente mayor que 0, y el límite
cuando n→ ∞ de Cn es 1/2. Por tanto, si tomamos C como

C = ı́nf

2

(2n+2
n

)(2n
n

)1+2/n : n > 0

 , (2.56)
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es claro que C > 0. Así, mediante la desigualdad (2.55), se tiene que para toda dimensión n ∈ N y todo
cuerpo convexo K ⊂ Rn,

√
CLK ≤ LKn+2(F) ≤

√
2LK (2.57)

con C la constante absoluta adimensional definida en (2.56). Como consecuencia de la desigualdad
(2.57), si la conjetura de la constante de isotropía se cumpliera para cuerpos simétricos con constante
C1 > 0, entonces se cumple para cuerpos convexos en general con constante mayor o igual a C1/(

√
C)≥

C1
√

2.



Capítulo 3

La conjetura del hiperplano

En este capítulo vamos a presentar otra de las principales cuestiones de este trabajo: la conjetura
del hiperplano. Esta conjetura afirma que todo cuerpo convexo centrado de volumen 1 tiene una sección
que pasa por el origen, cuyo volumen es mayor o igual a una constante absoluta c > 0.

En este capítulo veremos que esta conjetura está muy relacionada con la conjetura de la constante
de isotropía que presentamos en el capítulo anterior. De hecho, veremos que son equivalentes. Es decir,
si una de las conjeturas se cumple, la otra se satisface también. Para ello, daremos una desigualdad
entre la constante de isotropía de un cuerpo convexo y de sus secciones centrales, la cual mejoraremos
utilizando funciones α-cóncavas.

3.1. Momentos de Inercia y secciones de hiperplanos maximales

En esta sección vamos a explicar la relación entre los momentos de inercia de un cuerpo convexo y
el volumen de secciones del cuerpo mediante hiperplanos pasando por el origen.

Teorema 3.1. Sea K un cuerpo isotrópico en Rn. Para todo θ ∈ Sn−1 se tiene

c1

LK
≤ |K∩θ

⊥| ≤ c2

LK
(3.1)

donde c1,c2 > 0 son constantes absolutas.

Por lo tanto, si K es un cuerpo isotrópico, todas las secciones que pasan por el origen tienen un
volumen similar. Este resultado procede de una serie de observaciones en los resultados siguientes. En
este caso, vamos a demostrar este teorema para cuerpos isotrópicos simétricos. En el caso de cuerpos
isotrópicos no simétricos, se tiene la prueba en [7, Th. 3.1.2] .

Para demostrar este Teorema, vamos a demostrar primero la siguiente desigualdad.

Teorema 3.2. Sea K ⊂ Rn un cuerpo convexo simétrico de volumen 1. Entonces, para cualquier q > 0
se tiene que

1
2(q+1)1/q

1
|K∩θ⊥|

≤
(∫

K
|〈x,θ〉|q

)1/q

≤ C ·mı́n{q,n}
|K∩θ⊥|

, (3.2)

para alguna constante C > 0.

Para probar este Teorema, vamos a comenzar probando primero la cota inferior.

Teorema 3.3. Sea K un cuerpo simétrico de volumen 1 en Rn. Para todo q > 0 y θ ∈ Sn−1,(∫
K
|〈x,θ〉|q

)1/q

≥ 1
2(q+1)1/q

1
|K∩θ⊥|

.

39
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Demostración. Por el Lema 2,2, sabemos que si f : [0,+∞)→ [0,+∞) es una función log-cóncava,
entonces

F(p) =
(

p
‖ f‖∞

∫
∞

0
xp−1 f (x)dx

)1/p

(3.3)

es una función creciente. Sea θ ∈ Sn−1, vamos a aplicar este resultado a la función

f (t) = χ[0,+∞)(t) · |K∩{〈x,θ〉= t}|. (3.4)

Esta función se puede ver fácilmente que es log-cóncava aplicando la desigualdad de Brunn-Minkowski.
Además, ‖ f‖∞ = f (0) = |K∩θ⊥|. Así,

F(q+1) =
(

q+1
‖ f‖∞

∫
∞

0
tq|K∩{〈x,θ〉= t}|dt

)1/(q+1)

≥ F(1) =
1
‖ f‖∞

∫
∞

0
|K∩{〈x,θ〉= t}|dt

=
1

|K∩θ⊥|

∫
∞

0
|K∩{〈x,θ〉= t}|dt.

Como K es simétrico y ∫
∞

−∞

|K∩{〈x,θ〉= t}|= 1,

es claro que ∫
∞

0
|K∩{〈x,θ〉= t}|dt =

1
2
.

Por tanto, para todo q > 0,(
q+1
‖ f‖∞

∫
∞

0
tq|K∩{〈x,θ〉= t}|dt

)1/(q+1)

≥ 1
|K∩θ⊥|

1
2
. (3.5)

Como K es simétrico, con el cambio de variable t =−s, es claro que∫
∞

0
tq|K∩{〈x,θ〉= t}|dt =

∫ 0

−∞

(−s)q|K∩{〈x,θ〉=−s}|ds

=
∫ 0

−∞

|s|q|K∩{〈x,θ〉= s}|ds

Por tanto, es claro que ∫
∞

−∞

|t|q|K∩{〈x,θ〉= s}|ds = 2
∫

∞

0
tq|K∩{〈x,θ〉= t}|dt

Aplicando esto a la igualdad (3.5), se tiene que

1
|K∩θ⊥|

1
2
≤
(

q+1
‖ f‖∞

1
2

∫
∞

−∞

|t|q|K∩{〈x,θ〉= t}|dt
)1/(q+1)

=

(
q+1
|K∩θ⊥|

1
2

∫
K
|〈x,θ〉|qdx

)1/(q+1)

.

Tomando la potencia (q+1) de la expresión, se tiene que

1
|K∩θ⊥|q+1

1
2q+1 ≤

q+1
|K∩θ⊥|

1
2

∫
K
|〈x,θ〉|qdx.
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Equivalentemente,

1
|K∩θ⊥|q

1
2q(q+1)

≤
∫

K
|〈x,θ〉|qdx.

Tomando la raíz q-ésima de ambos miembros, se tiene que

1
|K∩θ⊥| ·2(q+1)1/q ≤

(∫
K
|〈x,θ〉|qdx

)1/q

.

Observación. Si tomamos K = 1
2 Bn

∞ y θ = e1, con e1 un vector de la base canónica, la desigualdad del
Teorema 3.3 pasa a ser una igualdad. Como

∣∣1
2 Bn

∞∩θ⊥
∣∣= 1, se tiene que

∫
1
2 Bn

∞

|〈x,e1〉|q = 2
∫ 1

2

0
tq =

1
2q+1(q+1)

=
1

2q(q+1)
1∣∣1

2 Bn
∞∩θ⊥

∣∣q .
En [7, Prop. 3.1.4], podemos encontrar un resultado similar al Teorema 3.3 para cuerpos no necesa-

riamente simétricos.

Lema 3.1. Sea K un cuerpo convexo y centrado de volumen 1 en Rn. Para todo q > 0 y θ ∈ Sn−1,(∫
K
|〈x,θ〉|q

)1/q

≥ 1
2e(q+1)1/q

1
|K∩θ⊥|

.

Veamos ahora la cota superior de la desigualdad 3.2.

Teorema 3.4. Sea K un cuerpo centrado y simétrico de volumen 1 en Rn. Para todo q > 0 y θ ∈ Sn−1,
se tiene que (∫

K
|〈x,θ〉|q

)1/q

≤ C ·mı́n{q,n}
|K∩θ⊥|

.

para alguna constante absoluta C > 0.

Demostración. De forma análoga a la demostración del Teorema 3.3, sea θ ∈ Sn−1, consideramos la
función

f (t) = χ[0,+∞)(t) · |K∩{〈x,θ〉= t}|.

que es log-cóncava, y alcanza su máximo en 0, es decir, ‖ f‖∞ = f (0). El Teorema de Brunn Minkowski
nos dice que esta función es en particular 1

n−1−cóncava. Por lo tanto, aplicando el Teorema 2.14 a f ,
tenemos que la función

G f (p) =
((

n−1+ p
n−1

)
p

f (0)

∫
∞

0
t p−1 f (t)dt

)1/p

=

(
Γ(n+ p)
Γ(n)Γ(p)

1
|K∩θ⊥|

∫
∞

0
t p−1|K∩{〈x,θ〉= t}|dt

)1/p

es decreciente. Por tanto,

G f (q+1) =
(

Γ(n+q+1)
Γ(n)Γ(q+1)

1
|K∩θ⊥|

∫
∞

0
tq|K∩{〈x,θ〉= t}|dt

)1/(q+1)

≤ G(1) =
Γ(n+1)
Γ(n)Γ(1)

1
|K∩θ⊥|

∫
∞

0
|K∩{〈x,θ〉= t}|dt

=
n

|K∩θ⊥|

∫
∞

0
|K∩{〈x,θ〉= t}|dt
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Razonando como en la demostración del Teorema anterior, como |K|= 1,∫
∞

−∞

|K∩{〈x,θ〉= t}|dt = 1.

Además, como K es simétrico, es claro que∫
∞

0
|K∩{〈x,θ〉= t}|dt =

1
2
=
∫ 0

−∞

|K∩{〈x,θ〉= t}|dt. (3.6)

Por tanto, para todo q > 0,(
Γ(n+q+1)
Γ(n)Γ(q+1)

1
|K∩θ⊥|

∫
∞

0
tq|K∩{〈x,θ〉= t}|dt

)1/(q+1)

≤ n
|K∩θ⊥|

1
2
. (3.7)

Razonando como en Teorema anterior, como K es simétrico, con el cambio de variable t =−s, es claro
que ∫

∞

0
tq|K∩{〈x,θ〉= t}|dt =

∫ 0

−∞

(−s)q|K∩{〈x,θ〉=−s}|ds

=
∫ 0

−∞

|s|q|K∩{〈x,θ〉= s}|ds

Por tanto, es claro que ∫
∞

−∞

|t|q|K∩{〈x,θ〉= s}|ds = 2
∫

∞

0
tq|K∩{〈x,θ〉= t}|dt

Aplicando esto a la igualdad (3.7), se tiene que

n
|K∩θ⊥|

1
2
≥
(

Γ(n+q+1)
Γ(n)Γ(q+1)

1
|K∩θ⊥|

1
2

∫
∞

−∞

tq|K∩{〈x,θ〉= t}|dt
)1/(q+1)

=

(
Γ(n+q+1)
Γ(n)Γ(q+1)

1
|K∩θ⊥|

1
2

∫
K
|〈x,θ〉|qdx

)1/(q+1)

.

Tomando la potencia (q+1) de la expresión, se tiene que

nq+1

|K∩θ⊥|q+1
1

2q+1 ≥
Γ(n+q+1)
Γ(n)Γ(q+1)

1
|K∩θ⊥|

1
2

∫
K
|〈x,θ〉|qdx.

Equivalentemente,

nq+1

|K∩θ⊥|q
1
2q

Γ(n)Γ(q+1)
Γ(n+q+1)

≥
∫

K
|〈x,θ〉|qdx

Tomando la raíz q-ésima de ambos miembros, se tiene que

n(q+1)/q

|K∩θ⊥|
1
2

(
Γ(n)Γ(q+1)
Γ(n+q+1)

)1/q

≥
(∫

K
|〈x,θ〉|qdx

)1/q

. (3.8)

Vamos a acotar la función(
Γ(n)Γ(q+1)
Γ(n+q+1)

)1/q

·n(q+1)/q =

(
Γ(n+1)Γ(q+1)

Γ(n+q+1)

)1/q

·n.
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Utilizando la fórmula de stirling, existe una constante C > 0 tal que

(
Γ(n+1)Γ(q+1)

Γ(n+q+1)

)1/q

·n≤C

(
qqe−q√2πq nne−n

√
2πn

(n+q)(n+q)e−(n+q)
√

2π(n+q)

)1/q

·n

= (
√

2π)1/qC
qn

n+q
1(

1+ q
n

)n/q

(√
nq

n+q

)1/q

Notar que si n≥ q, entonces

1(
1+ q

n

)n/q ≤
1
2
,

ya que es estrictamente decreciente en n, y su límite cuando n→ ∞ es 1/e. Y si q > n, como

lı́m
q→∞

1(
1+ q

n

)n/q = 1

existe una constante C1 > 0, tal que esta expresión es menor que C1. Así, tomando C2 = máx{C1,1/2}
y C3 =C

√
2π , se tiene que

(
Γ(n+1)Γ(q+1)

Γ(n+q+1)

)1/q

·n≤C2C3

(
1

1
q +

1
n

)(
1

1
q +

1
n

)1/(2q)

.

Notar que (
1

1
q +

1
n

)
≤mı́n{n,q}.

Así, si n≥ q, (
1

1
q +

1
n

)2/q

≤mı́n{n,q}2/q ≤ q2/q.

Esta función es asintóticamente equivalente a 1, luego se puede acotar por una constante C4 > 0. De
forma análoga, si q > n, entonces(

1
1
q +

1
n

)2/q

≤mı́n{n,q}2/q ≤ n2/q ≤ n2/n,

que también se puede acotar por una constante C5 > 0. Por tanto, si definimos C6 = máx{C4,C5}, se
tiene que (

Γ(n+1)Γ(q+1)
Γ(n+q+1)

)1/q

·n≤C2C3 mı́n{n,q}C6.

Así, volviendo a la expresión (3.8), podemos asegurar que existe una constante absoluta C > 0 tal que(∫
K
|〈x,θ〉|qdx

)1/q

≤ C ·mı́n{n,q}
2|K∩θ⊥|

. (3.9)
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Observación. En [7, Prop. 3.1.5], podemos encontrar un resultado similar en el que solo se tiene en
cuenta la log-concavidad de f , y con ello se obtiene la cota(∫

K
|〈x,θ〉|q

)1/q

≤ C ·q
|K∩θ⊥|

,

para alguna constante C > 0 absoluta. En este trabajo, gracias al estudio que hemos hecho de funciones
α-cóncavas, hemos mejorado esa acotación, teniendo en cuenta que dado un cuerpo convexo K ⊂ Rn,
la función f (t) dada por

f (t) = χ[0,+∞)(t) · |K∩{〈x,θ〉= t}|

es 1
n−1−cóncava, mejorando asintóticamente la cota superior existente de los momentos centrales de

orden q.

Con estos 2 teoremas, hemos acotado los momentos de orden q de un cuerpo convexo, centrado y
simétrico K. Es claro que si K es isotrópico, y tomamos q = 2,(∫

K
|〈x,θ〉|2dx

)1/2

= L2
K . (3.10)

Por tanto, aplicando estos teoremas, vamos a obtener las cotas necesarias para demostrar el Teorema
3.1.

Demostración del Teorema 3.1. Sea K isotrópico y simétrico en Rn. Sea θ ∈ Sn−1, si tomamos q = 2 en
la desiguldad del Teorema 3.3, se tiene que

LK =

(∫
K
|〈x,θ〉|2

)1/2

≥ 1
2(3)1/2

1
|K∩θ⊥|

.

Equivalentemente,

|K∩θ
⊥| ≥ 1

LK2
√

3
. (3.11)

Por otro lado, tomando q = 2 en la desigualdad del Teorema 3,4,

LK =

(∫
K
|〈x,θ〉|2

)1/2

≤ C ·2
|K∩θ⊥|

.

Equivalentemente,

|K∩θ
⊥| ≤ C ·2

LK
. (3.12)

Por tanto, las desigualdades (3.11) y (3.12), aseguran que existen constantes absolutas c1,c2 tales que
para cualquier θ ∈ Sn−1,

c1

LK
≤ |K∩θ

⊥| ≤ c2

LK
(3.13)

3.2. La conjetura del hiperplano

En esta sección presentamos la conjetura del hiperplano, y la relacionamos con la conjetura de la
constante de isotropía.

Conjetura 3.1. (Conjetura del hiperplano). Existe una constante absoluta c > 0 que satisface la si-
guiente propiedad: para todo n ≥ 1 y para todo cuerpo convexo centrado K de volumen 1, existe
θ ∈ Sn−1 tal que

|K∩θ
⊥| ≥ c (3.14)
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Esta conjetura es equivalente a la conjetura de la constante de isotropía. Es decir, una respuesta
afirmativa en alguno de los dos implicaría que la otra conjetura es cierta. Supongamos que la conjetura
del hiperplano es cierta. Si K es un cuerpo isotrópico, el teorema 3.1 muestra que para todo θ ∈ Sn−1,

c1

LK
≤ |K∩θ

⊥| ≤ c2

LK
.

Como existe un θ para el cual (3.14) se cumple, para ese θ tenemos que

c≤ |K∩θ
⊥| ≤ c2

LK
.

Así,
LK ≤

c2

c
. (3.15)

De la misma forma, si existe una cota superior C para la constante de isotropía, entonces se satisface
la conjetura del hiperplano. Una forma de demostrarlo es utilizando el elipsoide de inercia de Binet.

Definición 3.1. Sea K un cuerpo convexo de volumen 1 y centrado. El elipsoide de Binet de K es la
bola unidad de la norma dada por

‖y‖EB(K) =

(∫
K
〈x,y〉2dx

) 1
2

. (3.16)

Así, el elipsoide de Binet de K es

EB(K) = {y ∈ Rn|
∫

K
〈x,y〉2dx≤ 1}

= {y ∈ Rn|
∫

K

(
n

∑
i=1

xiyi

)(
n

∑
j=1

xiyi

)
dx≤ 1}

= {y ∈ Rn|
n

∑
i, j=1

yiy j

∫
K

xix jdx≤ 1}

= {y ∈ Rn|〈y,My〉 ≤ 1},

donde M es una matriz n×n cuya posición (i, j) es

(M)i, j =
∫

K
xix jdx. (3.17)

Por tanto, es claro que (M)i, j = (M) j,i para todo i, j, luego M es simétrica. Además, podemos expresar
la norma asociada al elipsoide de Binet como

‖y‖2
EB(K) =

∫
K
〈x,y〉2dx = 〈y,My〉, (3.18)

por lo que es claro que M es una matriz definida positiva. Así pues, existe D, una matriz diagonal n×n,
y U, una matriz ortogonal n×n tal que M =U tDU . Definimos D1/2 como la matriz diagonal D1/2 que
cumple que D1/2

i,i es la raíz cuadrada de Di,i, para todo i = 1, ...,n. Así, A =U tD1/2U satisface que

M =U tDU =U tD1/2(UU t)D1/2U = (U tD1/2U)(U tD1/2U) = (U tD1/2U)t(U tD1/2U) = AtA

Por tanto, podemos expresar EB(K) en términos de A:

EB(K) = {y ∈ Rn|〈y,My〉 ≤ 1}
= {y ∈ Rn|〈y,AtAy〉 ≤ 1}
= {y ∈ Rn|〈Ay,Ay〉 ≤ 1}
= {A−1z ∈ Rn|〈z,z〉 ≤ 1}
= A−1{z ∈ Rn||z|2 ≤ 1}= A−1Bn

2.
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Tomando volúmenes, tenemos que

|EB(K)|=
|Bn

2|
|det(A)|

=
|Bn

2|√
|det(M)|

. (3.19)

Sea K un cuerpo convexo centrado y de volumen 1, y T ∈ SL(n). Entonces, aplicando (3.18) se tiene
que ∫

T K
〈x,y〉2dx =

∫
K
〈T z,y〉2dz =

∫
K
〈x,T ty〉2dy

= 〈T ty,MT ty〉= 〈y,T MT ty〉.

Es decir, análogamente a (3.18), la matriz M(T K) asociada la norma generada por EB(T K) es T MT t ,
con M la matriz asociada a la norma generada por EB(K). Así, procediendo como en (3.19), tenemos
que

|EB(T K)|=
|Bn

2|√
|det(M(T K))|

=
|Bn

2|√
|det(T tMT )|

=
|Bn

2|√
|det(M)|

= |EB(K)| (3.20)

Por tanto, el volumen del elipsoide de Binet asociado a una transformación lineal de un cuerpo convexo
K mediante una matriz T ∈ SL(n), es igual al volumen del elipsoide de Binet asociado al cuerpo convexo
K.

Si K es isotrópico, ∫
K
〈x,θ〉2dx = L2

K ,

para todo θ ∈ Sn−1. Así,

Mi,i =
∫

K
x2

i dx =
∫

K
〈x,ei〉2dx = L2

K ,

y para i 6= j,

Mi, j =
∫

K
xix jdx = 0

por las propiedades vistas de los cuerpos isotrópicos. Así, aplicando (3.19), si K es un cuerpo isotrópico,

|EB(K)|=
|Bn

2|√
|det(M)|

=
|Bn

2|√
L2n

K

=
|Bn

2|
Ln

K
. (3.21)

Como hemos visto en el Teorema 2.2, si K es un cuerpo convexo centrado de volumen 1, existe una
transformación lineal T tal que T K está en posición isotrópica. Por tanto, mediante el resultado (3.20),
tenemos que esta última igualdad, (3.21), se cumple para cualquier cuerpo convexo K de volumen 1 y
centrado.

Por otro lado,

|Bn
2|

Ln
K

= |EB(K)|=
∫

Sn−1

∫
ρEB(K)(θ)

0
rn−1dr ·n|Bn

2|dσ(θ)

=
∫

Sn−1

(
ρEB(K)(θ)

)n |Bn
2|dσ(θ) =

∫
Sn−1

|Bn
2|

‖θ‖n
EB(K)

dσ(θ)

≤
|Bn

2|
mı́nθ∈Sn−1 ‖θ‖n

EB(K)

siendo ρEB(K)(θ) la función radial en EB(K), que por definición es igual a
(
‖θ‖EB(K)

)−1. Por tanto,

mı́n
θ∈Sn−1

‖θ‖EB(K) ≤ LK . (3.22)
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Es decir,

mı́n
θ∈Sn−1

(∫
K
〈x,θ〉2dx

)1/2

≤ LK . (3.23)

Podemos ver ahora que la conjetura de la constante de isotropía implica la conjetura del hiperplano.
Supongamos que se satisface la conjetura de la constante de isotropía. Sea K ⊂Rn es un cuerpo convexo
centrado de volumen 1. Éste último resultado, (3.23), implica que existe un θ ∈ Sn−1 tal que(∫

K
〈x,θ〉2dx

)1/2

≤ LK ≤C. (3.24)

Por tanto, el Lema 3.1 muestra que

1
2e
√

3
1

|K∩θ⊥|
≤
(∫

K
〈x,θ〉2dx

)1/2

≤ LK ≤C. (3.25)

para algún θ ∈ Sn−1. Y por tanto, para todo convexo K centrado y de volumen 1 existe un θ ∈ Sn−1 para
el cual

|K∩θ
⊥| ≥ 1

2eC
√

3
. (3.26)





Capítulo 4

Respuestas parciales

La conjetura de la constante de isotropía, si bien no ha sido demostrada en toda su generalidad, se
puede probar para ciertas clases de cuerpos convexos. En este capítulo vamos a ver algunas respuestas
parciales afirmativas a esta conjetura.

En las secciones 4.1 y 4.2 vamos a ver que en ciertas clases de cuerpos simétricos podemos acotar su
constante de isotropía por una constante absoluta. En la sección 4.1, trabajaremos con cuerpos convexos
incondicionales. Este resultado es consecuencia de la simetría que tienen esta clase de cuerpos respecto
de cualquier hiperplano coordenado. Para ello, basaremos la demostración en la desigualdad de Loomis-
Whitney. En la sección 4.2 trataremos con cuerpos 2-convexos simétricos: un clase de cuerpos que
cumple ciertas condiciones de convexidad. En este caso, su constante de isotropía se puede acotar por
una constante dependiente del tipo de 2-convexidad del cuerpo.

En las secciones 4.3 y 4.4 trabajaremos con politopos simétricos. En la sección 4.3, veremos que
para politopos simétricos de N vértices, podemos acotar su constante de isotropía por una función del
orden de log(N). En la sección 4.4, trataremos con polítopos aleatorios gaussianos. Es decir, cuyos
vértices son generados por variables aleatorias gaussianas. En ese caso, con probabilidad muy alta,
podemos acotar por una constante absoluta su constante de isotropía.

Por último, veremos otras acotaciones de la constante de isotropía para politopos aleatorios no ne-
cesariamente gaussianos.

4.1. Cuerpos convexos incondicionales

En esta sección estudiaremos el caso de cuerpos convexos incondicionales. Esta clase de cuerpos
convexos cumple que si x = (x1, ...,xn) ∈ K, entonces x = (ε1x1, ...,εnxn) ∈ K para toda elección de εi =
±1. Geométricamente, esto es que si x = (x1, ...,xn) ∈ K, entonces todo el rectángulo ∏

n
i=1[−|xi|, |xi|]

está contenido en K. Esta propiedad implica que para todo vector de la base canónica e j, con j =
1, ...,n, la proyección de K sobre el hiperplano e⊥j , Pe⊥j

(K), es igual a la sección de K intersectada con

el hiperplano e⊥j , K ∩ e⊥j . Por tanto, si K es un cuerpo incondicionalmente convexo, para cualquier e j,
con j = 1, ...,n, se tiene que ∣∣∣Pe⊥j

(K)
∣∣∣= ∣∣∣K∩ e⊥j

∣∣∣ .
4.1.1. Desigualdad de Loomis-Whitney

Antes de demostrar la acotación de la constante de isotropía, veamos la demostración de la des-
igualdad de Loomis-Whitney. Este resultado relaciona el volumen de un cuerpo convexo K en Rn con
el producto de los volúmenes n− 1-dimensionales de sus proyecciones en los hiperplanos ortogona-
les a los vectores canónicos de Rn. Vamos a probar este resultado utilizando una técnica discreta de
demostración.
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Teorema 4.1 (Desigualdad de Loomis-Witney [17]). Para todo cuerpo convexo K en Rn,

|K|n−1 ≤
n

∏
i=1

∣∣∣Pe⊥i
(K)
∣∣∣

Demostración. Sea B una unión de N cubos distintos de lado 1 con vértices en Zn. Como cada cubo
tiene volumen 1, es claro que |B|= N. Así, B es unión de cubos de la forma

[a j1 ,a j1 +1]× [a j2 ,a j2 +1]× ...× [a jn ,a jn +1]⊂ Rn.

Por tanto, podemos identificar cada cubo con el punto (a j1 ,a j2 , ..,a jn) ∈ Zn.
Sea Ni el número de cubos en Pe⊥i

(B), es decir, el número de cubos n−1-dimensionales que aparecen
en la proyección sobre el hiperplano e⊥i . Así, parar todo i1, ...,n tenemos que Ni = |Pe⊥i

(B)|. Veamos por
inducción que

Nn−1 ≤
n

∏
i=1

Ni. (4.1)

Si n = 2, es claro que N ≤ N1N2, ya que B ⊂ Pe⊥1
(B)×Pe⊥2

(B). Supongamos la desigualdad cierta
para n−1, y veamos que entonces se cumple para n.

Agrupamos los elementos de B en k conjuntos de la siguiente forma:

Sea z1 ∈ Z la primera coordenada de algún elemento de B. Definimos B1 como el subconjunto de
B cuyos elementos son los z ∈ B tales que la primera la coordenada de z es z1. Definimos b1 como
el número de elementos de B1.

Sea z2 ∈ Z, la primera coordenada de algún elemento de B tal que z2 6= z1. Definimos B2 como
el subconjunto de B cuyos elementos son los z ∈ B tales que la primera la coordenada de z es z2.
Definimos b2 como el número de elementos de B2.

Sea z3 ∈ Z, la primera coordenada de algún elemento de B tal que z3 6= z1 y z3 6= z2. Definimos B3
como el subconjunto de B cuyos elementos son los z ∈ B tales que la primera la coordenada de z
es z3. Definimos b3 como el número de elementos de B3.

En general, para definir el conjunto Bl , tomamos un zl ∈ Z que sea la primera coordenada de
algún elemento de B tal que zl 6= z1,z2, ...,z j−1. Definimos Bl como el subconjunto de B cuyos
elementos son los z∈B tales que la primera la coordenada de z es zl . Definimos bl como el número
de elementos de Bl .

Como B es finito, habrá un número k finito de numeros enteros diferentes que sean la primera
coordenada de algún elemento de B. Así, habrá k ∈Z conjuntos, B1, ..,Bk. Es fácil ver que son disjuntos,
ya que para cualesquiera a1 ∈ Bi1 y a2 ∈ Bi2 , por definición de los conjuntos Bi1 y Bi2 , la primera
coordenada de a1 es diferente a la de a2, luego a1 6= a2. Por tanto, es claro que

|B|=
k

∑
l=1

bl.

Para cualquier l ∈ {1, ..,k}, los elementos del conjunto Bl tienen su primera coordenada igual, y
alguna de las demás coordenadas diferentes (ya que en caso de que tuvieran todas las coordenadas
iguales, serían el mismo elemento). Por tanto, cada elemento de B1 tendrá una proyección sobre e⊥1
diferente. Así, tenemos que |Pe⊥1

(Bl)|= bl . Por tanto, como B1 ⊂ B para todo l ∈ {1, ..,k}, se tiene que,
para cualquier l ∈ {1, ..,k},

bl = |Pe⊥1
(Bl)| ≤ |Pe⊥1

(B)|= N1. (4.2)

Definimos ahora, para l ∈ {1, ..,k} y j ∈ {2, ..,n}, bl, j como el número de proyecciones diferentes
del conjunto Bl sobre el hiperplano e⊥j . Es decir,

bl, j = |Pe⊥j
(Bl)|. (4.3)
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Como la primera coordenada de los elementos de Bl1 es distinta de la primera coordenada de los ele-
mentos de Bl2 , si l1 6= l2, es claro que

N j = |Pe⊥j
(B)|=

k

∑
l=1
|Pe⊥j

(Bl)|=
k

∑
l=1

bl, j

Para cada l ∈ {1, ..,k}, si aplicamos la hipótesis de inducción a bl , tenemos que

bn−2
l ≤ bl,2bl,3...bl,n (4.4)

Así, para cada l ∈ {1, ..,k}, utilizando la desigualdad (4.2), se tiene que

bn−1
l ≤ blbl,2bl,3...bl,n ≤ N1bl,2bl,3...bl,n. (4.5)

Luego,

N =
k

∑
l=1

bl ≤
k

∑
l=1

(N1bl,2bl,3...bl,n)
1

n−1 = N
1

n−1
1

k

∑
l=1

(bl,2)
1

n−1 (bl,3)
1

n−1 ...(bl,n)
1

n−1

(∗)≤ N
1

n−1
1

n

∏
j=2

(
k

∑
l=1

bl, j

) 1
n−1

= (N1)
1

n−1 (N2)
1

n−1 ...(Nn)
1

n−1

utlizando en (∗) la desigualdad de Hölder. Así,

Nn−1 ≤ N1N2...Nn

como queríamos probar. Luego para cualquier unión de cubos B de volumen 1 se tiene que

|B|n−1 ≤
n

∏
i=1

∣∣∣Pe⊥i
(B)
∣∣∣ . (4.6)

Si B es unión de cubos de lado δ > 0 con vértices en δZn, entonces tomamos B1 =
1
δ

B. Es claro que
B1 es unión de cubos de volumen 1. Por un lado,

|B1|n−1 =

∣∣∣∣ 1δ B
∣∣∣∣= ( 1

δ

)n(n−1)

|B| .

Por otro lado,

n

∏
i=1

∣∣∣Pe⊥i
(B1)

∣∣∣= n

∏
i=1

∣∣∣∣Pe⊥i

(
1
δ

B
)∣∣∣∣= ( 1

δ

)n(n−1) n

∏
i=1

∣∣∣Pe⊥i
(B)
∣∣∣ .

Así, como B1 cumple (4.6), se tiene que

|B|n−1 ≤
n

∏
i=1

∣∣∣Pe⊥i
(B)
∣∣∣ .

En general, podemos aproximar cualquier boreliano de Rn por uniones de cubos de lado δ > 0 casi
disjuntos: la intersección de cualesquiera dos es de medida nula. Sea A ⊂ Rn, dado ε > 0 existe un
abierto B unión de cubos de radio δ > 0 tal que A⊂ B y |A\B|< ε tal que

|B|n−1 ≤
n

∏
i=1

∣∣∣Pe⊥i
(B)
∣∣∣≤ n

∏
i=1

∣∣∣Pe⊥i
(A)
∣∣∣ .

Como |B|n−1 = |A\ (A\B)|n−1 ≥ (|A|− ε)n−1, si ε → 0, se tiene el resultado.
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4.1.2. Aplicación a la conjetura del hiperplano

Como hemos visto en la introducción de esta sección, si K es un cuerpo convexo incondicional,

|Pe⊥i
(K)|= |K∩ e⊥i |

para todo i ∈ {1, ..,n}. Aplicando la desigualdad de Loomis-Whitney, se tiene que

|K|n−1 ≤
n

∏
i=1
|Pe⊥i

(K)|=
n

∏
i=1
|K∩ e⊥i | ≤ máx

i=1,..,n
|K∩ e⊥i |n

Si |K|= 1, se tiene que existe un i ∈ {1, ..,n} tal que

1≤ |K∩ e⊥i |.

Así, la conjetura del hiperplano se cumple para cuerpos convexos incondicionales con constante 1.

4.2. Cuerpos 2-convexos

El objetivo de esta seción es acotar la constante de isotropía de cuerpos isotrópicos simétricos que
cumplen ciertas condiciones de convexidad. Los cuerpos que vamos a tratar son los 2-convexos. Para
ellos definimos el módulo de convexidad uniforme, δK , como una medida de ”cuán convexo” es un
cuerpo. Un cuerpo se dice 2-convexo de parámetro α , si se cumple que ∀t ∈ [0,2],

δK(t)≥ αt2.

En esta sección vamos a ver que para un cuerpo K isotrópico y simétrico, si δK(t) ≥ αt2, ∀t ∈ [0,2],
entonces podemos acotar la constante de isotropía de K como LK ≤ c/

√
α , donde c > 0 es una constante

absoluta. Este resultado se ha obtenido del arículo [16] .

4.2.1. Módulo de convexidad uniforme

Sea K ⊂ Rn un cuerpo convexo y simétrico, definimos el módulo de convexidad uniforme de K
como la función δK(t) : (0,2]→ R+ tal que

δK(t) = ı́nf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥
K

; x,y ∈ K,‖x− y‖K ≥ t
}
.

Si K es convexo, (x+ y)/2 ∈ K, y por tanto es claro que ‖(x+ y)/2‖K ≤ 1. No es difícil ver que dado
un t > 0, ‖(x+ y)/2‖ alcanzará su supremo cuando x,y estén en la frontera de K. Equivalentemente,
1−‖(x+ y)/2‖ alcanzará su ínfimo para valores x,y ∈ ∂K. Si suponemos que x,y son valores de la
frontera de K, de forma intuitiva se puede ver que si la distancia de x,y es t, es decir, ‖x− y‖K = t,
entonces su punto medio estará más cerca de la frontera que si en cambio ‖x− y‖K > t. Por tanto,
‖(x+ y)/2‖ será mayor cuando ‖x− y‖K = t, lo cual implica que 1−‖(x+ y)/2‖ sea menor. Así, se
puede simplificar la definición de módulo de convexidad a

δK(t) = ı́nf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥
K

; x,y ∈ ∂K,‖x− y‖K = t
}
.

Veamos una serie de observaciones del módulo de convexidad uniforme para ayudar a caracterizarlo.

Observación 4.1. Para t > 0 fijo, sea (1− δK(t))K un dilatado de K. Para cualquier sección S de K
que no corte a (1− δK(t))K, se tiene que el diámetro de S es menor a t, entendiendo diámetro como
máx{‖x− y‖K ; x,y ∈ S}.
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Es decir, (1−δK(t))K cumple que todas las secciones de K de diámetro mayor o igual a t cortan a
(1−δK(t))K al menos en un punto.

Observación 4.2. Si K no es estrictamente convexo, entonces δK(t) = 0 para valores de t suficiente-
mente pequeños. Y si K es estrictamente convexo, δK(t)> 0, para todo t.

Notar que si K no es estrictamente convexo, existen x,y en la frontera de K tales que su punto medio
está en la frontera de K. Es decir,

∥∥ x+y
2

∥∥
K = 1. Así, δK(t) = 0, para algún t > 0.

Observación 4.3. Para cualquier subespacio M del espacio total, δK∩M(t)≥ δK(t), para todo t.

En esta última observación se incluyen espacios de dimensión infinita. Es por ello que nos podemos
plantear cual es el módulo de convexidad uniforme de la bola unidad de un espacio de Banach de
dimensión infinita. Veamos qué ocurre en el espacio de Banach H = l2 con su norma euclídea asociada.

Sean x,y ∈ H. Usando la identidad del paralelogramo tenemos que∥∥∥∥x+ y
2

∥∥∥∥2

2
+

∥∥∥∥x− y
2

∥∥∥∥2

2
=
‖x‖2

2 +‖y‖2
2

2
.

Si x,y ∈ H cumplen que ‖x‖2
2 = ‖x‖2

2 = 1, y ‖x− y‖2 ≥ t, entonces∥∥∥∥x+ y
2

∥∥∥∥2

2
=

1+1
2
−
∥∥∥∥x− y

2

∥∥∥∥2

2
≤ 1− t2

4
.

Equivalentemente, ∥∥∥∥x+ y
2

∥∥∥∥
2
≤
(

1− t2

4

)1/2

.

Por tanto, para cualesquiera x,y en la frontera de la bola unidad tales que ‖x− y‖2 ≥ t, se tiene que

1−
∥∥∥∥x+ y

2

∥∥∥∥
2
≥ 1−

(
1− t2

4

)1/2

,

En particular, tomando ínfimos,

δBH (t) = ı́nf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥
2

; x,y ∈ ∂BH ,‖x− y‖2 ≥ t
}
≥ 1−

(
1− t2

4

)1/2

Esta última expresión es equivalente a t2/8 cuando t→ 0. Por tanto,

δBH (t)≥ 1−
(

1− t2

4

)1/2

≈ t2

8

si t→ 0. De forma análoga, se puede obtener el mismo resultado para espacios de Banach de dimensión
finita con la norma euclídea. Es decir, para cualquier n > 0,

δBn
2
(t)≥ 1−

(
1− t2

4

)1/2

≈ t2

8

si t→ 0. Por tanto, la bola euclídea de un espacio de Banach de dimensión finita o infinita es 2-convexa,
es decir, existe algún α > 0 tal que para todo t ∈ (0,2]

δBn
2
(t)≥ αt2.

Este resultado se puede exteneder a espacios Lp de funciones.
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Teorema 4.2. Si t→ 0, se tiene que

δBLp ≈


p−1

8 t2 , si p ∈ (1,2]

1
p2p t p , si p ∈ [2,+∞)

Antes de ver la demostración, vamos a enunciar dos desigualdades funcionales que vamos a necesi-
tar. Estas son la desigualdad de Clarkson y la desigualdad de Bynum-Drew.

Proposición 4.1 (Desigualdad de Clarkson). Si 2≤ p < ∞ y f ,g ∈ Lp, entonces se tiene∥∥∥∥ f +g
2

∥∥∥∥p

p
+

∥∥∥∥ f −g
2

∥∥∥∥p

p
≤ ‖ f‖p

p +‖g‖p
p

2
.

Proposición 4.2 (Desigualdad de Bynum-Drew). Si 1 < p≤ 2 y f ,g ∈ Lp, entonces se tiene∥∥∥∥ f +g
2

∥∥∥∥2

p
≤
‖ f‖2

p +‖g‖2
p

2
− (p−1)

∥∥∥∥ f −g
2

∥∥∥∥2

p
.

No vamos a demostrar estas desigualdades funcionales, ya que no son objeto de estudio de este
trabajo. La demostración de la desigualdad de Clarkson se puede encontrar en [10, Th.2], y la de Bynum-
Drew en [5, Prop.3].

Con estos resultados, ya estamos listos para probar el Teorema 4.2.

Demostración del Teorema 4.2. Veamos primero el caso de p∈ [2,+∞]. Sea f ,g∈ Lp, tales que ‖ f‖p =
‖g‖p = 1 y ‖ f −g‖p ≥ t, utilizando la desigualdad de Clarkson 4.1, se tiene que∥∥∥∥ f +g

2

∥∥∥∥p

p
+

∥∥∥∥ f −g
2

∥∥∥∥p

p
≤ ‖ f‖p

p +‖g‖p
p

2
.

Equivalentemente, ∥∥∥∥ f +g
2

∥∥∥∥p

p
≤ ‖ f‖p

p +‖g‖p
p

2
−
∥∥∥∥ f −g

2

∥∥∥∥p

p
.

Como ‖ f‖p = ‖g‖p = 1 y ‖ f −g‖p ≥ t, se tiene que∥∥∥∥ f +g
2

∥∥∥∥p

p
≤ 1+1

2
− t p

2p .

Por tanto, es claro que

1−
∥∥∥∥ f +g

2

∥∥∥∥
p
≥ 1−

(
1− t p

2p

)1/p

.

Tomando ínfimos, en ambos miembros de la desigualdad, tenemos que

δBLp (t) = ı́nf

{
1−
∥∥∥∥ f +g

2

∥∥∥∥
p

; f ,g ∈ ∂BLp ,‖x− y‖p ≥ t

}
≥ 1−

(
1− t p

2p

)1/p

.

Esta última expresión se comporta asintóticamente como 1/(p2p)t p cuando t→ 0, luego

δBLp (t)&
1

p ·2p t p
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si p ∈ [2,+∞) y t→ 0.

Veamos el caso p ∈ (1,2]. Sea f ,g ∈ Lp, tales que ‖ f‖p = ‖g‖p = 1 y ‖ f − g‖p ≥ t. Utilizando la
desigualdad de Bynum-Drew (Proposición 4.2), se tiene que∥∥∥∥ f +g

2

∥∥∥∥2

p
≤
‖ f‖2

p +‖g‖2
p

2
− (p−1)

∥∥∥∥ f −g
2

∥∥∥∥2

p
≤ 1+1

2
− (p−1)

t2

4
.

Por tanto, es claro que

1−
∥∥∥∥ f +g

2

∥∥∥∥
p
≥ 1−

(
1− (p−1)

t2

4

)1/2

.

Tomando ínfimos a ambos miembros, se tiene que

δBLp (t) = ı́nf

{
1−
∥∥∥∥ f +g

2

∥∥∥∥
p

; f ,g ∈ ∂BLp ,‖x− y‖p ≥ t

}
≥ 1−

(
1− (p−1)

t2

4

)1/2

.

Ésta última expresión se comporta asintóticamente como (p−1)/8 · t2 si t→ 0. Por tanto, si t→ 0, para
p ∈ (1,2], tenemos que el módulo de convexidad uniforme de la bola unidad en el espacio Lp es

δBLp (t)&
p−1

8
t2.

Acabamos de ver que si p ∈ (1,2], los espacios Lp son 2-convexos, es decir, existe alguna α > 0 tal
que para todo t,

δBLp (t)≥ αt2.

La observación 4.3 indica que cualquier subespacio de Lp cumplirá la misma condición, luego será
también 2-convexo. Así, en particular para p ∈ (1,2], Bn

p es 2-convexa, para cualquer n ∈ N.

4.2.2. Acotación de LK en cuerpos 2-convexos

Vamos a utilizar los resultados obtenidos en el apartado anterior para acotar la constante de isotropía
de cuerpos 2-convexos por una constante. Este resultado, que fue demostrado originalmente en [16], se
obtendrá como consecuencia de los siguientes lemas.

Lema 4.1. Sea K un cuerpo simétrico en Rn de volumen 1. Fijado θ ∈ Sn−1 y t > 0, se tiene que

|{x ∈ K;〈x,θ〉> t}| ≤ exp
[
−nδK

(
t

‖θ‖Ko

)]
con ‖θ‖Ko = hK(θ).

Demostración. Definimos A(t) = |{x ∈ K;〈x,θ〉> t}| y B = |{x ∈ K;〈x,θ〉 ≤ 0}|. Como el cuerpo K
es simétrico, |B|= 1/2. Tomamos x ∈ A, y ∈ B. Por un lado,

〈x− y,θ〉= 〈x,θ〉−〈y,θ〉> t−0 = t.

Por otro lado, notar que

〈x− y,θ〉 ≤ ‖x− y‖K · ‖θ‖Ko .
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Combinando estas desigualdades, tenemos que para x ∈ A(t), y ∈ B,

t < 〈x− y,θ〉< ‖x− y‖K · ‖θ‖Ko ,

y así se tiene que

‖x− y‖K >
t

‖θ‖Ko
.

Por tanto, para cualesquiera x ∈ A(t), y ∈ B, utilizando la definción de módulo de convexidad uniforme
se tiene que

1−
∥∥∥∥x+ y

2

∥∥∥∥≥ δK

(
t

‖θ‖Ko

)
.

Equivalentemente, para cualesquiera x ∈ A(t), y ∈ B,∥∥∥∥x+ y
2

∥∥∥∥≤ 1−δK

(
t

‖θ‖Ko

)
,

y por tanto,

A(t)+B
2

⊂
(

1−δK

(
t

‖θ‖Ko

))
K.

Tomamos volúmenes en ambos miembros, y tenemos que∣∣∣∣A(t)+b
2

∣∣∣∣≤ (1−δK

(
t

‖θ‖K0

))n

|K|=
(

1−δK

(
t

‖θ‖Ko

))n

.

Por un lado, utilizando la desigualdad 1− x≤ e−x para x ∈ R en esta última expresión, tenemos que∣∣∣∣A(t)+b
2

∣∣∣∣≤ exp
[
−nδK

(
t

‖θ‖Ko

)]
. (4.7)

Por otro lado, utilizando la desigualdad de Brunn-Minkowski y teniendo en cuenta que |B|= 1
2 ≥ |A(t)|,∣∣∣∣A(t)+B

2

∣∣∣∣≥ |A(t)|1/2 · |B|1/2 ≥ |A(t)|1/2 · |A(t)|1/2 = |A(t)|. (4.8)

Por tanto, combinando las desigualdades (4.7) y (4.8), se tiene que

|{x ∈ K;〈x,θ〉> t}|= A(t)≤ exp
[
−nδK

(
t

‖θ‖Ko

)]
.

Observación 4.4. En particular, si δK(t)≥ αt2 para todo t ∈ (0,2],

|{x ∈ K;〈x,θ〉> t}| ≤ exp
[
−nα

t2

‖θ‖2
Ko

]
.

Utilizaremos este Lema para demostrar el siguiente Lema, que nos llevará al resultado principal de
la sección.

Lema 4.2. Sea K un cuerpo isotrópico en Rn de volumen 1 tal que δK(t)≥ αt2 para alguna constante
α > 0. Entonces, para alguna constante absoluta c > 0,

c
√

α
√

nLK ·Bn
2 ⊂ K.



La Constante de Isotropía y la Conjetura del Hiperplano 57

Demostración. Definimos A(t) = {x ∈ K;〈x,θ〉 ≥ t}, y B(t) = {x ∈ K;〈x,θ〉< t} = K \A(t). Defini-
mos f (t) = |B(t)|. Como el volumen de K es 1, es claro que f (t) = |B(t)| = 1− |A(t)|. Utilizando el
Lema 4.1 y la Observación 4.4 se tiene que

f (t) = |B(t)| ≥ 1− exp
[
−nα

t2

‖θ‖2
Ko

]
. (4.9)

Podemos expresar f (t) como una integral,

f (t) =
∫ t

−∞

|{x ∈ K;〈x,θ〉= s}|ds,

y nos damos cuenta de que

f ′(t) = |{x ∈ K;〈x,θ〉= t}| .

Por la desigualdad de Brunn-Minkowski, f ′(t) es una función log-cóncava. En este caso, como K es
simétrico, f ′(t) es una función par. Así, f ′(t) alcanza su máximo en el 0, en el que

f ′(0) = |{x ∈ K;〈x,θ〉= 0}|= |K∩θ
⊥|.

Utilizando el Teorema 3,1, se tiene que

f ′(0) = |K∩θ
⊥| ≤ c2

LK
(4.10)

para alguna constante absoluta c2 > 0. Por el Teorema del valor medio, se tiene que para algún ξ ∈ (0, t),

f (t) = f (0)+ t f ′(ξ )≤ f (0)+ t f ′(0).

Es claro que f (0) = |{x ∈ K;〈x,θ〉< 0}| = 1/2, ya que K es simétrico. Así, aplicando la desigualdad
(4.10),

f (t)≤ f (0)+ t f ′(0) =
1
2
+ t

c2

LK
.

Si tomamos t = LK
4c2

se tiene que

f
(

LK

4c2

)
≤ 1

2
+

LK

4c2
· c2

LK
=

1
2
+

1
4
=

3
4
.

Por otro lado, tomando t = LK
4c2

en la desigualdad (4.9),

f
(

LK

4c2

)
≥ 1− exp

[
−nα

L2
K

42c2
2‖θ‖2

Ko

]
= 1− exp

[
−nα

L2
K

C‖θ‖2
Ko

]
para alguna constante absoluta C > 0. Combinando estas dos últimas desigualdades, se tiene que

1− exp
[
−nα

L2
K

C‖θ‖2
Ko

]
≤ 3

4
.

Equivalentemente,

exp
[
−nα

L2
K

C‖θ‖2
Ko

]
≥ 1

4
.

Tomando logaritmos, de esta expresión se deduce que

nα
L2

K

‖θ‖2
Ko
≥C1
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para alguna constante C1. Esto implica que

‖θ‖Ko ≥C2
√

n
√

αLK

para alguna constante C2. Como ‖θ‖2 = 1, esta última desigualdad es equivalente a

‖θ‖Ko ≥C2
√

n
√

αLK‖θ‖2.

Como ‖θ‖Ko = hK(θ), se tiene que

Ko ⊂ 1
C2
√

n
√

αLK
·Bn

2.

Finalmente, aplicando la propiedad 1.2 de cuerpos polares, se tiene que

C2
√

n
√

αLKBn
2 ⊂ K

para alguna constante C2 > 0.

Con estos dos lemas ya estamos preparados para demostrar el Teorema principal de esta sección.

Teorema 4.3. Sea K un cuerpo isotrópico y simétrico de volumen 1 en Rn. Si K es 2 convexo con
constante α , es decir, δK(t)≥ αt2, para todo t ∈ (0,2], entonces

LK ≤
c√
α

para alguna constante absoluta c > 0.

Demostración. Por el Lema 4,2, sabemos que existe una constante c > 0 tal que

c
√

α
√

nLK ·Bn
2 ⊂ K.

Tomando volúmenes y elevando a 1/n a ambos miembros, se tiene que

1 = |K|1/n ≥ c
√

α
√

nLK · |Bn
2|1/n.

Como
√

n · |Bn
2|1/n tiende asintóticamente a

√
2πe, si n→ ∞, existe una constante c′ > 0 tal que

1≥ c′
√

αLK .

Por tanto,

LK ≤
c′√
α
.

para alguna constante absoluta c′ > 0.

4.3. Politopos

Como hemos definido en el capítulo 1, un politopo convexo en Rn es la envoltura convexa de una
cantidad finita de puntos {P1, · · · ,Pn} en Rn, y se denota conv{P1, · · · ,Pn}. En esta sección veremos
que en un polítopo convexo simétrico, es decir, cuyos vértices son pares de puntos opuestos, podemos
acotar la constante de isotropía por C · log(N), con C una constante absoluta y N el número de parejas
de puntos opuestos que generan el polítopo. Esta acotación no resuelve la conjetura del hiperplano, pero
sí es un primer punto de partida para obtener una cota superior para la constante de isotropía.
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4.3.1. Acotación de la constante de isotropía

La acotación que vamos a dar, está basada en el artículo [1].

Teorema 4.4. Sea K = {P1,−P1, · · · ,PN ,−PN} un polítopo simétrico de 2N vértices, entonces,

LK ≤C · log(N) (4.11)

donde C es un constante absoluta.

Supongamos que K es isotrópico y LK es la constante de isotropía de K. Entonces, ∀T ∈ GL(n) con
T simétrica definida positiva, aplicando el teorema 2.1,

L2
K =

1
Tr(T )

∫
K
〈x,T x〉dx≤ 1

Tr(T )

∫
K
|〈x,T x〉|dx≤ 1

Tr(T )

∫
K

máx
y∈K
|〈x,Ty〉|dx.

Para todo y ∈ K, existen λ1, ...,λN tales que ∑
N
i=1 |λi|= 1, y = ∑

n
i=1 λiPi. Así, para todo y ∈ K,

|〈x,Ty〉|= |
N

∑
i=1

λi〈x,T Pi〉| ≤
N

∑
i=1
|λi| · |〈x,T Pi〉|

≤
N

∑
i=1
|λi| máx

i=1,..,N
|〈x,T Pi〉|= máx

i=1,..,N
|〈x,T Pi〉|.

Por tanto,

L2
K ≤

1
Tr(T )

∫
K

máx
y∈K
|〈x,Ty〉|dx =

1
Tr(T )

∫
K

máx
i=1,..,N

|〈x,T Pi〉|dx

=
1

Tr(T )

∫
K

máx
i=1,..,N

∣∣∣∣〈x,
T Pi

|T Pi|

〉∣∣∣∣ |T Pi|dx

≤ máxi=1,..,N |T Pi|
Tr(T )

∫
K

máx
i=1,..,N

∣∣∣∣〈x,
T Pi

|T Pi|

〉∣∣∣∣dx.

Como T es una matriz simétrica definida positiva, podemos expresar T como T = UDUT , con U una
matriz ortogonal y D una matriz diagonal con valores d1, · · · ,dn en su diagonal, que son los valores
propios de T . Así, por la desigualdad aritmético-geométrica,

|det(T )|
1
n = |det(UDUT )|

1
n = |det(D)|

1
n =

n

∏
i=1

d
1
n
i ≤

1
n

n

∑
i=1

di =
Tr(T )

n
.

Por tanto, se tiene que
1

Tr(T )
≤ 1

n|det(T )| 1n
.

Así, podemos acotar la constante de isotropía de K por

L2
K ≤

máxi=1,..,N |T Pi|
n|det(T )| 1n

∫
K

máx
i=1,..,N

∣∣∣∣〈x,
T Pi

|T Pi|

〉∣∣∣∣dx

=
máxi=1,..,N |T Pi|

n|T K| 1n

∫
K

máx
i=1,..,N

∣∣∣∣〈x,
T Pi

|T Pi|

〉∣∣∣∣dx

para cualquier T ∈ GL(n) simétrica definida positiva.
El siguiente Lema nos va a permitir acotar la integral de esta última expresión por una función del

orden de log(N).
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Lema 4.3. Sea θ1, · · · ,θN ∈ Sn−1 y sea K isotrópico tal que ∀θ ∈ Sn−1,

‖〈·,θ〉‖ψα
:= ı́nf

{
t > 0 :

∫
K

exp
(
|〈x,θ〉|

t

)α

≤ 2
}
≤ B ·LK

para alguna constante B > 0, y α ∈ [1,2]. Entonces,∫
K

máx
i=1,..,N

|〈x,θi〉| ≤C ·B ·LK(log(N))
1
α

donde C > 0 es una constante absoluta.

Demostración. Por la definición anterior, como

ı́nf
{

t > 0 :
∫

K
exp
(
|〈x,θ〉|

t

)α

≤ 2
}
≤ B ·LK ,

en particular se tiene que ∫
K

exp
(
|〈x,θ〉|
B ·LK

)α

≤ 2.

Utilizando esta última desigualdad junto con la desigualdad de Markov, ∀i = 1, ...,N, y ∀t ≥ 0,

|{x ∈ K : |〈x,θi〉| ≥ t}|=
∣∣∣∣{x ∈ K : exp

(
|〈x,θi〉|
B ·LK

)α

≥ exp
(

t
B ·LK

)α}∣∣∣∣
≤ exp

[
−
(

t
B ·LK

)α]∫
K

exp
(
|〈x,θi〉|
B ·LK

)α

dx

≤ exp
[
−
(

t
B ·LK

)α]
·2

Luego, para todo t ≥ 0, aplicando el resultado anterior se tiene que

|{x ∈ K : máx
i=1,..,N

|〈x,θi〉| ≥ t}| ≤
N

∑
i=1
|{x ∈ K : |〈x,θi〉| ≥ t}| (4.12)

≤ 2N exp
[
−
(

t
B ·LK

)α]
. (4.13)

Fijamos un A > 0 que elegiremos después. Por el Teorema de Fubini es claro que∫
K

máx
i=1,..,N

|〈x,θi〉|dx =
∫

∞

0
|{x ∈ K : máx

i=1,..,N
|〈x,θi〉| ≥ t}|dt

=
∫ A

0
|{x ∈ K : máx

i=1,..,N
|〈x,θi〉| ≥ t}|dt +

∫
∞

A
|{x ∈ K : máx

i=1,..,N
|〈x,θi〉| ≥ t}|dt.

Vamos a acotar estas dos integrales. Por un lado, como |K|= 1, es claro que para cualquier t ≥ 0,

|{x ∈ K : máx
i=1,..,N

|〈x,θi〉| ≥ t}| ≤ |K|= 1.

Así, se tiene que ∫ A

0
|{x ∈ K : máx

i=1,..,N
|〈x,θi〉| ≥ t}|dt ≤

∫ A

0
dt = A.

Para la otra integral, utilizando la desigualdad (4.12), se tiene que∫
∞

A
|{x ∈ K : máx

i=1,..,N
|〈x,θi〉| ≥ t}|dt ≤

∫
∞

A
2N exp

[
−
(

t
B ·LK

)α]
.
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Así, tenemos que fijando cualquier A > 0 ,∫
K

máx
i=1,..,N

|〈x,θi〉|dx≤ A+
∫

∞

A
2N exp

[
−
(

t
B ·LK

)α]
.

En particular, con A = 4BLK(log(N))1/α se tiene que

∫
K

máx
i=1,..,N

|〈x,θi〉|dx≤ 4BLK(log(N))1/α +
∫

∞

4BLK(log(N))1/α

2N exp
[
−
(

t
B ·LK

)α]
. (4.14)

Vamos a acotar esta última integral. Mediante el cambio de variable t = As,∫
∞

4BLK(log(N))1/α

2N exp
[
−
(

t
B ·LK

)α]
=
∫

∞

1
4BLK(log(N))1/α · exp [−4αsα log(N)]ds

≤ 4BLK(log(N))1/α

∫
∞

1
exp [−4s log(N)]ds

= 4BLK(log(N))1/α

[
exp [−4s log(N)]

−4log(N)

]∞

1

= 4BLK(log(N))1/α exp [−4log(N)]

4log(N)

= BLK(log(N))1/α 1
N4 log(N)

.

Como (N4 log(N))−1 tiende a 0, si N → ∞, es claro que podemos acotar (N4 log(N))−1 por alguna
constante C > 0. Así,∫

∞

4BLK(log(N))1/α

2N exp
[
−
(

t
B ·LK

)α]
≤CBLK(log(N))1/α . (4.15)

Por tanto, con este resultado, podemos acotar la desigualdad (4.14) como∫
K

máx
i=1,..,N

|〈x,θi〉|dx≤ (4+C)BLK(log(N))1/α . (4.16)

Veamos que si α = 1, la hipótesis del Lema 4.3 se cumple para cualquier θ ∈ Sn−1. Es decir, en las
condiciones del Lema, para cualquier dirección θ ∈ Sn−1, existe una constante absoluta B tal que

ı́nf
{

t > 0 :
∫

K
exp
(
|〈x,θ〉|

t

)
≤ 2
}
≤ B ·LK . (4.17)

Si K es isotrópico y simétrico en Rn, el Teorema 3.4 nos asegura que para todo q > 0 y todo θ ∈ Sn−1,(∫
K
|〈x,θ〉|q

)1/q

≤ C ·mı́n{n,q}
|K∩θ⊥|

≤ C ·q
|K∩θ⊥|

para alguna constante absoluta C > 0. Mediante el Teorema 3.1, podemos acotar inferiormente el tér-
mino |K ∩ θ⊥| por c1/LK , para alguna constante absoluta c1 > 0. Por tanto, con estos dos Teoremas,
tenemos que para todo q > 0 y para todo θ ∈ Sn−1,(∫

K
|〈x,θ〉|q

)1/q

≤ C ·q
|K∩θ⊥|

≤ C ·q ·LK

c1
= c ·q ·LK , (4.18)
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definiendo c = C/c1. Sea t > 0, si desarrollamos la exponencial de la desigualdad (4.17) en serie de
potencias, tenemos que∫

K
exp
(
|〈x,θ〉|

t

)
dt = 1+

∞

∑
q=1

∫
K

|〈x,θ〉|q

tqq!
dt = 1+

∞

∑
q=1

1
tqq!

∫
K
|〈x,θ〉|qdt.

Elevando a q ambos miembros de la acotación (4.18), es claro que∫
K
|〈x,θ〉|q ≤ cq ·qq ·Lq

K .

Por tanto, ∫
K

exp
(
|〈x,θ〉|

t

)
dt ≤ 1+

∞

∑
q=1

cqqqLq
K

tqq!
.

Vamos a acotar este expresión, utilizando la desigualdad q! ≥ (q/e)q. Esta desigualdad es cierta para
todo q > 0, ya que

q! = Γ(q+1) =
∫

∞

0
tqe−tdt ≥

∫
∞

q
tqe−tdt ≥

∫
∞

q
qqe−tdt =

qq

eq .

Aplicando este resultado,∫
K

exp
(
|〈x,θ〉|

t

)
dt ≤ 1+

∞

∑
q=1

eqcqqqLq
K

qqtq = 1+
∞

∑
q=1

eqcqLq
K

tq = 1+
∞

∑
q=1

(
ecLK

t

)q

Si tomamos t = 2ceLK , ∫
K

exp
(
|〈x,θ〉|
2ceLK

)
dt ≤ 1+

∞

∑
q=1

(
1
2

)q

=
1

1−1/2
= 2.

Acabamos de ver que con t = 2ceLK , ∫
K

exp
(
|〈x,θ〉|

t

)
dt ≤ 2,

lo cual implica que para α = 1,

‖〈·,θ〉‖ψα
= ı́nf

{
t > 0 :

∫
K

exp
(
|〈x,θ〉|

t

)α

≤ 2
}
≤ 2ce ·LK . (4.19)

Retomando la acotación de la constante de isotropía de un polítopo simétrico de 2N vértices, que hemos
visto al principio del capítulo, teníamos que si K = conv{P1,−P1, ...,PN ,−PN} polítopo simétrico de 2N
vértices, ∀T ∈ GL(n) simétrica y definida positiva,

L2
K ≤

máxi=1,..,N |T Pi|
n|T K| 1n

∫
K

máx
i=1,..,N

∣∣∣∣〈x,
T Pi

|T Pi|

〉∣∣∣∣dx. (4.20)

Identificando θi con T Pi/|T Pi|, como hemos visto en la desigualdad (4.19), se cumplen las hipótesis del
Lema 4,3, con B = 2ce, para alguna constante c > 0. Así que podemos acotar la integral de la expresión
(4.20) por ∫

K
máx

i=1,..,N

∣∣∣∣〈x,
T Pi

|T Pi|

〉∣∣∣∣dx≤C2ceLK log(N) = MLK log(N)
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para alguna constante absoluta M > 0. Aplicando esta cota a (4.20),

L2
K ≤

máxi=1,..,N |T Pi|
n|T K| 1n

MLK log(N),

o equivalentemente,

LK ≤
máxi=1,..,N |T Pi|

n|T K| 1n
M log(N), (4.21)

para alguna constante absoluta M > 0. Vamos a elegir T ∈ GL(n) de forma que tengamos una buena
cota para LK . En particular, elegimos T tal que el elipsoide de mínimo volumen que contiene a T K sea
la bola unidad Bn

2, es decir, elegimos T ∈ GL(n) tal que T K esté en posición de Löwner.
Recordamos que, se dice que un cuerpo convexo K ⊂ Rn está en posición de Löwner si el elipsoide

de mínimo volumen que contiene a K es Bn
2. Como vimos en la sección 1,4, el hecho de que un cuerpo

K esté en posición de Löwner implica que existe una descomposición de la identidad mediante una
combinación lineal de productos tensoriales de vectores u j, con u j ∈ ∂K∩Sn−1. Esto se obtenía con el
Teorema 1.4, en donde si i= 0, y K está en posición de Löwner, es decir, es la identidad la que maximiza
el conjunto de este Teorema, se tiene que

In = n
s

∑
j=1

λ jw j⊗w j (4.22)

para s puntos de contacto w1, ...,ws ∈ ∂K ∩Sn−1 y unas constantes λ1, ...,λs > 0 tales que ∑
s
i=1 λi = 1.

Por la proposición 1,4, como K está en posición de Löwner, se tiene que Ko está en posición de John.
Sea x ∈ Ko, si multiplicamos x por la izquierda en ambos miembros de la igualdad, se tiene que

x = n
s

∑
j=1

λ j〈x,w j〉 ·w j,

para todo x ∈ Ko. Así,

|x|2 = 〈x,x〉= 〈x,n
s

∑
j=1

λ j〈x,w j〉 ·w j〉= n
s

∑
j=1

λ j〈x,w j〉〈x,w j〉

= n
s

∑
j=1

λ j〈x,w j〉2.

Por un lado w j ∈ K ∩ Sn−1 para j = 1, ...,s, luego |w j| = 1. Por otro lado, Ko es un convexo que tiene
los mismos puntos de contacto con Sn−1 que K. Como Ko es convexo, para cada w j ∈ Sn−1∩Ko existe
un hiperplano con vector normal w j tal que ∀x ∈ Ko, 〈x,w j〉 ≤ 1. Como K es simétrico, −w j también es
punto de contacto de K con la esfera, y por tanto punto de contacto de Ko con la esfera. Así, ∀x ∈ Ko,
〈x,−w j〉 ≤ 1. Combinando estas dos desigualdades, se tiene que para todo x ∈ Ko,

∣∣〈x,w j〉
∣∣≤ 1. Esto se

cumple para cualquier w j punto de contacto de Ko con la esfera. Así,

|x|2 = n
s

∑
j=1

λ j〈x,w j〉2 ≤ n
s

∑
j=1

λ j = n.

Por tanto, podemos asegurar que

Ko ⊂
√

nBn
2.

Luego por dualidad, tomando los polares de ambos cuerpos se tiene que

1√
n

Bn
2 ⊂ K.
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Tomando volúmenes,

|K|1/n ≥
∣∣∣∣ 1√

n
Bn

2

∣∣∣∣1/n

≥ c
n

para alguna constante c > 0.
Volviendo a la desigualdad 4.21, tenemos que

LK ≤
máxi=1,..,N |T Pi|

n|T K| 1n
M log(N)

para alguna constante M > 0. Si tomamos T ∈ GL(n) tal que T K esté en posición de Löwner, como
acabamos de ver, |T K|1/n ≥ c/n para alguna constante c > 0. Además, como T K ⊂ Bn

2, es claro que
|T Pi| ≤ 1, para todo i = 1, ...,2N. En particular,

máx
i=1,..,N

|T Pi| ≤ 1.

Por tanto,

LK ≤
máxi=1,..,N |T Pi|

n|T K| 1n
M log(N)≤CM log(N) =C1 log(N)

para alguna constante absoluta C1 > 0.

4.4. Politopo simplicial Gaussiano

Un politopo simplicial en Rn, es un politopo que cumple que cada una de sus caras (n− 1)-
dimensionales es la envoltura convexa de n puntos que además son vértices. En esta sección vamos
a trabajar con politopos simpliciales simétricos aleatorios de 2N puntos en Rn, con N un múltiplo de n.
Un politopo es aleatorio si sus vértices se generan por vectores aleatorios. En este caso, estudiaremos
qué sucede cuando utilizamos vectores Gaussianos, es decir, estudiaremos politopos simpliciales simé-
tricos Gaussianos, para los cuales vamos a poder acotar su constante de isotropía por una constante con
probabilidad muy alta. Del mismo modo, al final de la sección, comentaremos otras acotaciones para
politopos simpliciales aleatorios generados por otros vectores aleatorias o con dominios restringidos.

4.4.1. Politopos aleatorios

Klartag y Kozma, en el artículo [15], intentaron dar un contraejemplo de la conjetura de la constante
de isotropía utilizando cuerpos convexos aleatorios, ya que esta clase de cuerpos no está generalmente
incluida en aquellos para los que sí había una respuesta afirmativa de la conjetura. Sin embargo, el
resultado obtenido ha acabado siendo una cota para la constante de isotropía con probabilidad muy alta.
Este resultado está enunciado en el siguiente Teorema.

Teorema 4.5. Sea KN = conv{±X1, ...,±XN} ⊂ Rn un politopo simplicial Gaussiano de 2N vértices.
Entonces, existe una constante absoluta c > 0 tal que

L2
KN
≤ c.

con probabilidad mayor o igual que 1− c1e−c2n, con c1,c2 constantes absolutas.

La demostración de este Teorema está basada en el artículo de Klartag y Kozma que hemos men-
cionado.

Para demostrarlo, comenzaremos con el siguiente resultado, válido para politopos no necesariamen-
te aleatorios.
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Proposición 4.3. Sea KN = conv{±X1, ...,±XN} ⊂ Rn un polítopo simplicial simétrico de 2N vértices.
Entonces,

nL2
KN
≤ 1

|KN |2/n ·
1

(n+1)(n+2)
· máx

E,(εi)
N
i=1

∑
i∈E
|εiXi|2 +

∣∣∣∣∣∑i∈E
εiXi

∣∣∣∣∣
2
 ,

con E ⊂ {1, ...,N} tal que |E|= n, y εi =±1.

Demostración. Por el Teorema 2.3 sabemos que

nL2
K = mı́n

T∈GL(n)

{
1

|T K|2/n ·
1
|T K|

·
∫

T K
|x|2dx

}
.

Por tanto, para KN se tiene que

nL2
KN
≤ 1

|KN |2/n ·
1
|KN |

·
∫

KN

|x|2dx. (4.23)

Sean F1, ...,Fl las caras (n− 1)-dimensionales de KN . Es claro que KN = ∪l
i=1conv{0,Fi}. Como los

conos conv{0,Fi} intersecan en conjuntos de volumen 0, se tiene que

|KN |=
l

∑
j=1
|conv{0,Fi}|=

∑
l
j=1 |Fj|n−1d(0,Fj)

n
. (4.24)

Vamos a acotar la integral de (4.23). Tomando la medida imagen, es claro que∫
KN

|x|2dx =
l

∑
j=1

∫
conv{0,Fj}

|x|2dx =
l

∑
j=1

∫ d(0,Fj)

0

∫
r

d(0,Fj)
Fj

|x|2dx ·dr.

Hacemos el cambio de variable r
d(0,Fi)

· y = x y tenemos que

∫
KN

|x|2dx =
l

∑
j=1

∫ d(0,Fj)

0

rn+1

d(0,Fj)n+1

∫
Fj

|y|2dy ·dr

=
1

n+2

l

∑
j=1

d(0,Fj)
∫

Fj

|y|2dy

=
n

n+2
|KN |

l

∑
j=1

d(0,Fj)|Fj|n−1

n|KN |
· 1
|Fj|n−1

∫
Fj

|y|2dy.

Utilizando la igualdad (4.24), podemos acotar esta expresión como∫
KN

|x|2dx≤ n
n+2

|KN | máx
j=1,..,l

{
1

|Fj|n−1

∫
Fj

|y|2dy
}
. (4.25)

Cada Fj es una cara del polítopo, es decir, Fj = conv{P j
1 , ...,P

j
n}, con cada P j

i ∈ {±X1, ...,±XN} con
P j

s 6=−P j
k para todo s,k. Es decir, en una misma cara no puede haber vértices opuestos. Para cada cara

Fj, definimos Tj: una matriz n×n que en la columna i-ésima tiene el vector P j
i . Sea P j

i (k) la componente
k-ésima del vector P j

i , entonces

Tj =


P j

1 (1) P j
2 (1) · · · P j

n (1)
P j

1 (2) P j
2 (2) · · · Pn

j (2)
...

...
. . .

...
P j

1 (n) P j
2 (n) · · · Pn

j (n)


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Si consideramos ∆n−1 = conv{e1, ...,en}, es claro que

Fj = Tj∆
n−1.

Así,

1
|Fj|

∫
Fj

|y|2dy =
1

|∆n−1|

∫
∆n−1
|Tj · x|2dx

=
1

|∆n−1|

∫
∆n−1

n

∑
k=1

(
n

∑
l=1

P j
l (k) · xl

)2

dx

=
1

|∆n−1|

∫
∆n−1

(
n

∑
k=1

n

∑
l1,l2=1

P j
l1(k) ·P

j
l2(k) · xl1 · xl2

)
dx

=
n

∑
k=1

n

∑
l1,l2=1

P j
l1(k) ·P

j
l2(k)

1
|∆n−1|

∫
∆n−1

xl1 · xl2dx.

Si l2 = l1, el valor de esta última integral es

1
|∆n−1|

∫
∆n−1

xl1 · xl2dx =
1

|∆n−1|

∫
∆n−1

x2
l1dx =

2
n(n+1)

.

Si l2 6= l1, entonces se tiene que

1
|∆n−1|

∫
∆n−1

xl1 · xl2dx =
1

n(n+1)
.

Por tanto, sustituyendo estos valores, se tiene que

1
|Fj|

∫
Fj

|y|2dy =
n

∑
k=1

n

∑
l1,l2=1

P j
l1(k) ·P

j
l2(k)

1
|∆n−1|

∫
∆n−1

xl1 · xl2dx

=
n

∑
k=1

n

∑
l=1

(
P j

l (k)
)2 2

n(n+1)
+

n

∑
k=1

n

∑
l1 6=l2

1
n(n+1)

(
P j

l1(k) ·P
j

l2(k)
)

=
2

n(n+1)

n

∑
l=1

∣∣∣P j
l

∣∣∣2 + 1
n(n+1)

n

∑
l1 6=l2

〈
P j

l1 ,P
j

l2

〉
.

Notar que ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2

=

〈
n

∑
l=1

P j
l ,

n

∑
l=1

P j
l

〉
=

n

∑
l1,l2=1

〈
P j

l1 ,P
j

l2

〉
=

n

∑
l=1

∣∣∣P j
l

∣∣∣2 + n

∑
l1 6=l2

〈
P j

l1 ,P
j

l2

〉
.

Por tanto, aplicando este resultado se tiene que

1
|Fj|

∫
Fj

|y|2dy =
2

n(n+1)

n

∑
l=1

∣∣∣P j
l

∣∣∣2 + 1
n(n+1)

n

∑
l1 6=l2

〈
P j

l1 ,P
j

l2

〉
=

1
n(n+1)

n

∑
l=1

∣∣∣P j
l

∣∣∣2 + 1
n(n+1)

n

∑
l=1

∣∣∣P j
l

∣∣∣2 + 1
n(n+1)

n

∑
l1 6=l2

〈
P j

l1 ,P
j

l2

〉

=
1

n(n+1)

n

∑
l=1

∣∣∣P j
l

∣∣∣2 + 1
n(n+1)

∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2

=
1

n(n+1)

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2
 .
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Aplicando esta desigualdad a la fórmula 4.25, se tiene que∫
KN

|x|2dx≤ n
n+2

|KN | máx
j=1,..,l

{
1

|Fj|n−1

∫
Fj

|y|2dy
}

≤ n
n+2

|KN |
1

n(n+1)
máx

j=1,..,l

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2


=
|KN |

(n+1)(n+2)
máx

j=1,..,l

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2
 .

Finalmente, utilizando esta desigualdad en la fórmula 4.23, concluimos que

nL2
KN
≤ 1

|KN |2/n ·
1
|KN |

·
∫

KN

|x|2dx (4.26)

≤ 1

|KN |2/n ·
1
|KN |

|KN |
(n+1)(n+2)

máx
j=1,..,l

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2
 (4.27)

=
1

|KN |2/n ·
1

(n+1)(n+2)
máx

j=1,..,l

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2
 (4.28)

≤ 1

|KN |2/n ·
1

(n+1)(n+2)
· máx

E,(εi)
N
i=1

∑
i∈E
|εiXi|2 +

∣∣∣∣∣∑i∈E
εiXi

∣∣∣∣∣
2
 (4.29)

con E ⊂ {1, ...,N} tal que |E|= n, y εi =±1.

Para poder acotar nL2
KN

por una constante, vamos a encontrar cotas de estas expresiones. En las
siguientes secciones acotaremos por debajo el volumen de KN , y por arriba estos dos últimos sumatorios
con probabilidad 1. Para ello, veremos antes una serie de herramientas de probabilidad.

4.4.2. Variables aleatorias Gaussianas

Vamos a dar una serie de Lemas probabilísticos que nos permitirán más adelante acotar LKN con pro-
babilidad que tiende a 1 cuando la dimensión tiende a infinito. Estos resultados se centran en variables
aleatorias Gaussianas.

Lema 4.4. Para todo t ≥ 1 se tiene que

e−t2/2

2t
≤
∫

∞

t
e−x2/2 ≤ 2e−t2/2

t
. (4.30)

Por tanto, para todo t ≥ 1, si g es una variable aleatoria gaussiana,

e−t2/2

2
√

2πt
≤ P(g≥ t)≤ 2e−t2/2

√
2πt

. (4.31)

Demostración. Definimos para t ≥ 1,

φ1(t) =
2e−t2/2

t
−
∫

∞

t
e−x2/2, φ2(t) =

∫
∞

t
e−x2/2− e−t2/2

2t
.

Derivando ambas expresiones, tenemos que para todo t ≥ 1,

φ
′
1(t) =−

2e−t2/2(t2 +1)
t2 + e−t2/2 =−et2/2(t2 +2)

t2 ≤ 0
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y

φ
′
2(t) =−e−t2/2 +

e−t2/2(t2 +1)
2t2 =−e−t2/2(t2−1)

2t2 ≤ 0.

Como además, lı́mt→∞ φ1(t) = lı́mt→∞ φ2(t) = 0, se tiene que φ1(t) y φ2(t) son funciones positivas en
(1,+∞). Por tanto, se tiene (4.30).

Para ver que se cumple (4.31), basta con multiplicar a los miembros de la desigualdad (4.30) el
factor 1√

2π
, y notar que

P(g≥ t) =
1√
2π

∫
∞

t
e−x2/2dx

si g∼ N(0,1).

Definición 4.1. Sea X una variable aleatoria real. Definimos la función ∆X(λ ) como

∆X(λ ) = log
∣∣∣EeλX

∣∣∣ .
En los siguientes Lemas, vamos a caracterizar esta función en los casos en que X = g o X = g2, con

g una variable aleatoria Gaussiana.

Lema 4.5. Sean X ,X1, ...,Xn variables aleatorias independientes y idénticamente distribuídas en R.
Entonces, para todo α > 0,∣∣∣∣∣P

(
1
n

n

∑
i=1

Xi > α

)∣∣∣∣∣≤ exp
(
−n · sup

λ>0
{λα−∆X(λ )}

)
Demostración. Sea λ > 0 tal que ∆X(λ )< ∞. Entonces,

P

(
1
n

n

∑
i=1

Xi > α

)
= P

(
λ

n

∑
i=1

Xi > nλα

)
= P

(
eλ ∑

n
i=1 Xi > enλα

)
.

Utilizando la desigualdad de Markov, se tiene que

P

(
1
n

n

∑
i=1

Xi > α

)
≤ e−nλαE

[
eλ ∑

n
i=1 Xi

]
Como las Xi son independientes e idénticamente distribuidas,

P

(
1
n

n

∑
i=1

Xi > α

)
≤ e−nλαE

[
n

∏
i=1

eλX

]
= e−nλα

(
E
[
eλX
])n

= e−nλα

(
e∆X (λ )

)n

= e−nλαen·∆X (λ )

= e−n(αλ−∆X (λ ))

Esta desigualdad se mantiene para cualquier λ > 0. Luego podemos optimizar esta cota tomando el λ

que minimiza el exponente. Así,

P

(
1
n

n

∑
i=1

Xi > α

)
≤ exp

(
−n · sup

λ>0
{λα−∆X(λ )}

)
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Lema 4.6. Sea g una variable aleatoria Gaussiana. Entonces,

∆g(λ ) := log
∣∣∣Eeλg

∣∣∣= log
∫

∞

−∞

eλx · e
−x2/2
√

2π
dx =

λ 2

2
.

Demostración. ∫
∞

−∞

eλx · e
−x2/2
√

2π
dx =

∫
∞

−∞

eλ 2/2 · e
−(x−λ )2/2
√

2π
dx.

Aplicamos el cambio de variables u = x−λ , y tenemos∫
∞

−∞

eλx · e
−x2/2
√

2π
dx = eλ 2/2

∫
∞

−∞

e−u2/2
√

2π
du = eλ 2/2.

Tomando logaritmos a ambos miembros, se tiene que

log
∫

∞

−∞

eλx · e
−x2/2
√

2π
dx = logeλ 2/2 = λ

2/2.

Corolario 4.1. Sea g una variable aleatoria Gaussiana, y ∆g definido como en el enunciado del Lema
4.6. Entonces, ∀α > 0 se tiene que

sup
λ>0

(λα−∆g(λ )) = sup
λ>0

(λα−λ
2/2) = α

2− α2

2
=

α2

2
.

Demostración. Definimos la función fα(λ ) = λα −λ 2/2. Derivando fα , se tiene que f ′α(λ ) = 0 si y
sólo si λ = α . Como f ′′α(λ )< 0, es claro que fα alcanza su máximo en λ , con fα(α) = α2

2 .

Lema 4.7. Sea g una variable aleatoria Gaussiana. Entonces,

∆g2(λ ) = log
∣∣∣Eeλg2

∣∣∣= log
∫

∞

−∞

eλx2 · e
−x2/2
√

2π
dx =


−1
2 log(1−2λ ) , si λ < 1/2

∞ , si λ ≥ 1/2

Demostración. Sea λ ∈ (−∞,1/2). Entonces,∫
∞

−∞

eλx2 · e
−x2/2
√

2π
dx =

∫
∞

−∞

e−(x
√

1−2λ )2/2
√

2π
dx.

Aplicamos el cambio de variables u = x
√

1−2λ , y tenemos∫
∞

−∞

eλx · e
−x2/2
√

2π
dx =

1√
1−2λ

∫
∞

−∞

e−u2/2
√

2π
du =

1√
1−2λ

.

Tomando logaritmos a ambos miembros, se tiene que

log
∫

∞

−∞

eλx · e
−x2/2
√

2π
dx = log

1√
1−2λ

=
−1
2

log(1−2λ ).

Si λ ≥ 1/2, entonces ∫
∞

−∞

eλx2 · e
−x2/2
√

2π
dx

diverge, y por tanto su logaritmo es +∞.
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Corolario 4.2. Sea g una variable aleatoria Gaussiana, y ∆g2 como en el Lema 4,7. Entonces, ∀α > 1
se tiene que

sup
λ>0

(λα−∆g2(λ )) =
α−1

2
− 1

2
log(α)

Demostración. Definimos la función fα(λ ) = λα− 1
2 log(1−2λ ). Derivando fα , se tiene que f ′α(λ ) =

0 si y sólo si λ = 1
2 −

−1
2α

. Como f ′′α(
1
2 −

−1
2α

) < 0, es claro que fα alcanza su máximo en 1
2 −

−1
2α

, con
fα(

1
2 −

−1
2α

) = α−1
2 −

1
2 log(α).

4.4.3. Acotación del volumen de KN

Estos Lemas en primer lugar nos van a permitir acotar por debajo el volumen de KN , con probabili-
dad que tiende a 1 con la dimensión. En esta sección vamos a ver que si n→∞, entonces la probabilidad
de que una bola de un cierto volumen esté contenida en KN tiende a 1. Por tanto, el volumen de KN será
al menos el volumen de esa bola con probabilidad muy alta.

Proposición 4.4. Sean G1, ...,GN vectores aleatorios gaussianos independientes en Rn con N ≥ C1n
con C1 constante absoluta. Si KN = conv{±G1, ...,±GN}, entonces

P

(√
4
6

log
(

N
n

)
·Bn

2 ⊂ KN

)
≥ 1− e−n.

Demostración. En primer lugar, veamos que KN es simplicial. Es decir, con probabilidad 1 cada cara
(n−1)-dimensional de KN tiene n vértices. Sea KN = conv{±G1, ...,±GN} y sean F1, ...,Fl las caras de
KN , con cada Fj = conv{G j

i1 , ...,G
j
in}, con cada G j

ik ∈ {±G1, ...,±GN}. Entonces,

P(KN no simplicial)≤
l

∑
j=1

P(Fj contiene algún ±Gi distinto de los vértices de Fj) = 0,

ya que la probabilidad de que una cara Fj = conv{G j
i1 , ...,G

j
in} contenga algún vértice de KN distinto de

G j
i1 , ...,G

j
in es 0. Por tanto, la probabilidad de que KN sea simiplicial es 1.

Sea α > 0. Si αBn
2 6⊂ KN , entonces existe una cara Fj = conv{G j

i1 , ...,G
j
in} de KN y un vector θ j ∈

Sn−1 normal a la cara, tal que para todo Gk ∈ {±G1, ...,±GN} tal que Gk 6∈ {±G j
i1 , ...,±G j

in},∣∣〈Gk,θ j
〉∣∣≤ α.

Siendo θ j el vector normal a la cara Fj, esto se cumple por la convexidad de KN . Entonces,

P(αBn
2 6⊂ KN)≤

(
2N
n

)
P
(∣∣〈Gk,θ j

〉∣∣≤ α
)N−n

=

(
2N
n

)
P(|g| ≤ α)N−n (4.32)

con g un variable aleatoria Gaussiana, ya que si G es un vector aleatorio Gaussiano en Rn y θ ∈ Sn−1,
entonces 〈G,θ〉 ∼ N(0,1). Vamos a acotar esta última expresión. Aplicando el Lema 4.4,

P(|g| ≥ α) = 2P(g≥ α)≥ e−α2/2
√

2πα
= e−(α2/2+log(α)+ 1

2 log(2π).)

Es claro que α2/4 >> log(α)+ 1
2 log(2π) si α→∞. Por tanto, existe un C0 tal que si α >C0, entonces,

P(|g| ≥ α)≥ e−
3α2

4 .
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Así, tenemos que (
2N
n

)
P(|g| ≤ α)N−n ≤

(
2N
n

)(
1− e−

3α2
4

)N−n

Utilizamos la desigualdad 1+ x≤ ex, para todo x ∈ R, y se tiene que(
2N
n

)
P(|g| ≤ α)N−n ≤

(
2N
n

)
exp
(
−(N−n)e−

3α2
4

)
.

Acotamos el número combinatorio de 2N sobre n como(
2N
n

)
=

(2N)(2N−1) · · ·(2N−n+1)
n(n−1) · · ·1

≤ (2N)n

n!
≤
(

2Ne
n

)n

. (4.33)

En la última desigualdad hemos utilizado que

en =
∞

∑
i=0

in

n!
≥ nn

n!
=⇒ 1

n!
≤ en

nn .

Por tanto, (
2N
n

)
P(|g| ≤ α)N−n ≤

(
2Ne

n

)n

exp
(
−(N−n)e−

3α2
4

)
= exp

[
−n
((

N
n
−1
)

e−
3α2

4 − log
(

2
N
n

e
))]

= exp

−n log
(

2
N
n

e
)(N

n −1
)

e−
3α2

4

log
(
2 N

n e
) −1

 .
Si tomo α =

√
4
6 log

(N
n

)
, entonces

(
2N
n

)
P(|g| ≤ α)N−n ≤ exp

−n log
(

2
N
n

e
) (N

n −1
)√

N
n log

(
2 N

n e
) −1

 .
Notar que

lı́m
n→∞

log(2xe)
[

x−1√
x log(2xe)

−1
]
= ∞.

Por tanto, existe algún C1 > 0 tal que si x = N/n≥C1,(
2N
n

)
P(|g| ≤ α)N−n ≤ e−n.

Por tanto, la probabilidad de que una bola de radio α =
√

4
6 log

(N
n

)
no esté contenida en KN , si N≥C1 ·n

para alguna constante absoluta C1, es menor o igual que e−n. Así,

P

(√
4
6

log
(

N
n

)
·Bn

2 ⊂ KN

)
≥ 1− e−n

Luego,

P

|KN |1/n ≥
c
√

log
(N

n

)
√

n

≥ 1− e−n (4.34)

para alguna constante absoluta c.

En las siguientes subsecciones nos dedicaremos a acotar los sumatorios de la desigualdad 4.26.
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4.4.4. Acotación de ∑
n
l=1

∣∣∣P j
l

∣∣∣2
Lema 4.8. Sea G = (g1, ...,gn) un vector Gaussiano en Rn. Entonces, para todo α > 1,

P
(
|G|2 ≥ αn

)
≤ e−n( α−1

2 −
1
2 logα).

Demostración. Dado α > 1,

P
(
|G|2 ≥ αn

)
= P

(
n

∑
i=1

g2
i ≥ αn

)
= P

(
1
n

n

∑
i=1

g2
i ≥ α

)
.

Utilizando el Lema 4,5 con Xi = gi, se tiene que

P
(
|G|2 ≥ αn

)
≤ exp

(
−n · sup

λ>0
{λα−∆g2(λ )}

)
.

Finalmente, por el Corolario del Lema 4,7,

P
(
|G|2 ≥ αn

)
≤ exp

(
−n ·

(
α−1

2
− 1

2
log(α)

))
.

Proposición 4.5. Sea G1, ...,GN vectores Gaussianos independientes en Rn. Entonces, para todo α > 1,

P

(
máx

E,(ε j)
N
j=1

{
∑
i∈E
|εiGi|2

}
≥ αn2

)
≤ exp

[
−n2 ·

(
α−1

2
− 1

2
log(α)

)
−n log

(
2eN

n

)]
con E ⊂ {1, ...,N} tal que |E|= n, y ε1, ...,εN =±1.

Demostración. Es claro que el suceso

{
máx

E,(ε j)
N
j=1

{
∑
i∈E
|εiGi|2

}
≥ αn2

}
es igual a la unión de sucesos

de la forma

{
∑
i∈E
|εiGi|2 ≥ αn2 , para algún E

}
con |E| = n, y ε1, ...,εN = ±1. Por tanto, como las Gi

son independientes e idénticamente distribuídas,

P

(
máx

E(ε j)
N
j=1

{
∑
i∈E
|εiGi|2

}
≥ αn2

)
≤
(

2N
n

)
P

(
n

∑
i=1
|Gi|2 ≥ αn2

)

=

(
2N
n

)
P

(
n

∑
i=1

n

∑
j=1

g2
i, j ≥ αn2

)

=

(
2N
n

)
P

(
1
n2

n

∑
i, j=1

g2
i, j ≥ α

)

Con las gi, j variables aleatorias Gaussianas independientes. Aplicando el Lema 4,5 es claro que(
2N
n

)
P

(
1
n2

n

∑
i, j=1

g2
i, j ≥ α

)
≤
(

2N
n

)
exp
(
−n2 · sup

λ>0
{λα−∆g2(λ ).}

)
con g∼ N(0,1). Y, por el Corolario del Lema 4,7, se tiene que

sup
λ>0
{λα−∆g2(λ )}=

α−1
2
− 1

2
log(α).
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Así, se sigue que

P

(
máx

E

{
∑
i∈E
|εiGi|2

}
≥ αn2

)
≤
(

2N
n

)
exp
(
−n2 ·

(
α−1

2
− 1

2
log(α)

))
≤
(

2Ne
n

)n

exp
(
−n2 ·

(
α−1

2
− 1

2
log(α)

))
= exp

(
n log

(
2Ne

n

)
−n2 ·

(
α−1

2
− 1

2
log(α)

))
.

Tomando α = 2, se tiene que

P

(
máx

E

{
∑
i∈E
|εiGi|2

}
≤ 2n2

)
> 1− exp

(
n log

(
2Ne

n

)
−n2 ·

(
1
2
− 1

2
log(2)

))
(4.35)

> 1− e−cn2
(4.36)

para alguna constante absoluta c > 0.

4.4.5. Acotación de
∣∣∣∑n

l=1 P j
l

∣∣∣2
El argumento que vamos a utilizar en esta sección para acotar

∣∣∣∑n
l=1 P j

l

∣∣∣2 es el que se ha utilizado
para hacer acotaciones similares en el caso de otro tipo de politopos aleatorios, no necesariamente con
distribución Gaussiana.

Observación. Como KN es un polítopo gaussiano, podemos utilizar las propiedades de esta distribución
para hallar una cota. Sean G,G1, ...,Gn vectores gaussianos independientes en Rn. Por simetría,

n

∑
i=1

εiGi ∼
n

∑
i=1

Gi ∼
√

nG.

Razonando como en la sección anterior, sea α > 1,

P

 máx
E,(ε j)

N
j=1


∣∣∣∣∣∑i∈E

εiGi

∣∣∣∣∣
2
> αn2

≤ (2N
n

)
P

∣∣∣∣∣ n

∑
i=1

Gi

∣∣∣∣∣
2

> αn2


=

(
2N
n

)
P
(∣∣√nG

∣∣2 > αn2
)

=

(
2N
n

)
P
(
|G|2 > αn

)
.

Aplicando el Lema 4.8,(
2N
n

)
P
(
|G|2 > αn

)
≤
(

2N
n

)
exp
[
−n
(

α−1
2
− 1

2
log(α)

)]
= exp

[
−n
(

α−1
2
− 1

2
log(α)− log

(
2Ne

n

))]
,

utilizando la desigualdad (4.33). Si tomamos α = 4log
(2Ne

n

)
, se tiene que

lı́m
n→∞

(
4log

(2Ne
n

)
−1

2
− 1

2
log
(

4log
(

2Ne
n

))
− log

(
2Ne

n

))
=+∞.
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Por lo tanto, existe una constante absoluta C1 > 0 tal que

exp

[
−n

(
4log

(2Ne
n

)
−1

2
− 1

2
log
(

4log
(

2Ne
n

))
− log

(
2Ne

n

))]
≤ e−nC1 .

Así, podemos concluir que

P

máx
E


∣∣∣∣∣∑i∈E

εiGi

∣∣∣∣∣
2
≤ 4log

(
2Ne

n

)
n2

> 1− e−nC1 .

Con esto podemos asegurar que si n→ ∞, entonces
∣∣∣∑n

l=1 P j
l

∣∣∣2 ≤ 4log
(2Ne

n

)
n2 con probabilidad que

tiende a 1.

Ahora, vamos a demostrar este mismo resultado siguiendo el argumento que se usa cuando no se
trata necesariamente de una distribución normal, ya que se trata de un argumento de interés.

Lema 4.9. Sea θ ∈ Sn−1, y G1, ...,Gn vectores aleatorios Gaussianos independientes en Rn. Entonces,
para todo α > 0,

P

(∣∣∣∣∣
〈

n

∑
i=1

Gi,θ

〉∣∣∣∣∣> αn

)
≤ 2e−n α2

2

Demostración. Por invarianza rotacional de la distribución Gaussiana, se tiene que para todo α > 0,

P

(∣∣∣∣∣
〈

n

∑
i=1

Gi,θ

〉∣∣∣∣∣> αn

)
= P

(∣∣∣∣∣ n

∑
i=1

gi

∣∣∣∣∣> αn

)

= P

(
n

∑
i=1

gi > αn

)
+P

(
n

∑
i=1

gi <−αn

)

= 2P

(
n

∑
i=1

gi > αn

)

= 2P

(
1
n

n

∑
i=1

gi > αn

)
.

Utilizando el Lema 4,5, se tiene que

2P

(
1
n

n

∑
i=1

gi > αn

)
≤ 2exp

(
−n · sup

λ>0
{λα−∆g(λ )}

)
.

Finalmente, mediante el Corolario del Lema 4,6 se sigue que

2exp
(
−n · sup

λ>0
{λα−∆g(λ )}

)
≤ 2e−n α2

2 .

Lema 4.10. Sean G1, ...,Gn vectores Gaussianos independientes en Rn. Entonces, para todo α > 0,

P

(∣∣∣∣∣ n

∑
i=1

Gi

∣∣∣∣∣> αn

)
≤ e−n

(
α2
2 −log5

)
.
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Demostración. Veamos que podemos construir una ε−red de cardinal ≤ 5n, de Sn−1 con ε = 1
2 para

aproximar los vectores de la esfera. Es decir, veamos que podemos construir N con N ⊂ Sn−1 y
|N | ≤ 5n, tal que ∀u ∈ Sn−1 existe un θ ∈N tal que |θ − u| ≤ 1

2 . El algoritmo para construirla es el
siguiente

Tomamos θ1 ∈ Sn−1

Tomamos θ2 ∈ Sn−1 tal que |θ1−θ2|> 1
2

Tomamos θ3 ∈ Sn−1 tal que |θ1−θ3|> 1
2 , |θ2−θ3|> 1

2

En el la iteración k, tomamos un θk ∈ Sn−1 tal que |θ1−θk|> 1
2 ,...,|θk−1−θk|> 1

2

Este proceso se repite hasta que no se pueda encontrar ningún θN+1 ∈ Sn−1 tal que ∀i = 1, ...,N se tenga
que |θi−θN+1|> 1

2 . Como Sn−1 es compacto, es claro que existe un θN que cumple esta propiedad. Por
tanto, N = {θ1, ...,θN} cumple que ∀u ∈ Sn−1, existe un θi ∈N con |θi−u| ≤ 1

2 .
Como |θi−θ j|> 1

2 , para todo θi,θ j ∈N con θi 6= θ j, es claro que B(θi,
1
4)∩B(θ j,

1
4) = /0, si i 6= j.

Así, se tiene que ∣∣∣∣Sn−1 +
1
4

Bn
2

∣∣∣∣≥ ∣∣∣∣N +
1
4

Bn
2

∣∣∣∣=
∣∣∣∣∣ ⋃
θ∈N

B(θ ,
1
4
)

∣∣∣∣∣= |N | · 1
4n |B

n
2| .

Por otro lado, ∣∣∣∣Sn−1 +
1
4

Bn
2

∣∣∣∣≤ ∣∣∣∣Bn
2 +

1
4

Bn
2

∣∣∣∣≥= ∣∣∣∣54Bn
2

∣∣∣∣= 5n

4n |B
n
2| .

Así, con estas dos desigualdades se tiene que

|N | · 1
4n |B

n
2| ≤

∣∣∣∣Sn−1 +
1
4

Bn
2

∣∣∣∣≤ 5n

4n |B
n
2| .

Por tanto, 5n ≥ |N |.
Veamos que ∀u ∈ Sn−1, existe una sucesión (θ j)

∞

j=1 ⊂N con una sucesión asociada de eslacares

(s j)
∞

j=1 con 0≤ s j ≤
(1

2

) j−1, tales que

u =
∞

∑
j=1

s jθ j.

Dado u ∈ Sn−1, existe θ1 ∈N con |u−θ1| ≤ 1
2 . Por tanto,

u = θ1 + z1

para algún z1 con |z1|< 1
2 . Si z1 = 0, ya está probado.

En caso contrario, z1/|z1| ∈ Sn−1, luego existe θ2 ∈N con |z1/|z1|−θ1| ≤ 1
2 . Por tanto,

z1

|z1|
= θ2 + z2

para algún z2 con |z2|< 1
2 . Si z2 = 0, se tiene que

u = θ1 + |z1|θ2,

luego el resultado está probado.
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En caso contrario, z1|z1|
|z2||z1| ∈ Sn−1, luego existe un θ3 ∈N con

∣∣∣ z1|z1|
|z2||z1| −θ1

∣∣∣≤ 1
2 . Por tanto,

z1|z1|
|z2||z1|

= θ3 + z3

para algún z3 con |z3|< 1
2 .

Procediendo de este modo, podemos representar u como

u = θ1 + |z1|θ2 + |z1||z2|θ3 + |z1||z2||z3|θ4 + ...

con todo los θ j ∈N , y el coeficiente que multiplica a cada θ j es |z1||z2| · · · |z j−1|<
(1

2

) j−1.

Con este resultado, si se cumple que ∀θ ∈N ,∣∣∣∣∣
〈

n

∑
i=1

Gi,θ

〉∣∣∣∣∣≤ αn,

entonces se tiene que ∀u ∈ Sn−1, descomponiendo u en suma de θ j ∈N ,∣∣∣∣∣
〈

n

∑
i=1

Gi,u

〉∣∣∣∣∣=
∣∣∣∣∣
〈

n

∑
i=1

Gi,
∞

∑
j=1

s jθ j

〉∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
j=1

s j

〈
n

∑
i=1

Gi,θ j

〉∣∣∣∣∣
≤

∞

∑
j=1

s j ·

∣∣∣∣∣
〈

n

∑
i=1

Gi,θ j

〉∣∣∣∣∣
≤

∞

∑
j=1

s jαn

<
∞

∑
j=1

1
2 j−1 αn = 2αn.

Por tanto, aplicando este último resultado, tenemos que

P

(∣∣∣∣∣ n

∑
i=1

Gi,θ

∣∣∣∣∣> 2αn

)
= P

(
máx
u∈S

∣∣∣∣∣
〈

n

∑
i=1

Gi,u

〉∣∣∣∣∣> 2αn

)

≤ 5nP

(〈
n

∑
i=1

Gi,θ

〉
> αn

)
.

Con el Lema 4,9, concluimos que

5nP

(〈
n

∑
i=1

Gi,θ

〉
> αn

)
≤ 5n2e−n α2

2 = 2e−n
(

α2
2 −log5

)
.

Lema 4.11. Sean G1, ...,GN vectores Gaussianos independientes en Rn. Entonces, para todo α > 0,

P

(
máx

E,(ε j)
N
j=1

{∣∣∣∣∣∑i∈E
εiGi

∣∣∣∣∣
}
≤ 2αn

)
> 2e−n

(
α2
2 −log( 10N

n )
)
.

con E ⊂ {1, ...,N} tal que |E|= n, y εi =±1.
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Demostración. Es claro que el suceso

{
máx

E,(ε j)
N
j=1

{∣∣∣∣∣∑i∈E
εiGi

∣∣∣∣∣
}
≥ 2αn

}
es igual a la unión de sucesos de

la forma

{∣∣∣∣∣∑i∈E
εiGi

∣∣∣∣∣≥ 2αn ,para algún E

}
con |E| = n, y ε1, ...,εN = ±1. Por tanto, como las Gi son

idénticamente distribuídas,

P

(
máx

E

{∣∣∣∣∣∑i∈E
εiGi

∣∣∣∣∣
}
≥ 2αn

)
≤
(

2N
n

)
P

(∣∣∣∣∣ n

∑
i=1

Gi

∣∣∣∣∣≥ 2αn

)
.

Utilizamos el Lema 4,10 y la desigualdad(
2N
n

)
≤
(

2Ne
n

)n

,

y tenemos que (
2N
n

)
P

(∣∣∣∣∣ n

∑
i=1

Gi

∣∣∣∣∣≥ 2αn

)
≤
(

2Ne
n

)n

2e−n
(

α2
2 −log5

)

= 2e−n
(

α2
2 −log( 10Ne

n )
)
.

Tomamos α = 2
√

log
(10Ne

n

)
, y se sigue

P

(
máx

E

{∣∣∣∣∣∑i∈E
εiGi

∣∣∣∣∣
}

> 4n

√
log
(

10Ne
n

))
≤ 2e−n log( 10Ne

n ), (4.37)

si N ∈
[
c1n, n

2e ec2n
]

para constantes absolutas c1,c2 > 0.

Retomando la desigualdad 4,26, se tenía que

nL2
KN
≤ 1

|KN |2/n ·
1

(n+1)(n+2)
máx

j=1,..,l

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2
 .

Con los resultados 4.34, 4.35 y 4.37, podemos concluír que con probabilidad mayor o igual a

1− e−n− e−cn2−2e−n log( 10Ne
n ) ≥ 1− c3e−n

para alguna constante absoluta c3, se tiene que

1

|KN |2/n ·
1

(n+1)(n+2)
máx

j=1,..,l

 n

∑
l=1

∣∣∣P j
l

∣∣∣2 + ∣∣∣∣∣ n

∑
l=1

P j
l

∣∣∣∣∣
2


≤ 1
C log

(N
n

) · 1
(n+1)(n+2)

(
2n2 +16n2 log

(
10Ne

n

))
≤ cn

para alguna constante absoluta c. Por tanto, se tiene que

L2
K ≤ c

para alguna constante absoluta c.

Observación. De la misma forma en que Klartag y Kozma consiguieron acotar la constante de isotropía
de polítopos gaussianos, en los últimos años se ha intentado hacer lo mismo con polítopos generados
por otras variables aleatorias. Una muestra de ello son los siguientes resultados.
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En el artículo [2], se demostró que la constante de isotropía de polítopos aleatorios generados por
puntos uniformemente distrubuidos sobre la esfera está acotado con probabilidad alta.

En el artículo [11], se demostró que que la constante de isotropía de politopos aleatorios gene-
rados por puntos unifomemente distribuidos en un cuerpo incondicional está acotada con una
probabilidad alta

En el artículo [18], se demostró que la constante de isotropía de politopos aleatorios generados
por puntos distribuidos en la esfera de un cuerpo incondicional según la medida cono está acotada
con probabilidad alta, extendiendo así el resultado de la esfera.

En los artículos [3] y [12], se demostró de forma simultánea e independiente una acotación con
probabilidad alta para la constante de isotropía de politopos generados por puntos unifomemente
distribuidos en un cuerpo convexo.
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