000109045 001__ 109045
000109045 005__ 20250121144847.0
000109045 0247_ $$2doi$$a10.3390/math9111311
000109045 0248_ $$2sideral$$a125300
000109045 037__ $$aART-2021-125300
000109045 041__ $$aeng
000109045 100__ $$0(orcid)0000-0002-0477-835X$$aSebastián, Mª Victoria
000109045 245__ $$aFractal dimension as quantifier of EEG activity in driving simulation
000109045 260__ $$c2021
000109045 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109045 5203_ $$aDynamical systems and fractal theory methodologies have been proved useful for the modeling and analysis of experimental datasets and, in particular, for electroencephalographic signals. The computation of the fractal dimension of approximation curves in the plane enables the assignment of numerical values to bioelectric recordings in order to discriminate between different states of the observed system. The procedure does not require the stationarity of the signals nor extremely long segments of data. In previous works, we checked that this parameter is a good index for brain activity. In this paper, we consider this measurement in order to quantify the geometric complexity of the brain waves in states of rest and during vehicle driving simulation in different scenarios. This work presents evidence that the fractal dimension allows the detection of the brain bioelectric changes produced in the areas that carry out the different driving simulation tasks, increasing with their complexity.
000109045 536__ $$9info:eu-repo/grantAgreement/ES/UZ/CUD2019-04$$9info:eu-repo/grantAgreement/ES/UZ/CUD2020-13
000109045 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109045 590__ $$a2.592$$b2021
000109045 592__ $$a0.538$$b2021
000109045 594__ $$a2.9$$b2021
000109045 591__ $$aMATHEMATICS$$b21 / 333 = 0.063$$c2021$$dQ1$$eT1
000109045 593__ $$aEngineering (miscellaneous)$$c2021$$dQ2
000109045 593__ $$aComputer Science (miscellaneous)$$c2021$$dQ2
000109045 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109045 700__ $$0(orcid)0000-0003-4847-0493$$aNavascués, Mª Antonia$$uUniversidad de Zaragoza
000109045 700__ $$0(orcid)0000-0002-1567-7159$$aOtal, Antonio$$uUniversidad de Zaragoza
000109045 700__ $$0(orcid)0000-0002-8885-7492$$aRuiz, Carlos
000109045 700__ $$aIdiazábal, Mª Ángeles
000109045 700__ $$aDi Stasi, Leandro L.
000109045 700__ $$aDíaz-Piedra, Carolina
000109045 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000109045 773__ $$g9, 11 (2021), 1311 [10 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000109045 8564_ $$s2764779$$uhttps://zaguan.unizar.es/record/109045/files/texto_completo.pdf$$yVersión publicada
000109045 8564_ $$s2735286$$uhttps://zaguan.unizar.es/record/109045/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109045 909CO $$ooai:zaguan.unizar.es:109045$$particulos$$pdriver
000109045 951__ $$a2025-01-21-14:47:45
000109045 980__ $$aARTICLE