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A. Software y programacion

Este trabajo se ha desarrollado fundamentalmente en Python y, en particular, a través de
un notebook de Jupyter del cual se mostraran algunos fragmentos de codigo de algunas celdas
relevantes. Se ha utilizado Python por su versatilidad y popularidad en proyectos de ciencia de
datos. Esto hace que existan numerosas librerias especialmente ttiles en el anélisis de datos y la
aplicacién de técnicas de machine learning. Entre las librerias utilizadas, destacan las siguientes:

= NumPy: Proporciona un tratamiento més eficiente y versétil de vectores, matrices y arrays
multidimensionales mas alla de las listas de Python por defecto. Ademaés, contiene numero-
sas funciones de todo tipo compatibles con el formato de array que introduce la libreria y
con aplicacion en la manipulacion de todo tipo de datos y su tratamiento mediante algebra

lineal.

Disponible en https://pypi.org/project/numpy

» Pandas: Libreria fundamental en el area de la ciencia de datos que ofrece estructuras de
datos y operaciones que facilitan enormemente el procesamiento, la bisqueda y el filtrado
de datos. Para ello, introduce el tipo de datos DataFrame que facilita la agrupacién de

datos en tablas indexadas sobre las que aplicar todo tipo de funciones y transformaciones.

Disponible en https://pypi.org/project/pandas

= matplotlib: Libreria de generacion de graficas a partir de arrays con numerosas funciones
de graficacién de histogramas, diagramas de dispersién y representaciones bidimensionales
y tridimensionales de todo tipo con una amplia variedad de parametros para elegir el
aspecto de las graficas.

Disponible en https://pypi.org/project/matplotlib

= traj-dist: Como complemento al articulo https://arxiv.org/pdf/1508.04904.p
df|, sirve para evaluar varios algoritmos populares que miden distancias entre pares de
trayectorias caracterizadas por arrays de no necesariamente la misma longitud. Incluye las
distancias SSPD, OWD, Hausdorff, Fréchet, Fréchet discreto, DTW, LCSS, ERP y EDR.

Disponible en https://pypi.org/project/traj-dist

= seaborn: Otra libreria de visualizacién basada en matplotlib que proporciona graficos
muy ilustrativos de informacion estadistica. Por ejemplo, en el trabajo se ha utilizado para
obetener matrices de gréificas y matrices de confusion con formato de mapas de calor.

Disponible en https://pypi.org/project/seaborn

= scikit-learn: Una de las librerias mas populares en el mundo del machine learning
que proporciona algunas funciones relacionadas con el diseno de modelos de drboles de
decisién, redes neuronales y otras herramientas relacionadas con la seleccién de modelos,
preprocesamiento de datos, medicién de la precisién y los errores, validaciéon de modelos,
etc.

Disponible en https://pypi.org/project/scikit-learn
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TensorFlow: Otra libreria que suministra funciones de inteligencia artificial. Cuenta con
mas funciones adaptadas al mundo del deep learning. Introduce un formato particular de

datos conocido como tensor.

Disponible en https://pypi.org/project/tensorflow

Keras: Libreria de redes neuronales capaz de ejecutarse sobre TensorFlow con un disefio
mas amigable con el usuario.

Disponible en https://pypi.org/project/keras

Yellowbrick: Libreria especializada en las representaciones graficas de elementos de ma-

chine learning y con una implementacién especialmente adecuada de las curvas ROC
multiclase.

Disponible en https://pypi.org/project/yellowbrick
XGBoost: Proporciona algoritmos basados en los métodos de gradient boosting. En el caso
de algoritmos basados en drboles de decision, son relativamente populares por poder llegar

a superar a los arboles clédsicos y a los bosques en algunos casos por lo que merecia la pena

experimentar con su implementacién.

Disponible en https://pypi.org/project/xgboost

Se muestran a continuacion algunas funciones importadas de moédulos de las librerias mencio-

nadas para su aplicacién a lo largo de todo el trabajo:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import traj_dist.distance as tdist

import random

import seaborn as sn

from
from
from

from

sklearn import tree

sklearn.datasets import load_iris, make_regression
sklearn.cluster import KMeans

sklearn.tree import DecisionTreeClassifier, export_graphviz,

DecisionTreeRegressor

from

sklearn.model_selection import train_test_split, validation_curve, KFold,

GridSearchCV, cross_validate

from

sklearn.metrics import confusion_matrix, accuracy_score,

mean_absolute_error

from

sklearn.ensemble import RandomForestClassifier , RandomForestRegressor,

GradientBoostingClassifier

from
from

from

sklearn.neural_network import MLPClassifier, MLPRegressor
sklearn.preprocessing import MinMaxScaler , StandardScaler
sklearn.utils import resample

import tensorflow as tf

; from

from
from
from

from

keras.models import Sequential
keras.layers import Dense

keras.optimizers import SGD
yellowbrick.classifier import ROCAUC
xgboost import XGBClassifier, XGBRegressor


https://pypi.org/project/tensorflow
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https://pypi.org/project/xgboost
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Asimismo, la visualizacién y tratamiento inicial de los datos geograficamente referenciados
se ha hecho a través del Sistema de Informacion Geografica QGIS. Los datos disponibles con los
que se ha desarrollado este trabajo se encuentran en formatos LineString y MultilLineString
adecuados para la carga directa de los datos en QGIS y asi procesar simultdneamente cientos de
datos de trayectorias geogréficas, la localizacion de cada tipo de contenedor y otra informacién
asociada geograficamente a cada orden de trabajo. No obstante, una parte importante de este
trabajo ha sido disenar una integracién adecuada entre Python y QGIS para un tratamiento
eficiente de los datos dependiendo de los momentos en los que puede ser necesaria una represen-
tacién gréfica de la informacién geografica y los momentos en los que se requiere un tratamiento
estrictamente numérico y estadistico de los datos.

QGIS esta disponible en https://www.qgis.org/es/site/forusers/download.html

B. Acerca del preprocesamiento de datos

B.1. Filtrado de datos

Para preparar los datos, se debe automatizar el proceso de lectura de datos, formateo, filtrado
de las 6rdenes para las que se dispone informacién completa (real, tedrica y contenedores) y

descarte de informacién duplicada:

def filtra_ordenes(csvteoricas,csvreales,csvcoordenadas):
dfteoricas=pd.read_csv(csvteoricas, sep= )
dfreales=pd.read_csv(csvreales , sep= )

dfcoordenadas=pd.read_csv(csvcoordenadas , sep= )

dfcoordenadas [ ] = dfcoordenadas [ ].astype(str).str.
replace ( , )

dfcoordenadas [ ] = dfcoordenadas | ].astype(str) .str.
replace ( , )

todasreales = pd.Series(dfreales|[ iy
duplicadas = list(todasreales[todasreales.duplicated()])

ordenesteoricas=np.unique (dfteoricas[ ID)

ordenesreales = np.array([x for x in dfreales[ ] if x not in
duplicadas])

ordenescoordenadas=np.unique (dfcoordenadas [ iD]
ordenes=[ordenesteoricas ,ordenesreales ,ordenescoordenadas]
ordenescomunes=np.sort(list(set.intersection (*map(set,ordenes))))

filtroteorico=dfteoricas [dfteoricas[ ].isin(ordenescomunes)]
filtroreal=dfreales [dfreales[ ].isin(ordenescomunes)]
filtrocoord=dfcoordenadas [dfcoordenadas [ ].isin(ordenescomunes)]
filtrocoordfinal = pd.DataFrame(columns=filtrocoord.columns)

for orden in ordenescomunes:


https://www.qgis.org/es/site/forusers/download.html

filtrocoordfinal = filtrocoordfinal.append(filtrocoord[filtrocoordl

J==orden] .drop_duplicates (subset=[ 1) ,ignore_index=
True)
filtroteorico.to_csv( +csvteoricas,sep= ,index=False)
filtroreal.to_csv( +csvreales ,sep= ,index=False)
filtrocoordfinal.to_csv( +csvcoordenadas ,sep= ,index=False)

B.2. Generacién de variables

A continuacién, se muestra la funcién principal utilizada para crear las variables a partir

de la lectura de 3 ficheros csv de rutas tedricas, rutas reales y coordenadas de contenedores, la

extraccion de su informacion y todas las transformaciones comentadas en el trabajo junto con

el clustering.

def

def

def

clasifical(cen_x):

if cen_x==centroides[0]:
return O

if cen_x==centroides[1]:
return 1

if cen_x==centroides[2]:
return 2

if cen_x==centroides[3]:

return 3

clasifica2(Bondad):

if Bondad >=0 and Bondad<minl:
return O

if Bondad>=minl and Bondad<min2:
return 1

if Bondad>=min2 and Bondad<min3:
return 2

if Bondad>=min3:

return 3

calcula_variables (csvteoricas ,csvreales ,csvcoordenadas):

ordenes = pd.read_csv(csvcoordenadas , sep= )

ordenesag = ordenes.groupby ( ) .agg ({

b

ordenesag[ l=ordenes.groupby( ) .count () .iloc[:,2]
ordenesag [ ]=ordenesagl[ ]-ordenesag[ ]
ordenesag[ l=ordenesagl[ l-ordenesagl ]
ordenesag [ ]=ordenesag[ ]-ordenesag[ ]-ordenesagl[ ]
ordenesag=ordenesag.drop(columns=[ s iD)

ordenesag [ ] = None

ordenesag[ I=ordenesagl ]/ (ordenesagl J+ordenesagl[ iD]
ordenesag [ ] = None



69

70

ordenesag[ J=ordenesagl 1/(ordenesagl l+ordenesag|[ 1+

ordenesag[ i)
ordenesag[ ] = None
teoricas = pd.read_csv(csvteoricas,sep= )
reales = pd.read_csv(csvreales,h sep= )
for j in range(len(reales[ 1)):
wktr = reales[ ].iloc[j].replace( s ) .replace( ')
.replace( , ) .split ()
wktreales = []

for i in range(0,len(wktr) ,2):
wktreales.append ([float (wktr[i]) ,float (wktr [i+1])])

longitudes_r = np.sqrt(np.sum(np.diff (np.array(wktreales), axis=0)**2,
axis=1))

longitud_real = np.sum(longitudes_r)

wktt = teoricas|[ J.iloc[j]l.replace( , ) .replace
( ,"").replace( R ) .split ()

wktteoricas = []

for i in range(0,len(wktt) ,2):
wktteoricas.append ([float (wktt[i]),float (wktt[i+1])])
longitudes_t = np.sqrt(np.sum(np.diff (np.array(wktteoricas), axis=0) **2,

axis=1))
longitud_teorica = np.sum(longitudes_t)
ratio = np.abs(longitud_real-longitud_teorica)/longitud_teorica
ordenesag [ J.iloc[jl=ratio
distancia = tdist.sspd(np.array(wktreales) ,np.array(wktteoricas),
)
ordenesag [ J.iloc[jl=distancia
ordenesag [ ].iloc[jl=np.random.normal (0,0.7)
ordenesag [ ]=0.001/(0.001+ordenesag[ 1)
ordenesag [ ]J=(ordenesagl ]-ordenesagl[
J.min())/(ordenesagl ].max () -ordenesag[
1.min())
ordenesag [ ]=10*ordenesag[ J+4xordenesag|[ J+2x%
ordenesagl[ ]-1*ordenesagl J+ordenesagl[ ]
ordenesag[ ]1=10*(ordenesag[ J-ordenesagl[ 1.min())/(
ordenesagl[ ] .max () -ordenesagl ].min())
mezcla = ordenesag.copy ()
kmeans = KMeans(n_clusters=4, random_state=0)
mezclal[ ] = kmeans.fit_predict(mezclal[ 1D
centroids = kmeans.cluster_centers_
cen_x = [i[0] for i in centroids]
mezclal[ ] = mezcla.cluster.map({O:cen_x[0], 1l:cen_x[1], 2:cen_x[2], 3:
cen_x[3]1})



89

90

91

93

94

95

96

97

98

global centroides

centroides = np.sort(np.unique(mezclal 1

colors = [ s s s ]

mezclal[ ] = mezcla.cluster.map({0:colors[0], 1:colors[1], 2:colors[2], 3:
colors [3]13})

plt.scatter (mezcla.Bondad ,mezcla.Bondad, c=mezcla.c, alpha = 0.6, s=10)
ordenesagl[ J=mezclal ].apply(clasifical)

global minO
global minl
global min2
global min3

min0 = min(ordenesag[ordenesagl 1==01[ D
minl = min(ordenesagl[ordenesagl[ 1==11[ iD]
min2 = min(ordenesag[ordenesagl 1==21[ D
min3 = min(ordenesagl[ordenesagl 1==311[ i)
print (minO)

print (minl)

print (min2)

print (min3)

ordenesag[ ]=ordenesagl[ ].astype(float) .round (0)
ordenesag[ J=ordenesagl[ ].apply(clasifica2)

return ordenesag

C. Acerca de la similitud de trayectorias

C.1. Densificacién de trayectorias

En el transcurso de este trabajo, se ha comprobado que la SSPD es el algoritmo éptimo en el
calculo del grado de similitud de los pares de trayectorias disponibles en este conjunto de datos.
Se puede mejorar aun mas la precisién de las distancias si se densifica con méas puntos cada
una de las trayectorias. Estas trayectorias estan formadas por una serie de puntos unidos por
rectas, pero si queremos rellenar dichas rectas con méas puntos equiespaciados para reconstruir
mas densamente las trayectorias, puede emplearse la siguiente funcion:

def densificar(coordenadas, segmentos):
denso=coordenadas
for i in range(len(coordenadas)-1):
denso=np.insert (denso,i*segmentos+1,np.array([list(a) for a in zip(np.
linspace (coordenadas [i] [0] ,coordenadas [i+1] [0] , segmentos ,endpoint=False)
[1:],np.linspace(coordenadas[i][1], coordenadas[i+1][1], segmentos , endpoint=
False) [1:1)1) ,0)



return denso

donde coordenadas es el array de puntos que conforman una trayectoria y segmentos es el
numero de segmentos que queremos que haya entre dos puntos consecutivos del array original (es
decir, que haya segmentos—1 puntos nuevos entre cada par de puntos consecutivos originales).

C.2. Medidas alternativas del grado de similitud

Hasta comprobar la idoneidad de la SSPD, se analizaron numerosos algoritmos populares
que funcionarian bien en otros problemas especificos. Podemos clasificar estos algoritmos en dos

tipos:

s Warping-based: Son aquellas distancias que tienen en cuenta el indexado temporal de cada
punto. Por ejemplo, las distancias DTW, LCSS, EDR y ERP.

= Shape-based: Son aquellas distancias que inicamente tienen en cuenta la forma geométrica
de las trayectorias. Por ejemplo, las distancias Hausdorff, Fréchet y SSPD.

Empecemos caracterizando los cuatro populares algoritmos warping-based mencionados:

Dynamic Time Warping (DTW)

Longest Common SubSequence (LCSS)

Edit Distance on Real sequence (EDR)

Edit distance with Real Penalty (ERP)

En las descripciones matemaéticas que siguen, se quiere calcular la distancia entre dos trayectorias
T' v T7 donde n' es el niimero de puntos de 7% y n/ es el nimero de puntos de 77. El punto
k-ésimo de la trayectoria 1" es p§C y el punto k-ésimo de la trayectoria 77 es p}c Asimismo,
rest(T?) (respectivamente, rest(T7)) es la trayectoria T° (respectivamente, T7), pero sin su
primer punto. Ademds, LCSS y EDR requieren la especificacion de un umbral espacial g4 y
ERP toma un pardmetro g como valor de referencia para penalizar gaps (se dan cuando hay
puntos que no se emparejan con ningin otro punto).

La definicion de los 4 aparece resumida en la siguiente tabla:



Cost function Distance
dname(pip2) = NAME(T!, TY) =
] ifn'=nl =0
= 00 ifn'*=0o0rn! =0
g _ Sprw Py, pi)+
= llp1p2iz = (DlTIi’)(resI(T‘).resl(Tf)), otherise
min { DTW (rest(T%), T79)), } )
DTW (T, rest(T9)
w 0 ifn'*=0o0rn! =0
@ (1) ?? lppzll2 < eq LCSS(rest(TY), rest(T?)) + drcss(ph, pl) if sposs(pi.py) = 1
e R IR L Rl It e R
< LCSS(T" ,rest(T7))  + dresslgap.py) )
= n* if n? =0
o 0 if pip2llz < ca ! . nt=0
a 1 if py or p is 2 gap _ EDR(rest(T"), res:(rf)] - it sppr(pl. ) =0
1 otherwise EDR(rest(T*),rest(T7)) + bepr(pli.pl):
min { EDR(rest(T"),T7)) + depr(py.gap), } otherwise
EDR(T*, rest(T") t dpnlsap.p))
w1 IpLlla it —0
& [p1pallz  if p1. p2 are not gaps > el gl ifni=0
= lprglla if p2 is a gap = ERP(rest(T"),rest(TH)) + Sgrp(pt,pl),
llgpzllz if p1is a gap min { ERP(rest(T"), T7)) + dgrp(pi,gap), } otherwise
ERP(T', rest(T4) + Spap(gop,pl)

Tabla 1: Cuatro distancias warping-based: DTW, LCSS, EDR y ERP. A la izquierda,
funciones de coste § que se definen aparte para implementarse en las definiciones de las
distancias de la parte derecha.

Para nuestro problema concreto, los algoritmos warping-based arrojarian resultados poco
fiables debido a que intentarian emparejar los puntos de las dos trayectorias segiin su ordenacion

en el tiempo.

Como la variable que deseamos obtener es el grado de similitud entre dos rutas (la real y la
tedrica) basdndonos en su forma, parece logico el estudio de los algoritmos shape-based como los

que se describen a continuacién:

= Distancia de Hausdorft:

DHaus(Tl,T2) =max{ = méix {Dps (pill,si)} ,  max {Dps (pi, 5}1)} (1)
i1€[1,...,n1] j1€[1,...,nt—1]
j2€[1,...,n%2—1] i2€[l,...,n?]

donde D, (p}l,si) es la distancia del punto p}l al segmento 5?2 y Dps <pl22,s}1> es la

. . 2 1
distancia del punto p;, al segmento CH
= Distancia de Fréchet:

Dadas dos curvas A y B, se define esta distancia como el infimo sobre todas las repara-

metrizaciones « y 8 de [0, 1] del médximo sobre todos los ¢ € [0,1] de la distancia entre

A(a(t)) y B(B(1)):

Drrec(4, B) = inf max {d(A(a(t)), B(B(1)))} (2)

Alternativamente, existe una version discreta de este algoritmo.



» Symmetrized Segment-Path Distance (SSPD):

La descrita en el trabajo principal y que resulté ser la que proporcionaba estimaciones més
precisas y con motivos tedricos para creer en su eficacia para nuestro problema concreto.

Como en nuestro caso buscamos variables normalizadas para evitar problemas de sensi-
bilidad de escala en arboles de decisiéon y redes neuronales, tan solo sera necesario fijar
un cierto parametro que garantice una adecuada transformacion. Esto se describe en la

siguiente subseccién.

C.3. Determinacion del parametro de normalizacion de SSPD

Es fundamental convertir el valor de todas las variables de entrada a un intervalo acotado
para evitar el problema de la sensibilidad de escala que presentan algunos modelos de machine
learning. Si la distancia SSPD es un ntimero entre cero e infinito, se determiné que la transfor-
macién mas acertada dadas las caracteristicas del problema era

& (3)
E+SSPD
Esta transformacion es mondtona decreciente, por lo que invierte la ordenacién de las dis-
tancias originales sin mezclarlas y asignara un grado de similitud alto a una distancia baja, y
viceversa. Esto ultimo ocurrird tan solo si se elige adecuadamente el parametro £ porque su
mala eleccién en orden de magnitud hace que los valores del grado de similitud se agrupen en un
extremo del intervalo (0,1). La eleccién del pardmetro 6ptimo podemos hacerla estudiando la
abundancia de datos de distancias en cada orden de magnitud. Empleando la distancia euclidea,
observamos que en el conjunto de datos hay distancias en los érdenes de magnitud 107°, 104,
1073 y 10~2. En particular, entre las 623 érdenes de trabajo analizadas, se tiene la siguiente
distribucion:

Orden de magnitud de la distancia | Cantidad de 6rdenes de trabajo
102 33
1073 169
1074 363
107° o8

Tabla 2: Numero de 6rdenes de trabajo de acuerdo al orden de magnitud en el que se
encuentra su SSPD asociada.

Recordemos que cuanto menor es esta distancia, mas similares son dos rutas. Realizamos una
inspeccion cualitativa de como de similares son las trayectorias geométricas de 6rdenes de traba-
jo que posean distancias en cada uno de los cuatro érdenes de magnitud descritos. Finalmente,
llegamos a la conclusién de que estos 4 6rdenes de magnitud son plenamente identificables con
precisamente las 4 clases que hemos definido para el entrenamiento de los modelos clasificadores.
Es decir, una distancia del orden de 1072 serfa una distancia mala, una distancia del orden de



1073 serfa una distancia regular, una distancia del orden de 10™* serfa una distancia razo-
nablemente buena y una distancia del orden de 107° serfa una distancia muy buena. Por
supuesto, como se ha visto en el trabajo principal, esto no es suficiente para realizar la clasifi-
cacién de las 6rdenes de trabajo porque influyen otras tres variables con diferentes pesos, pero
nos da una idea de que alrededor de 2/3 de la 6rdenes presentan rutas GPS con una similitud
aceptable. Para encontrar el pardametro £ de la transformacién que enviara estas distancias
al intervalo (0,1) con una cierta logica, vamos a suponer que todas las distancias de los érdenes
1072 y 1073 (en total, 202) deben tener asociadas un grado de similitud por debajo de 0,5 y
que todas las distancias de los érdenes 107 y 107 (en total, 421) deben tener asociadas un
grado de similitud por encima de 0,5. El pardmetro que permite precisamente esta colocacién
de los valores es £ = 0,001. Para asegurarnos de que realmente la transformacién es realista,
hemos de hacer una calibracién fijando manualmente unos pocos valores de referencia a ojo en
ciertas érdenes de trabajo para ver que realmente nuestra transformacion es capaz de predecir
los grados de similitud que una persona asignaria sin ayuda de un ordenador. Si tomamos un
conjunto de 10 érdenes de trabajo con distancias suficientemente variadas, puede comprobarse
que el grado de similitud que una persona asignaria manualmente a una pareja de ruta tedrica

y ruta real es suficientemente parecido al que predice la funcién con £ = 0,001.

109 = Asignacién manual
| y = 0.001/0.0014x)
naq |
|
o 0.6 |
=
E
7 04
0.2 1
0.0 1
0.00 0.01 0.02 0.03 0.04
SSPD

Figura 1: Grado de similitud en funcién de la distancia SSPD.

Por tanto, hemos conseguido ajustar una magnitud que a priori podria parecer totalmente
subjetiva o muy dificil de calcular con suficiente precisién y ahora puede ofrecer resultados
objetivos.
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D. Acerca de los arboles de decision

A continuacién, se muestra una pequena ampliacién de los andlisis llevados a cabo durante

el trabajo relacionados con los arboles de decision.

D.1. Profundidad de un arbol

En el trabajo se ha enfatizado que una de las grandes ventajas de los arboles de decisién es
su explicabilidad frente a otros modelos con algoritmos més sofisticados que son menos interpre-
tables. Un simple vistazo a un érbol de decisiéon nos da una idea muy visual de cémo clasificar
conjuntos de datos. No obstante, esto s6lo es posible cuando el drbol estd adecuadamente poda-
do. En el trabajo, se muestra una grafica de un arbol desarrollado hasta la tercera generacién
(es decir, tres filas més la del nodo raiz). Esto proporciona una facil interpretacién en funcién de
dos de las variables del modelo y la precisiéon del modelo puede ser considerada moderadamente
buena. Sin embargo, si permitiéramos el desarrollo maximo del arbol hasta que todos los nodos

terminales tuvieran una impureza de Gini nula, obtendriamos el siguiente arbol:

Figura 2: Arbol de decisién si no se hubiera realizado la poda del arbol del trabajo principal.
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No se pretende hacer hincapié en la lectura de cada nodo. Lo que si puede observarse con
claridad es que se pierde totalmente la legibilidad. Resultaria muy costoso extraer todas las
condiciones que se deducen a través de las proposiciones logicas asociadas a semejante cantidad
de nodos. Ademés, no necesariamente obtendriamos un modelo con mayor precisién porque
un arbol demasiado extenso puede sobreajustar los datos, es decir, aprender demasiado bien
los patrones del conjunto de datos de entrenamiento, pero generalizar muy mal y fracasar en
las predicciones de cualquier nuevo conjunto de datos. Asi, el aprendizaje no tendria ninguna
utilidad practica posteriormente.

D.2. Variabilidad en arboles

No sélo se puede generar un arbol de decisién tnico. Segun el fragmento especifico de datos
que elijamos para entrenar y para validar, pueden generarse arboles ligeramente distintos. En
general, para un conjunto de datos suficientemente grande no deberiamos esperar una variabi-
lidad extremadamente elevada, pero si puede haber casos aislados que den lugar a resultados
inesperados.

Por ejemplo, para el conjunto de datos utilizado, la forma de un arbol de decisién tipico
y abundante es la que se ha presentado en el trabajo principal dependiente de las variables

BienHechos y Similitud:

BienHechos == 0.354
gini = 0.722
samples = 436
value = [55, 116, 158, 107]
class = 2

gini= 0.0 Simil_itgi:lca=6;}é?33
SERIEISE = G samples = 382
valel RS | vale = [1, 116, 158, 107]
class = 2
BienHechos <= 0.736 BienHechos <= 0.809
gini = 0.547 gini = 0.535
samples = 203 samples = 179
wvalue = [1, 108, 83, 11] wvalue = [0, B, 75, 96]
class =1 class =3
gini = 0.249 gini = 0.553 gini = 0.502 gini = 0.406
samples = 70 samples = 133 samples = 76 samples = 103
value = [1, &0, 9, 0] value = [0, 48, 74, 11] value = [0, 6, 49, 21] value = [0, 2, 26, 75]
class =1 class = 2 class = 2 class=3

Figura 3: Arbol de decisién principal.

Pero en casos aislados concretos puede llegar a obtenerse algin arbol de la siguiente forma:
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BienHechos <= 0416
iginl = 0.731
sAmples = 438
walue = [48, 119, 150, 11%]

Similikud <= 0.738
iginil = 0.882
samples = 387
walue = [0, 112, 150, 11%]
class = 2

/N

FRatioLonghwdes <= 0058 BienHechos <= 0LTT1 BienHechos <= 0LEZY
il = 0.3 iginl = 0.333 iginl = 0.331
samples = 2 samples = 133 samples = 194
walue = 1, 1, 0, 0] walue = |i|:|I 105, 73, 13] walue —|i|]. 13, 77, 104]
class = 0 class = 1 class = 3

LoD

iginl = 0.283 = 0.374 gl = 0345
Figura 4: Arbol de decisién alternativo.

samples = B3 samples = 104 samples = 93
walue = [0, 72, 18, 0] walue = [0, 30, 33, 15] walue = [0, 12, 36, 23]
cliss = 1 class = 2 cltiss = 2

donde el algoritmo ha considerado relevante incluir una tercera variable: RatioLongitudes. En
este caso, vemos que la ha empleado para discriminar entre dos muestras concretas, y ni siquiera
de forma correcta porque el modelo debe premiar parejas de rutas tedricas y rutas reales con un
bajo valor de RatioLongitudes. Este problema puede presentarse en situaciones especificas, asi
como también pueden darse pequenas variaciones numéricas en los umbrales de decisién de los
nodos segun el arbol elegido, incluso si tienen la misma forma. Por ello, el estudio de los arboles
de decisién es importante si puede demostrarse que la forma de los arboles es razonablemente
estable para un conjunto de datos y si se quiere tener una idea aproximada y visual de cémo seria
una clasificacién tipica. No obstante, la motivacién de alcanzar porcentajes de acierto mayores

justifica la necesidad de probar modelos algo més elaborados.

D.3. Seleccion de parametros del bosque aleatorio

Un bosque aleatorio se forma a partir de las predicciones de multiples arboles de decisién. No
existe una féormula estandar que permita determinar de antemano el nimero de arboles 6ptimo,

pero podemos evaluar el rendimiento del modelo segin el nimero de arboles seleccionado:

13



1

scores = []
for k in range (1, 100):
rfc = RandomForestClassifier(n_estimators=k,max_depth=3,n_jobs=—1,
random_state=42)
rfc.fit(X_train, y_train)
y_pred = rfc.predict(X_test)

scores.append (accuracy_score(y_test, y_pred))

En nuestro caso, se obtiene el siguiente resultado:

Precision del bosque aleatorio en funcidn del nimero de drboles

076 1

0.74 1

072 1

070 1

Precisian

(.68 -

w ¥
.66 1

o 20 40 &0 80 100
Mimero de arboles

Figura 5: En azul, precisién del bosque aleatorio en funcién del nimero de drboles de decisién
(estimadores). En rojo, precisién del drbol de decisién individual mostrado en el trabajo.

Vemos que hay altas variaciones en la precisiéon cuando el niimero de arboles es bajo. Conforme
el niimero aumenta, la precisién empieza a estabilizarse en un rango de valores mas altos que
la precisién que conseguiamos con un unico drbol de decisién. A la vista de la grafica anterior,
se ha visto que la precision se maximiza tomando 70 arboles, que es el niimero elegido en el
trabajo. No obstante, tal y como luego se demuestra mediante bootstrapping, la capacidad real
del modelo es menor que la que se logra con un tinico bosque aleatorio de 70 drboles. Otra métrica
comunmente utilizada para justificar el niimero de arboles elegidos y evaluar el rendimiento es
el error out-of-bag (OOB) que deberia reducirse conforme aumenta el nimero de arboles.

Con un conjunto de datos méas grande, se podria acotar mas el rango de precisiones en el
que oscila el modelo para un numero elevado de arboles y podriamos notar, en general, un
crecimiento mas monotono salvo pequenas subidas y bajadas debido a la aleatoriedad.

D.4. Superficies de decisién del bosque aleatorio

No es 1util representar 70 arboles de decisién individuales, por lo que decimos que un bosque

aleatorio es menos interpretable que un arbol de decisién. Sin embargo, podemos tomar las
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variables de cualquier modelo por parejas y representar las superficies de decisién. Esto es un
tipo de representaciéon que nos permite visualizar como un modelo de clasificacién divide el
espacio de variables de acuerdo a sus predicciones y analizar superficialmente sus puntos fuertes
y debilidades. Se trata de entrenar un bosque aleatorio mediante parejas de variables y, para
cada pareja, hallar los limites que separan las 4 clases segin los umbrales que decide el bosque.

Superficies de decision

10 10 w10
= kit Ei
3 =] =
E 05 g 05 =
= I =]
5 2 :
0.0 0.0 =
0 1 0 1 0 1
BiznHechos EBignHechos EBignHechos
10 wi wn
[ i
5] = =
u | 2
= = =
£ 05 2 &
2 E °
by = B
0.0 ] 2
0

Similitud Similitud Adicionales

Figura 6: Superficies de decision inferidas entrenando bosques aleatorios con dos variables. En
naranja, la clase 0. En verde claro, la clase 1. En cian, la clase 2. En fucsia, la clase 3.

Tras ello, pintamos encima los datos usados para entrenar y observamos las correspondencias.

Superficies de decision
10

i
” =
3 % 2
o e} =
E E 05 E"
5 % .
0.0 |
0 1 0 1
BienHechos BienHechos BienHechos
] o 10
5] = =
u | | e O
m = o
= = 205 . 1|
= 5 = 2
b= = = :
= = 00 I
0 1
Similitud Similitud Adicionales

Figura 7: Mismas superficies con los puntos del conjunto de datos con el color adecuado segin
la clase a la que sabemos que pertenecen.
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Las superficies son un intento de distinguir zonas continuas que tienen asociada una misma
clase, con mayor o menor grado de éxito. Dada la complejidad del conjunto de datos y que los
puntos de una misma clase no estan completamente separados de los de otra clase, algunas de
las superficies adoptan una forma compleja.

Ante todo, hay que observar que las superficies estdn dibujadas en cuadrados [0,1] x [0, 1]
ya que todas las variables se encuentran en el intervalo [0, 1], pero no necesariamente tenemos
datos en todas las zonas de un cuadrado. De hecho, en muchos casos vemos que la gran mayoria
de los datos se agrupan en zonas muy especificas (esquinas y bordes). El algoritmo hace un
intento de extrapolar las superficies a areas donde no hay puntos, sin que estas predicciones
sean necesariamente correctas de acuerdo a nuestra intuicién.

En el cuadrado de arriba a la izquierda si que vemos 4 superficies continuas bastante bien
definidas y de acuerdo a lo esperado. Es de esperar que, a mayor similitud y mayor proporcién
de contenedores bien recogidos, la bondad de la orden sea mayor y la orden pertenecera a una
clase superior, reservando la clase 3 (érdenes muy buenas) a la esquina superior derecha del
cuadrado. De igual modo, las 6rdenes malas cabe esperarlas en la esquina inferior izquierda o, en
este caso, en todo el tercio izquierdo debido al dominio que la variable BienHechos tiene sobre la
variable Similitud. No todos los puntos encajan en la superficie que deberian corresponderles,
pero las ideas principales han sido capturadas.

Revisando en cuadrado central superior, se refleja de nuevo el dominio de la variable BienHechos
por la verticalidad de las superficies. Sin embargo, vemos que la clase 3 se reserva a un pequeno
trozo de la esquina inferior derecha del cuadrado. Esto quiere decir que el modelo ha capturado
la idea de que, incluso si estamos premiando que la bondad se vea favorecida por un valor alto
de la variable Adicionales, efectivamente las 6rdenes de clase 3 tendran un valor bajo de la
variable Adicionales. Esto es porque, en general, las 6rdenes de trabajo con un alto valor de la
variable BienHechos debido a un cumplimiento estricto de la orden suelen desviarse poco hacia
la recogida de contenedores adicionales.

En los demas casos, la informacion es més cadtica y poco fiable. Queda claro en algunos
casos que el entrenamiento con dos variables es insuficiente. Especialmente, cuando se trata de
variables con menor contribucién a la bondad total como es el caso del cuadrado de abajo a la
derecha, la informacién de las superficies es mucho més imprecisa y los puntos no caen donde
deben. Este método simplemente nos da una primera idea superficial de la naturaleza de las
variables.

D.5. Extreme Gradient Boosting

Dentro de los métodos de ensemble, encontramos dos grupos: las técnicas de aprendizaje
paralelo y las técnicas de aprendizaje secuencial. El ejemplo mas claro del primer tipo son los
bosques aleatorios que toman una serie de drboles independientes y se reduce el error al tener
en cuenta el rendimiento de multiples arboles. Sin embargo, también merece la pena el estudio
de técnicas del segundo tipo. En el caso de trabajar con arboles, los arboles entrenados se
generarian en una secuencia con cierta dependencia entre ellos para que los nuevos arboles que
vayan generandose aprendan de los errores de los drboles anteriores.

Los algoritmos de gradient boosting pertenecen al segundo tipo y son una técnica muy popular
de clasificacién y regresiéon. En principio, los algoritmos de extreme gradient boosting de la libreria
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XGBoost estan mejor optimizados y regularizados para la prevencién del sobreajuste de modelos.
Para los propositos de este trabajo, se ha probado la implementacién del clasificador XGBClassifier
y del regresor XGBRegressor. No obstante, se ha observado que, para este conjunto de datos,
los resultados igualan a los del bosque aleatorio sin aportar informacién de mayor relevancia,
por lo que no se han desarrollado en mayor profundidad en el trabajo. Quiza para conjuntos de
datos més grandes y complejos cabria esperar mejoras notables en el rendimiento.

E. Acerca de las redes neuronales

Una representacion esquematica de la forma de una de estas redes podria ser la siguiente:

.‘I}l—)-éf—)Zf NV
)
~E&
—P—D - @

Figura 8: Perceptrén multicapa.

T XS Y S 2

donde se refleja los dos pasos que se dan en cada neurona: realizar una combinacién lineal y

aplicar una funcién no lineal.

A continuacién se describen algunos algoritmos fundamentales que forman parte del funcio-

namiento de las redes neuronales.

E.1. Descenso de gradiente

El descenso de gradiente es un algoritmo iterativo de optimizaciéon para hallar un minimo
local de una funcién. Esto se hace moviéndonos en la direccién de méaximo decrecimiento que
viene dada por el gradiente cambiado de signo en cada punto. Iniciando en un punto, calculamos
el gradiente en ese punto, lo cambiamos de signo y, con un cierto paso, pasamos al siguiente
punto donde repetiremos el proceso. Esto hara que, si se ha elegido un paso adecuado para la
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funcién, finalmente nos aproximemos lo suficiente a un minimo local de la funcién. El tamano
del paso depende de un pardmetro conocido como learning rate (o) que multiplica al gradiente.
Debe elegirse cuidadosamente porque un valor demasiado alto puede hacer que sobrepasemos el
minimo local sin llegar a alcanzarlo, mientras que un valor demasiado bajo puede requerir un
tiempo de computacién extremadamente grande.

Definimos como siempre una funcién de coste J que serd de la que calcularemos los gradientes
(vectores de derivadas con respecto a los pardmetros de la red) ya que queremos minimizarla.
Asi, en cada iteracién, el valor de un conjunto de parametros 6 en funcién del valor de los de la

iteracion anterior viene dado por

01'_;_1 = 91 - OéVJ(Hz) (4)

En machine learning, este algoritmo se usa para actualizar los parametros de un modelo. Por
ejemplo, los pesos de una red neuronal.

E.2. Retropropagacion

El cédlculo de los gradientes descritos en el método anterior no es trivial debido al alto
numero de parametros que pueden existir en una red neuronal y su distribucién en las multiples
capas. Por ello, se hace uso de un método conocido como back-propagation o retropropagacion.
Calculamos las derivadas parciales de la funcién de coste con respecto a los pardmetros de la
ultima capa aplicando la regla de la cadena. Después, vamos aplicando el mismo método a las
capas anteriores una a una hasta llegar al inicio de la red.

Para simplificar la explicacion del concepto, supongamos que tenemos una red con sélo
una neurona en cada capa. Tal y como se describe en el trabajo, en cada neurona se dan dos

operaciones:

(1) — () g(n=1) | () (5)

a™ = ¢ (Zm)) (6)
Supongamos que en el método del descenso de gradiente necesitamos calcular la derivada de

la funcién de coste con respecto al peso w(™. Entonces, esto es una simple aplicacién de la regla
de la cadena:

oJy 9z ga™ o, .
J0™ ~ 90 95 " el (™)

Ahora habria que calcular cada una de esas tres derivadas. Supongamos que la funcién de

coste asociada a una determinada muestra del conjunto de entrenamiento viene dada por la
diferencia cuadratica entre el valor de la activacién a en la capa n previa a la salida y el valor
deseado en la neurona de salida para dicha muestra especifica del conjunto de datos, yi. Es decir,

2
Jyp = (a(n) _ yk> (8)
Entonces, a partir de las expresiones , @ y , calculamos las tres derivadas que resultan
ser
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B = am=b) (9)
- () () o
(% =2 (a(") - yk) (11)

Realizado este proceso para una cierta muestra del conjunto de datos, la derivada parcial de
la funcién de coste total seria el promedio de todas las derivadas parciales obtenidas para todas
las muestras del conjunto de datos.

Equivalentemente, la derivada parcial con respecto al bias b(™ es

oJy 92" 9a™ 9,

200~ 600 9500 gaw (12)
donde
9z
781)(”) =1 (13)

De nuevo, realizado este proceso para una cierta muestra del conjunto de datos, la derivada
parcial de la funcién de coste total seria el promedio sobre el conjunto de datos.

Para redes con méas neuronas por capa, el proceso es andlogo teniendo en cuenta los miltiples

pesos extra que aparecen y las diferentes activaciones que aparecen en una misma capa.

E.3. L-BFGS

L-BFGS (Limited-memory Broyden—Fletcher—Goldfarb—Shanno) es un algoritmo de optimi-
zacion empleado en redes neuronales. Se trata de un método de segundo orden. Pertenece a la
familia de los métodos cuasi-Newton. Esto tdltimo quiere decir que se realizan aproximaciones
de la inversa de la matriz hessiana en lugar de su célculo explicito. Es una mejora del algorit-
mo BFGS ya que requiere guardar menos informacién en memoria en cada iteracién, lo cual es
relevante en términos de eficiencia. En principio, para conjuntos de datos de poco tamano, es
de esperar un mejor rendimiento a través de este resolvedor que a través de otros tipicamente
utilizados en el entrenamiento de redes neuronales como el descenso de gradiente estocéstico o
Adam.

E.4. Adam

Se trata de una modificacion del descenso de gradiente estocastico clasico que combina las
ventajas de otras populares extensiones del descenso de gradiente estocastico como AdaGrad

o RMSprop. Se calculan learning rates adaptables para los diferentes parametros a partir de
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N

estimaciones del primer y segundo momento de los gradientes (asumiendo que los gradientes son

variables aleatorias). Esencialmente, cuenta con 4 hiperparametros de interés:

= «: Tamano de paso.
= (1: Ritmo de caida exponencial para las estimaciones del primer momento.
= f5: Ritmo de caida exponencial para las estimaciones del segundo momento.

= ¢: Tolerancia para evitar divisiones entre cero.

Se trata de uno de los métodos mas eficientes y es especialmente adecuado en problemas

grandes en términos de nimero de datos y nimero de parametros.

E.5. Implementacion de las redes

Para crear una red neuronal con el método L-BFGS mientras se compara el rendimiento para

distintas combinaciones de parametros, puede utilizarse el siguiente cédigo:

variables [[ s s s 1]

variables [ ]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)

mlp = MLPClassifier ()
parameter_space = {
[4,),(5,),(6,)1,
L ) , 1,
L 1,
[0.01,0.001,0.0001,0.00001],
[1000],
L 1,
}
clf = GridSearchCV(mlp, parameter_space, n_jobs=-1, cv=3)
clf . fit(X_train, y_train)

print ( , clf .best_params_)
donde puede hacerse uso del buscador de pardmetros GridSearchCV que ya aplica validacién
cruzada (cross validation) mediante K-Fold. Este método realiza K particiones distintas del

conjunto de datos total en subconjuntos de entrenamiento y de test para evaluar la precisién de
acuerdo a cada una de las particiones y promedia los resultados.

Asimismo la implementacién de Adam en TensorFlow se lleva a cabo a través de un adecuado

tratamiento de la clase de tensores tipica de la libreria:
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def get_batch(x_data, y_data, batch_size):
idxs = np.random.randint (0, len(y_data), batch_size)

return x_datal[idxs,:], y_datal[idxs]

def nn_model(x_input, Wi, bl, W2, b2):

x_input = tf.reshape(x_input, (x_input.shape[0], -1))
x = tf.add(tf.matmul (tf.cast(x_input, tf.float32), Wi), bl)
x = tf.nn.relu(x)

logits = tf.add(tf.matmul(x, W2), b2)

return logits

2> def loss_fn(logits, labels):

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
labels=labels,

logits=logits))

return cross_entropy

epochs = 80

_train,

batch_size =

variables [[

variables [

X_train =
X_test = tf.Variable(np.array(X_test).astype(

#Pesos entre la capa de entrada y la capa oculta
tf.Variable(tf.random.normal ([4,

#Bias de la capa oculta
tf.Variable (tf.random.normal ([4]),

#Pesos entre la capa oculta y la capa de salida
tf.Variable (tf.random.normal ([4,

#Bias de la capa de salida
tf.Variable (tf.random.normal ([4]),

X_test,
random_state=42)

train_test_split(X, y, test_size=0.3,

tf.Variable (np.array(X_train).astype(

stddev=0.03),

stddev=0.03),

optimizer tf.keras.optimizers.Adam(learning_rate=0.07,beta_1=0.9,beta_2=0.999,
epsilon=0.0000001)

total_batch = int(len(y_train) / batch_size)
arrayloss=[]
arrayacc=[]
for epoch in range(epochs):
avg_loss = 0
for i in range(total_batch):
batch_x, batch_y = get_batch(np.array(X_train), np.array(y_train),

batch_size=batch_size)

batch_x = tf.Variable(np.array(batch_x).astype( ))
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batch_y tf.Variable (np.array(batch_y) .astype( ))

batch_y = tf.one_hot(np.array(batch_y).astype( ) ,4)
with tf.GradientTape () as tape:
logits = nn_model(batch_x, W1, bl, W2, b2)
loss = loss_fn(logits, batch_y)
gradients = tape.gradient(loss, [Wl, bl, W2, b2])
optimizer.apply_gradients (zip(gradients, [W1, bl, W2, b2]))
avg_loss += loss / total_batch
arrayloss.append(avg_loss)
test_logits = nn_model(X_test, W1, bl, W2, b2)
max_idxs = tf.argmax(test_logits, axis=1)
test_acc = np.sum(max_idxs.numpy() == y_test) / len(y_test)
arrayacc.append(test_acc)
print (£
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