000109029 001__ 109029
000109029 005__ 20211216151746.0
000109029 0247_ $$2doi$$a10.1021/acs.jpcc.0c06843
000109029 0248_ $$2sideral$$a122420
000109029 037__ $$aART-2020-122420
000109029 041__ $$aeng
000109029 100__ $$ade Almeida, A.A.
000109029 245__ $$aMagnetic hyperthermia experiments with magnetic nanoparticles in clarified butter oil and paraffin: A thermodynamic analysis
000109029 260__ $$c2020
000109029 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109029 5203_ $$aIn specific power absorption models for magnetic fluid hyperthermia (MFH) experiments, the magnetic relaxation time of nanoparticles (NPs) is known to be a fundamental descriptor of the heating mechanisms. The relaxation time is mainly determined by the interplay between the magnetic properties of NPs and the rheological properties of NPs’ environment. Although the role of magnetism in MFH has been extensively studied, the thermal properties of the NP medium and their changes during MFH experiments have been underrated so far. Herein, we show that ZnxFe3-xO4 NPs dispersed through different media with phase transition in the temperature range of experiment as clarified butter oil (CBO) and paraffin. These systems show nonlinear behavior of the heating rate within the temperature range of MFH experiments. For CBO, a fast increase at ~306 K is associated with changes in the viscosity (¿(T)) and specific heat (cp(T)) of the medium at its melting temperature. This increment in the heating rate takes place around 318 K for paraffin. The magnetic and morphological characterization of NPs together with the observed agglomeration of NPs above 306 and 318 K for CBO and paraffin, respectively, indicate that the fast increase in MFH curves could not be associated with the change in the magnetic relaxation mechanism, with Neél relaxation being dominant. In fact, successive experimental runs performed up to temperatures below and above the CBO and paraffin melting points resulted in different MFH curves due to agglomeration of NPs driven by magnetic field inhomogeneity during the experiments. Our results highlight the relevance of the thermodynamic properties of the system NP-medium for an accurate measurement of the heating efficiency for in vitro and in vivo environments, where the thermal properties are largely variable within the temperature window of MFH experiments.
000109029 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/EC/H2020/734187/EU/Spin conversion, logic storage in oxide-based electronics/SPICOLOST$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 734187-SPICOLOST$$9info:eu-repo/grantAgreement/ES/MCIU/MAT2016-78201-P
000109029 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000109029 590__ $$a4.126$$b2020
000109029 591__ $$aCHEMISTRY, PHYSICAL$$b68 / 162 = 0.42$$c2020$$dQ2$$eT2
000109029 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b124 / 333 = 0.372$$c2020$$dQ2$$eT2
000109029 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b56 / 106 = 0.528$$c2020$$dQ3$$eT2
000109029 592__ $$a1.401$$b2020
000109029 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ1
000109029 593__ $$aEnergy (miscellaneous)$$c2020$$dQ1
000109029 593__ $$aSurfaces, Coatings and Films$$c2020$$dQ1
000109029 593__ $$aPhysical and Theoretical Chemistry$$c2020$$dQ1
000109029 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000109029 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109029 700__ $$ade Biasi, E.
000109029 700__ $$aMansilla, M.V.
000109029 700__ $$aValdes, D.P.
000109029 700__ $$aTroiani, H.E.
000109029 700__ $$aUrretavizcaya, G.
000109029 700__ $$aTorres, T.E.
000109029 700__ $$aRodríguez, L.M.
000109029 700__ $$aFregenal, D.E.
000109029 700__ $$aBernardi, G.C.
000109029 700__ $$aWinkler, E.L.
000109029 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000109029 700__ $$aZysler, R.D.
000109029 700__ $$aLima, E.Jr.
000109029 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000109029 773__ $$g124, 50 (2020), 27709-27721$$pJ. phys. chem., C$$tJournal of Physical Chemistry C$$x1932-7447
000109029 8564_ $$s1364442$$uhttps://zaguan.unizar.es/record/109029/files/texto_completo.pdf$$yPostprint
000109029 8564_ $$s2859077$$uhttps://zaguan.unizar.es/record/109029/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109029 909CO $$ooai:zaguan.unizar.es:109029$$particulos$$pdriver
000109029 951__ $$a2021-12-16-12:53:36
000109029 980__ $$aARTICLE