000109027 001__ 109027
000109027 005__ 20230519145355.0
000109027 0247_ $$2doi$$a10.1016/j.jmbbm.2020.104248
000109027 0248_ $$2sideral$$a122359
000109027 037__ $$aART-2021-122359
000109027 041__ $$aeng
000109027 100__ $$aMartínez-Morlanes, M.J.
000109027 245__ $$aInfluence of processing conditions on microstructural, mechanical and tribological properties of graphene nanoplatelet reinforced UHMWPE
000109027 260__ $$c2021
000109027 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109027 5203_ $$aUltra-high molecular weight polyethylene (UHMWPE) is a relevant thermoplastic in industry and a well-proven standard biomaterial in joint replacements. To enhance its tribological properties while preserving its bulk ones, composite coatings on a UHMWPE substrate were prepared using non-functionalised graphene nanoplatelet (GNP) at reinforcement concentration of 0.1–5 wt% and two mechanical mixing techniques (ball mill or blade mixer) with different consolidation temperatures of 175–240 °C. Changes in morphology and size of the UHMWPE particles before hot-pressing were observed in function of the mechanical mixing techniques applied. Wear rate was affected by graphene content, reaching a minimum at 0.5 wt% GNP, with a reduction of 20 and 15%, for ball milling and blade mixer, respectively. However, blade mixer increased the wear rate by around twice respect the ball milling results, for all the studied materials. The coefficient of friction decreased notably, by ~25%, below 3 wt% GNP content, and hardness increased by 24%, regardless of the mechanical mixing process used. Finally, consolidation temperature had a positive influence on wear rate at temperatures of around 195 °C, which could be related to the free radical scavenger effect of the GNP.
000109027 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/RIS3-LMP21-18$$9info:eu-repo/grantAgreement/ES/DGA-FSE/T48-17R
000109027 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000109027 590__ $$a4.042$$b2021
000109027 592__ $$a0.746$$b2021
000109027 594__ $$a6.6$$b2021
000109027 591__ $$aENGINEERING, BIOMEDICAL$$b48 / 98 = 0.49$$c2021$$dQ2$$eT2
000109027 593__ $$aBiomedical Engineering$$c2021$$dQ2
000109027 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b27 / 46 = 0.587$$c2021$$dQ3$$eT2
000109027 593__ $$aBiomaterials$$c2021$$dQ2
000109027 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109027 700__ $$0(orcid)0000-0002-4502-7990$$aPascual, F.J.
000109027 700__ $$aGuerin, G.
000109027 700__ $$0(orcid)0000-0002-3125-5802$$aPuértolas, J.A.$$uUniversidad de Zaragoza
000109027 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000109027 773__ $$g115 (2021), 104248 [15 pp]$$pJ. mech. behav. boomed. mater.$$tJournal of the Mechanical Behavior of Biomedical Materials$$x1751-6161
000109027 8564_ $$s850122$$uhttps://zaguan.unizar.es/record/109027/files/texto_completo.pdf$$yPostprint
000109027 8564_ $$s1059229$$uhttps://zaguan.unizar.es/record/109027/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109027 909CO $$ooai:zaguan.unizar.es:109027$$particulos$$pdriver
000109027 951__ $$a2023-05-18-13:32:24
000109027 980__ $$aARTICLE