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A. Software y programación

Este trabajo se ha desarrollado fundamentalmente en Python y, en particular, a través de

un notebook de Jupyter del cual se mostrarán algunos fragmentos de código de algunas celdas

relevantes. Se ha utilizado Python por su versatilidad y popularidad en proyectos de ciencia de

datos. Esto hace que existan numerosas libreŕıas especialmente útiles en el análisis de datos y la

aplicación de técnicas de machine learning. Entre las libreŕıas utilizadas, destacan las siguientes:

NumPy: Proporciona un tratamiento más eficiente y versátil de vectores, matrices y arrays

multidimensionales más allá de las listas de Python por defecto. Además, contiene numero-

sas funciones de todo tipo compatibles con el formato de array que introduce la libreŕıa y

con aplicación en la manipulación de todo tipo de datos y su tratamiento mediante álgebra

lineal.

Disponible en https://pypi.org/project/numpy

Pandas: Libreŕıa fundamental en el área de la ciencia de datos que ofrece estructuras de

datos y operaciones que facilitan enormemente el procesamiento, la búsqueda y el filtrado

de datos. Para ello, introduce el tipo de datos DataFrame que facilita la agrupación de

datos en tablas indexadas sobre las que aplicar todo tipo de funciones y transformaciones.

Disponible en https://pypi.org/project/pandas

matplotlib: Libreŕıa de generación de gráficas a partir de arrays con numerosas funciones

de graficación de histogramas, diagramas de dispersión y representaciones bidimensionales

y tridimensionales de todo tipo con una amplia variedad de parámetros para elegir el

aspecto de las gráficas.

Disponible en https://pypi.org/project/matplotlib

traj-dist: Como complemento al art́ıculo https://arxiv.org/pdf/1508.04904.p

df, sirve para evaluar varios algoritmos populares que miden distancias entre pares de

trayectorias caracterizadas por arrays de no necesariamente la misma longitud. Incluye las

distancias SSPD, OWD, Hausdorff, Fréchet, Fréchet discreto, DTW, LCSS, ERP y EDR.

Disponible en https://pypi.org/project/traj-dist

seaborn: Otra libreŕıa de visualización basada en matplotlib que proporciona gráficos

muy ilustrativos de información estad́ıstica. Por ejemplo, en el trabajo se ha utilizado para

obetener matrices de gráficas y matrices de confusión con formato de mapas de calor.

Disponible en https://pypi.org/project/seaborn

scikit-learn: Una de las libreŕıas más populares en el mundo del machine learning

que proporciona algunas funciones relacionadas con el diseño de modelos de árboles de

decisión, redes neuronales y otras herramientas relacionadas con la selección de modelos,

preprocesamiento de datos, medición de la precisión y los errores, validación de modelos,

etc.

Disponible en https://pypi.org/project/scikit-learn

1

https://pypi.org/project/numpy
https://pypi.org/project/pandas
https://pypi.org/project/matplotlib
https://arxiv.org/pdf/1508.04904.pdf
https://arxiv.org/pdf/1508.04904.pdf
https://pypi.org/project/traj-dist
https://pypi.org/project/seaborn
https://pypi.org/project/scikit-learn


TensorFlow: Otra libreŕıa que suministra funciones de inteligencia artificial. Cuenta con

más funciones adaptadas al mundo del deep learning. Introduce un formato particular de

datos conocido como tensor.

Disponible en https://pypi.org/project/tensorflow

Keras: Libreŕıa de redes neuronales capaz de ejecutarse sobre TensorFlow con un diseño

más amigable con el usuario.

Disponible en https://pypi.org/project/keras

Yellowbrick: Libreŕıa especializada en las representaciones gráficas de elementos de ma-

chine learning y con una implementación especialmente adecuada de las curvas ROC

multiclase.

Disponible en https://pypi.org/project/yellowbrick

XGBoost: Proporciona algoritmos basados en los métodos de gradient boosting. En el caso

de algoritmos basados en árboles de decisión, son relativamente populares por poder llegar

a superar a los árboles clásicos y a los bosques en algunos casos por lo que merećıa la pena

experimentar con su implementación.

Disponible en https://pypi.org/project/xgboost

Se muestran a continuación algunas funciones importadas de módulos de las libreŕıas mencio-

nadas para su aplicación a lo largo de todo el trabajo:

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import traj_dist.distance as tdist

5 import random

6 import seaborn as sn

7 from sklearn import tree

8 from sklearn.datasets import load_iris , make_regression

9 from sklearn.cluster import KMeans

10 from sklearn.tree import DecisionTreeClassifier , export_graphviz ,

DecisionTreeRegressor

11 from sklearn.model_selection import train_test_split , validation_curve , KFold ,

GridSearchCV , cross_validate

12 from sklearn.metrics import confusion_matrix , accuracy_score ,

mean_absolute_error

13 from sklearn.ensemble import RandomForestClassifier , RandomForestRegressor ,

GradientBoostingClassifier

14 from sklearn.neural_network import MLPClassifier , MLPRegressor

15 from sklearn.preprocessing import MinMaxScaler , StandardScaler

16 from sklearn.utils import resample

17 import tensorflow as tf

18 from keras.models import Sequential

19 from keras.layers import Dense

20 from keras.optimizers import SGD

21 from yellowbrick.classifier import ROCAUC

22 from xgboost import XGBClassifier , XGBRegressor
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Asimismo, la visualización y tratamiento inicial de los datos geográficamente referenciados

se ha hecho a través del Sistema de Información Geográfica QGIS. Los datos disponibles con los

que se ha desarrollado este trabajo se encuentran en formatos LineString y MultiLineString

adecuados para la carga directa de los datos en QGIS y aśı procesar simultáneamente cientos de

datos de trayectorias geográficas, la localización de cada tipo de contenedor y otra información

asociada geográficamente a cada orden de trabajo. No obstante, una parte importante de este

trabajo ha sido diseñar una integración adecuada entre Python y QGIS para un tratamiento

eficiente de los datos dependiendo de los momentos en los que puede ser necesaria una represen-

tación gráfica de la información geográfica y los momentos en los que se requiere un tratamiento

estrictamente numérico y estad́ıstico de los datos.

QGIS está disponible en https://www.qgis.org/es/site/forusers/download.html

B. Acerca del preprocesamiento de datos

B.1. Filtrado de datos

Para preparar los datos, se debe automatizar el proceso de lectura de datos, formateo, filtrado

de las órdenes para las que se dispone información completa (real, teórica y contenedores) y

descarte de información duplicada:

1 def filtra_ordenes(csvteoricas ,csvreales ,csvcoordenadas):

2 dfteoricas=pd.read_csv(csvteoricas ,sep=";")

3 dfreales=pd.read_csv(csvreales ,sep=";")

4 dfcoordenadas=pd.read_csv(csvcoordenadas ,sep=";")

5

6 dfcoordenadas["Latitude"] = dfcoordenadas["Latitude"]. astype(str).str.

replace(",",".")

7 dfcoordenadas["Longitude"] = dfcoordenadas["Longitude"]. astype(str).str.

replace(",",".")

8

9 todasreales = pd.Series(dfreales[’WorkOrderId ’])

10 duplicadas = list(todasreales[todasreales.duplicated ()])

11

12 ordenesteoricas=np.unique(dfteoricas[’WorkOrderId ’])

13 ordenesreales = np.array([x for x in dfreales[’WorkOrderId ’] if x not in

duplicadas ])

14 ordenescoordenadas=np.unique(dfcoordenadas[’WorkOrderId ’])

15 ordenes =[ ordenesteoricas ,ordenesreales ,ordenescoordenadas]

16 ordenescomunes=np.sort(list(set.intersection (*map(set ,ordenes))))

17

18 filtroteorico=dfteoricas[dfteoricas[’WorkOrderId ’].isin(ordenescomunes)]

19 filtroreal=dfreales[dfreales[’WorkOrderId ’].isin(ordenescomunes)]

20 filtrocoord=dfcoordenadas[dfcoordenadas[’WorkOrderId ’].isin(ordenescomunes)]

21

22 filtrocoordfinal = pd.DataFrame(columns=filtrocoord.columns)

23

24 for orden in ordenescomunes:
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25 filtrocoordfinal = filtrocoordfinal.append(filtrocoord[filtrocoord[’

WorkOrderId ’]== orden ]. drop_duplicates(subset =[’ContainerId ’]),ignore_index=

True)

26

27 filtroteorico.to_csv(’FiltroTeorico_ ’+csvteoricas ,sep=’;’,index=False)

28 filtroreal.to_csv(’FiltroReal_ ’+csvreales ,sep=’;’,index=False)

29 filtrocoordfinal.to_csv(’FiltroCoord_ ’+csvcoordenadas ,sep=’;’,index=False)

B.2. Generación de variables

A continuación, se muestra la función principal utilizada para crear las variables a partir

de la lectura de 3 ficheros csv de rutas teóricas, rutas reales y coordenadas de contenedores, la

extracción de su información y todas las transformaciones comentadas en el trabajo junto con

el clustering.

1 def clasifica1(cen_x):

2 if cen_x == centroides [0]:

3 return 0

4 if cen_x == centroides [1]:

5 return 1

6 if cen_x == centroides [2]:

7 return 2

8 if cen_x == centroides [3]:

9 return 3

10

11 def clasifica2(Bondad):

12 if Bondad >=0 and Bondad <min1:

13 return 0

14 if Bondad >=min1 and Bondad <min2:

15 return 1

16 if Bondad >=min2 and Bondad <min3:

17 return 2

18 if Bondad >=min3:

19 return 3

20

21 def calcula_variables(csvteoricas ,csvreales ,csvcoordenadas):

22

23 ordenes = pd.read_csv(csvcoordenadas ,sep=’;’)

24

25 ordenesag = ordenes.groupby(’WorkOrderId ’).agg({

26 ’Scheduled ’: ’sum’,

27 ’Collected ’: ’sum’

28 })

29 ordenesag[’NContenedores ’]= ordenes.groupby(’WorkOrderId ’).count().iloc [:,2]

30 ordenesag[’01’]= ordenesag[’NContenedores ’]-ordenesag[’Scheduled ’]

31 ordenesag[’10’]= ordenesag[’NContenedores ’]-ordenesag[’Collected ’]

32 ordenesag[’11’]= ordenesag[’NContenedores ’]-ordenesag[’01’]-ordenesag[’10’]

33 ordenesag=ordenesag.drop(columns =[’Scheduled ’,’Collected ’])

34 ordenesag[’Ruido’] = None

35 ordenesag[’BienHechos ’]= ordenesag[’11’]/( ordenesag[’11’]+ ordenesag[’10’])

36 ordenesag[’Similitud ’] = None
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37 ordenesag[’Adicionales ’]= ordenesag[’01’]/( ordenesag[’11’]+ ordenesag[’10’]+

ordenesag[’01’])

38 ordenesag[’RatioLongitudes ’] = None

39

40 teoricas = pd.read_csv(csvteoricas ,sep=";")

41 reales = pd.read_csv(csvreales ,sep=";")

42

43 for j in range(len(reales[’WorkOrderId ’])):

44 wktr = reales[’WKT’].iloc[j]. replace("LINESTRING(" , "").replace(")","")

.replace(","," ").split()

45 wktreales = []

46 for i in range(0,len(wktr) ,2):

47 wktreales.append ([ float(wktr[i]),float(wktr[i+1])])

48 longitudes_r = np.sqrt(np.sum(np.diff(np.array(wktreales), axis =0)**2,

axis =1))

49 longitud_real = np.sum(longitudes_r)

50

51 wktt = teoricas[’WKT’].iloc[j]. replace("MULTILINESTRING ((" , "").replace

("))","").replace(","," ").split()

52 wktteoricas = []

53 for i in range(0,len(wktt) ,2):

54 wktteoricas.append ([float(wktt[i]),float(wktt[i+1])])

55 longitudes_t = np.sqrt(np.sum(np.diff(np.array(wktteoricas), axis =0)**2,

axis =1))

56 longitud_teorica = np.sum(longitudes_t)

57

58 ratio = np.abs(longitud_real -longitud_teorica)/longitud_teorica

59 ordenesag[’RatioLongitudes ’].iloc[j]= ratio

60

61 distancia = tdist.sspd(np.array(wktreales),np.array(wktteoricas),’

euclidean ’)

62 ordenesag[’Similitud ’].iloc[j]= distancia

63

64 ordenesag[’Ruido’].iloc[j]=np.random.normal (0 ,0.7)

65

66 ordenesag[’Similitud ’]=0.001/(0.001+ ordenesag[’Similitud ’])

67

68 ordenesag[’RatioLongitudes ’]=( ordenesag[’RatioLongitudes ’]-ordenesag[’

RatioLongitudes ’].min())/( ordenesag[’RatioLongitudes ’].max()-ordenesag[’

RatioLongitudes ’].min())

69

70 ordenesag[’Bondad ’]=10* ordenesag[’BienHechos ’]+4* ordenesag[’Similitud ’]+2*

ordenesag[’Adicionales ’]-1* ordenesag[’RatioLongitudes ’]+ ordenesag[’Ruido’]

71

72 ordenesag[’Bondad ’]=10*( ordenesag[’Bondad ’]-ordenesag[’Bondad ’].min())/(

ordenesag[’Bondad ’].max()-ordenesag[’Bondad ’].min())

73

74 mezcla = ordenesag.copy()

75

76 kmeans = KMeans(n_clusters =4, random_state =0)

77 mezcla[’cluster ’] = kmeans.fit_predict(mezcla [[’Bondad ’]])

78 centroids = kmeans.cluster_centers_

79 cen_x = [i[0] for i in centroids]

80 mezcla[’cen_x ’] = mezcla.cluster.map ({0: cen_x [0], 1:cen_x [1], 2:cen_x [2], 3:

cen_x [3]})
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81

82 global centroides

83

84 centroides = np.sort(np.unique(mezcla[’cen_x’]))

85 colors = [’#DF2020 ’, ’#81 DF20’, ’#2095 DF’, ’#20 DF95’]

86 mezcla[’c’] = mezcla.cluster.map ({0: colors [0], 1: colors [1], 2: colors [2], 3:

colors [3]})

87 plt.scatter(mezcla.Bondad ,mezcla.Bondad , c=mezcla.c, alpha = 0.6, s=10)

88 ordenesag[’Resultado ’]= mezcla[’cen_x’]. apply(clasifica1)

89

90 global min0

91 global min1

92 global min2

93 global min3

94

95 min0 = min(ordenesag[ordenesag[’Resultado ’]==0][ ’Bondad ’])

96 min1 = min(ordenesag[ordenesag[’Resultado ’]==1][ ’Bondad ’])

97 min2 = min(ordenesag[ordenesag[’Resultado ’]==2][ ’Bondad ’])

98 min3 = min(ordenesag[ordenesag[’Resultado ’]==3][ ’Bondad ’])

99

100 print(min0)

101 print(min1)

102 print(min2)

103 print(min3)

104

105 ordenesag[’Bondad ’]= ordenesag[’Bondad ’]. astype(float).round (0)

106

107 ordenesag[’Resultado ’]= ordenesag[’Bondad ’]. apply(clasifica2)

108

109 return ordenesag

C. Acerca de la similitud de trayectorias

C.1. Densificación de trayectorias

En el transcurso de este trabajo, se ha comprobado que la SSPD es el algoritmo óptimo en el

cálculo del grado de similitud de los pares de trayectorias disponibles en este conjunto de datos.

Se puede mejorar aún más la precisión de las distancias si se densifica con más puntos cada

una de las trayectorias. Estas trayectorias están formadas por una serie de puntos unidos por

rectas, pero si queremos rellenar dichas rectas con más puntos equiespaciados para reconstruir

más densamente las trayectorias, puede emplearse la siguiente función:

1 def densificar(coordenadas , segmentos):

2 denso=coordenadas

3 for i in range(len(coordenadas) -1):

4 denso=np.insert(denso ,i*segmentos+1,np.array([list(a) for a in zip(np.

linspace(coordenadas[i][0], coordenadas[i+1][0] , segmentos ,endpoint=False)

[1:],np.linspace(coordenadas[i][1], coordenadas[i+1][1] , segmentos ,endpoint=

False)[1:])]) ,0)
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5 return denso

donde coordenadas es el array de puntos que conforman una trayectoria y segmentos es el

número de segmentos que queremos que haya entre dos puntos consecutivos del array original (es

decir, que haya segmentos−1 puntos nuevos entre cada par de puntos consecutivos originales).

C.2. Medidas alternativas del grado de similitud

Hasta comprobar la idoneidad de la SSPD, se analizaron numerosos algoritmos populares

que funcionaŕıan bien en otros problemas espećıficos. Podemos clasificar estos algoritmos en dos

tipos:

Warping-based : Son aquellas distancias que tienen en cuenta el indexado temporal de cada

punto. Por ejemplo, las distancias DTW, LCSS, EDR y ERP.

Shape-based : Son aquellas distancias que únicamente tienen en cuenta la forma geométrica

de las trayectorias. Por ejemplo, las distancias Hausdorff, Fréchet y SSPD.

Empecemos caracterizando los cuatro populares algoritmos warping-based mencionados:

Dynamic Time Warping (DTW)

Longest Common SubSequence (LCSS)

Edit Distance on Real sequence (EDR)

Edit distance with Real Penalty (ERP)

En las descripciones matemáticas que siguen, se quiere calcular la distancia entre dos trayectorias

T i y T j donde ni es el número de puntos de T i y nj es el número de puntos de T j . El punto

k-ésimo de la trayectoria T i es pik y el punto k-ésimo de la trayectoria T j es pjk. Asimismo,

rest(T i) (respectivamente, rest(T j)) es la trayectoria T i (respectivamente, T j), pero sin su

primer punto. Además, LCSS y EDR requieren la especificación de un umbral espacial εd y

ERP toma un parámetro g como valor de referencia para penalizar gaps (se dan cuando hay

puntos que no se emparejan con ningún otro punto).

La definición de los 4 aparece resumida en la siguiente tabla:
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Tabla 1: Cuatro distancias warping-based : DTW, LCSS, EDR y ERP. A la izquierda,

funciones de coste δ que se definen aparte para implementarse en las definiciones de las

distancias de la parte derecha.

Para nuestro problema concreto, los algoritmos warping-based arrojaŕıan resultados poco

fiables debido a que intentaŕıan emparejar los puntos de las dos trayectorias según su ordenación

en el tiempo.

Como la variable que deseamos obtener es el grado de similitud entre dos rutas (la real y la

teórica) basándonos en su forma, parece lógico el estudio de los algoritmos shape-based como los

que se describen a continuación:

Distancia de Hausdorff :

DHaus(T
1, T 2) = máx

 máx
i1∈[1,...,n1]

j2∈[1,...,n2−1]

{
Dps

(
p1i1 , s

2
j2

)}
, máx
j1∈[1,...,n1−1]
i2∈[1,...,n2]

{
Dps

(
p2i2 , s

1
j1

)} (1)

donde Dps

(
p1i1 , s

2
j2

)
es la distancia del punto p1i1 al segmento s2j2 y Dps

(
p2i2 , s

1
j1

)
es la

distancia del punto p2i2 al segmento s1j1 .

Distancia de Fréchet:

Dadas dos curvas A y B, se define esta distancia como el ı́nfimo sobre todas las repara-

metrizaciones α y β de [0, 1] del máximo sobre todos los t ∈ [0, 1] de la distancia entre

A(α(t)) y B(β(t)):

DFrec(A,B) = ı́nf
α,β

máx
t∈[0,1]

{d (A(α(t)), B(β(t)))} (2)

Alternativamente, existe una versión discreta de este algoritmo.

8



Symmetrized Segment-Path Distance (SSPD):

La descrita en el trabajo principal y que resultó ser la que proporcionaba estimaciones más

precisas y con motivos teóricos para creer en su eficacia para nuestro problema concreto.

Como en nuestro caso buscamos variables normalizadas para evitar problemas de sensi-

bilidad de escala en árboles de decisión y redes neuronales, tan sólo será necesario fijar

un cierto parámetro que garantice una adecuada transformación. Esto se describe en la

siguiente subsección.

C.3. Determinación del parámetro de normalización de SSPD

Es fundamental convertir el valor de todas las variables de entrada a un intervalo acotado

para evitar el problema de la sensibilidad de escala que presentan algunos modelos de machine

learning. Si la distancia SSPD es un número entre cero e infinito, se determinó que la transfor-

mación más acertada dadas las caracteŕısticas del problema era

ξ

ξ + SSPD
(3)

Esta transformación es monótona decreciente, por lo que invierte la ordenación de las dis-

tancias originales sin mezclarlas y asignará un grado de similitud alto a una distancia baja, y

viceversa. Esto último ocurrirá tan solo si se elige adecuadamente el parámetro ξ porque su

mala elección en orden de magnitud hace que los valores del grado de similitud se agrupen en un

extremo del intervalo (0, 1). La elección del parámetro óptimo podemos hacerla estudiando la

abundancia de datos de distancias en cada orden de magnitud. Empleando la distancia eucĺıdea,

observamos que en el conjunto de datos hay distancias en los órdenes de magnitud 10−5, 10−4,

10−3 y 10−2. En particular, entre las 623 órdenes de trabajo analizadas, se tiene la siguiente

distribución:

Orden de magnitud de la distancia Cantidad de órdenes de trabajo

10−2 33

10−3 169

10−4 363

10−5 58

Tabla 2: Número de órdenes de trabajo de acuerdo al orden de magnitud en el que se

encuentra su SSPD asociada.

Recordemos que cuanto menor es esta distancia, más similares son dos rutas. Realizamos una

inspección cualitativa de cómo de similares son las trayectorias geométricas de órdenes de traba-

jo que posean distancias en cada uno de los cuatro órdenes de magnitud descritos. Finalmente,

llegamos a la conclusión de que estos 4 órdenes de magnitud son plenamente identificables con

precisamente las 4 clases que hemos definido para el entrenamiento de los modelos clasificadores.

Es decir, una distancia del orden de 10−2 seŕıa una distancia mala , una distancia del orden de
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10−3 seŕıa una distancia regular , una distancia del orden de 10−4 seŕıa una distancia razo-

nablemente buena y una distancia del orden de 10−5 seŕıa una distancia muy buena . Por

supuesto, como se ha visto en el trabajo principal, esto no es suficiente para realizar la clasifi-

cación de las órdenes de trabajo porque influyen otras tres variables con diferentes pesos, pero

nos da una idea de que alrededor de 2/3 de la órdenes presentan rutas GPS con una similitud

aceptable. Para encontrar el parámetro ξ de la transformación (3) que enviará estas distancias

al intervalo (0,1) con una cierta lógica, vamos a suponer que todas las distancias de los órdenes

10−2 y 10−3 (en total, 202) deben tener asociadas un grado de similitud por debajo de 0,5 y

que todas las distancias de los órdenes 10−4 y 10−5 (en total, 421) deben tener asociadas un

grado de similitud por encima de 0,5. El parámetro que permite precisamente esta colocación

de los valores es ξ = 0, 001. Para asegurarnos de que realmente la transformación (3) es realista,

hemos de hacer una calibración fijando manualmente unos pocos valores de referencia a ojo en

ciertas órdenes de trabajo para ver que realmente nuestra transformación es capaz de predecir

los grados de similitud que una persona asignaŕıa sin ayuda de un ordenador. Si tomamos un

conjunto de 10 órdenes de trabajo con distancias suficientemente variadas, puede comprobarse

que el grado de similitud que una persona asignaŕıa manualmente a una pareja de ruta teórica

y ruta real es suficientemente parecido al que predice la función (3) con ξ = 0, 001.

Figura 1: Grado de similitud en función de la distancia SSPD.

Por tanto, hemos conseguido ajustar una magnitud que a priori podŕıa parecer totalmente

subjetiva o muy dif́ıcil de calcular con suficiente precisión y ahora puede ofrecer resultados

objetivos.
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D. Acerca de los árboles de decisión

A continuación, se muestra una pequeña ampliación de los análisis llevados a cabo durante

el trabajo relacionados con los árboles de decisión.

D.1. Profundidad de un árbol

En el trabajo se ha enfatizado que una de las grandes ventajas de los árboles de decisión es

su explicabilidad frente a otros modelos con algoritmos más sofisticados que son menos interpre-

tables. Un simple vistazo a un árbol de decisión nos da una idea muy visual de cómo clasificar

conjuntos de datos. No obstante, esto sólo es posible cuando el árbol está adecuadamente poda-

do. En el trabajo, se muestra una gráfica de un árbol desarrollado hasta la tercera generación

(es decir, tres filas más la del nodo ráız). Esto proporciona una fácil interpretación en función de

dos de las variables del modelo y la precisión del modelo puede ser considerada moderadamente

buena. Sin embargo, si permitiéramos el desarrollo máximo del árbol hasta que todos los nodos

terminales tuvieran una impureza de Gini nula, obtendŕıamos el siguiente árbol:

Figura 2: Árbol de decisión si no se hubiera realizado la poda del árbol del trabajo principal.
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No se pretende hacer hincapié en la lectura de cada nodo. Lo que śı puede observarse con

claridad es que se pierde totalmente la legibilidad. Resultaŕıa muy costoso extraer todas las

condiciones que se deducen a través de las proposiciones lógicas asociadas a semejante cantidad

de nodos. Además, no necesariamente obtendŕıamos un modelo con mayor precisión porque

un árbol demasiado extenso puede sobreajustar los datos, es decir, aprender demasiado bien

los patrones del conjunto de datos de entrenamiento, pero generalizar muy mal y fracasar en

las predicciones de cualquier nuevo conjunto de datos. Aśı, el aprendizaje no tendŕıa ninguna

utilidad práctica posteriormente.

D.2. Variabilidad en árboles

No sólo se puede generar un árbol de decisión único. Según el fragmento espećıfico de datos

que elijamos para entrenar y para validar, pueden generarse árboles ligeramente distintos. En

general, para un conjunto de datos suficientemente grande no debeŕıamos esperar una variabi-

lidad extremadamente elevada, pero śı puede haber casos aislados que den lugar a resultados

inesperados.

Por ejemplo, para el conjunto de datos utilizado, la forma de un árbol de decisión t́ıpico

y abundante es la que se ha presentado en el trabajo principal dependiente de las variables

BienHechos y Similitud:

Figura 3: Árbol de decisión principal.

Pero en casos aislados concretos puede llegar a obtenerse algún árbol de la siguiente forma:
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Figura 4: Árbol de decisión alternativo.

donde el algoritmo ha considerado relevante incluir una tercera variable: RatioLongitudes. En

este caso, vemos que la ha empleado para discriminar entre dos muestras concretas, y ni siquiera

de forma correcta porque el modelo debe premiar parejas de rutas teóricas y rutas reales con un

bajo valor de RatioLongitudes. Este problema puede presentarse en situaciones espećıficas, aśı

como también pueden darse pequeñas variaciones numéricas en los umbrales de decisión de los

nodos según el árbol elegido, incluso si tienen la misma forma. Por ello, el estudio de los árboles

de decisión es importante si puede demostrarse que la forma de los árboles es razonablemente

estable para un conjunto de datos y si se quiere tener una idea aproximada y visual de cómo seŕıa

una clasificación t́ıpica. No obstante, la motivación de alcanzar porcentajes de acierto mayores

justifica la necesidad de probar modelos algo más elaborados.

D.3. Selección de parámetros del bosque aleatorio

Un bosque aleatorio se forma a partir de las predicciones de múltiples árboles de decisión. No

existe una fórmula estándar que permita determinar de antemano el número de árboles óptimo,

pero podemos evaluar el rendimiento del modelo según el número de árboles seleccionado:
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1 scores = []

2 for k in range(1, 100):

3 rfc = RandomForestClassifier(n_estimators=k,max_depth=3,n_jobs=-1,

random_state =42)

4 rfc.fit(X_train , y_train)

5 y_pred = rfc.predict(X_test)

6 scores.append(accuracy_score(y_test , y_pred))

En nuestro caso, se obtiene el siguiente resultado:

Figura 5: En azul, precisión del bosque aleatorio en función del número de árboles de decisión

(estimadores). En rojo, precisión del árbol de decisión individual mostrado en el trabajo.

Vemos que hay altas variaciones en la precisión cuando el número de árboles es bajo. Conforme

el número aumenta, la precisión empieza a estabilizarse en un rango de valores más altos que

la precisión que consegúıamos con un único árbol de decisión. A la vista de la gráfica anterior,

se ha visto que la precisión se maximiza tomando 70 árboles, que es el número elegido en el

trabajo. No obstante, tal y como luego se demuestra mediante bootstrapping, la capacidad real

del modelo es menor que la que se logra con un único bosque aleatorio de 70 árboles. Otra métrica

comúnmente utilizada para justificar el número de árboles elegidos y evaluar el rendimiento es

el error out-of-bag (OOB) que debeŕıa reducirse conforme aumenta el número de árboles.

Con un conjunto de datos más grande, se podŕıa acotar más el rango de precisiones en el

que oscila el modelo para un número elevado de árboles y podŕıamos notar, en general, un

crecimiento más monótono salvo pequeñas subidas y bajadas debido a la aleatoriedad.

D.4. Superficies de decisión del bosque aleatorio

No es útil representar 70 árboles de decisión individuales, por lo que decimos que un bosque

aleatorio es menos interpretable que un árbol de decisión. Sin embargo, podemos tomar las

14



variables de cualquier modelo por parejas y representar las superficies de decisión. Esto es un

tipo de representación que nos permite visualizar cómo un modelo de clasificación divide el

espacio de variables de acuerdo a sus predicciones y analizar superficialmente sus puntos fuertes

y debilidades. Se trata de entrenar un bosque aleatorio mediante parejas de variables y, para

cada pareja, hallar los ĺımites que separan las 4 clases según los umbrales que decide el bosque.

Figura 6: Superficies de decisión inferidas entrenando bosques aleatorios con dos variables. En

naranja, la clase 0. En verde claro, la clase 1. En cian, la clase 2. En fucsia, la clase 3.

Tras ello, pintamos encima los datos usados para entrenar y observamos las correspondencias.

Figura 7: Mismas superficies con los puntos del conjunto de datos con el color adecuado según

la clase a la que sabemos que pertenecen.
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Las superficies son un intento de distinguir zonas continuas que tienen asociada una misma

clase, con mayor o menor grado de éxito. Dada la complejidad del conjunto de datos y que los

puntos de una misma clase no están completamente separados de los de otra clase, algunas de

las superficies adoptan una forma compleja.

Ante todo, hay que observar que las superficies están dibujadas en cuadrados [0, 1] × [0, 1]

ya que todas las variables se encuentran en el intervalo [0, 1], pero no necesariamente tenemos

datos en todas las zonas de un cuadrado. De hecho, en muchos casos vemos que la gran mayoŕıa

de los datos se agrupan en zonas muy espećıficas (esquinas y bordes). El algoritmo hace un

intento de extrapolar las superficies a áreas donde no hay puntos, sin que estas predicciones

sean necesariamente correctas de acuerdo a nuestra intuición.

En el cuadrado de arriba a la izquierda śı que vemos 4 superficies continuas bastante bien

definidas y de acuerdo a lo esperado. Es de esperar que, a mayor similitud y mayor proporción

de contenedores bien recogidos, la bondad de la orden sea mayor y la orden pertenecerá a una

clase superior, reservando la clase 3 (órdenes muy buenas) a la esquina superior derecha del

cuadrado. De igual modo, las órdenes malas cabe esperarlas en la esquina inferior izquierda o, en

este caso, en todo el tercio izquierdo debido al dominio que la variable BienHechos tiene sobre la

variable Similitud. No todos los puntos encajan en la superficie que debeŕıan corresponderles,

pero las ideas principales han sido capturadas.

Revisando en cuadrado central superior, se refleja de nuevo el dominio de la variable BienHechos

por la verticalidad de las superficies. Sin embargo, vemos que la clase 3 se reserva a un pequeño

trozo de la esquina inferior derecha del cuadrado. Esto quiere decir que el modelo ha capturado

la idea de que, incluso si estamos premiando que la bondad se vea favorecida por un valor alto

de la variable Adicionales, efectivamente las órdenes de clase 3 tendrán un valor bajo de la

variable Adicionales. Esto es porque, en general, las órdenes de trabajo con un alto valor de la

variable BienHechos debido a un cumplimiento estricto de la orden suelen desviarse poco hacia

la recogida de contenedores adicionales.

En los demás casos, la información es más caótica y poco fiable. Queda claro en algunos

casos que el entrenamiento con dos variables es insuficiente. Especialmente, cuando se trata de

variables con menor contribución a la bondad total como es el caso del cuadrado de abajo a la

derecha, la información de las superficies es mucho más imprecisa y los puntos no caen donde

deben. Este método simplemente nos da una primera idea superficial de la naturaleza de las

variables.

D.5. Extreme Gradient Boosting

Dentro de los métodos de ensemble, encontramos dos grupos: las técnicas de aprendizaje

paralelo y las técnicas de aprendizaje secuencial. El ejemplo más claro del primer tipo son los

bosques aleatorios que toman una serie de árboles independientes y se reduce el error al tener

en cuenta el rendimiento de múltiples árboles. Sin embargo, también merece la pena el estudio

de técnicas del segundo tipo. En el caso de trabajar con árboles, los árboles entrenados se

generaŕıan en una secuencia con cierta dependencia entre ellos para que los nuevos árboles que

vayan generándose aprendan de los errores de los árboles anteriores.

Los algoritmos de gradient boosting pertenecen al segundo tipo y son una técnica muy popular

de clasificación y regresión. En principio, los algoritmos de extreme gradient boosting de la libreŕıa
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XGBoost están mejor optimizados y regularizados para la prevención del sobreajuste de modelos.

Para los propósitos de este trabajo, se ha probado la implementación del clasificador XGBClassifier

y del regresor XGBRegressor. No obstante, se ha observado que, para este conjunto de datos,

los resultados igualan a los del bosque aleatorio sin aportar información de mayor relevancia,

por lo que no se han desarrollado en mayor profundidad en el trabajo. Quizá para conjuntos de

datos más grandes y complejos cabŕıa esperar mejoras notables en el rendimiento.

E. Acerca de las redes neuronales

Una representación esquemática de la forma de una de estas redes podŕıa ser la siguiente:

Figura 8: Perceptrón multicapa.

donde se refleja los dos pasos que se dan en cada neurona: realizar una combinación lineal y

aplicar una función no lineal.

A continuación se describen algunos algoritmos fundamentales que forman parte del funcio-

namiento de las redes neuronales.

E.1. Descenso de gradiente

El descenso de gradiente es un algoritmo iterativo de optimización para hallar un mı́nimo

local de una función. Esto se hace moviéndonos en la dirección de máximo decrecimiento que

viene dada por el gradiente cambiado de signo en cada punto. Iniciando en un punto, calculamos

el gradiente en ese punto, lo cambiamos de signo y, con un cierto paso, pasamos al siguiente

punto donde repetiremos el proceso. Esto hará que, si se ha elegido un paso adecuado para la
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función, finalmente nos aproximemos lo suficiente a un mı́nimo local de la función. El tamaño

del paso depende de un parámetro conocido como learning rate (α) que multiplica al gradiente.

Debe elegirse cuidadosamente porque un valor demasiado alto puede hacer que sobrepasemos el

mı́nimo local sin llegar a alcanzarlo, mientras que un valor demasiado bajo puede requerir un

tiempo de computación extremadamente grande.

Definimos como siempre una función de coste J que será de la que calcularemos los gradientes

(vectores de derivadas con respecto a los parámetros de la red) ya que queremos minimizarla.

Aśı, en cada iteración, el valor de un conjunto de parámetros θ en función del valor de los de la

iteración anterior viene dado por

θi+1 = θi − α∇J(θi) (4)

En machine learning, este algoritmo se usa para actualizar los parámetros de un modelo. Por

ejemplo, los pesos de una red neuronal.

E.2. Retropropagación

El cálculo de los gradientes descritos en el método anterior no es trivial debido al alto

número de parámetros que pueden existir en una red neuronal y su distribución en las múltiples

capas. Por ello, se hace uso de un método conocido como back-propagation o retropropagación.

Calculamos las derivadas parciales de la función de coste con respecto a los parámetros de la

última capa aplicando la regla de la cadena. Después, vamos aplicando el mismo método a las

capas anteriores una a una hasta llegar al inicio de la red.

Para simplificar la explicación del concepto, supongamos que tenemos una red con sólo

una neurona en cada capa. Tal y como se describe en el trabajo, en cada neurona se dan dos

operaciones:

z(n) = w(n)a(n−1) + b(n) (5)

a(n) = φ(n)
(
z(n)

)
(6)

Supongamos que en el método del descenso de gradiente necesitamos calcular la derivada de

la función de coste con respecto al peso w(n). Entonces, esto es una simple aplicación de la regla

de la cadena:

∂Jk
∂w(n)

=
∂z(n)

∂w(n)
· ∂a

(n)

∂z(n)
· ∂Jk
∂a(n)

(7)

Ahora habŕıa que calcular cada una de esas tres derivadas. Supongamos que la función de

coste asociada a una determinada muestra del conjunto de entrenamiento viene dada por la

diferencia cuadrática entre el valor de la activación a en la capa n previa a la salida y el valor

deseado en la neurona de salida para dicha muestra espećıfica del conjunto de datos, yk. Es decir,

Jk =
(
a(n) − yk

)2
(8)

Entonces, a partir de las expresiones (5), (6) y (8), calculamos las tres derivadas que resultan

ser
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∂z(n)

∂w(n)
= a(n−1) (9)

∂a(n)

∂z(n)
=
(
φ(n)

)′ (
z(n)

)
(10)

∂Jk
∂a(n)

= 2
(
a(n) − yk

)
(11)

Realizado este proceso para una cierta muestra del conjunto de datos, la derivada parcial de

la función de coste total seŕıa el promedio de todas las derivadas parciales obtenidas para todas

las muestras del conjunto de datos.

Equivalentemente, la derivada parcial con respecto al bias b(n) es

∂Jk
∂b(n)

=
∂z(n)

∂b(n)
· ∂a

(n)

∂z(n)
· ∂Jk
∂a(n)

(12)

donde

∂z(n)

∂b(n)
= 1 (13)

De nuevo, realizado este proceso para una cierta muestra del conjunto de datos, la derivada

parcial de la función de coste total seŕıa el promedio sobre el conjunto de datos.

Para redes con más neuronas por capa, el proceso es análogo teniendo en cuenta los múltiples

pesos extra que aparecen y las diferentes activaciones que aparecen en una misma capa.

E.3. L-BFGS

L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) es un algoritmo de optimi-

zación empleado en redes neuronales. Se trata de un método de segundo orden. Pertenece a la

familia de los métodos cuasi-Newton. Esto último quiere decir que se realizan aproximaciones

de la inversa de la matriz hessiana en lugar de su cálculo expĺıcito. Es una mejora del algorit-

mo BFGS ya que requiere guardar menos información en memoria en cada iteración, lo cual es

relevante en términos de eficiencia. En principio, para conjuntos de datos de poco tamaño, es

de esperar un mejor rendimiento a través de este resolvedor que a través de otros t́ıpicamente

utilizados en el entrenamiento de redes neuronales como el descenso de gradiente estocástico o

Adam.

E.4. Adam

Se trata de una modificación del descenso de gradiente estocástico clásico que combina las

ventajas de otras populares extensiones del descenso de gradiente estocástico como AdaGrad

o RMSprop. Se calculan learning rates adaptables para los diferentes parámetros a partir de
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estimaciones del primer y segundo momento de los gradientes (asumiendo que los gradientes son

variables aleatorias). Esencialmente, cuenta con 4 hiperparámetros de interés:

α: Tamaño de paso.

β1: Ritmo de cáıda exponencial para las estimaciones del primer momento.

β2: Ritmo de cáıda exponencial para las estimaciones del segundo momento.

ε: Tolerancia para evitar divisiones entre cero.

Se trata de uno de los métodos más eficientes y es especialmente adecuado en problemas

grandes en términos de número de datos y número de parámetros.

E.5. Implementación de las redes

Para crear una red neuronal con el método L-BFGS mientras se compara el rendimiento para

distintas combinaciones de parámetros, puede utilizarse el siguiente código:

1 X = variables [[’BienHechos ’,’Similitud ’,’Adicionales ’,’RatioLongitudes ’]]

2 y = variables[’Resultado ’]

3

4 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.3,

random_state =42)

5

6 mlp = MLPClassifier ()

7 parameter_space = {

8 ’hidden_layer_sizes ’: [(4,) ,(5,) ,(6,)],

9 ’activation ’: [’tanh’,’logistic ’,’relu’],

10 ’solver ’: [’lbfgs ’],

11 ’alpha ’: [0.01 ,0.001 ,0.0001 ,0.00001] ,

12 ’max_iter ’: [1000] ,

13 ’learning_rate ’: [’constant ’],

14 }

15 clf = GridSearchCV(mlp , parameter_space , n_jobs=-1, cv=3)

16 clf.fit(X_train , y_train)

17

18 print(’Mejores parametros :\n’, clf.best_params_)

donde puede hacerse uso del buscador de parámetros GridSearchCV que ya aplica validación

cruzada (cross validation) mediante K-Fold. Este método realiza K particiones distintas del

conjunto de datos total en subconjuntos de entrenamiento y de test para evaluar la precisión de

acuerdo a cada una de las particiones y promedia los resultados.

Asimismo la implementación de Adam en TensorFlow se lleva a cabo a través de un adecuado

tratamiento de la clase de tensores t́ıpica de la libreŕıa:
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1 def get_batch(x_data , y_data , batch_size):

2 idxs = np.random.randint(0, len(y_data), batch_size)

3 return x_data[idxs ,:], y_data[idxs]

4

5 def nn_model(x_input , W1 , b1 , W2 , b2):

6 x_input = tf.reshape(x_input , (x_input.shape[0], -1))

7 x = tf.add(tf.matmul(tf.cast(x_input , tf.float32), W1), b1)

8 x = tf.nn.relu(x)

9 logits = tf.add(tf.matmul(x, W2), b2)

10 return logits

11

12 def loss_fn(logits , labels):

13 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(

labels=labels ,

14

logits=logits))

15 return cross_entropy

16

17 epochs = 80

18 batch_size = 50

19

20 X = variables [[’BienHechos ’,’Similitud ’,’Adicionales ’,’RatioLongitudes ’]]

21 y = variables[’Resultado ’]

22

23 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.3,

random_state =42)

24

25 X_train = tf.Variable(np.array(X_train).astype(’float ’))

26 X_test = tf.Variable(np.array(X_test).astype(’float ’))

27

28 #Pesos entre la capa de entrada y la capa oculta

29 W1 = tf.Variable(tf.random.normal ([4, 4], stddev =0.03) , name=’W1’)

30

31 #Bias de la capa oculta

32 b1 = tf.Variable(tf.random.normal ([4]) , name=’b1’)

33

34 #Pesos entre la capa oculta y la capa de salida

35 W2 = tf.Variable(tf.random.normal ([4, 4], stddev =0.03) , name=’W2’)

36

37 #Bias de la capa de salida

38 b2 = tf.Variable(tf.random.normal ([4]) , name=’b2’)

39

40 optimizer = tf.keras.optimizers.Adam(learning_rate =0.07 , beta_1 =0.9, beta_2 =0.999 ,

epsilon =0.0000001)

41

42 total_batch = int(len(y_train) / batch_size)

43 arrayloss =[]

44 arrayacc =[]

45 for epoch in range(epochs):

46 avg_loss = 0

47 for i in range(total_batch):

48 batch_x , batch_y = get_batch(np.array(X_train), np.array(y_train),

batch_size=batch_size)

49

50 batch_x = tf.Variable(np.array(batch_x).astype(’float’))

21



51 batch_y = tf.Variable(np.array(batch_y).astype(’float’))

52

53 batch_y = tf.one_hot(np.array(batch_y).astype(’int’) ,4)

54 with tf.GradientTape () as tape:

55 logits = nn_model(batch_x , W1, b1, W2, b2)

56 loss = loss_fn(logits , batch_y)

57 gradients = tape.gradient(loss , [W1 , b1 , W2 , b2])

58 optimizer.apply_gradients(zip(gradients , [W1 , b1 , W2 , b2]))

59 avg_loss += loss / total_batch

60 arrayloss.append(avg_loss)

61 test_logits = nn_model(X_test , W1, b1, W2, b2)

62 max_idxs = tf.argmax(test_logits , axis =1)

63 test_acc = np.sum(max_idxs.numpy () == y_test) / len(y_test)

64 arrayacc.append(test_acc)

65 print(f"Epoca: {epoch + 1}, perdida ={ avg_loss :.3f}, precision ={ test_acc

*100:.3f} %")
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