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A B S T R A C T   

Estimatabion of wave agitation plays a key role in predicting natural disasters, path optimization and secure 
harbor operation. The Spanish agency Puertos del Estado (PdE) has several oceanographic measure networks 
equipped with sensors for different physical variables, and manages forecast systems involving numerical 
models. In recent years, there is a growing interest in wave parameter estimation by using machine learning 
models due to the large amount of oceanographic data available for training, as well as its proven efficacy in 
estimating physical variables. 

In this study, we propose to use machine learning techniques to improve the accuracy of the current forecast 
system of PdE. We have focused on four physical wave variables: spectral significant height, mean spectral 
period, peak period and mean direction of origin. Two different machine learning models have been explored: 
multilayer perceptron and gradient boosting decision trees, as well as ensemble methods that combine both 
models. These models reduce the error of the predictions of the numerical model by 36% on average, demon
strating the potential gains of combining machine learning and numerical models.   

1. Introduction 

The state-owned Spanish Port System includes 46 ports of general 
interest, managed by 28 Port Authorities, whose coordination and effi
ciency control corresponds to the government agency Puertos del Estado 
(PdE), that is responsible for implementing the government’s port pol
icy. Accurate estimations of wave parameters (height, period and di
rection), both in the open sea and in port areas, are particularly 
important for several reasons. Estimations on high seas allow predicting 
dangerous phenomena or events caused by natural catastrophes 
(Vanem, 2011; Dixit and Londhe, 2016). In terms of logistics, these es
timations make it possible to optimize routes for vessels, increasing 
safety and cost savings (Zheng and Sun, 2016; Liu et al., 2016). 

The energy sector is another field greatly benefited by achieving 
more accurate estimations. In the last few years, the number of wave- 
based energy generation systems (wave energy converters) has 
increased considerably (López et al., 2013; Bahaj, 2011; Falcão, 2010). 
In order to determine the viability and productive capacity of this type of 
systems, it is essential to know with great precision the wave history in 
an area in order to predict future trends (Cuadra et al., 2016). Speaking 

purely from the oceanographic and climatic point of view, having a 
reliable wave history makes it possible to carry out valid analysis and 
detect changes in trends. 

Wave parameters estimation in port areas is of vital importance for 
security reasons, allowing the loading and unloading of goods to be 
carried out in safe conditions, and permitting the corresponding port 
authority to determine if the port should be closed at the entrance of 
ships, causing certain vessels to divert to nearby ports. Wave parameters 
estimation has been traditionally carried out by means of numerical 
models forced with wind fields that reproduce the processes of wave 
generation and propagation. The output of these models are gridded 
wave spectra, from which wave parameters are estimated. These models 
should be validated and calibrated with real measurements that in most 
cases are provided by wave sensors included in buoys. These buoys have 
been measuring during decades and there is an increasing amount of 
historical qualified wave dataset. However, there are some periods when 
the buoys could not provide information due to malfunctions or drifts 
generating gaps in the historical dataset. The numerical models, forced 
with historical wind fields can provide hindcast datasets without gaps 
but differing from the real measurements. These errors can be due to 
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different sources: inaccuracies in the bathymetry, errors in the input 
wind field or errors in the generation or propagation of wave energy 
from the wave model. Models based on machine learning can be used to 
reduce these errors due to their ability to find correlations in the input 
data (“learning from data” models), however complex it may be. In this 
work, we have developed machine learning models (Marsland, 2009; 
Géron, 2020) that improve accuracy on wave height parameter esti
mations from numerical models at different locations of the Spanish 
coastline. After exploring different machine learning techniques, two 
different models have been selected: Multilayer perceptron (MLP) and 
gradient boosting decision trees (GBDT), and ensemble methods that 
combine both have also been analyzed. As inputs for our machine 
learning models we have used the estimations of the numerical model 
currently used by PdE and a set of variables recorded by their buoy 
network enumerated in Table 1. With this information our machine 
learning models have updated the predictions of the numerical model in 
order to improve its accuracy. 

The paper is structured as follows. Section 2 presents the related 
work. Section 3 outlines the machine learning models selected for this 
study. Section 4 describes the data used in the study and the preprocess 
carried out. Section 5 presents the experimental results. Finally, Section 
6 summarizes our conclusions. 

2. Related work 

The estimation of oceanographic variables through machine learning 
models has been the target of many research works in the last years, 
hand in hand with the renewed emergence of artificial intelligence 
models based on “learning by data”. Different approaches have been 
proposed depending on the source data used to build the prediction 
model. A very widespread method is the use of data from adjacent deep- 
water buoys to estimate the measurements of a target buoy (López et al., 
2015; Alexandre et al., 2018; Cornejo-Bueno et al., Salcedo-Sanz; 
Krishna-kumar et al., 2017; Mahjoobi and Mossabeb, 2009; Etemad-
Shahidi and Mahjoobi, 2009). This method allows providing wave 

parameter estimations at the location of the target buoy even when it is 
out of service. One advantage of this method is that it does not require 
use of numerical models, which are usually very computationally 
demanding. Its main limitation is its dependence on the instrumentation 
availability, noticeable lower than data coming from numerical models. 
In (Mahjoobi and Mossabeb, 2009) and (Etemad-Shahidi and Mahjoobi, 
2009) the authors propose to use regressive support vector machines 
and MLP, respectively, for wave height predictions. In (Alexandre et al., 
2018) the authors propose to combine genetic algorithms with machine 
learning models to locally reconstruct the output of out-of-operation 
buoys in the Caribbean Sea and West Atlantic (Cornejo-Bueno et al., 
Salcedo-Sanz). continues the work of (Alexandre et al., 2018) but in
cludes a Bayesian Optimization method to select the attributes used by 
their prediction model. In (Krishna-kumar et al., 2017) the authors 
propose to use sequential learning algorithms, namely the Minimal 
Resource Allocation Network (MRAN) and the Growing and Pruning 
Radial Basis Function (GAP-RBF) network, to predict the daily wave 
heights in different geographical regions. In (López et al., 2015) the 
authors propose the use of MLPs to estimate wave agitation within a port 
basin based on deep-water observations alone. Specifically, this work is 
based on the estimation of the wave height in the buoy of the port of 
Ferrol (La Coruña, Spain) from data from two adjacent buoys. 

A second approach consists in predicting future wave agitation based 
on the last measurements recorded by a target buoy (Yin et al., 2013; 
Pashova and Popova, 2011; Yasseri et al., 2010). (Yin et al., 2013) 
presents the application of a sequential learning radial basis function 
network for real-time prediction of tidal level (Pashova and Popova, 
2011). predicts the daily mean sea levels in the Black Sea coast using 
MLPs (Yasseri et al., 2010). predicts the significant wave height and 
mean zero-up-crossing wave period in the north east Pacific using MLPs 
and a finite element method. 

A third approach of posing the problem is to consider partially or 
fully replacing a previous numerical model. For example, in (Puscasu, 
2014) the authors propose to use an MLP to approximate the result of the 
resolution of the non-linear term (Snl) to reduce the computation time of 
numerical models. Other works propose to fully replace the numerical 
model by a machine learning model (Malekmohamadi et al., 2008; Pooja 
et al., 2011; James et al., 2018). In (Malekmohamadi et al., 2008; Pooja 
et al., 2011) this is done for a specific buoy using an MLP (Mal
ekmohamadi et al., 2008), and a model that combines MLP, genetic 
programming and model tree (Pooja et al., 2011). (James et al., 2018) 
pursues a more ambitious goal and recreates the estimations of the 
SWAN (Scientific and techn, 2009) numerical model by using MLPs for 
the Bay of Monterey (USA). The MLPs predictions are 4,000 times faster 
than the SWAN model, and the root mean square error (RMSE) was less 
than 5% of the mean value of the swell. The authors explain that the Bay 
of Monterey has stable conditions that allow reaching these results. 
Trying to develop methods to replace numerical models in more exposed 
areas, and with more changing conditions, is still a hard challenge. 

Another option is to consider machine learning as a complementary 
tool to improve the estimations of numerical models. Predictions made 
by the numerical models are post-processed to bring them closer to the 
real measurements obtained by a buoy at a given point, at the expense of 
minimally increasing the computational cost (Makarynskyy, 2004; 
Makarynskyy, 2006; Zhang et al., 2006; Filippo et al., 2012; LightGBM 
examples, 2020). (Makarynskyy, 2004) proposes to use MLPs to update 
the prediction of weight height (Makarynskyy, 2006). also propose an 
MLP model to update the predictions for wave height, zero-up-crossing 
wave period and peak wave period. They use the data of a buoy station 
coupled with a numerical model to predict the wave conditions in two 
points close to the buoy station. In their experiments they reduce the 
root mean square error from 2.2 to 3.9 (Zhang et al., 2006). uses MLPs to 
improve the predictions in four points of the northwestern Pacific 
Ocean, reporting a consistent improvement in the predictions (Filippo 
et al., 2012). analyzes the case of the Cananéia coasts (Brazil) reducing 
the error of the numerical model from 26% to 12% by using MLPS. 

Table 1 
Input and output variables in the data sets used in our machine learning models.   

Data source Variables 

Acronym Description Unit 

Inputs Date yyyy/ 
mm/dd 

Date year/ 
month/day 

Time hh Time of the day hour 
Wave 
agitation 
model 

Hm0 Significant spectral 
height 

meters (m) 

Tm02 Spectral mean 
period 

seconds (s) 

Tp Spectral peak 
period 

seconds (s) 

DirM Mean direction of 
wave origin 

degrees (◦) 

Wind model VelV Wind mean speed meters per 
second (m/ 
s) 

DirV Mean direction of 
wind origin 

degrees (◦) 

Water 
current 
model 

uo North component of 
mean current speed 

meters per 
second (m/ 
s) 

vo East component of 
mean current speed 

meters per 
second (m/ 
s) 

Output 
Evaluation 

Buoy Hm0 Significant spectral 
height 

meters (m) 

Tm02 Spectral mean 
period 

seconds (s) 

Tp Spectral peak 
period 

seconds (s) 

DirM Mean direction of 
wave origin 

degrees (◦)  
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Finally (Ellesonet al., 2020) is a very recent reference in which the au
thors use bagged decision trees to detect deviations of the wave height in 
the predictions of the numerical wave model (WaveWatch III) using its 
outputs and wind information from a forecast system. When these de
viations were applied as corrections error metrics 
root-mean-squared-error, bias, percent error, and scatter index were 
reduced in several different experiments. Moreover they developed a 
descriptive tool that identifies regions with similar errors. 

Our work follows a similar approach to those described in the pre
vious paragraph: apply machine learning techniques to improve the 
results of a numerical model. First, classical MLPs will be used for two 
reasons, because they are universal approximators (Goodfellow et al., 
2016), and because they are used with good results in many of the 
previous works found in the literature (as it can be seen in the above 
paragraph). Second, we will use decision trees as proposed in 
(Ellesonet al., 2020). Nevertheless, other modern machine learning 
techniques have also been explored. Thus, we have identified that 
Gradient Boosting Decision Trees (GBDT) is a powerful technique that 
achieves better results than MLPs or traditional decision trees for our 
predictions. Moreover, two additional ensemble techniques have been 
applied to further improve the results: bootstrap aggregating (bagging) 
(Breiman, 1996) of several MLP and combining the results of MLP 
bagging and the GDBT. With this combination slightly better results and 
a more robust model are obtained. In order to validate our approach, our 

machine learning models have been evaluated in four locations on the 
Spanish coast that are exposed to very different sea state conditions. The 
benefits of our approach vary from one point to another, but even in the 
most complex cases, our machine learning models can improve the 
predictions of some of the physical wave variables. 

3. Machine learning models for wave height estimation 

In this section, the Machine learning (ML) models used in our work 
will be described. ML models (Marsland, 2009) are data-driven tech
niques that automatically learn patterns and input-output relationships 
from data sets. Thus, they are suitable to tackle the prediction of phys
ical wave variables because they are very efficient in detecting patterns 
and complex relationships between input data, in order to estimate the 
value of an output variable. In addition, in our case, a large amount of 
historical data is available for training machine learning models. 

In this work, the two-stage scheme shown in Fig. 1 is proposed. The 
Spanish agency Puertos del Estado (PdE) has several measure networks 
equipped with sensors for different physical variables, and forecast 
systems based on numerical models. In our approach, the machine 
learning model receives the output predictions provided from the nu
merical model, and estimates a correction which leads, on average, to a 
more accurate prediction of physical wave variables (Section 5). 

Among the collection of models available in the machine learning 

• wind fields
• meteorological 
variables

NUMERICAL
MODEL

estimation MACHINE LEARNING
MODEL

+ estimation

higher-accuracy 
estimation

Fig. 1. Inference workflow to increase the accuracy of numerical model predictions through machine learning.  

Fig. 2. Example of a 2-4-1 MLP architecture. Two input neurons send two features to a hidden layer including four neurons, and one output neuron carries out the 
final computations and generates the output. 
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ecosystem (Marsland, 2009; Goodfellow et al., 2016; Haykin, 1999), 
neural networks (Section 3.1) and decision trees (Section 3.2) have been 
selected. In addition, ensemble techniques to further increase accuracy 
have also been evaluated (Section 3.3). 

For all our models, a time-series cross-validation strategy is applied, 
where the corresponding training set consists only of samples that 
occurred prior to the samples that form the test set, thus, no future data 
is used in constructing the forecast system. For instance, consider a 

Fig. 3. Example of a decision tree. White boxes represent conditions to be evaluated (split points, feature values depending on which data is divided at a tree node), 
and gray boxes are leaves nodes (containing the output values). 

Fig. 4. Standardization on cyclic variables.  
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temporally ordered dataset divided in four subsets, A, B, C and D, the 
procedure starts by training with subset A and testing with B (fold 1), it 
continues by training with A and B, and testing with C (fold 2), and the 
procedure ends by training with A, B, C, and testing with D (fold 3). 

All these machine learning models are complex and involve powerful 
mathematical developments, thus, in next sections we only explain the 
basic ideas of these algorithms; the interested reader can find more 
algorithmic and mathematical details, for instance, in references 
(Marsland, 2009; Goodfellow et al., 2016; Géron, 2020; Haykin, 1999). 

3.1. Multi-layer perceptron (MLP) 

Multi-layer perceptrons (MLP) are one of the most widely-used 
artificial neural network (ANN) architectures (Haykin, 1999; Mars
land, 2009; Géron, 2020) because they are universal approximators 
(Goodfellow et al., 2016; Haykin, 1999) that are able to capture 
nonlinear input-output relationships from a data set. Specifically, the 
universal approximation theorem, developed by Cybenko and Hornik 
(Goodfellow et al., 2016), states that a feed-forward neural network with 
at least one hidden layer can approximate any multivariate function, 
provided that the network is given enough hidden units. MLPs were used 
in most of the works presented in Section 2. 

An MLP (Fig. 2) consist of an input layer, with as many neurons as 
input features; hidden layers, whose neurons compute a weighted sum of 
its inputs, and then apply a nonlinear function, typically a sigmoid 
function or a rectified linear unit (ReLU) (Géron, 2020); and an output 
layer, that generates the final output by computing the weighted sum of 
the last hidden layer outputs. In an MLP, each neuron is connected to 
every single neuron of the previous layer, and each connection is 
modeled with a weight. These weights are iteratively adjusted from the 
dataset by using an optimization algorithm, which minimizes a cost 
function that compares the current MLP output versus the desired one. 
MLPs are often trained following the stochastic gradient descent algo
rithm, where the gradient is usually computed by using the back
propagation technique. Algorithmic and mathematical details can be 
found in references (Marsland, 2009; Haykin, 1999). 

3.2. Decision trees 

A decision tree (Marsland, 2009) (Fig. 3) is a machine learning model 
that uses an if/then/else branching method to represent every possible 
model output. Thus, it consists of a set of if/then/else conditions (split 

points) about each input feature in turn, starting at the root of the tree 
and progressing down to the leaves where the corresponding final 
output is assigned (Marsland, 2009). In short, decision trees use a 
tree-like model of chained if/then/else decisions and their possible 
consequences for achieving the final model output. 

Fig. 3 shows a scheme of a binary decision tree. White nodes repre
sent conditions, where an input feature or variable is compared with a 
threshold (split point), thus determining the subsequent path depending 
on the true or false result of the evaluated condition. Nodes in gray are 
leaves nodes, which are labeled with the corresponding output value. 
Thus, the tree is traversed (top-down) by comparing at each level one 
input feature with a threshold (adjusted during training) until a leaf 
node (which contains the prediction) is reached. In the worst case it 
requires depth − 1 comparisons, but, as can be seen in Fig. 3, the output 
value can be found at any level. 

The training algorithm determines which feature is used at each level 
and the numeric value of the thresholds used in every split point, in a 
way that minimizes the mean squared error (MSE); one of the most 
popular algorithms for this purpose is the Classification and Regression 
Tree (CART) algorithm (Timofeev, 2004). 

3.3. Ensemble learning 

Ensemble learning (Marsland, 2009) is a machine learning paradigm 
where several machine learning models are trained to solve the same 
problem and combined to get better results. When several models are 
correctly combined, a more accurate or robust model can be obtained. 
Thus, ensemble learning (Marsland, 2009) combines predictions coming 
from different models in order to improve the final prediction. In our 
experiments we have used three different ensemble methods: gradient 
boosting, bagging and averaging. 

Models based on decision trees usually rely on the prediction as a 
result of many single estimators (i.e. decision tree). Once trained, the 
individual trees are combined by using ensemble methods; a typical 
approach for this are random forest techniques (Breiman, 2001). The 
final output is achieved by computing the mode (for classification) or the 
mean prediction (for regression) of the individual trees. Thus, by 
combining several predictions, a stronger predictor is obtained. 

However, even better results can be obtained, by applying an 
ensemble approach called gradient boosting (Géron, 2020). Gradient 
boosting works sequentially by adding the outputs of several decision 
trees (predictors), each one correcting its predecessor, in such a way that 
each tree attempts to improve the results of the previous. Every pre
dictor is trained sequentially, so each new iteration tries to correct the 
residual error generated in the previous one. Once the trees are trained, 
they can be used for prediction by simply adding the outputs of all the 
trees (Géron, 2020). For instance, consider an ensemble of three decision 
trees (DT). DT number one (DT1) is trained normally, providing an 
output h1 with some residual error (actual output minus predicted 
output). Then DT2 is trained on the residual error of DT1 (now residual 
errors are target values); DT2 output h2 (a correction to DT1 output) is 
added to that of DT1 for obtaining the ensemble output h, h = h1+h2, 
thus reducing the error provided by DT1. Finally, DT3 is trained on the 
residual error of DT2 and its output h3 is added for obtaining the final 
ensemble output h = h1+h2+h3, reducing the error even more. 

Gradient boosting is used by Gradient Boosting Decision Trees 
(GBDT) (Jerome, 2002). Conventional implementations of GBDT suffer 
from poor scaling for large datasets or a large number of features. 
LightGBM (Guolin et al., 2017) is a highly efficient open-source 
GBDT-based framework that overcomes this drawback by excluding a 
significant proportion of data instances with small gradients, and by 
bundling mutually exclusive features (that rarely take nonzero values 
simultaneously), thus offering up to 20 times higher performance over 
conventional GBDT. For this reason, we have selected LightGBM in our 
work. With the support of LightGBM, GDBTs are currently considered 
one of the most powerful machine learning models due to its efficiency, 

Fig. 5. Physical locations of the buoys. From North to South: Villano, Tarra
gona, Tarifa and Tenerife. 

S. Gracia et al.                                                                                                                                                                                                                                  



Ocean Engineering 236 (2021) 108699

6

Fig. 6. Physical locations of the model points and buoys used to develop our ML models. Rows: Villano, Tarragona, Tarifa and Tenerife. Columns: waves-winds 
model points (yellow) and currents model points (blue). The points filled in red show the spatial point where a buoy and a model point are overlapped. 
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accuracy and interpretability. For example, recently they have been 
used for many winning solutions in several machine learning competi
tions (LightGBM examples, 2020). 

Bootstrap aggregating (bagging) (Breiman, 1996) builds multiple 
estimators by training each of them with a subset of the training data, 
and then aggregates their predictions. These subsets are built by picking 
random samples with replacement. We have applied bagging to improve 
the results obtained by our MLP models and, in addition, bagging is also 
used in the core of the LightGBM algorithm. 

Finally, averaging is a simple approach to combine different machine 
learning models for regression. Each model is trained independently, 
and during inference their outputs are averaged to generate the final 
results. 

In summary, four different approaches have been evaluated:  

1) Single MLP: This is our simplest ML model. Best hyperparameters for 
each location are found by random search. In order to mitigate the 
effect of model weight initialization, results shown in this category 
are the average error and training time for 50 instances of a single 
MLP.  

2) Bagging MLP: Based on the optimal hyperparameters previously 
found, we consider a bagging of N MLPs, where each one is trained 
on a random fraction M of the training set. Hyperparameters N and M 
are adjusted for each location as shown in Table 3.  

3) LightGBM: As indicated in Section 3, LightGBM is an efficient 
implementation of GBDT (Gradient boosting decision trees). It con
sists of N single estimators (decision trees) where each tree attempts 
to reduce the residual error of the previous one. Each tree is trained 
on a random fraction M of the training set (thus, LightGBM algorithm 
also uses bagging). M, N, and other hyperparameters are tuned for 
each location by random searching.  

4) Ensemble: Predictions coming from a bagging of MLPs and a 
LightGBM are averaged. 

4. Methods 

This section presents the data sets used in our experiments, the 
preprocessing steps needed before using the data, the field sites selected 
to evaluate our model, and the description of the experiments carried 
out. 

4.1. Data sets and preprocessing 

Puertos del Estado (PdE) provided us with data sets for each location 
on the Spanish coast. Each data set includes their numerical models 
estimations (for wave height, wind, and water current) and the mea
surements recorded by their buoy network. The time resolution of these 
data sets is one sample per hour. Table 1 enumerates the variables used 
as inputs for our models, which includes the date and time, as well as the 
outputs of three different computational models. It also includes the 
additional information used to evaluate the outputs of our model, which 
are measurements taken at the buoys. 

In order to preprocess data for the machine learning models, we 
applied two standardization methods on raw data depending on the 
nature of the variable. In the case of acyclic variables (Hm0, Tm02, Tp, 
VelV, uo and vo), for putting all the variables in the same scale, they are 
standardized according to 

z =
x − x

S
(1)  

where z is the standardized value, x is the raw value, x is the mean in the 
training set, and S is the standard deviation in the training set. As it is 
well known, equation (1) transforms a variable x into another variable z 
with mean 0 and standard deviation 1. 

Cyclic variables demand a different approach to properly reflect their 
underlying proximity in time or space. In our dataset, cyclic variables 
are timestamps - where we considered both the day within a year and the 
time within a day -, and directional variables (DirM and DirV). Fig. 4 
illustrates standardization on the time within a day. Unprocessed vari
able hh is first scaled to [0–2π], and then sine and cosine of this scaled 
value are computed and presented as processed variables. The purpose 
of this method is to force that hours close in time are also close in value 
(for example, 01h and 23h). 

4.2. Field Sites 

Our machine learning approach has been evaluated in four locations 

Table 2 
Coordinates of the model points and buoys. Points for each location/model are 
sorted by latitude (from north to south) and by longitude (from west to east).The 
rows in bold show the spatial point where a buoy and a model point are 
overlapped.  

Location Waves-winds model Currents model 

Latitude (◦) Longitude (◦) Latitude (◦) Longitude (◦) 

Villano 44.250 − 9.500 43.751 − 8.166 
43.667 − 9.500 43.501 − 8.833 
43.500 − 10.000 43.501 − 8.166 
43.500 ¡9.208 43.417 − 8.333 
43.500 − 9.000 43.001 − 9.333 
42.500 − 10.500   

Tarragona 41.917 3.667 42.000 3.584 
41.000 4.000 41.084 1.251 
40.833 1.167 41.000 2.084 
40.667 1.500 40.667 1.501 
40.000 1.500   
39.500 0.167   

Tarifa 36.000 − 6.000 36.500 − 6.500 
36.000 − 5.583 36.000 − 5.583 
36.000 − 5.250 35.917 − 5.916 
35.983 ¡5.600 35.834 − 6.416 
35.950 − 5.600   
35.850 − 6.100   

Tenerife 28.250 − 16.000 28.667 − 17.667 
28.000 ¡16.583 26.667 − 16.333 
27.917 − 16.667 28.500 − 17.333 
27.917 − 16.500 28.417 − 14.417 
27.417 − 16.667 28.333 − 15.917 
27.000 − 17.500 28.000 − 16.583  

Table 3 
Datasets on each location.  

Location Wave & wind model points Current model points Total input variables Training set Test set 

Period #samples Period #samples 

Villano 6 5 295 2005–01 
2014–08 

73,266 2014–09 
2017–03 

18,317 

Tarragona 6 4 285 2005–01 
2014–12 

73,722 2015–01 
2017–03 

18,431 

Tarifa 6 4 285 2009–01 
2016–01 

45,997 2016–02 
2017–06 

11,499 

Tenerife 6 6 305 2005–01 
2014–08 

77,987 2014–09 
2017–03 

19,496  
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on the Spanish coast: Villano, Tarragona, Tarifa and Tenerife (see 
Fig. 5). These locations have been selected as they are exposed to very 
different sea state conditions for testing our methodology: Villano is in 
the Atlantic Coast, Tarragona in the Mediterranean Sea, Tarifa in the 
Gibraltar Strait and Tenerife in the Canary Island. 

In order to make estimations in each buoy location, PdE selected key 
points from their wave height and current numerical models for each 
location. The model points have been chosen trying to be the most 
representative in the grid, providing all the possible contributions that 
can affect the results in every location: the closest points to the buoy and 
the tide gauge, and those in strategic positions for oceanographic phe
nomena. For Villano position, apart from the closest point to the buoy, 
the selected points were three outer points able to represent the wind 
and wave contributions from the North, South and North-West di
rections and four points to represent the Iberian Poleward current. In 
Tarragona, The selected points are representative of the North and South 
contributions for wave and wind and representative of the typical slope 
current in the Catalonian Coast from the North. In Tarifa position, the 
points chosen are representative of the easterlies and westerlies main 
wind and wave regimes and the eastward surface main current in the 
Gibraltar Strait. For Tenerife, the selected points are the most repre
sentative of the North and South wind and wave contributions that affect 
the buoy area and the representative of the main currents in the Canary 

Island. The physical locations of these points are shown in Fig. 6; waves 
and wind model points on the left, and physical location of the currents 
model points on the right (buoys are shown as red points). Specific co
ordinates for each point are shown in Table 2. 

4.3. Experiments 

We built our regression models as a function of not only the current 
sample but also the four previous ones. Therefore, a valid sample in our 
model requires five consecutive raw samples with data for all variables 
available. 

Table 3 characterizes the dataset used on each location; all ML 
models were trained with wave, wind and current values provided by 
the numerical models. The whole dataset was split into a training set 
(80%) and a test set (20%). The field ‘Total input variables’ is the ag
gregation of the input variables (see Table 1) for each model point for 
the last 5 h. For example, for Villano it includes 1 input for the year, 4 
inputs for the normalized time and date, 240 inputs for the six points of 
the wave and wind model during the last 5 h (6 × 5 × 8), and 50 inputs 
for the five points of the current model during the last 5 h(5 × 5 × 2). 

For each sample our model generates for different outputs. However 
these outputs are not the absolute values that we want to predict (Hm0, 
Tm02, Tp, DirM, described in Table 1), but, following the 

Fig. 7. Error reduction for each location and variable achieved by our ML models in the test sets.  

S. Gracia et al.                                                                                                                                                                                                                                  



Ocean Engineering 236 (2021) 108699

9

recommendation of (KantardzicData Mining: Concepts et al., 2011), our 
models generate a correction that must be applied to the initial pre
diction obtained with the numerical model. For acyclic variables 
measured by the buoy, Hm0, Tm02 and Tp, the objective of the machine 
learning model is to estimate the increase Δ that corrects the wave 
model estimation (ΔHm0, ΔTm02 and ΔTp), as shown in (2)  

Δoutput_var = output_varbuoy − ouput_varnumerical_model                        (2) 

For angular output variables (i.e., DirM), we decided to estimate the 
correction of the sine and cosine (Δsin and Δcos) and then reconstruct 
the angle by computing the arc tangent.  

angleML_model = arctan(sineML_model / cosineML_model)                             (3) 

Notice that this method yields predictions where the trigonometric 

relationship sin2 α + cos2 α = 1 is not guaranteed. However, it provides 
the best results as it represents a kind of ensemble by mixing the inde
pendent sine and cosine predictions. 

For each model output we compute the original error of the nu
merical model as:  

output_var_numerical_model_error = | 
output_varbuoy − ouput_varnumerical_model |                                            (4) 

And the error after including our ML model to correct the initial 
results as:  

output_var_ML_error = |output_varbuoy − (ouput_varnumerical_model +

ouput_varML_model)|                                                                          (5) 

Comparing these two errors we identify the error reductions due to 

Fig. 8. Scatter plot for Villano - Hm0.  

Fig. 9. Scatter plot for Tarragona - Hm0.  
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the corrections carried out by our models. 

5. - Experimental results 

Fig. 7 shows the accuracy improvement over the numerical model 

achieved by our four approaches for each location and output variable in 
the test sets. The first column presents the results when using a single 
MLP, which is the technique used in most of the previous references 
(Section 2). This approach yields error reductions in 14 of the 16 pre
dicted values. The second column shows that a bagging of MLPs leads to 

Fig. 10. Scatter plot for Tarifa - Hm0.  

Fig. 11. Scatter plot for Tenerife - Hm0.  

Table 4 
Mean absolute error (MAE) and correlation coefficient (R) on the test set for each location.   

Villano Tarragona Tarifa Tenerife 

Numerical model ML model Numerical model ML model Numerical model ML model Numerical model ML model 

MAE R MAE R MAE R MAE R MAE R MAE R MAE R MAE R 

Hm0 (m) 0.33 0.94 0.27 0.96 0.17 0.94 0.14 0.95 0.23 0.90 0.12 0.93 0.16 0.86 0.12 0.87 
Tm02 (s) 0.71 0.90 0.38 0.93 0.41 0.87 0.28 0.90 1.56 0.56 0.41 0.79 – – – – 
Tp (s) 1.611 0.83 0.82 0.86 0.94 0.70 0.70 0.77 1.61 0.43 1.03 0.70 – – – – 
DirM (◦) 11.54 – 9.60 – 27.28 – 24.26 – 39.24 – 17.9 – 45.44 – 13.61 –  
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further error reduction in all the locations and output variables. GBDTs 
(LightGBM), which apply bagging and boosting, perform slightly better 
on average than a bagging of MLPs, although in some cases MLPs pro
vide better results. Hence it is a good idea to combine both approaches. 
The last column depicts the results of an ensemble of LightGBM and a 
bagging of MLPs. This solution achieves the highest accuracy for all the 
locations and variables explored. For instance, compared to LGBM, en
sembles further reduce the error ranging from 0.4% (Tarragona, Tp) to 
13.1% (Tarragona, DirM). 

Regarding each particular case study, predictions for Villano yields 
error reductions ranging from 20.0% for Hm0 to 49.0% for Tp. For 
Tarragona, our solution achieves error reductions from 17.8% for Hm0 
to 32.9% for Tm02. Tarifa is the location where the numerical model is 
improved by a larger margin: 36.6% for Tp, 48.0% for Hm0, 58.2% for 
DirM, and 73.8% for Tm02. Tenerife is a particular case. While it is 
observed an error reduction in Hm02 and DirM (21.7% and 69.2%, 
respectively), the periods Tm02 and Tp do not seem to have relationship 
with the inputs since none of our models was able to improve the ac
curacy. Hence, and only in this particular case, the best solution is to use 
the numerical model without any correction for these two variables. 

Figs. 8–11 include scatter plots for the most relevant variable, Hm0. 
Each location includes on the left the baseline scatter plot, i.e., pre
dictions from the numerical model, and, on the right, scatter plots from 
the predictions of our best ML model are shown for each location. It can 
be observed how ML models greatly improve accuracy and reduce data 
dispersion although we can also observe a remarkable underestimation 
for extreme wave height values, especially in the models developed for 
Tarragona and Tarifa. This can be explained by the general over
estimation of the numerical model in these two locations that forces the 
ML model to adopt a descending trend. 

Table 4 summarizes the accuracy enhancement for each case study. 

Both mean absolute error and the correlation coefficient are shown as 
error metrics for each location and output variable. 

A seasonality study of the results has been performed to check if the 
behavior of the ensemble model depends on the type of sea state. This 
study aims to observe if there is any pattern in the results that could be 
associated with relative calms (typical situation during the Summer 
months with low values in wave height and periods) or heavy storms 
(usually in Winter months, with the highest heights and periods). 

In Fig. 12 the results of the study are shown for the four locations and 
parameters. In the first one (upper left) corresponding to Hm0, we can 
observe that for Villano and Tarifa, the maximum error reduction takes 
place during Summer, whereas for Tenerife is in Spring and Autumn and 
for Tarragona is between February and May, We should consider that 
each location is affected by different wave conditions and this can 
explain the different trends in the curves. The only similitude that can be 
appreciated is a descent in June and low values in December and 
January. For the mean period Tm02 (upper right) no clear trend is 
observed, but again, Villano and Tarifa present similar curves with the 
minimum values around July while Tarragona has the maximum in 
August. It is a very stable parameter and it does not oscillate too much 
along the year. For the other two graphs, it is remarkable to highlight a 
fall in May for Villano and a descending trend along the year for 
Tarragona. 

The only conclusion that can be extracted from this study in relation 
with the results of the ensemble model is that the low values observed in 
December and January in Hm0, when generally the heaviest storms 
occur could be related with the underestimation observed in the ex
tremes as shown in the scatter plots (Figs. 8–11). 

Fig. 12. Error reduction in Hm0, Tm02, Tp and Dmd achieved by our ensemble model for each month and location.  
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6. Conclusion 

Wave parameter estimation has been traditionally carried out by 
means of numerical models. In this work several machine learning 
models have been developed to improve the accuracy of wave parameter 
estimations made by classical numerical models at four different loca
tions of the Spanish coastline. To this end, they provide a correction to 
the results of the numerical models. We have focused on four physical 
wave variables: spectral significant height, mean spectral period, peak 
period and mean direction of origin. 

Different machine learning models have been explored: multilayer 
perceptron, gradient boosting decision trees and ensemble methods that 
combine both. These machine learning models have been evaluated, 
both in terms of accuracy and computational cost (see appendix A). 

It has been found that these machine learning algorithms reduce the 
error of the predictions of the numerical model by 36% on average, 
demonstrating the potential gains of combining machine learning and 
numerical models. Error reductions from 19.7% to 73.6% have been 
achieved in 14 out of 16 case studies. 

Our approach increases the accuracy of numerical model predictions 
in those points where real measures were available. Once the models 
have been trained, our solution does not demand any instrumentation as 
it relies solely on the predictions from the numerical model. 

Notice that in our approach the predictions of the numerical models 
are used as inputs of the machine learning models, and machine learning 
algorithms provide corrections for accuracy improvement. A future and 
more ambitious work would be trying to completely replace the nu
merical model instead of correcting it. We would also like to identify the 
patterns used by the machine learning models in order to better 

understand why the results are different from one location to another. 
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Appendix A. hyperparameters selected and training process 

Table 5 details the hyperparameters selected in each case study. We decided to optimize the hyperparameters for each location, since each one is 
very different from the others. We also explored the possibility of optimizing the hyperparameters for each variable within each location, but in our 
preliminary experiments we observed that variable-level optimization provided very little further improvement and it was very time-consuming. As it 
was mentioned in Section 3, we applied a time-series cross-validation strategy to avoid over-fitting.  

Table 5 
Hyperparameter selection for each location  

Location MLP LightGBM 

layers L2 penalty estimators bagging 
fraction 

learning 
rate 

bagging 
fraction 

min data 
leaf 

estimators 

Villano 5x20 0.2 20 0.80 0.01 0.80 1,500 2,000 
Tarragona 0.2 10 500 
Tarifa 0.2 20 2,000 
Tenerife 0.5 10 500  

We have analyzed the complexity of the training process for each model. To this end, we have trained them in a desktop computer equipped with an 
Intel i7-2600 CPU and 16 GB of RAM. All our models were coded by using the library Scikit-learn 0.19.1 (Pedregosaet al., 2011). Fig. 13 compares the 
training time for the four approaches. Results for each approach averages all the locations, and all the variables within each location. The approach 
based on a single MLP, which is the weaker in terms of accuracy, requires a training time of only 12.4 ± 3.9 s. The approach based on bagging MLP, 
which yields to more accurate predictions, is one order of magnitude more time-consuming, requiring 189.7 ± 118.7 s on average. It is remarkable the 
fact that LightGBM models (third approach), which turn out to be slightly more accurate than a bagging of MLPs, are much faster as they only demand 
74.8 ± 61.5 s. Finally, results from the ensemble of both bagging of MLPs and LightGBM, are just the sum of both training times (the time required for 
averaging is negligible). 
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Fig. 13. Average training time of the machine learning models of our study.  
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