000109050 001__ 109050
000109050 005__ 20230519145421.0
000109050 0247_ $$2doi$$a10.1038/s42005-021-00679-0
000109050 0248_ $$2sideral$$a125228
000109050 037__ $$aART-2021-125228
000109050 041__ $$aeng
000109050 100__ $$aHazarie, Surendra
000109050 245__ $$aInterplay between population density and mobility in determining the spread of epidemics in cities
000109050 260__ $$c2021
000109050 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109050 5203_ $$aThe increasing agglomeration of people in dense urban areas coupled with the existence of efficient modes of transportation connecting such centers, make cities particularly vulnerable to the spread of epidemics. Here we develop a data-driven approach combines with a meta-population modeling to capture the interplay between population density, mobility and epidemic spreading. We study 163 cities, chosen from four different continents, and report a global trend where the epidemic risk induced by human mobility increases consistently in those cities where mobility flows are predominantly between high population density centers. We apply our framework to the spread of SARS-CoV-2 in the United States, providing a plausible explanation for the observed heterogeneity in the spreading process across cities. Based on this insight, we propose realistic mitigation strategies (less severe than lockdowns), based on modifying the mobility in cities. Our results suggest that an optimal control strategy involves an asymmetric policy that restricts flows entering the most vulnerable areas but allowing residents to continue their usual mobility patterns.
000109050 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E19$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-094754-B-C21$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-113582GB-I00$$9info:eu-repo/grantAgreement/ES/UZ-IBERCAJA/224220
000109050 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109050 590__ $$a6.497$$b2021
000109050 592__ $$a2.13$$b2021
000109050 594__ $$a8.2$$b2021
000109050 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b16 / 86 = 0.186$$c2021$$dQ1$$eT1
000109050 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1
000109050 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109050 700__ $$0(orcid)0000-0002-6388-4056$$aSoriano-Paños, David$$uUniversidad de Zaragoza
000109050 700__ $$aArenas, Alex
000109050 700__ $$0(orcid)0000-0002-3484-6413$$aGómez-Gardeñes, Jesús$$uUniversidad de Zaragoza
000109050 700__ $$aGhoshal, Gourab
000109050 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000109050 773__ $$g4 (2021), 191 [10 pp.]$$tCommunications Physics$$x2399-3650
000109050 8564_ $$s1291140$$uhttps://zaguan.unizar.es/record/109050/files/texto_completo.pdf$$yVersión publicada
000109050 8564_ $$s1389550$$uhttps://zaguan.unizar.es/record/109050/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109050 909CO $$ooai:zaguan.unizar.es:109050$$particulos$$pdriver
000109050 951__ $$a2023-05-18-14:06:54
000109050 980__ $$aARTICLE