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MOTIVATION 
 

The development of this doctoral thesis is justified by the growing general importance of 

collective investment and especially that of mutual funds. The Spanish mutual fund 

industry reached €260 trillion by the end of June 2020 with more than 11 million 

shareholders across 1,419 mutual funds (Spanish Collective Investment and Pension Fund 

Association, INVERCO and Spanish Securities and Exchange Commission, CNMV). 

The persistent low interest rates of banking deposits has led to the growth of the mutual 

fund industry because of its advantages to individual investors, such as professional 

management and portfolio diversification. 

 Most individual investors trust their savings to mutual funds. Fund managers are 

responsible for managing funds and ensuring portfolio diversification; therefore, their 

role is crucial. They attempt to buy or hold stocks that they expect will make a positive 

contribution to fund performance and to sell stocks that they expect will not. Fund 

managers’ trading decisions are based on the information that they collect from several 

sources such as social interaction, experience, the learning process, and individual 

research. Furthermore, their decisions may be influenced by top management and 

financial analysts within the family to which they belong.  

 A mutual fund offers the advantage of diversification to individual investors 

regardless of the amount that they invest. Furthermore, shareholders could seek greater 

diversification by allocating their money to different funds; however, different is not 

always the same thing as diverse. Therefore, the similarity level among portfolios is an 

important aspect within the fund industry as well as the autonomy of fund managers 

within the portfolio allocations and their ability to add value through their distinct trading 

decisions.  
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 This doctoral thesis consists of three empirical chapters on fund managers’ 

abilities; learning, autonomy, and divergent trading, and first includes an introduction to 

the Spanish mutual fund industry that provides some statistics about its evolution and 

summarises its specific characteristics. 

  Chapter 1 examines the learning process in the Spanish equity mutual fund 

industry through the evolution of important trading errors. We define important trading 

errors as trading decisions with a significantly higher negative influence on fund 

performance with respect to other decisions both within a fund and across other funds. 

This chapter is based on the hypothesis that you learn when it hurts and thus, fund 

managers learn from errors, especially when these errors have severe negative 

consequences on fund performance. This chapter is motivated by the lack of research on 

learning process in portfolio management compared to research on this topic in corporate 

management. The latter could be explained by the more drastic consequences that a 

management error might have on a corporation while from the mutual fund’s perspective 

an error is less costly due to their higher diversification. However, the learning process in 

the mutual fund industry deserves research attention because the efficiency of this market 

has important social and economic implications.  

 Chapter 2 examines the correlation among portfolio holdings in the Spanish equity 

mutual fund industry and its implications on individual investors in terms of 

diversification and performance. In accordance with the literature, individual investors 

will concentrate their investment funds in a single fund family (e.g., fund management 

company) due to the economic and time costs. This tendency of investors motivates the 

interest in studying the similarity level among portfolios, particularly when mutual funds 

belong to the same family. In addition, this preference of concentrating fund investments 

in a single family is especially important in the Spanish mutual fund industry due to its 
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high concentration and dependence on banking and insurance groups. Consequently, we 

also study the characteristics of those fund families with a higher similarity level among 

their funds in Chapter 2. Finally, this chapter also examines the autonomy of fund 

managers in selecting stocks in a certain industry and its implications on an investor’s 

return. 

 Chapter 3 focuses on the level of divergence in fund managers’ trading decisions 

when controlling for the influence of the previous portfolio holdings. This chapter is 

motivated by the aim to link the research on the ability of managers to add value to the 

mutual fund’s management and the relationship among their trading decisions. In 

particular, we study to what extent the trading decisions of funds differ among them and 

how this divergence contributes to fund performance. Our hypothesis is that the distinct 

decisions of fund managers may be an important source of added value. 
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INTRODUCTION:  

THE SPANISH MUTUAL FUND INDUSTRY 
 

Collective investment has an important role in the financial system because it attracts 

investors’ savings to a portfolio managed by professional managers. Therefore, individual 

investors can invest in several stocks through these financial products that thus provides 

diversification advantages and reduces fees. 

 Over the last decades, collective investment has undergone extraordinary growth 

worldwide, especially in the mutual fund industry. According to the European Fund and 

Asset Management Association (EFAMA), total net assets of the European mutual fund 

industry at the end of June of 2020 had reached €17 trillion across 63,291 funds. The 

Spanish mutual fund industry was among the top 10 in that industry. 

 This introduction to the thesis provides a closer look at the evolution of the 

Spanish mutual fund industry both through the demand perspective (magnitudes related 

to the assets under management (AUM) and the number of shareholders) and the supply 

perspective (magnitudes related to the number of funds and the number of mutual fund 

families). 

 Figure I.1 shows the notable evolution of the Spanish mutual fund industry in 

terms of the assets under management (AUM). This industry amounted to €206,166 

million in December 1999; while in June 2020, this amount was approximately €55,000 

million higher at a total of €260,895 million. Despite the positive evolution observed, 

Figure I.1 also shows the strongly negative impact of the Global Financial Crisis (GFC) 

of 2008 and the European debt crisis of 2011 on the mutual fund industry and its 

subsequent recovery. The negative impact of both crises caused a decrease in AUM of 

49% from December 2007 to December 2012. The industry began to recover in 2013, and 
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by 2017 had achieved a similar level as before the GFC. The important pace of growth of 

the mutual fund industry over the past few years has been due in part to the low interest 

rates on banking deposits and the recovery of investors' confidence in professional 

investment advice. Nevertheless, the COVID-19 crisis has also caused a slight decrease 

in this industry. In particular, the AUM of mutual funds decreased by about 6% between 

December 2019 and June 2020. Therefore, the evolution of this industry provides 

evidence as to the important vulnerability of the demand in the mutual fund industry to 

the economic climate. 

 

Figure I. 1: AUM by Spanish mutual funds: December 1999-June 2020 

 (EUR million) 
 

 

Source: INVERCO 

 

 The number of shareholders reflects the great economic and social impact that the 

fund industry has as the savings of a large proportion of the Spanish population depend 

on it. Therefore, high efficiency in the management of mutual funds is of the great 

importance.  

 In terms of the number of shareholders, Figure I.2 presents a similar evolution to 

the AUM. However, the evolution of this magnitude also shows a decline of 

approximately 46% from December 2007 to December 2012. However, we observe an 
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increase of 2% between December 2019 and June 2020 in contrast to the slight decrease 

in the AUM. 

 

Figure I. 2: Number of shareholders in the Spanish mutual fund industry  

from December 1999 to June 2020 
 

 

 Source: INVERCO 

 

 The previous magnitudes reflect the evolution of the mutual fund industry from 

the demand perspective. The number of listed funds and the number of fund families 

provide evidence about the evolution of the industry’s supply. Figure I.3 presents the 

evolution of the number of funds over the last two decades. We observe an extraordinary 

growth in that number for funds domiciled in Spain from 1999 to 2009. However, the 

trend has been negative since then, which is related to the huge restructuring process of 

the Spanish financial system over the last decade. This process aimed to improve the 

efficiency of the market and has resulted in mutual fund mergers.  
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Figure I. 3: Number of mutual funds domiciled in Spain  

from December 1999 to June 2020 
 

 
 Source: INVERCO 

 

 Similarly, Figure I.4 also shows a negative trend in the number of fund families, 

although that number has started to grow slightly over the last few years.  

 

Figure I. 4: Number of Spanish mutual fund families  

from December 1999 to June 2020 

 Source: CNMV 

 

 Although the evolution and growth of the Spanish mutual fund industry are 

notable and the shareholders can select among a wide range of funds and families, this 

industry has a high degree of concentration that may distort the competition level and 

could have implications for individual investors in terms of the diversification and 
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efficiency of funds. Further, the five largest fund families managed approximately 62% 

of the total assets and 71% of the shareholders were invested in this industry in June of 

2020. Figures I.5, I.6, and I.7 show the market share of the five largest fund families in 

terms of the AUM, the number of funds managed, and the number of shareholders, 

respectively.  

 

Figure I. 5: The evolution of market share of the five largest fund families in terms of 

the AUM from December 2002 to June 2020 
 

 

 Source: CNMV 
 

Figure I. 6: The evolution of market share of the five largest fund families in terms of 

the number of funds from December 2002 to June 2020 
 

Source: CNMV 
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Figure I. 7: The evolution of market share of the five largest fund families in terms of 

the number of shareholders from December 2002 to June 2020 
 

 

Source: CNMV 

 

 In addition, the high concentration is even more dramatic when we consider the 

two largest fund families. They controlled approximately 34% of the total AUM in June 

of 2020. The magnitude of the concentration level shows that this industry is far from a 

perfect competition paradigm. Along this vein, Losada (2015) states that individual 

investors do not enjoy the perfect information about the funds offered in the market. 

Consequently, they face high search and switching costs for suppliers that then lead to 

investors focusing their fund investments on a single family. 

 Another important issue in the Spanish mutual fund industry is the scarce number 

of families that do not belong to financial groups. Although a slightly positive trend exists 

for independent fund families, Figure I.8 illustrates that the Spanish mutual fund industry 

is still characterised by a high dependence on the banking and insurance groups that may 

have implications for individual investors, and for the overall efficiency of the industry. 
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Figure I. 8: Relative importance of mutual fund families by group categories from 

December 1999 to June 2020 
 

 

Source: CNMV 
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CHAPTER 1: 

 

YOU LEARN WHEN IT HURTS: 

EVIDENCE IN THE MUTUAL FUND 

INDUSTRY 
 

 

-“Mistakes are the growing pains of wisdom.”-  

William Jordan 

 

 

Synopsis 

 

This chapter aims to fill the gap in the research on the learning process by 

mutual fund industry. The empirical design is focused on the ability of the 

Spanish equity mutual fund industry to learn from its important errors in 

important trading decisions. The choice of this industry is justified by both its 

relevance to the European mutual fund markets and some specific 

characteristics, such as its concentration and banking control that may affect the 

learning process. We use a model with dynamic panel data and find an overall 

significant decrease in the percentage of important trading errors over time that 

provides evidence of the global learning process by the industry. In addition, 

we find that a large number of fund families drives this evidence. Finally, in 

general terms, we show that the size of the fund family and its dependence on 

financial groups do not play significant roles in explaining the learning process 

of Spanish equity mutual funds.  
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1.1 Introduction 
 

The main objective of this chapter is to test the ability of the mutual fund industry to learn 

from its important trading errors. We define an important trading decision as a buy or sell 

decision for a stock k made by fund f in month t that simultaneously represents a high 

relative importance with respect to: 1) the total net assets of fund f in month t; 2) the other 

trading decisions made by fund f for other stocks in month t, and 3) the other trading 

decisions for the same stock k made by other funds in month t. This important trading 

decision on stock k could be an important trading error if it has a significantly negative 

effect on the subsequent performance of fund f. 

 The literature on corporate management has widely analysed the learning from 

errors (Finkelstein and Sanford, 2000; Tjosvold et al., 2004), while there is a lack of 

research regarding mutual fund management. One possible explanation is that an 

important error in corporate management may have critical consequences, such as the 

termination of the management company (Cardon et al., 2011). In contrast, the 

consequences of an important trading error in mutual funds may be less severe due to the 

diversification rules that regulators generally require, such as the current European Union 

Directive 2009/65/CE1 in the European mutual fund industry. However, this lack of 

research and the important social and economic implications of the better management of 

mutual funds motivate our interest in shedding light on the learning process in the mutual 

fund industry. 

 The findings of this study have several implications for the constituents of this 

industry. First, mutual fund managers have incentives to avoid making errors and to learn 

                                                           
1 Directive 2009/65/EC on the coordination of laws, regulations, and administrative provisions relating to 

the Undertakings for Collective Investment in Transferable Securities (UCITS). This Directive has been 

implemented in all member countries of the European Union. 
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from them because their positions, reputations, and salaries may depend on their 

performance records (Mason et al., 2016). Agarwal et al. (2009) also find that managerial 

incentives are associated with better performance. In the same line, Khorana (1996) finds 

an inverse relationship between the probability of managerial replacement and past fund 

performance. Second, our study is also of interest due to the relationship between past 

performance and future fund flows (Sirri and Tufano, 1998). Berk and Green (2004) and 

Dangl et al. (2008) find a consistent flow-performance relationship with high average 

levels of management skills. Thus, the learning process should improve both the 

performance records of and the subsequent flows into mutual funds. Third, supervisors 

could be interested in the evolution of important trading errors of mutual funds to guide 

their supervision with the aim of insuring investor protection and good practices in this 

market. Fourth, the learning process in the mutual fund industry could mean superior 

levels of financial efficiency and an improvement in the socioeconomic aspects of a 

country (King and Levine, 1993; Rousseau and Wachtel, 2002) because this industry has 

experienced a significant worldwide growth in recent years and consequently, it manages 

a significant amount of money. This growth is particularly evident in Europe where €15.6 

billion of net assets are managed by almost 60,000 mutual funds, making it the second 

biggest mutual fund industry in the world (European Fund and Asset Management 

Association, EFAMA, 2018).  

 This study differs from others as it analyses the learning process of professional 

management in contrast to the widely studied behaviour of retail investors in the mutual 

fund industry. We mainly contribute to the literature by analysing this learning process, 

and assuming that not all trading decisions have the same importance and, thus, do not 

have the same influence on the learning experience. We measure the learning process 

through the evolution of the percentage of important errors in important trading decisions 

https://www.sciencedirect.com/science/article/abs/pii/0304405X95008526#!
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over time. The underlying rationale is that mutual funds are more sensitive to the learning 

process when the performance consequences of their trading errors are severe. This 

approach is consistent with the hypothesis that learning is mainly motivated by past errors 

(Singh et al., 2007; Zhao, 2011). Therefore, we consider the learning process at the 

industry and family levels that is based on the hypothesis that the decision-making, and 

consequently learning abilities, are not only specific to individual managers. 

 We use the generalised method of moments (GMM) to control for any 

endogeneity bias to provide evidence that important trading errors follow a decreasing 

trend in overall terms; therefore, over time, management makes fewer decisions that have 

significantly negative effects on subsequent performance, which offers evidence of the 

learning process in the mutual fund industry. In addition, we find that this learning process 

is present in most of the fund families. 

 The rest of the chapter is structured as follows: Section 2 presents the background 

of our study. Section 3 presents the database. Section 4 describes the methodology. 

Section 5 provides the results of the empirical analysis. Finally, Section 6 concludes. 

 

1.2 Background 
 

Decision-making is one of the basic cognitive processes of human behaviour through 

which agents choose a preferred alternative based on the given criteria or strategies (Wang 

and Ruhe, 2007). This process is associated with other mental processes involved in the 

capturing, synthesising, and memorising of information as well as with other factors. 

Several studies provide evidence of factors which influence decision-making such as 

knowledge and experience (Calvet et al., 2009), uncertainty, environment, and context 

(McDevitt et al., 2007), ability to predict the future (Kahneman, 1994), difficulty of 

decisions (Tversky and Shafir, 1992), and the necessary time to make decisions (Ariely 
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and Zakay, 2001) as well as feelings, moods, and emotions (Lucey and Dowling, 2005), 

and the influence of past errors (Gervais and Odean, 2001; Zhao, 2011). The influence of 

these factors may depend on both the kind of decision and the context in which the 

decision-making takes place. 

 Focusing on mutual funds, the manager selects the assets to include in the portfolio 

of the mutual fund and the period that these assets are being held. Following Campbell 

(2006), Fischer and Gerhardt (2007) identify six different decisions: evaluation of initial 

situation, selection of risk level and time horizon, allocation of assets, selection of stocks, 

open and close positions; and tracking positions. This decision-making is difficult due to 

uncertainty, a dynamic environment, and other external factors (Wang and Lee, 2011). 

Portfolio holdings disclosed by mutual funds are the final output of this decision process, 

thereby providing useful information to measure performance (Daniel et al., 1997; 

Wermers, 2000; Kacperczyk et al., 2006; Wermers et al., 2012). 

 In the research about decision-making on portfolios, there are two main trends: 

rational and behavioural models. On the one hand, most classical models and theories are 

based mainly on the seminal assumptions of rational agents and efficient markets 

(Markowitz, 1952; Sharpe, 1964; Lintner, 1965; Fama, 1968). On the other hand, 

behavioural finance considers that agents systematically violate the axioms considered by 

the rational choice theory (De Bondt and Thaler, 1985; Tversky and Kahneman, 1986; 

Hirshleifer, 2001; Shiller, 2003). Koestner et al. (2017) find that numerous empirical 

studies have shown that these behavioural biases lead to costly errors (Goetzmann and 

Kumar, 2005; Bailey et al., 2011; Barber and Odean, 2013; Cuthbertson et al., 2016). 

Between both main trends, there are authors who suggest combining rational and efficient 

markets with behavioural models (Tseng, 2006; Subrahmanyam, 2008; Statman, 2014). 

In the same vain, Sargent (1993) defends a non-rigid rationality which is based on the 
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idea that agents affected by cognitive biases may make errors but that these wrong 

decisions are not persistent over time that thereby indicates the agents learn from their 

errors. Additionally, List (2003) finds that market experience plays a significant role in 

eliminating the behavioural effect on investment decisions. 

 Closely related to the practice of decision-making, learning is the process by 

which information becomes knowledge. This knowledge can incorporate techniques and 

progressively develops the capacity for judgment that is based on experience. This 

judgment leads to future decisions that help to improve efficiency (Schön and Argyris, 

1996; Stanovich and West, 2000). This statement is consistent with the learning-by-doing 

concept, which was initially studied by Arrow (1962). 

 Crossan et al. (1999) consider a multilevel learning perspective: individual, group, 

and organizational. The process of organizational learning has generated interest from 

practitioners and academics in the economic environment because they consider learning 

to be a strategic asset on which sustainable competitive advantages are based over time 

(March, 1991; Adams and Lamont, 2003; Hatch and Dyer, 2004). According to Levitt 

and March (1988), organizational learning is routine-based and history-dependent. 

Marsick and Watkins (2015) show that errors are a key tool for organizational learning. 

 Alongside this organizational learning approach in economics and business, 

academics have also shown interest in the mutual fund industry. Tindale and Winget 

(2019) argue that decision-making and its quality are often group-oriented rather than 

individual-oriented. Chen et al. (2004), Nanda et al. (2004) and Cici et al. (2018) also 

support the idea of the influence of the fund family on mutual funds’ management, and 

Brown and Wu (2016) find that membership in a fund family creates rich possibilities 

that are not available when fund managers manage alone. In the same vein, Sevcenko and 

Ethiraj (2018) argue that learning generates positive externalities at the fund company 
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level. Jones and Shanken (2005) also reject the learning independence across funds. These 

studies support the hypothesis that the decision-making, and consequently learning 

abilities, of mutual funds are not specific only to individual managers. 

 Regarding the measure of learning, there are several authors who have computed 

this process as the reduction of the cognitive biases identified in the behavioural finance 

literature (Dhar and Zhu, 2006; Campbell, 2006; Nicolosi et al., 2009; Seru et al., 2009; 

Koestner et al., 2017). These authors identify experience as the source of this dynamic 

process, and they measure it by both the number of years of experience and the number 

of operations accumulated in the financial markets. Focusing on the learning abilities of 

institutions rather than individuals, Ayoubi et al. (2017) consider that the knowledge flow 

within a team is a source of learning. Crossan and Bapuji (2003) defend that the traditional 

measurement of learning is related to the so-called curves of learning and experience in 

which the ability of institutions to learn is a function of time and call it internal learning. 

Similarly, Offerman and Sonnemans (1998) and Kempf et al. (2017) focus on the 

importance of the concept of learning-by-doing in professional investors and show that 

experience is associated with better management abilities.  

 Weick and Ashford (2001) find that learning from errors is an important activity 

for individuals, groups, and organizations within the theoretical framework of learning 

from experience (Agyris, 1993; Argote, 1999). Errors can be costly to organizations and 

involve negative consequences such as economic costs, damaged reputations, stress, and 

dissatisfaction (Zhao and Olivera, 2006). However, Zhao (2011) finds a positive 

relationship between a negative feeling caused by making errors and the motivation to 

learn from those errors. Marsick and Watkins (2015) also find that errors are a key tool 

for organizational learning. In the same vein, Reason (1999) argues that when we acquire 

insight and knowledge about our past errors, we can prevent future errors. Focusing on 
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portfolio holdings, Gervais and Odean (2001) also show that traders learn about their own 

abilities that they infer from their success and failures by observing the consequences of 

their actions. 

 

1.3 Data 

 

This chapter examines whether the Spanish equity mutual fund industry learns from its 

trading errors between January 2000 and March 2014. Mutual funds have grown and been 

consolidated into the collective investment industry of Europe over the last twenty years. 

We focus on the Spanish fund industry because it represents a unique setting for our 

research objectives. First, Spain is one of the most important Euro mutual fund industries. 

In fact, the Spanish mutual fund industry is ranked 5th in the Euro area in terms of number 

of registered mutual funds (EFAMA, 2018), so the economic implications of our research 

are important. Second, the high concentration in the Spanish mutual fund market, where 

the top 10 fund management companies (fund families) manage more than 75% of the 

total fund assets (Inverco, 2018), allows an appropriate identification of the role of the 

assorted characteristics of the competitors in this industry in the learning process. 

According to Cambon and Losada (2014), the strong degree of market concentration and 

the model of universal banking are distinguishing characteristics of the Spanish mutual 

fund industry. Ferreira and Ramos (2009) study the mutual fund industry concentration 

in different countries and find that both the market share of the ten largest fund families 

and the Herfindahl-Hirschman Index are significantly higher in the Spanish market than 

in other important mutual fund markets. Third, the Spanish mutual fund industry is a more 

recent industry than the U.S. industry or other important European markets, such as 

France, Germany and the U.K. The great boom of Spanish mutual funds occurred during 

the 1990s. Therefore, our sample period coincides with the maturity stage of the Spanish 
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mutual fund industry, avoiding possible effects of expansion and growth stages that may 

affect the learning process (Penrose, 1959; Autio et al., 2000). 

 Our data includes 292 equity mutual funds registered in Spain which are managed 

by 101 fund families. Specifically, the sample consists of 145 Euro domestic equity 

mutual funds and 147 Euro non-domestic equity mutual funds2 which are managed by 83 

and 77 fund families, respectively. We include both surviving and terminated mutual 

funds from January 2000 to March 2014; thus, the fund sample of our study is free of 

survivorship bias. 

 Portfolio holdings of the mutual funds included in our sample have been obtained 

from the Spanish Securities and Exchange Commission (CNMV) and Morningstar. The 

matching of the two databases3 allows us to control for all quarterly portfolio holdings 

and more than the 80% of the monthly portfolio holdings. We analyse 20,572 monthly 

portfolio holdings: 12,176 portfolio holdings of Euro domestic equity mutual funds and 

8,296 portfolio holdings of Euro non-domestic equity mutual funds. Elton et al. (2010) 

provides evidence that monthly holdings capture roundtrip trades missed by semi-annual 

(34.2%) and quarterly data (18.5%) and permit a more precise estimation of the timing of 

trades. The comparison between two consecutive monthly portfolio holdings of a mutual 

                                                           
2 The Spanish Securities and Exchange Commission (CNMV) establishes a classification of mutual funds 

according to the types of assets included in the portfolios. Euro equity mutual funds must invest more than 

75% of their portfolios in equities and at least 60% of the total equity exposure must be issued by companies 

in the euro area. However, within this category there are different investment policies (funds focused on 

Spanish stocks and funds focused on Euro stocks), thus, we split the Euro equity category into two 

subsamples according to their investing objective. We label Euro domestic equity funds a subsample of 

funds that self-report their investing objective in the Spanish market and the rest of the funds in the Euro 

equity category are labelled as Euro non-domestic equity funds. 
3 The mutual fund holdings used in this study rely on the information on monthly portfolio holdings from 

the CNMV for each fund from December 1999 to December 2006. This information was provided for 

research purposes. However, the CNMV only provided us with quarterly portfolio holdings from March 

2007 onwards. Therefore, we first matched the quarterly information provided by the CNMV with the 

information provided by Morningstar and, then, we included monthly information from Morningstar when 

it was available.  
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fund together with the stock information provided by Datastream4 gives the number of 

shares of each stock which are bought or sold by the mutual fund during that period. 

 

Table 1. 1 – Summary Statistics 

 

This table shows the summary statistics of our mutual fund sample. Panel A presents the average statistics 

for Euro domestic equity mutual funds. Panel B presents the same information for Euro non-domestic equity 

mutual funds. For simplicity, we split our sample period into three subperiods: the pre-crisis period (2000–

2007), the crisis period (2008–2011), and the post-crisis period (2012–2014). No. of Funds is the number 

of funds in our sample. No. of Families is the number of fund families in our sample. Fund_size is the 

monthly total net assets (TNA) of a fund in million euros. Fund_age is the age of a fund in years, we obtain 

the fund’s age from its inception date. Fund_No. of stocks is the number of distinct stocks in the monthly 

portfolio holdings. Fund_turnover is the fund’s annual turnover ratio. The study period ends in March 2014. 

 

 

 Table 1.1 shows the summary statistics of our fund sample. We observe that both 

the total number of funds and the total number of fund families have a downward trend. 

Mergers and acquisitions of funds and families in the Spanish fund industry mainly 

explain this result. Additionally, Table 1.1 shows that the average fund size decreased 

                                                           
4 Datastream provides stock information about the prices considering the main capital operations. 

Panel A: Euro domestic equity mutual funds  Panel B: Euro non-domestic equity mutual funds 

 2000-07 2008-11 2012-14*   2000-07  2008-11 2012-14* 

#Funds 144 106 74  #Funds 124 91 56 

#Families 79 58 49  #Families 71 51 36 

Fund_size     Fund_size    

Mean 69.67 41.72 67.93  Mean 65.08 23.95 43.49 

Q1 100.32 45.03 70.16  Q1 75.48 24.15 52.12 

Q5 7.46 6,38 7.92  Q5 5.05 3.47 5.37 

Fund_age     Fund_age    

Mean 8 12 16  Mean 6 10 12 

Q1 11 17 20  Q1 9 13 16 

Q5 3 7 12  Q5 2 5 5 

  Fund_#stocks    Fund_#stocks    

Mean 43 40 38  Mean 60 50 50 

Q1 52 45 43  Q1 71 60 62 

Q5 33 31 29  Q5 48 39 40 

Fund_turnover     Fund_turnover    

Mean 41% 40% 41%  Mean 55% 50% 43% 

Q1 61% 60% 55%  Q1 80% 85% 71% 

Q5 19% 17% 17%  Q5 28% 18% 11% 
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during the crisis period from 2008–2011, but it recovered afterwards. We can also see 

that the average size is bigger in Euro domestic than in Euro non-domestic equity mutual 

funds. This size may be because retail Spanish investors feel more confident investing 

their money in their home market that thereby may highlight a potential home bias. 

Further, the average age is lower in Euro non-domestic equity mutual funds because this 

investment category appears later in the Spanish market than the Euro domestic equity 

category. 

 

1.4 Methodology 

 

We analyse the learning process in the mutual fund industry through the evolution of 

important trading decisions that have an important negative effect on the fund 

performance. We first determine the trading decisions for each fund in each month. From 

these, we isolate the important buying and selling decisions for funds during the whole 

sample period by applying three independent filters, each one with a deep-logic, as we 

will describe below. Second, we identify the most important errors, which are important 

decisions with a significantly negative economic impact on the subsequent performance 

of funds and, consequently, with a potentially significant influence on the learning 

process. We consider that the trading errors of the management could be a source of 

learning in the fund industry; however, we also think that the influence is not the same 

for all errors. Third, we determine the percentage of important errors over the total 

number of trading decisions in each year by each mutual fund. Fourth, we propose two 

models with dynamic panel data to test the evolution of the percentage of important 

trading errors over time as a measure of the learning process in our sample.  



46 

 

1.4.1 Important buys and sells 

There are two approaches to capture mutual fund trading: the change in the portfolio 

weight of each stock in each mutual fund (Grinblatt and Titman, 1993) and the change in 

the number of shares (Alexander et al., 2007). We use the second approach to determine 

fund trades because it is more accurate and is not biased by passive changes in portfolio 

weights due to price changes during the trading period (Jiang et al., 2007). 

 For each stock s and each month t, we measure the change in the number of shares 

of each stock s held by mutual fund i from the end of month t-1 to the end of month t.  

If (N
s,t

i
-Ns,t-1

i ) > 0 then  Buying decision       (1.1) 

If (N
s,t

i
-Ns,t-1

i ) < 0 then  Selling decision       (1.2) 

 Once we know the number of shares that funds have bought and sold, we calculate 

the amount of each trading decision by multiplying the change in the number of shares5 

by the average market price of stock s in month t (Alexander et al., 2007). 

 If (Ns,t 
i - Ns,t-1

i ) > 0 then Buy
s,t

i = (Ns,t 
i  - Ns,t-1

i ) . Ps,t
̅̅ ̅̅       (1.3) 

 If (Ns,t 
i - Ns,t-1

i ) < 0 then Sells,t
i = − (Ns,t-1  

i - Ns,t
i ) . Ps,t

̅̅ ̅̅       (1.4) 

where Buy
s,t

i  and  Sells,t
i

 represent the euro value of buying (positive trading amount) and 

selling (negative trading amount) decisions in each stock s of fund i in month t.  Ps,t
̅̅ ̅̅  is the 

average market price of stock s for month t.  

 Focusing on the decisions that we consider errors, Singh et al. (2007) identify four 

aspects that errors affect: economic, social, psychological, and physiological. Following 

these authors, our underlying assumption is that mutual fund managers could pay more 

attention to the cause of trading errors and thus, learn from them when the negative 

economic influence of these errors on performance is very important because their jobs, 

                                                           
5 We consider corporate actions, such as stock splits, to obtain the number of shares. 
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reputations, and salaries may depend on their performance records (Agarwal et al., 2009; 

Kempf et al., 2009). Further, the economic effect of a trading decision depends on both 

its relative importance and its subsequent return. For this reason, we first identify the 

important trading decisions with three independent filters based on their relative 

importance and then, we isolate the important decisions with significantly negative 

subsequent returns. 

 We calculate the relative importance of each trading decision as the weight of the 

amount of decision on the fund size measured by the total net assets.  

 Buy-Weight
𝑠,𝑡
𝑖

 = 
Buys,t

i

TNAt
i     or    Sell-Weight

𝑠,𝑡
𝑖

 = 
Sells,t

i

TNAt
i         (1.5) 

 Once we know the relative importance of each trading decision, we identify the 

important buying and selling decisions of each fund with three independent filters. The 

three filters capture these premises, which we consider to be necessary to identify the 

important trading decisions for a fund: 1) a relatively high importance with respect to the 

fund’s TNA, 2) a relatively significantly high importance with respect to other trading 

decisions made by the fund, and 3) a relatively significantly high importance with respect 

to other trading decisions of the other funds in the same stock. In sum, we consider that a 

trading decision is important when it simultaneously fulfils the three independent filters.  

 With the first filter, we assume that a trading decision in stock s by mutual fund i 

in the month t is important when it represents a high percentage on the fund TNA in this 

month. In this way, we control for the potential influence that the trading decision has in 

terms of performance and risk, considering that this influence is more significant for 

decisions that represent a high percentage on the fund TNA.  
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 Therefore, we orthogonalise the distribution of the trading decision weights for 

each fund to control for the potential time bias of the month analysed. We select the 10%6 

of the trading decision with the higher weight for each fund during its existence in the 

sample. Distinguishing between the buying and the selling decisions, the top (or the 

bottom) 5% tail refers to the most important buying decisions (or the most important 

selling decisions) according to the first filter: 

 If  Buy-Weight
𝑠,𝑡
𝑖

  ≥  95
th

 percentile Weight
i
          

then  Buy
s,t

i  ϵ Important buying decisions
i
 in the first filter         (1.6) 

 If  Sell-Weight
𝑠,𝑡
𝑖

 ≤   5th percentile Weight
i
 

then  Sells,t
i  ϵ Important selling decisions

i
 in the first filter                     (1.7) 

where 95
th

 percentile Weight
i
 and 5th percentile Weight

i
 are, respectively, the above and 

below values which are the highest and lowest 5% of the values in the distribution of the 

trading decision weights of fund i during its existence in the sample. 

 For the second filter, we assume that a trading decision is important when its 

relative weight is significantly higher than the weight of other trading decisions by the 

same mutual fund in other stocks in the same month. This filter ensures that the trading 

decisions that are considered important have a significantly higher influence in terms of 

performance and risk than the rest of the decisions made by fund i. 

 We first compare the relative importance of each trading decision in stock s by 

mutual fund i in month t with the average relative importance of the rest of the trading 

decisions in other stocks by fund i in month t that distinguishes between buying and 

selling.  

                                                           
6 To avoid any potential bias and to offer robust results, we have considered different cutoffs (one lower, 

5% and another higher, 20%) and we have followed the same steps in the three filters using these alternative 

cutoffs. 
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Secondly, following the orthogonalisation in the first filter, we select the 5% of 

the buying decisions and the 5% of the selling decisions with the higher weight difference 

for each fund during its existence after controlling for the potential bias of the month 

analysed. Therefore, according to the second filter, we identify the important trading 

decisions as follows: 

 If Buy-Weight
𝑠,𝑡
𝑖

 –  Buy-Weight
p-s,t

i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ≥ 95
th

 percentile Diff-Weight
i
     (1.8) 

  then Buy
s,t

i  ϵ Important buying decisions
i
 in the second filter 

 If Sell-Weightl
s,t

i
 +  Sell-Weightl

p-s,t

i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ≤ 5th percentile Diff-Weight
i
     (1.9) 

  then Sells,t
i  ϵ Important selling decisions

i
 in the second filter    

where Buy-Weight
p-s,t

i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and Sell-Weightl
p-s,t

i̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are, respectively, the average weight of 

buying and selling decisions in the stock set p held by fund i that excludes stock s in the 

month t. 95
th

 percentile Diff-Weight
i
 and  5th percentile Diff-Weight

i
 are, respectively, 

the above and below values which are the highest and lowest 5% of the values in the 

distribution of the weight differences for fund i during its existence in the sample. 

 For the third filter, we consider that a trading decision taken by fund i in a given 

stock and month is important when its relative importance is higher than the relative 

importance of the trading decisions taken by the rest of funds in the same stock and 

month.7 This filter identifies the trading decision in a given stock whose potential 

influence on the performance of fund i is significantly higher than on the performance of 

the rest of the funds. 

 First, we compare the relative importance of a trading decision by mutual fund i 

in stock s in month t with the average relative importance of the trading decisions of the 

                                                           
7 In buys, we obtain the average after considering all the funds that are included in our sample in each 

period t but, in sells, we only consider the funds that hold the stock in the previous month, t-1, because any 

fund can buy a stock but only the funds that hold a stock can sell it. 
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rest of the funds in this stock s and in month t. Once these excess weights have been 

obtained for each mutual fund, we also select the 5% of the buying decisions and the 5% 

of the selling decisions with this higher excess weight as in the previous filters. Therefore, 

according the third filter, we identify the important trading decision as follows: 

 If Buy-Weight
𝑠,𝑡 
𝑖

–  Buy-Weight
s,t

n-i ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ≥  95
th

 percentile Diff-Weight,
i,n-i

  

  then Buy
s,t

i  ϵ Important buying decisions
i
 in the third filter       (1.10) 

 If  Sell-Weightl
s,t

i
 +  Sell-Weight

s,t

n-i ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≤  5th percentile Diff-Weight,
i,n-i

  

  then  Sells,t
i  ϵ Important selling decisions

i
 in the third filter      (1.11) 

where Buy-Weight
s,t

n-i  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and Sell-Weight
s,t

n-i ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are, respectively, the average weight of the 

buying and selling decisions by the rest of the funds in our sample that excludes fund i in 

stock s and month t. 95
th

 percentile Diff-Weight
i,n-i

  and 5th percentile Diff-Weight
i,n-i

 are, 

respectively, the above and below values which are the highest and lowest 5% of the 

values in the distribution of the weight differences of fund i with respect to the rest of the 

funds n-i during its existence in the sample. 

 Finally, we consider an example of overcoming the three filters simultaneously. 

First, the amount of the buying decision represents 18.64% of the TNA of fund i in March 

2000. This decision fulfils the first filter after the orthogonalisation since this is among 

the 5% of the buying decisions with the higher weigh for fund i during its existence in the 

sample.  Second, the average weight of the other buying decisions in other stocks different 

from the stock s of fund i in March 2000 represents 0.60% of its TNA. Thus, the weight 

difference with stock s is significantly higher and it fulfils the second filter after the 

orthogonalisation. Third, the average weight of the buying decisions in stock s by the 

other mutual funds in March 2000 represents 0.11% of their TNA. Thus, the difference 
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in fund i with respect to the other funds is also significantly higher and fulfils the third 

filter after the orthogonalisation. 

 

Table 1. 2 – Stock trades 

 

This table shows the yearly average figures for the stock trading in our mutual fund sample. Panel A 

presents the trading data about Euro domestic equity mutual funds in our sample. Panel B presents the same 

information about Euro non-domestic equity mutual funds in our sample. For simplicity, we split our 

sample period into three subperiods: the pre-crisis period (2000–2007), the crisis period (2008–2011), and 

the post-crisis period (2012–2014). The study period ends in March 2014. 

 

Panel A: Euro domestic equity mutual funds    

 2000-2007 2008-2011 2012-2014* 

Average no. buys 14,728 11,896 8,635 

Average no. buys by fund 141 131 137 

Average % important buys 7.86% 5.52% 5.72% 

Average no. sells 14,106 13,536 6,459 

Average no. sells by fund 135 147 100 

Average % important sells 7.32% 6.69% 7.20% 

    

Panel B: Euro non-domestic equity mutual funds    

 2000-2007 2008-2011 2012-2014* 

Average no. buys 14,086 11,006 7,877 

Average no. buys by fund 198 155 176 

Average % important buys 7.26% 4.86% 6.25% 

Average no. sells 15,479 14,454 6,146 

Average no. sells by fund 218 201 132 

Average % important sells 5.44% 4.47% 5.05% 

 

 Table 1.2 presents the average number of buys and sells and the average number 

of important buying and selling decisions of our sample. It shows a consistent decrease 

over time of the number of buys and sells in both Euro domestic and Euro non-domestic 

equity mutual funds. This evidence may be related to the decline in the turnover ratio of 

our sample (see Table 1.1). However, Table 1.2 shows that the percentage of important 

buys and sells that have fulfilled our three independent filters remain highly stable, 

although they are slightly lower during the crisis period.  
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1.4.2 Important errors in important trading decisions 

In the previous sub-section, we selected the most important trading decisions for the 

sample period of each mutual fund. The objective of the next step is to detect which of 

these important decisions are important errors. We assume that an important error comes 

from an important decision that has a hugely negative economic effect on the mutual 

fund’s performance. This identification is based on the hypothesis that you learn when 

something hurts (Singh et al., 2007).  

 First, we identify trading errors as important buys (sells) of stocks whose 

performance is negative (positive). Second, we obtain the economic effect of each 

important error by mutual fund i in month t for stock s by multiplying its future 

performance by its portfolio weight. To demonstrate that our results are consistent 

regardless of the time horizon that we use to compute the subsequent effect of the errors, 

we evaluate the performance of any stock s considering Jensen’s alpha using rolling 

windows of 60, 120, and 240 daily data. The objective is to observe whether the results 

are similar to the errors in the very short term (3-month alpha) and in longer terms (6-

month and 12-month alphas).8 

 Buy economic impact
𝑠,𝑡
𝑖  =  Buy-Weight

𝑠,𝑡
𝑖

  . αs,t       (1.12) 

 Sell economic impact
𝑠,𝑡
𝑖

 =  Sell-Weightl
s,t

i
  . αs,t      (1.13) 

where αs,t is the Jensen's alpha of the stock s in the month t. 

 Third, we identify both the quintiles of important buys and sells with the most 

negative influence on the future fund performance by considering all funds across the 

sample period. Fourth, we compute the yearly percentage of important errors of each 

                                                           
8 To obtain Jensen's alpha (1968), we use the Ibex 35 total return index and the Euro Stoxx-50 total return 

index as the benchmarks in Euro domestic and in Euro non-domestic equity mutual funds, respectively. We 

also use the daily return of one-day repos of Spanish Treasury bills as the proxy for the risk-free return.  
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mutual fund by dividing the number of important errors obtained each year by the total 

number of mutual fund trades that year for each of the three time horizons used to compute 

the subsequent effect of the errors. We obtain the percentage of important errors to avoid 

potential biases in the number of wrong decisions due to a decreasing trend in the number 

of trades per fund over time (Table 1.2). Appendix 1.1 has the graphs that show the 

evolution of the percentage of important errors over time. 

 

1.4.3 Learning process in the mutual fund industry 

To measure the ability of the mutual funds to learn from their important trading errors, 

we study the evolution of the percentage of these important errors over time. Our null 

hypothesis is that the percentage of important errors is not significantly different over 

time. Hence, rejecting this null hypothesis provides evidence of a trend over time. 

Additionally, if this trend is negative, it means the learning process is currently in the 

maturity stage of the Spanish equity mutual funds. 

 We use a model with dynamic panel data to test the relationship between the 

percentage of important errors and the time variable of the mutual funds. We apply this 

model to errors whose subsequent effect is calculated at 3 months (important errors with 

3-month alpha), 6 months (important errors with 6-month alpha) and 12 months 

(important errors with 12-month alpha). The literature recommends this method for a 

database with a large number of individuals, mutual funds in our study, and a small 

number of time periods (Roodman, 2006). For this reason, we have computed the 

percentage of important errors by fund and year with the monthly data. Our choice of 

panel data facilitates the combination of time series, cross-sections, and unbalanced data 

(Wooldridge, 2010). In addition, the dynamic panel data model facilitates the 

incorporation of an endogenous structure through a one-year lagged variable that captures 

the unobserved time invariant effects due to individual patterns. Following the 



54 

 

econometric research (e.g., Roodman, 2009), we use lags of the dependent variable in our 

model as an explanatory variable to avoid an endogenous relationship that could lead to 

misspecifications.We apply the dynamic model of generalised method of moments 

(GMM)9 of Arellano and Bower (1995) and Blundell and Bond (1998) as follows: 10 

 %Important errorsi,t = i,t + γi,t%Important errorsi,t-1 + 1Timet + 

    + 2Sizei,t + 3Agei,t + 4No. of stocksi,t + 

    + 5Turnoveri,t + 6Market returnt + εi,t    (1.14) 

 for t = 1, ..., 15 years  

 for i = 1, ..., 145 Euro domestic equity mutual funds  

 for i = 1, ..., 147 Euro non-domestic equity mutual funds  

where %Important errorsi,t  is the percentage of important errors for fund i and year t. i,t 

is the constant variable. γi,t is the coefficient of the variable % Important errorsi,t-1 (1-year 

lag of percentage of important errors for fund i). Timet ranges from 1 in the first year of 

our sample period to 15 in the last year. The sample period runs from 2000 to 2014. Sizei,t 

is the TNA of mutual fund i divided by the average TNA of all funds included in our 

sample in year t. Agei,t is the age of mutual fund i divided by the average age of all funds 

included in our sample in year t. No. of stocksi,t is the number of different stocks held by 

mutual fund i in year t. Turnoveri,t is the turnover ratio of mutual fund i in year t. Market 

returnt is the return of the benchmark. We use Ibex-35 as the benchmark for Euro 

domestic equity mutual funds and EuroStoxx-50 for Euro non-domestic equity mutual 

funds. εi,t is the residual term of the model. 

                                                           
9 Following Mileva (2007) and Roodman (2009), we check that we can apply the dynamic model to our 

data with the tests of Sargan (1958) and Arellano and Bond (1991). 
10 We run Equation 1.14 considering mutual funds as the decision-making units rather than mutual fund 

managers. Following Tindale and Winget (2019), decision-making and its quality are not individual affairs. 

Furthermore, we identify the manager replacements in our mutual fund sample and then, we apply the Chow 

test to study the effect of a manager replacement on the percentage of important errors in our sample. The 

Chow test provides evidence that 87% of the managers’ replacements in our sample do not represent a 

significant structural change in the percentage of important errors. 
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 On the one hand, the lagged dependent variable (Important errorsi,t-1) can control 

for the individual unobserved skills of each fund that are persistent over time and assures 

the better specification of our model. On the other hand, the coefficient (β1) associated 

with Timet captures the evolution of the percentage of important errors in important 

trading decisions over time. Therefore, a negative value of this coefficient could provide 

evidence of the learning process given that the funds in our comprehensive sample would 

overall have fewer errors during the sample period. Additionally, to verify the robustness 

of our results, we add five control variables about fund characteristics and the market 

environment which may influence the percentage of important errors: the size, age, 

number of stocks, turnover ratio, and the market return of the funds and their portfolios.   

 The size (Sizei,t) of each mutual fund is computed from its TNA. We carry out a 

cross-sectional normalisation for a better identification of larger funds. We divide the size 

of each mutual fund by the average size of all the funds included in our sample in each 

year. This normalisation is because the average size of each mutual fund and, thus, the 

average size of all the mutual funds can vary over time. Additionally, we argue that the 

probability of detecting important decisions and, as a consequence, important errors, is 

greater in smaller funds. Therefore, fund size may have an important influence on the 

efficiency of the families of mutual funds (Pollet and Wilson, 2008; Pástor et al., 2015). 

Further, even though there is a lack of research about the influence of fund size, we 

propose that it may influence learning of mutual funds at the organizational level. 

 We compute the age (Agei,t) of each mutual fund from its inception date. Then, we 

carry out a cross-sectional normalisation to identify younger/older funds with respect to 

the average age of the industry in each year. We divide the age of each mutual fund by 

the average age of all the funds included in our sample in each year. Therefore, we avoid 

the correlation problem with the time variable in Equation 1.14. We argue that fund age 
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may affect investment style and, thus, the trading decisions of managers. According to 

Ferreira et al. (2013), the effect of fund age on the efficiency of a trading decision can run 

in both directions. Younger mutual funds may be more agile and dedicated to obtaining 

better performance to survive but youth may have a disadvantage due to the lack of 

experience during the start-up period and the higher costs. 

 We define the diversification level (No. of stocksi,t) from the number of stocks 

held in the portfolio. Our hypothesis is that the diversification level may have an influence 

on the efficiency of trading decisions and the probability of making important errors. We 

consider that the higher the level of diversification of the fund, the lower the relative 

importance of each trading decision and, thus, the lower the probability of important 

errors. Pollet and Wilson (2008) show a positive relation between portfolio diversification 

and fund efficiency. However, the literature finds that the effect of diversification on the 

efficiency of trading decisions may also run in the opposite direction. Droms and Walker 

(1995) argue that more diversified portfolios are related to lower risk and lower returns.  

 We include the variable turnover ratio (Turnoveri,t) because we consider that it 

can influence the probability of making important trading errors and the ability of mutual 

fund managers to learn. The underlying assumption is that the higher the turnover ratio, 

the greater the probability of managers making errors. We also propose that this ratio may 

influence the ability of fund managers to learn from their errors due to their higher levels 

of trading activity. Grinblatt and Titman (1994) argue that turnover is significantly and 

positively related to managers’ skills to earn extra returns. However, Barber and Odean 

(2000) present evidence that excessive trading leads to poor investment performance, 

while a low portfolio turnover achieves returns close to the benchmark.  

 Finally, we include market return (Market Returnt) as a control variable in the 

model because the probability of an important error may not be the same in bull markets 
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as in bear markets. Indeed, Kacperczyk et al. (2014) and Alda (2018) argue that the skills 

of managers depend on economic conditions and find more evidence of stock-picking 

ability in managers during bull markets. 

 In addition to this learning model of the mutual fund industry as a whole, we also 

propose the analysis of the learning process in each mutual fund family. However, we 

cannot apply our previous model individually to many of our companies due to the low 

ratio between the number of observations and the number of coefficients to estimate in 

the model. As an alternative, we add a set of dummy variables for each company.  

 The dummy variable (Familyi,t) is one when the mutual fund is managed by the 

analysed fund family, and zero otherwise, and it interacts with the time variable (Timet). 

We use this interaction (Familyi,txTimet) to compare the learning level of each mutual 

fund family with respect to the global learning level of the mutual fund industry over 

time. Thus, we must run the following Equation 1.15 for each fund family. 

  We apply the dynamic model of generalised method of moments (GMM) of 

Arellano and Bower (1995) and Blundell and Bond (1998) as follows: 

 % Important errorsi,t = i,t + γi,t %Important errorsi,t-1 +  

    + 1Timet + 2Sizei,t + 3Agei,t +  

    + 4No. of stocksi,t + 5Turnoveri,t +  

    + 6Market returnt + 7(Familyi,t x Timet) +  εi,t    (1.15) 

 for t = 1, ..., 15 years  

 for i = 1, ..., 145 Euro domestic equity mutual funds  

 for i = 1, ..., 147 Euro non-domestic equity mutual funds  

where % Important errorsi,t  is the percentage of important errors for fund i and year t. 

i,t is the constant variable. γi,t is the coefficient of the variable % Important errorsi,t-1               

(1-year lag of percentage of important errors for fund i). Timet ranges from 1 in the first 
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year of our sample period to 15 in the last year. The sample period runs from 2000 to 

2014. Sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included 

in our sample in year t. Agei,t is the age of mutual fund i divided by the average age of all 

funds included in our sample in year t. No. of stocksi,t is the number of different stocks 

held by mutual fund i in year t. Turnoveri,t is the turnover ratio of mutual fund i in year t. 

Market returnt is the return of the benchmark. We use the Ibex-35 as the benchmark for 

Euro domestic equity mutual funds and EuroStoxx-50 as that for Euro non-domestic 

equity mutual funds. Familyi,t has a value equal to one when the mutual fund is managed 

by the analysed family in year t, and zero otherwise. εi,t is the residual term of the model. 

 

1.5 Results 

 

1.5.1 Learning in the mutual fund industry 

We use the GMM dynamic model of Arellano and Bower (1995) and Blundell and Bond 

(1998) to study the learning process in the Spanish equity mutual fund industry. Tables 

1.3 and 1.4 present the results of Equation 1.14 for Euro domestic and non-domestic 

equity mutual funds, respectively. Both tables show a negative and significant 

relationship between the time variable (Timet) which captures the trend in our model and 

the percentage of important trading errors. Hence, we reject the null hypothesis that the 

percentage of important errors is not significantly different over time, that is, the 

percentage of important trading errors in the Spanish equity mutual fund industry 

decreases significantly over time.11 These important errors are a consequence of the 

                                                           
11 We apply alternative specifications in Equation 1.14 for robustness proposes. First, we perform Equation 

1.14 on a quarterly basis and we use also the Fixed Effect (FE) model on monthly, quarterly and annual 

frequency, and we obtain a significant negative relationship between the percentage of important errors and 

time (see Appendix 1.2 for more details). Second, we add a quadratic term of the time variable, and the 

main results remain similar to our original model specification (see Appendix 1.3 for more details). Third, 

we include the market volatility as an additional control variable, also obtaining consistent results (see 

Appendix 1.4 for more details). 
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important buys and sells that fulfil the three independent filters explained in the 

methodology section.12 Additionally, these important errors have a significant and 

negative economic influence on fund performance. Therefore, our findings support the 

hypothesis that you learn when something hurts. This evidence is consistent when we 

compute the subsequent effect of important errors at a short horizon (Jensen's alpha at 3 

months) and when we consider longer horizons (Jensen's alpha at 6 and 12 months).13  

 We consider that the identification of this decreasing trend of the percentage of 

important errors as a learning process that shows the overall ability of the mutual fund 

industry to learn from its past trading errors. The results of our chapter suggest that behind 

the errors there is a source of learning that leads mutual funds to make fewer errors over 

time (Reason, 1999; Marsick and Watkins, 2015). Past errors are a key tool for learning 

because when we acquire insight and knowledge about our past errors, we can prevent 

future errors. In the same line, Gervais and Odean (2001) support that traders learn from 

their failures, observing the consequences of their actions. The findings of this chapter 

also support the hypothesis that the more negative the impact of errors, the greater the 

motivation to learn and to avoid making the same errors in the future. Zhao (2011) finds 

a positive relationship between the negative feelings caused from making errors and the 

motivation to learn from them. 

                                                           
12 We also apply Equation 1.14 to errors from non-important decisions. The results are different from the 

conclusions drawn from Tables 1.3 and Table 1.4. That is, time does not influence the percentage of trading 

errors, thereby rejecting a significant learning evidence from non-important decisions. 
13 The results shown in Table 1.3 and Table 1.4 have been obtained considering the quintiles of important 

buys and sells with the most negative influence on fund performance for all the funds across our sample 

period. We have also obtained similar findings for quartiles and deciles, thereby providing even more 

robustness to this empirical evidence (see Appendix 1.5 for more details). 
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Table 1. 3 – Learning results in Euro domestic equity mutual funds 

 

This table presents the results of Equation 1.14 for Euro domestic equity mutual funds from January 2000 to March 2014. The learning results are divided into buys and sells 

after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha, and 12-month-alpha. The dependent variable 

%Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-year 

lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1  in the first year of our sample period to 15 in the last year; Sizei,t is the TNA of 

mutual fund i divided by the average TNA of all funds included in our sample in year t; Agei,t is the normalised age of mutual fund i given that we divided the age of each fund 

by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; No. stocksi,t is the number of different stocks held by mutual 

fund i in year t; Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-35 total return in year t. We use the Ibex-35 as the benchmark for Euro 

domestic equity mutual funds. *** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0175***  0.0082***  0.0094***   0.0209***  0.0256***  0.0103*** 

% Important errorst-1  0.1060***  0.0823***  0.0799*** 
 

 0.2591***  0.2042***  0.1086*** 

Time -0.0004** -0.0002*** -0.0005***  -0.0004* -0.0006** -0.0003*** 

Fund_size -0.0015* -0.0012*** -0.0013**   0.0008  0.0013 -0.0006 

Fund_age -0.0030  0.0011  0.0027   0.0019 -0.0035 -0.0009 

Fund_#stocks -0.0003*** -0.0002*** -0.0003***  -0.0005*** -0.0005*** -0.0002*** 

Fund_Turnover 0.0197***  0.0199***  0.0274***   0.0214***  0.0137***  0.0071*** 

Market return -0.0060*** -0.0074*** -0.0055***  -0.0089*** -0.0035 -0.0013*** 

Wald Chi-Squared Test   193.85***  114.41***  445.37***   348.10***  106.59***  113.48*** 

Sargan Test            94.50  95.24  92.48   92.39  88.56  88.32 

Autocorrelation (1) -2.42** -2.31** -2.36**  -4.32*** -4.87*** -3.45*** 

Autocorrelation (2)  0.26  0.96  0.93   1.08  0.46 -1.27 

No. observations  1,081  1,049  966   1,234  1,216  1,247 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  



61 

 

Table 1. 4 – Learning results in Euro non-domestic equity mutual funds 

 

This table presents the results of Equation 1.14 for Euro non-domestic equity mutual funds from January 2000 to March 2014. The learning results are divided into buys and 

sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha, and 12-month-alpha.  The dependent variable 

%Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-year 

lag of the dependent variable regardless of the time horizon computed;  % Important errorsi,t-1 is the 1-year lag of the dependent variable; Timet ranges from 1 in the first year 

of our sample period to 15 in the last year; Sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Agei,t is the normalised 

age of mutual fund i given that we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time 

variable; No. stocksi,t is the number of different stocks held by mutual fund i in year t; Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the 

EuroStoxx-50 total return in year t. We use the EuroStoxx-50 as the benchmark for Euro equity mutual funds. *** Significance at 1% level; ** significance at 5% level; * 

significance at 10% level. 

 

 BUYS  SELLS 

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0267***  0.0305***  0.0137**   0.0306***  0.0385***  0.0381*** 

% Important errorst-1  0.0500**  0.1018***  0.1076***   0.1120***  0.1011*  0.1439*** 

Time -0.0002 -0.0008*** -0.0007***  -0.0013*** -0.0013*** -0.0012*** 

Fund_size -0.0020 -0.0029*** -0.0014*  -0.0001 -0.0022** -0.0012 

Fund_age -0.0021  0.0004  0.0067   0.0052  0.0072  0.0067 

Fund_#stocks -0.0003*** -0.0004*** -0.0003***  -0.0005*** -0.0006*** -0.0006*** 

Fund_Turnover  0.0091***  0.0059***  0.0092***   0.0173***  0.0177***  0.0154*** 

Market return -0.0067*** -0.0138***  0.0013  -0.0069*** -0.0086*** -0.0093*** 

Wald Chi-Squared Test  66.65***  139.77***  50.47***   102.74***  88.93***  86.84*** 

Sargan Test  77.09  39.98  23.08   79.78  69.64  16.83 

Autocorrelation (1) -2.04** -2.78** -4.05***  -3.94*** -3.42*** -4.19*** 

Autocorrelation (2) -1.42 -0.39 -0.50  -1.89 -1.87 -1.42 

No. observations  927  897  796   1,050  1,102  1,143 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.
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 The lagged dependent variable (% Important errorsi,t-1) is a better control for 

endogeneity bias in the model and its positive and significant influence indicates that each 

fund presents individual patterns in its trading abilities, which tend to persist over time. 

Due to these individual skills, some funds are more prone to making important errors. 

Therefore, a mutual fund that makes an important error in the past has a higher likelihood 

of making an important error in the future than a fund that does not. Furthermore, we find 

that the smaller the time gap between current important errors and past important errors, 

the more significant the relationship among them is.  

 Therefore, the funds that make the greatest number of important errors in the past 

are also those that make the greatest number of important errors in the future that is not 

contradictory with global learning in which all funds generally have fewer important 

errors over time, and is based on the result associated to the coefficient for the time 

variable (Timet). 

 With respect to our control variables, size and age do not show a clear influence 

on the decreasing trend of errors but we find significant relationships between important 

trading errors and both the number of stocks held by the mutual fund and its turnover 

ratio. We find that more diversified funds with lower turnover ratios make fewer 

important trading errors. 

 With respect to the diversification, the results could be explained by the fact that 

each trading decision tends to represent a relatively smaller value with respect to the TNA 

in more diversified fund portfolios than in more concentrated fund portfolios. Therefore, 

the probability of making important trading decisions and, as a consequence, of making 

important trading errors could be higher in less diversified funds in accordance with the 

Pollet and Wilson (2008) who find a positive relation between portfolio diversification 

and fund efficiency. 
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 With regard to the portfolio turnover variable, the result is in line with the rationale 

that when the turnover ratio is lower, the probability of making an error is also lower due 

to there being fewer trading decisions than in mutual funds with higher turnover ratios. 

This result is also consistent with the conclusion of Barber and Odean (2000) who find 

that a low portfolio turnover allows higher returns.  

 Additionally, we find a negative relationship between the percentage of important 

errors and the market return. Therefore, the probability of an important error is higher 

with lower market returns, that is, important trading errors are more likely during bearish 

than during bullish markets. This is consistent with the conclusions of Kacperczyk et al. 

(2014) and Alda (2018) who consider that managers’ skills vary with market conditions 

and find more evidence of managers' stock-picking ability in a bullish market. 

 

1.5.2 Learning in the mutual fund industry: a family approach 

In the previous sub-section, we provide evidence of learning from important errors in the 

maturity stage of the Spanish mutual fund industry. The next step in our empirical analysis 

is to study how this learning process is driven by the mutual fund families. We test 

whether the learning evidence previously detected is consistently driven by most of the 

fund families registered in the Spanish industry. To do so, we compare the previously 

found learning level of the whole industry with the learning level of each individual 

family. 

 We argue that different groups of mutual fund families may coexist that depends 

on the level of their learning process: (1) fund families whose level of learning is higher 

than the industry level, (2) fund families whose level of learning is similar to the industry 

level, and (3) fund families whose level of learning is lower than the industry level. 
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 First, we apply Equation 1.15 for each fund family. Second, we classify all the 

families into the three previously defined groups according to the results of the slope 

interaction between the dummy variable and the time variables in Equation 1.15. With 

this slope, we can compare the learning level of each fund family with respect to the 

global learning level of the whole mutual fund industry over time. Table 1.5 presents the 

percentages of each family group based on both the sign and the significance of the 

interaction slope.  

 

Table 1. 5 – Learning results: a fund family approach 

 

Learning results: a fund family approach: This table presents the percentage of mutual fund families based 

on both the sign and the significance of the slope of the interaction between the dummy variable Familyi,t 

and Timet (7) in Equation 1.15 for each fund family included in our sample. Panel A has the results for 

families which manage Euro domestic equity funds, and Panel B has the results for families which manage 

Euro non-domestic equity mutual funds. Similar to Tables 1.3 and 1.4, the learning results are divided into 

buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-

month alpha, 6-month alpha, and 12-month alpha. 

 

 Buys Sells 

 

Important 

errors 

 3-month 

alpha  

Important 

errors 

 6-month 

alpha 

Important 

errors 

 12-month 

alpha 

Importan

t errors 

 3-month 

alpha 

Important 

errors 

 6-month 

alpha 

Important 

errors 

 3-month 

alpha 

FamilyxTime                       

Negative and Stat. Significant 7 
35.21% 

 

32.00% 

 

33.33% 

 

27.40% 

 

30.67% 

 

32.39% 

 

FamilyxTime                       

Non Significant 7 35.21% 37.33% 38.67% 35.62% 41.33% 42.25% 

FamilyxTime                                     

Positive and Stat. Significant 7 
29.58% 30.67% 28.00% 36.99% 28.00% 25.35% 

       

 Buys Sells 

 

Important 

errors 

 3-month 

alpha  

Important 

errors 

 6-month 

alpha 

Important 

errors 

 12-month 

alpha 

Importan

t errors 

 3-month 

alpha 

Important 

errors 

 6-month 

alpha 

Important 

errors 

 3-month 

alpha 

FamilyxTime                      

Negative and Stat. Significant 7 
30.65% 37.78% 23.88% 17.91% 35.94% 30.65% 

FamilyxTime                       

Non Significant 7 25.81% 24.44% 17.91% 29.85% 26.56% 27.42% 

FamilyxTime                         

Positive and Stat. Significant 7 
43.55% 37.78% 58.21% 52.24% 37.50% 41.94% 
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 The learning level in fund families is higher than or not significantly different 

from the global learning level of the mutual fund industry in cases in which the slope of 

the interaction variable (Familyi,txTimet) in Equation 1.15 is significantly negative or not 

significant. Table 1.5 shows that the learning level of approximately 70% (or above 60%) 

of fund families is higher than or similar to the learning level of the whole mutual fund 

industry of Euro domestic (or Euro non-domestic) equity mutual funds. 

 On the contrary, the learning level in fund families is lower than in the whole 

mutual fund industry in cases of significantly positive slopes of the interaction variable 

(Familyi,txTimet) in Equation 1.15. Table 1.5 shows that approximately 30% (over 40%) 

of families of Euro domestic (Euro non-domestic) equity mutual funds learn less than the 

whole mutual fund industry or even do not learn. Nonetheless, our approach cannot split 

up the percentage of families into these two groups. 

 Our findings support that learning from important trading errors in the Spanish 

industry of equity mutual funds is driven by a large number of mutual fund families. 

These findings are generally consistent for buying and selling trading decisions and for 

trading errors obtained from different time horizons. 

 

1.5.3 Learning in the mutual fund industry: an approach using the 

characteristics of fund families 

In the previous sub-section, we find that mutual funds in most families learn from their 

trading errors in the Spanish equity mutual fund industry. Based on this result, our 

objective now is to study whether the families with a higher learning level have common 

characteristics. Following Cambon and Losada (2014), we study the learning process of 

the fund families through two main dimensions: the family size and the dependence of 

the fund family on banking and insurance groups. 
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1.5.3.1. Learning results by size of mutual fund families 

Spanish mutual fund industry is characterised by an important concentration given that 

the 10 largest (top 10) fund families manage more than 75% of the total fund assets 

(Inverco, 2018). We suggest that it is important to bear in mind this distinctive 

characteristic of the Spanish market when we study the learning process because, due to 

the highly concentrated market structure the level of competition that the top 10 families 

face is different to the level within the group of smaller families. Consequently, the 

learning level may also be different between the top 10 and the smaller families. Indeed, 

though there is a lack of research in this aspect regarding the mutual fund industry, 

Jashapara (2003) examines the effect of competition on organizational learning at 

business level, finding that competitive forces encourage learning processes focused on 

efficiency. The underlying idea is based on the conclusions of Adams and Lamont (2003) 

and Hatch and Dyer (2004) who considered organizational learning as a strategic asset to 

sustain competitive advantage. 

 Therefore, we aim to determine whether there are significant differences between 

the level of learning of the top 10 fund families registered in Spain and the level of 

learning of smaller fund families. The family size is determined by the total net assets 

under management. We use Equation 1.15 but in this new approach, the dummy variable 

that interacts with the time variable is called TOP-10 and takes a value of one when the 

mutual fund is managed by one of the top 10 families and zero otherwise. We can compare 

the learning level of the group of the top 10 families with that of the other families in the 

market with the slope of the interaction variable (TOP-10i,txTimet). 
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Table 1. 6 – Learning results by fund family size (Euro domestic equity mutual funds) 

 

This table presents the results of the Equation 1.15 with the dummy variable named TOP-10 for Euro domestic equity mutual funds from January 2000 to March 2014. The 

learning results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha, and 12-

month-alpha. The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables that are included in this table are: 

% Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the 

last year; Sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Agei,t is the normalised age of mutual fund i given that we 

divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; No. stocksi,t is the number of 

different stocks held by mutual fund i in year t; Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-35 total return in year t. We use the 

Ibex-35 as the benchmark for Euro domestic equity mutual funds. TOP-10i,t xTimet  is the interaction between the dummy variable TOP-10 and the time variable.*** Significance 

at 1% level; ** significance at 5% level; * significance at 10% level. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant    0.0271***   0.0085***  0.0137***    0.0094***  0.0143***  0.0209*** 

% Important errorst-1   0.1008***   0.0730***  0.0700***    0.0912***  0.1850***  0.0838*** 

Time -0.0005** -0.0003*** -0.0007***  -0.0002** -0.0003**  -0.0003** 

Fund_size -0.0010          -0.0011**              -0.0010**  -0.0009** 0.0009** 0.0016** 

Fund_age -0.0159***            0.0008              -0.0003   -0.0011 0.0029 -0.0066 

Fund_#stocks -0.0002***  -0.0002*** -0.0003***   -0.0002*** -0.0004*** -0.0003*** 

Fund_Turnover  0.0206***   0.0202***   0.0285***    0.0177***  0.0158*** 0.0077*** 

Market return -0.0051***  -0.0072*** -0.0069***  -0.0041*** -0.0040*** -0.0015 

TOP-10 xTime 0.0008**   0.0004***  0.0004***  0.0001 -0.0001  0.0003 

        

Wald Chi-Squared Test 396.44***            118.83***      446.14***   493.53***  368.74***  254.43*** 

Sargan Test 93.14            93.77 89.18  96.64 89.75 89.15 

Autocorrelation (1) -2.42**           -2.32**  -2.36**  -4.28***  -4.87*** -3.46*** 

Autocorrelation (2) 0.24            0.34 0.96  1.77 0.46 -1.29 

No. observations 1,081            1,049 966  1,234  1,216 1,247 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  
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Table 1. 7 – Learning results by fund family size (Euro non-domestic equity mutual funds) 

 

This table presents the results of the Equation 1.15 with the dummy variable named TOP-10 for Euro non-domestic equity mutual funds from January 2000 to March 2014. The 

learning results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha, and 12-

month-alpha. The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables that are included in this table are: 

% Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the 

last year; Sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Agei,t is the normalised age of mutual fund i given that we 

divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; No. stocksi,t is the number of 

different stocks held by mutual fund i in year t; Turnoveri,t is the turnover ratio of mutual fund i in year t and Market returnt is the EuroStoxx-50 total return in year t. We use 

the EuroStoxx-50 as the benchmark for Euro non-domestic equity mutual funds. TOP-10i,t xTimet  is the interaction between the dummy variable TOP-10 and the time variable.*** 

Significance at 1% level; ** significance at 5% level; * significance at 10% level. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant    0.0285***   0.0319***             0.0394***  0.0311***           0.0336*** 0.0394*** 

% Important errorst-1   0.0418***   0.0502***             0.1907***    0.1125***           0.1475*** 0.1907*** 

Time            -0.0001          -0.0005**            -0.0010**         -0.0012***          -0.0011***              -0.0010** 

Fund_size            -0.0016          -0.0024             0.0002         -0.0001          -0.0006               0.0002 

Fund_age            -0.0041          -0.0087**             0.0037          0.0049           0.0093               0.0037 

Fund_#stocks            -0.0003***          -0.0003***            -0.0007***         -0.0005***          -0.0007***              -0.0007*** 

Fund_Turnover   0.0096***  0.0087**             0.0173***          0.0173***           0.0189***               0.0173*** 

Market return            -0.0065*** -0.0122***            -0.0079***  -0.0069***          -0.0075***              -0.0079*** 

TOP-10 xTime            -0.0007           0.0001             0.0001         -0.0001           0.0001               0.0001 

        

Wald Chi-Squared Test             554.90***  518.39***             503.90***          103.34***           109.49***                 123.80*** 

Sargan Test             80.48           48.72             84.30          77.40           81.36               84.30 

Autocorrelation (1)            -2.10**          -3.05***            -4.61***         -3.93***          -3.51***              -4.61*** 

Autocorrelation (2)            -0.88           0.24            -1.06         -1.89          -1.73              -1.06 

No. observations             927           897             796          1,050           1,102               1,143 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.
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 The null hypothesis is that there are no differences between the top 10 and the 

other fund families. A significantly positive (negative) slope of the interaction variable 

would show that the learning level of the top 10 families is lower (higher) than that of the 

smaller families. Tables 1.6 and 1.7 present the results of Equation 1.15 with the dummy 

variable TOP-10 for Euro domestic and Euro non-domestic equity mutual funds, 

respectively. With the only exception that for the buy decisions of the Euro domestic 

equity mutual funds, we find that family size does not play a significant role in explaining 

the learning process in the highly concentrated Spanish mutual fund industry. That is, the 

different level of competition between the largest and the smaller families does not 

generally affect the learning process in this industry. 

 

1.5.3.2. Learning process by independence of fund families from financial service 

groups. 

In the previous sub-section, we emphasised that a high concentration is one of the main 

characteristics in the Spanish mutual fund industry. Another specific characteristic of the 

Spanish market is the relatively high importance of fund families that are controlled by 

banks and insurance groups. Cambon and Losada (2014) study the structure of mutual 

fund industry in Spain. They show that most of the assets of mutual funds are managed 

by families belonging to credit institutions, highlighting the model of universal banking 

as distinctive characteristic of this market. In fact, approximately 90% of families belong 

to a banking or an insurance group in Spain; this percentage being significantly higher 

than in other important European mutual fund markets such as Germany, Portugal, Italy, 

France, and the UK (EFAMA, 2018).  
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Table 1. 8 – Learning results by independence of fund family from financial service groups (Euro domestic equity mutual funds) 

 

This table presents the results of the Equation 1.15 with the dummy variable named Independent for Euro domestic equity mutual funds from January 2000 to March 2014. The 

learning results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha, and 12-

month-alpha. The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables that are included in this table are: 

% Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the 

last year; Sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Agei,t is the normalised age of mutual fund i given that we 

divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; No. stocksi,t is the number of 

different stocks held by mutual fund i in year t; Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-35 total return in year t. We use the 

Ibex-35 as the benchmark for Euro domestic equity mutual funds. Independenti,txTimet  is the interaction between the dummy variable Independent and the time variable. *** 

Significance at 1% level; ** significance at 5% level; * significance at 10% level. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant             0.0096*** 0.0078*** 0.0092***   0.0207***        0.0270***               0.0097** 

% Important errorst-1            0.0984*** 0.0835***   0.0753***   0.2653***        0.2114***               0.1593*** 

Time           -0.0003***         -0.0002**         -0.0005***  -0.0005**       -0.0007***              -0.0006*** 

Fund_size           -0.0008*         -0.0012**            -0.0012**   0.0009        0.0013               0.0008 

Fund_age           -0.0016          0.0007             0.0021   0.0015       -0.0049              -0.0004 

Fund_#stocks           -0.0002***         -0.0002***            -0.0007***  -0.0005***       -0.0005***              -0.0002*** 

Fund_Turnover            0.0183***          0.0199***             0.0279***   0.0222***        0.0153***               0.0075** 

Market return           -0.0036***         -0.0074***            -0.0054***  -0.0090***       -0.0038**              -0.0014* 

IndependentxTime            0.0009*          0.0004**             0.0008   0.0011*        0.0012**               0.0015** 

Wald Chi-Squared Test            732.02***          113.53***             464.11***   347.03***        220.56***               611.20*** 

Sargan Test            96.87          94.46             92.86   96.41        91.05               88.62 

Autocorrelation (1)           -2.42**         -2.31**            -2.37**  -4.27***       -4.87***              -3.45*** 

Autocorrelation (2)            0.25          0.95             0.93   1.81        0.48              -1.28 

No. observations            1,081          1,049             966   1,234        1,216               1,247 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  
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Table 1. 9 – Learning results by independence of fund family from financial service groups (Euro non-domestic equity mutual funds) 

 

This table presents the results of the Equation 1.15 with the dummy variable named Independent for Euro equity mutual funds from January 2000 to March 2014. The learning 

results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha, and 12-month-

alpha. The dependent variable % Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed. The explanatory variables which are 

included in this table are: % Important errorsi,t-1 is the 1-year lag of the dependent variable; Timet ranges from 1 in the first year of our sample period to 15 in the last year, the 

sample period covers from 2000 to 2014. Sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Agei,t is the normalised 

age of mutual fund i given that we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time 

variable; Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the EuroStoxx-50 total return in year t. We use the EuroStoxx-50 as the benchmark for 

Euro non-domestic equity mutual funds. Independenti,txTimet is the interaction between the dummy variable Independent and the time variable. *** Significance at 1% level; ** 

significance at 5% level; * significance at 10% level. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant            0.0348*** 0.0298*** 0.0139**   0.0302***        0.0332***  0.0387*** 

% Important errorst-1           0.0209* 0.0563** 0.0978**   0.1125***        0.1504***  0.1920*** 

Time          -0.0004          -0.0006**               -0.0006**  -0.0013***       -0.0011*** -0.0008** 

Fund_size          -0.0028***          -0.0026 -0.0013  -0.0001             -0.0006  0.0001 

Fund_age          -0.0007          -0.0056  0.0061   0.0058              0.0089  0.0037   

Fund_#stocks          -0.0005***          -0.0003*** -0.0002***  -0.0005***       -0.0007*** -0.0007***   

Fund_Turnover           0.0079***           0.0071*  0.0090***   0.0174***        0.0190***  0.0174*** 

Market return          -0.0074***   -0.0127***  0.0013  -0.0069***       -0.0075*** -0.0081***   

IndependentxTime          -0.0006          -0.0003 -0.0008  -0.0003              0.0001 -0.0006 

Wald Chi-Squared Test            745.40***           216.29***  525.50***   102.21***      108.18***  122.71*** 

Sargan Test            80.13           53.67  60.33   78.76           80.90  84.56 

Autocorrelation (1)          -2.06**          -3.10*** -4.02***  -3.94***          -3.50** -4.62*** 

Autocorrelation (2)          -1.06           0.31 -0.54  -1.89          -1.69 -1.05 

No. observations            927           897  796   1,050           1,102  1,143 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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 Therefore, we study the learning with respect to the families' dependence on or 

independence from financial services groups. Independent families are not a part of 

financial services groups, while dependent families belong to a banking or an insurance 

group. 

 We test whether there are significant differences in the learning level between 

independent and dependent families. The null hypothesis of this contrast is that there are 

no differences. Similar to our analysis of fund company size, we use Equation 1.15 with 

a dummy variable called Independent instead of TOP-10. The dummy Independent takes 

a value of one when the mutual fund belongs to an independent family, and zero 

otherwise. Therefore, the interpretation of the slope of the interaction variable 

(Independenti,txTimet) is the same as in the previous subsection. 

 Tables 1.8 and 1.9 present the results of Equation 1.15 with the dummy variable 

Independent for Euro domestic and Euro non-domestic equity mutual funds, respectively. 

In Table 1.8, we find that the learning level in the dependent families is higher than for 

the independent families in only some of the cases analysed. Table 1.9 rejects the 

existence of significant differences in the learning level of dependent and independent 

families for Euro equity mutual funds. Hence, in general terms, families' dependence on 

financial groups is not important in explaining the learning process in the Spanish equity 

mutual fund industry. 

 

1.6 Conclusions 
 

Our study is the first to examine the ability of the Spanish equity mutual fund industry to 

learn from its important trading errors. It is motivated by the lack of research on learning 

processes in portfolio management and by their important implications for the main 

agents involved in the mutual fund industry. We consider that past errors are a key tool 
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in the learning process, given that managers suffer the consequences of these negative 

past decisions. Our identification of important errors is based on the hypothesis that 

decision-makers have incentives to learn from them.  

 In our study, an important error is defined as an important trading decision that 

has a significantly negative effect on the subsequent performance of the mutual fund. 

These important decisions have a relatively high importance with respect to the fund’s 

total net assets and this relative importance must be significantly higher than other trading 

decisions by the same fund and by other funds in our sample. 

 In the first part of our analysis, we find that the percentage of important trading 

errors decreases significantly over time that demonstrates significant learning by 

managers. Despite the inclusion of the dependent variable lagged as instruments to 

control for endogeneity bias and several control variables on fund characteristics and 

market conditions (the fund’s size, age, turnover ratio, diversified portfolio holdings, and 

return and volatility in the market) that may have an influence on the learning process, 

the decreasing pattern in errors maintains its significance. Furthermore, these findings are 

consistent for buys and sells and for different time horizons that are used to compute the 

subsequent economic effect of important errors on fund performance. In addition, in a 

global learning context, we conclude that some funds are more prone to make important 

errors than other funds due to individual skills and then, the funds that make the greatest 

number of important errors in the past are also those that make the greatest number of 

important errors in the future. 

 In the second part of our empirical analysis, we find that the large number of the 

fund families in Spain drives its learning process. Furthermore, we study the learning 

process regarding two important dimensions of these fund families: their size and their 

dependence on banking and insurance groups. In general, we find that neither of these 
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characteristics play significant roles in the learning process of the Spanish equity mutual 

fund industry. 

 Our approach is based on measuring the learning through the evolution of the 

percentage of important trading errors over time. However, it would be interesting for 

further research to examine whether important errors have any positive effect on future 

trading abilities and fund performance. 
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Appendix 1.1: Figures on the evolution of important errors 
 

 

Figure A1. 1 – The evolution of the percentage of important trading errors 

(Euro domestic equity mutual funds) 
 

These graphs show the evolution of the percentage of important trading errors in buys and sells for Euro 

domestic equity mutual funds (Domestic) from January 2000 to March 2014, considering the different 

time horizons to compute the subsequent effect of these errors: 3-month alpha (α3m), 6-month alpha (α6m) 

and 12-month-alpha (α12m). 
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Figure A1. 2 – The evolution of the percentage of important trading errors 

(Euro non-domestic equity mutual funds) 

 

These graphs show the evolution of the percentage of important trading errors in buys and sells for Euro 

non-domestic equity mutual funds (Non-domestic) from January 2000 to March 2014, considering 

different time horizons to compute the subsequent effect of these errors: 3-month alpha (α3m), 6-month 

alpha (α6m) and 12-month-alpha (α12m). 
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Appendix 1.2: Robustness analyses of the learning results 
 

 

Table A1. 1 – Learning results in Euro domestic equity mutual funds: on a quarterly basis 

 

This table presents the results of the Equation 1.14 for Euro domestic equity mutual funds from January 2000 to March 2014. The learning results are divided into buys and 

sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent variable 

%Important errorsi,t is the percentage of important errors for fund i in quarter t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-

quarter lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first quarter of our sample period to 57 in the last quarter; Fund_sizei,t 

is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in quarter t; Fund_agei,t is the normalised age of mutual fund i given that we 

divided the age of each fund by the average age of all funds included in our sample in quarter t to avoid correlation problems with the time variable; Fund_#stocksi,t is the 

number of different stocks held by mutual fund i in quarter t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in quarter t; and Market returnt is the Ibex-35 total return 

in quarter t, we use the Ibex-35 as the benchmark for Euro domestic equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0358***  0.0131***  0.0259*   0.0175***  0.0282***  0.0249*** 

% Important errorst-1  0.1040***  0.1117***  0.0656***   0.1068  0.0667**  0.0512 

Time -0.0001** -0.0002*** -0.0001***  -0.0003* -0.0002** -0.0001 

Fund_size  0.0019 -0.0011 -0.0030  -0.0015 -0.0020 -0.0020 

Fund_age -0.0159 -0.0004 -0.0073  -0.0034 -0.0011 -0.0003 

Fund_#stocks -0.0005*** -0.0003* -0.0003***  -0.0003*** -0.0004*** -0.0005*** 

Fund_Turnover  0.0787***  0.0175***  0.0732***   0.0192***  0.0805***  0.0751*** 

Market return -0.0116*** -0.0072*** -0.0050*  -0.0058*** -0.0066** -0.0047*** 

Wald Chi-Squared Test   212.64***  124.31***  324.69***   76.61***  206.29***  69.32*** 

Sargan Test            116.74  115.87  61.29   31.37  114.89  110.42 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  
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Table A1. 2 – Learning results in Euro non-domestic equity mutual funds: on a quarterly basis 

 

This table presents the results of the Equation 1.14 for Euro non-domestic equity mutual funds from January 2000 to March 2014. The learning results are divided into buys and 

sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent variable 

%Important errorsi,t is the percentage of important errors for fund i in quarter t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-

quarter lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first quarter of our sample period to 57 in the last quarter; Fund_sizei,t 

is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in quarter t; Fund_agei,t is the normalised age of mutual fund i given that we 

divided the age of each fund by the average age of all funds included in our sample in quarter t to avoid correlation problems with the time variable; Fund_#stocksi,t is the 

number of different stocks held by mutual fund i in quarter t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in quarter t; and Market returnt is the EuroStoxx-50 total 

return in quarter t, we use the EuroStoxx-50 as the benchmark for Euro equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0349***  0.0417***  0.0250***   0.0056  0.0353* 0.0469*** 

% Important errorst-1  0.1131*  0.0580*** -0.0728   0.0992**  0.0682* 0.0743 

Time -0.0004** -0.0148*** -0.0003**   0.0220** -0.0002* -0.0001 

Fund_size -0.0024 -0.0017** -0.0009   0.0026 -0.0035 -0.0016 

Fund_age -0.0031 -0.0001  0.0038   0.0001 -0.0006 -0.0166 

Fund_#stocks -0.0004*** -0.0004*** -0.0004***  -0.0005*** -0.0006* -0.0006** 

Fund_Turnover 0.0084**  0.0428***  0.0269***   0.0799***  0.0788***  0.0820*** 

Market return -0.0077**  0.0015  0.0002   0.0009  0.0005 -0.0058 

Wald Chi-Squared Test   128.09***  180.14*** 138.39***   82.38***  28.48*** 46.34*** 

Sargan Test            80.78  95.92  91.74   112.17  109.79 110.22 

        
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 

  



89 

 

Table A1. 3 – Learning results in Euro domestic equity mutual funds: on a yearly basis (FE) 

 

This table presents the results of the Equation 1.14 with FE model for Euro domestic equity mutual funds from January 2000 to March 2014. The learning results are divided 

into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent 

variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is 

the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year; Fund_sizei,t is 

the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i given that we divided 

the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t is the number of 

different stocks held by mutual fund i in year t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-35 total return in year t, we use 

the Ibex-35 as the benchmark for Euro domestic equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0142***  0.0021***  0.1713***  -0.0077*** -0.0044*** -0.0043*** 

Time -0.0007*** -0.0007*** -0.0007***  -0.0187*** -0.0185*** -0.0198*** 

Fund_size  0.0002  0.0001 -0.0008*  -0.0011 -0.0017 -0.0017 

Fund_age -0.0022** -0.0033*** -0.0023**  -0.0008 -0.0007*** -0.0006 

Fund_#stocks -0.0002*** -0.0002*** -0.0002***  -0.0002*** -0.0001***  0.0001*** 

Fund_Turnover 0.0299***  0.0202***  0.0181***   0.0003*** -0.0003*** -0.0003*** 

Market return -0.0087*** -0.0099*** -0.0055***   0.0263***  0.0241***  0.0250*** 

F   266.61***  253.82***  206.35***   239.82***  170.69***  179.98*** 

R2            12.85%  13.07%  12.10%   12.75  12.32%  12.08% 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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Table A1. 4 – Learning results in Euro non-domestic equity mutual funds: on a yearly basis (FE) 

 

This table presents the results of the Equation 1.14 with FE model for Euro non-domestic equity mutual funds from January 2000 to March 2014. The learning results are divided 

into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent 

variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is 

the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year, the sample; 

Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i given that 

we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t is the 

number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the EuroStoxx-50 total return 

in quarter t, we use the EuroStoxx-50 as the benchmark for Euro equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant  -0.0091***  0.0155***  0.0109***   0.2133***  0.0240***  0.0255*** 

Time -0.0171** -0.0002*** -0.0008***  -0.0006*** -0.0005*** -0.0006*** 

Fund_size -0.0011  0.0004 -0.0003   0.0001 -0.0007 -0.0005 

Fund_age -0.0002 -0.0017 -0.0022***   0.0018  0.0016  0.0023 

Fund_#stocks  0.0008 -0.0002*** -0.0001***  -0.0004*** -0.0003*** -0.0004*** 

Fund_Turnover -0.0003***  0.0117***  0.0098***   0.0185***  0.0181***  0.0179*** 

Market return -0.0117*** -0.0131*** -0.0002  -0.0071*** -0.0086*** -0.0084*** 

F   84.96***  67.00***  69.91***   103.18***  110.27***  100.50*** 

R2            15.64%  18.93%  12.95%   12.23%  12.18%  12.10% 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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Table A1. 5 – Learning results in Euro domestic equity mutual funds: on a quarterly basis (FE) 

 

This table presents the results of the Equation 1.14 with FE model for Euro domestic equity mutual funds from January 2000 to March 2014. The learning results are divided 

into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent 

variable % Important errorsi,t is the percentage of important errors for fund i in quarter t. The explanatory variables which are included in this table are: % Important errorsi,t-1 

is the 1-quarter lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first quarter of our sample period to 57 in the last quarter; 

Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in quarter t; Fund_agei,t is the normalised age of mutual fund i given 

that we divided the age of each fund by the average age of all funds included in our sample in quarter t to avoid correlation problems with the time variable; Fund_#stocksi,t is 

the number of different stocks held by mutual fund i in quarter t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in quarter t; and Market returnt is the Ibex-35 total 

return in quarter t, we use the Ibex-35 as the benchmark for Euro domestic equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0166***  0.0155***  0.0144***  -0.0009 -0.0009 -0.0053 

Time -0.0002*** -0.0002*** -0.0002***  -0.0210*** -0.0215*** -0.0238*** 

Fund_size  0.0002  0.0002 -0.0006**  -0.0015  0.0022 -0.0026* 

Fund_age -0.0028*** -0.0027*** -0.0015*  -0.0002 -0.0001*** -0.0001 

Fund_#stocks -0.0002*** -0.0002*** -0.0002***  -0.0001*** -0.0001***  0.0001*** 

Fund_Turnover  0.0862***  0.0861*** -0.0804***   0.0003*** -0.0003*** -0.0004*** 

Market return -0.0143*** -0.0155*** -0.0044*   0.1102***  0.1024***  0.1062*** 

F   75.53***  43.79***  36.50***   68.80***  75.68***  76.52*** 

R2            10.81%  9.86%  10.59%   9.04%  7.46%  7.69% 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 

  



92 

 

Table A1. 6 – Learning results in Euro non-domestic equity mutual funds: on a quarterly basis (FE) 

 

This table presents the results of the Equation 1.14 with FE model for Euro non-domestic equity mutual funds from January 2000 to March 2014. The learning results are divided 

into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent 

variable % Important errorsi,t is the percentage of important errors for fund i in quarter t. The explanatory variables which are included in this table are: % Important errorsi,t-1 

is the 1-quarter lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first quarter of our sample period to 57 in the last quarter; 

Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in quarter t; Fund_agei,t is the normalised age of mutual fund i given 

that we divided the age of each fund by the average age of all funds included in our sample in quarter t to avoid correlation problems with the time variable; Fund_#stocksi,t is 

the number of different stocks held by mutual fund i in quarter t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in quarter t; and Market returnt is the EuroStoxx-50 

total return in quarter t, we use the EuroStoxx-50 as the benchmark for Euro equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0193***  0.0172***  0.0152***   0.0304***  0.0335***  0.0370*** 

Time -0.0001** -0.0005** -0.0006***  -0.0001** -0.0001** -0.0002*** 

Fund_size  0.0001  0.0006 -0.0001   0.0001 -0.0001 -0.0002 

Fund_age -0.0019** -0.0025*** -0.0035***  -0.0012 -0.0017 -0.0009 

Fund_#stocks -0.0002*** -0.0002*** -0.0002***  -0.0004*** -0.0004*** -0.0005*** 

Fund_Turnover 0.0486***  0.0456***  0.0339***   0.0615***  0.0637***  0.0675*** 

Market return -0.0023*** -0.0065** -0.0039  -0.0141*** -0.0124*** -0.0186*** 

F   175.91***  145.48***  108.83***   171.16***  191.65***  214.79*** 

R2            7.14%  6.42%  4.78%   5.78  6.15%  6.97% 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 

 



93 

 

Appendix 1.3: Learning results considering the quadratic time term 
 

Table A1. 7 – Learning results in Euro domestic equity mutual funds: the quadratic term of the time variable 

 

This table presents the results of the Equation 1.14 with the quadratic term of the time variable for Euro domestic equity mutual funds from January 2000 to March 2014. The 

learning results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-

month-alpha. The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table 

are: % Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 

in the last year; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Fund_agei,t is the normalised age of mutual 

fund i given that we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; 

Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-

35 total return in year t, we use the Ibex-35 as the benchmark for Euro domestic equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0153***  0.0163***  0.0264***   0.0193***  0.0233***  0.0194*** 

% Important errorst-1  0.0922***  0.1112***  0.0701**   0.2504***  0.2026***  0.0774*** 

Time -0.0034*** -0.0030*** -0.0028***  -0.0035*** -0.0029** -0.0018** 

Time^2  0.0001***  0.0001***  0.0001***   0.0002***  0.0001***  0.0001** 

Fund_size -0.0016** -0.0007 -0.0008   0.0006  0.0013 -0.0015** 

Fund_age  0.0073  0.0021 -0.0055   0.0090  0.0051 -0.0004 

Fund_#stocks -0.0002*** -0.0098*** -0.0156***  -0.0202*** -0.0004*** -0.0002*** 

Fund_Turnover 0.0205***  0.0163***  0.0280***   0.0217***  0.0155***  0.0085*** 

Market return -0.0050*** -0.0063*** -0.0062***  -0.0080*** -0.0033 -0.0017 

Wald Chi-Squared Test   217.19***  168.57***  245.01***   335.72*** 115.06***  113.48*** 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  
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Table A1. 8 – Learning results in Euro non-domestic equity mutual funds: the quadratic term of the time variable 

 

This table presents the results of the Equation 1.14 with the quadratic term of the time variable for Euro non-domestic equity mutual funds from January 2000 to March 2014. 

The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % Important 

errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year; 

Timet^2 is the quadratic term of the time variable; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Fund_agei,t 

is the normalised age of mutual fund i given that we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems 

with the time variable; Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in year t; and 

Market returnt is the EuroStoxx-50 total return in quarter t, we use the EuroStoxx-50 as the benchmark for Euro equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0329***  0.0304***  0.0160***   0.0358***  0.0439***  0.0444*** 

% Important errorst-1  0.0447** -0.0948***  0.0983***   0.1054***  0.0963*  0.1376*** 

Time -0.0020*** -0.0012*** -0.0012  -0.0031**** -0.0036*** -0.0037*** 

Time^2  0.0001***  0.0001  0.0001   0.0001*  0.0001**  0.0082 

Fund_size -0.0016 -0.0032*** -0.0014*   0.0001 -0.0020*  0.0001** 

Fund_age -0.0017  0.0017  0.0048   0.0057  0.0089 -0.0010 

Fund_#stocks -0.0003*** -0.0003*** -0.0002***  -0.0005*** -0.0006*** -0.0006*** 

Fund_Turnover  0.0091***  0.0047***  0.0094***   0.0174***  0.0176***  0.0154*** 

Market return -0.0068*** -0.0134***  0.0009  -0.0070*** -0.0086*** -0.0093*** 

Wald Chi-Squared Test   70.30***  140.20***  59.25***   104.41***  91.94***  90.57*** 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  
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Appendix 1.4: Learning results considering the market volatility 
 
 

Table A1. 9 – Learning results in Euro domestic equity mutual funds: the market volatility 

 

This table presents the results of the Equation 1.14 with the market volatility variable for Euro domestic equity mutual funds from January 2000 to March 2014. The learning 

results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-

alpha. The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % 

Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the 

last year; Timet^2 is the quadratic term of the time variable; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; 

Fund_agei,t is the normalised age of mutual fund i given that we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation 

problems with the time variable; Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in                  

year t; and Market Volatilityt is the average of  the Stoxx 50 Volatility in year t  as the measure of the market volatility. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0129**  0.0053**  0.0093**   0.0205***  0.0272***  0.0119*** 

% Important errorst-1  0.1017***  0.0846***  0.0753***   0.2420***  0.1948***  0.1040*** 

Time -0.0004** -0.0002** -0.0005***  -0.0003* -0.0006** -0.0003*** 

Fund_size -0.0016* -0.0011** -0.0010*   0.0006  0.0012 -0.0007 

Fund_age -0.0033 -0.0007  0.0007  -0.0020 -0.0051 -0.0017 

Fund_#stocks -0.0003*** -0.0002*** -0.0003***  -0.0005*** -0.0004*** -0.0001*** 

Fund_Turnover  0.0193***  0.0200***  0.0267***   0.0211***  0.0142***  0.0068*** 

Market Volatility  0.0001**  0.0001***  0.0001   0.0001***  0.0001 -0.0002 

Wald Chi-Squared Test   183.04***  91.64***  59.77***   323.5***  94.87***  114.85*** 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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Table A1. 10 – Learning results in Euro non-domestic equity mutual funds: the market volatility 

 

This table presents the results of the Equation 1.14 with the market volatility variable for Euro non-domestic equity mutual funds from January 2000 to March 2014. The learning 

results are divided into buys and sells after considering different time horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-

alpha. The dependent variable % Important errorsi,t is the percentage of important errors for fund i in year t. The explanatory variables which are included in this table are: % 

Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the 

last year; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i 

given that we divided the age of each fund by the average age of all funds included in our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t 

is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market Volatilityt is the average of  the 

Stoxx 50 Volatility in year t  as the measure of the market volatility. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0348***  0.0272***  0.0180***   0.0197***  0.0332***  0.0368*** 

% Important errorst-1  0.0153 -0.1252***  0.1007***   0.0864**  0.0714  0.1161** 

Time -0.0001 -0.0005*** -0.0009***  -0.0011*** -0.0011** -0.0010* 

Fund_size -0.0029*** -0.0028*** -0.0014*  -0.0001 -0.0021** -0.0009 

Fund_age -0.0091 -0.0063***  0.0091   0.0021  0.0010 -0.0010 

Fund_#stocks -0.0005*** -0.0003*** -0.0003***  -0.0005*** -0.0005*** -0.0006*** 

Fund_Turnover  0.0093***  0.0033***  0.0090***   0.0172***  0.0171***  0.0143*** 

Market Volatility  0.0002**  0.0003*** -0.0001**   0.0004***  0.0003***  0.0002* 

Wald Chi-Squared Test   66.87***  218.26***  53.77***   115.99***  88.55***  77.08*** 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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Appendix 1.5: Robustness analyses of the learning results considering different cut-off points 
 

 

Table A1. 11 – Learning results in Euro domestic equity mutual funds: quartiles 

 

This table presents the results of the Equation 1.14 with the quartiles of important trading decisions with the most negative influence on fund performance for all the domestic 

equity mutual funds across our sample period from January 2000 to March 2014. The learning results are divided into buys and sells after considering different time horizons 

to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent variable % Important errorsi,t is the percentage of important 

errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time 

horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all 

funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i given that we divided the age of each fund by the average age of all funds included in 

our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is 

the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-35 total return in year t, we use the Ibex-35 as the benchmark for Euro domestic equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0087***  0.0179**  0.0075   0.0093*  0.0105  0.0222*** 

% Important errorst-1  0.0981***  0.0864**  0.0785***   0.1953***  0.2015***  0.1384** 

Time -0.0003** -0.0004** -0.0006*  -0.0003* -0.0005** -0.0008* 

Fund_size  0.0009 -0.0013 -0.0018   0.0006 -0.0002  0.0007 

Fund_age  0.0001 -0.0027 -0.0030   0.0095  0.0109* -0.0049 

Fund_#stocks -0.0002*** -0.0004*** -0.0008***  -0.0004*** -0.0004*** -0.0004*** 

Fund_Turnover  0.0236***  0.0298***  0.0070***   0.0220***  0.0188***  0.0183*** 

Market return -0.0042** -0.0078*** -0.0014**  -0.0071*** -0.0060*** -0.0032* 

Wald Chi-Squared Test   98.78***  148.42***  32.03***   97.56***  74.87***  35.67*** 

Sargan Test            29.50  92.49  91.70   33.99  29.62  31.00 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.  
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Table A1. 12 – Learning results in Euro non-domestic equity mutual funds: quartiles 

 

This table presents the results of the Equation 1.14 with the quartiles of important trading decisions with the most negative influence on fund performance for all the non-

domestic equity mutual funds across our sample period from January 2000 to March 2014. The learning results are divided into buys and sells after considering different time 

horizons to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent variable % Important errorsi,t is the percentage of 

important errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-year lag of the dependent variable regardless 

of the time horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year; Fund_sizei,t is the TNA of mutual fund i divided by the average 

TNA of all funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i given that we divided the age of each fund by the average age of all funds 

included in our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; 

Fund_Turnoveri,t is the turnover ratio of mutual fund i in year t; and Market returnt is the EuroStoxx-50 total return in year t, we use the EuroStoxx-50 as the benchmark for 

Euro equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0435***  0.0263***  0.0147***   0.0243**  0.0389***  0.0442*** 

% Important errorst-1 -0.0025**  0.1219***  0.1569***   0.1293**  0.1447**  0.1370** 

Time -0.0003* -0.0009*** -0.0005**  -0.0012** -0.0010** -0.0012*** 

Fund_size -0.0031*** -0.0016 -0.0018**   0.0006 -0.0001 -0.0010 

Fund_age -0.0074  0.0002  0.0005   0.0071 -0.0060  0.0046 

Fund_#stocks -0.0005*** -0.0003* -0.0002***  -0.0004*** -0.0006*** -0.0007*** 

Fund_Turnover 0.0113***  0.0147**  0.0127***   0.0170***  0.0176***  0.0205*** 

Market return -0.0073*** -0.0064***  0.0011  -0.0059** -0.0074** -0.0067* 

Wald Chi-Squared Test   33.81***  55.35***  275.47***    36.78***  46.03***  64.43*** 

Sargan Test            89.71  21.21  27.82             25.41  31.80  83.92 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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Table A1. 13 – Learning results in Euro domestic equity mutual funds: deciles 

 

This table presents the results of the Equation 1.14 with the deciles of important trading decisions with the most negative influence on fund performance for all the domestic 

equity mutual funds across our sample period from January 2000 to March 2014. The learning results are divided into buys and sells after considering different time horizons 

to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent variable % Important errorsi,t is the percentage of important 

errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time 

horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all 

funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i given that we divided the age of each fund by the average age of all funds included in 

our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is 

the turnover ratio of mutual fund i in year t; and Market returnt is the Ibex-35 total return in year t, we use the Ibex-35 as the benchmark for Euro domestic equity mutual funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0160  0.0196***  0.0075   0.0101**  0.0106**  0.0044*** 

% Important errorst-1  0.0624**  0.0110*  0.0785   0.0638**  0.0367*  0.0683*** 

Time -0.0083** -0.0003** -0.0006**  -0.0005* -0.0002*** -0.0001*** 

Fund_size -0.0006 -0.0022** -0.0018  -0.0013 -0.0015* -0.0009** 

Fund_age  0.0004  0.0048 -0.0030  -0.0007*  0.0006  0.0007 

Fund_#stocks -0.0002** -0.0002*** -0.0008*  -0.0002** -0.0002*** -0.0001*** 

Fund_Turnover  0.0067**  0.0086***  0.0079***   0.0066**  0.0085***  0.0065*** 

Market return -0.0041** -0.0046*** -0.0014*  -0.0044*** -0.0056*** -0.0049*** 

Wald Chi-Squared Test   122.42***  125.45***  132***   126.74***  170.51***  157.21*** 

Sargan Test            95.94  92.88  92.87   95.06  31.53  95.06 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level. 
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Table A1. 14 – Learning results in Euro non-domestic equity mutual funds: deciles 

 

This table presents the results of the Equation 1.14 with the deciles of important trading decisions with the most negative influence on fund performance for all the non-domestic 

equity mutual funds across our sample period from January 2000 to March 2014. The learning results are divided into buys and sells after considering different time horizons 

to compute the subsequent effect of these errors: 3-month alpha, 6-month alpha and 12-month-alpha. The dependent variable % Important errorsi,t is the percentage of important 

errors for fund i in year t. The explanatory variables which are included in this table are: % Important errorsi,t-1 is the 1-year lag of the dependent variable regardless of the time 

horizon computed; Timet ranges from 1 in the first year of our sample period to 15 in the last year; Fund_sizei,t is the TNA of mutual fund i divided by the average TNA of all 

funds included in our sample in year t; Fund_agei,t is the normalised age of mutual fund i given that we divided the age of each fund by the average age of all funds included in 

our sample in year t to avoid correlation problems with the time variable; Fund_#stocksi,t is the number of different stocks held by mutual fund i in year t; Fund_Turnoveri,t is 

the turnover ratio of mutual fund i in year t; and Market returnt is the EuroStoxx-50 total return in year t, we use the EuroStoxx-50 as the benchmark for Euro equity mutual 

funds. 

 

 BUYS  SELLS  

 

Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

 Important errors with 

3-month alpha 

Important errors with 

6-month alpha 

Important errors with 

12-month alpha 

Constant   0.0230***  0.0084***  0.0076**   0.0208***  0.0198*  0.0299*** 

% Important errorst-1  0.0907  0.1313**  0.0474**   0.1011**  0.0338**  0.1430** 

Time -0.0008** -0.0002*** -0.0001***  -0.0005** -0.0008** -0.0004** 

Fund_size -0.0007 -0.0006 -0.0008  -0.0009  0.0036  0.0054 

Fund_age   0.0045 -0.0001*  0.0004  -0.0003 -0.0005 -0.0009 

Fund_#stocks -0.0004*** -0.0048*** -0.0001**  -0.0003*** -0.0002** -0.0004*** 

Fund_Turnover  0.0152***  0.0006***  0.0056***   0.0082***  0.0216***  0.0089*** 

Market return -0.0080*** -0.0018 -0.0004  -0.0044*** -0.0122*** -0.0064*** 

Wald Chi-Squared Test   146.88***  213.13***  169.70***   33.40***  44.78***  142.86*** 

Sargan Test            19.49  27.61  119.92   21.28  97.05  29.23 
*** Significance at 1% level; ** significance at 5% level; * significance at 10% level.
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CHAPTER 2: 

 

DIVERSIFICATION AND MANAGER 

AUTONOMY IN FUND FAMILIES: 

IMPLICATIONS FOR INVESTORS 
 

 

      -Autonomy is a requirement for effectiveness-  

Jack Lang 

 

 

Synopsis 

 

This chapter aims to investigate the consequences for investors of investing in 

a single fund family. In essence, we focus on the correlation among portfolio 

holdings of funds with effects in terms of under-diversification for mutual fund 

investors, especially, if they invest in the same fund family. We also explore 

the fund manager autonomy in portfolio holding allocation within families and 

determine the characteristics of those fund families with higher autonomy. Our 

results show that a higher correlation among funds not only implies that families 

offer a lower diversification to investors; it also has a negative effect on their 

performance. However, investors’ performance benefits from a higher manager 

autonomy. Consequently, investors who select a single fund family could obtain 

higher returns in smaller fund families with considerable experience that do not 

belong to a banking or insurance group, as in the former, diversification and 

manager autonomy are higher. 
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2.1 Introduction 
 

The development of the mutual fund industry has resulted in a large number of individual 

investors who participate in financial markets, delegating their portfolio management to 

fund managers who have become the main type of institutional investors (Chen and Qin, 

2017). This is demonstrated by the €15.6 billion of Net Assets managed by 60,000 funds 

in the European Mutual Fund Industry (European Fund and Asset Management 

Association, EFAMA, 2018). 

 As documented over the years, portfolio diversification is one of the main benefits 

obtained from mutual funds by unsophisticated investors (Markowitz, 1952; Sharpe, 

1964; Statman, 2004; and Goetzmann and Kumar, 2008, among others). However, 

Moreno and Rodríguez (2013) argue that mutual funds are not always well diversified. 

Therefore, investors should hold more than one mutual fund in order to reduce the 

idiosyncratic risk in a portfolio of funds. 

 In selecting mutual funds, researchers find that individual investors first seem to 

pick a fund family, and then they select the funds in which they invest. This mental 

process implies the concentration of their investments in a single mutual fund family 

(Massa, 2003). In order to reinforce the idea of investment in a single fund family, Gerken 

et al. (2018) find that investors who have previously invested in a particular family are 

significantly more likely to choose a fund from that same family when they decide to 

invest in mutual funds again. This can be explained by the fact that investors are able to 

move their money in and out of funds within a family at a lower cost (Clare et al., 2014). 

Therefore, as shown in literature, when building their diversified portfolio of funds, 

investors seem to pick funds within fund family they are familiar with. 

 Deepening into the behaviour of fund families, Elton et al. (2007) find that mutual 

fund returns within a family tend to be highly correlated, and they argue that the increased 
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correlation is primarily due to common stocks in portfolio holdings. Chen et al. (2004) 

also show that the fund performance is related to the fund family. According to Elton et 

al. (2007), fund managers within the same family have access to the same information, 

both external and internal research analyses, what results in similar portfolio holdings. In 

addition, the potential existence of guidelines from the family’s top-management (i.e. 

investment directors) also generates similar portfolios and implies a reduction of the 

autonomy of managers (Kacperczyk and Seru, 2012). 

 In line with prior research, the main objective of this chapter is to further 

investigate investors’ diversification and the implications in terms of performance of 

diversifying within a fund family or across families. As opposed to previous literature, 

we do not only study whether the funds which belong to the same family are more 

correlated than funds in different families, we examine the characteristics of the most 

correlated fund pairs. The reason behind this analysis is that there may be funds with 

different characteristics such as size, age, number of stocks in the portfolio and fees within 

a fund family, which could affect the similarity level among them. In addition, our aim is 

to study whether the level of diversification between funds is significantly higher in some 

families than in others and the characteristics of these more diversified families. 

Therefore, we identify families in which investors would be less affected by under-

diversification, if they decided to concentrate their funds in the same family. In addition, 

we evaluate the influence of diversification and fund manager autonomy in a family on 

the returns of an investor who selects this family. 

 Focusing on the decision-making process of mutual funds, fund manager 

decisions are influenced by both, the personal characteristics of managers and the external 

factors. The former include their past experience (Menkhoff et al., 2006; Kempf et al., 

2017), their cognitive bias (Cuthbertson et al., 2016), their own intuition (Brown and 
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Davies, 2017) and their level of familiarity with the stocks (Pool et al., 2012; 2015), 

among others. Some example of external factors are analyst recommendations (Brown et 

al., 2014), competition or co-operation with other managers (Kempf and Ruenzi, 2008; 

Simutin, 2013; Evans et al., 2020); the family management strategy, which may involve 

a centralised or decentralised decision making process (Kacperczyk and Seru, 2012). 

 Apart from the above mentioned factors, managers in the same family may also 

have some common features that lead managers to hold more similar portfolio holdings 

than managers of different families. In this line, Sevcenko and Ethiraj (2018) also suggest 

that the existence of a monitoring relationship in the mutual fund companies allows new 

managers to know the company-specific skills.  

 Concerning the level of portfolio holding differentiation between funds within a 

family, previous literature reveals different positions. Some authors provide evidence of 

fund decisions’ coordination within families allows to take advantage of the family 

resources and maximise its value (Khorana and Servaes, 2004; Elton et al., 2007; Evans 

et al., 2020). Gerken et al. (2018) also document the high importance of family reputation 

when investors select a family that is determined by the performance of all the funds 

within a family. In addition, Casavecchia and Ge (2019) note that fund managers who are 

part of families with a higher level of specialisation possess better stock-picking skills. 

However, Massa (2003) and Khorana and Servaes (2012) note that it is important that 

investors perceive each fund as a differentiated product for families to increase their 

family market share. In this line, Mamaysky and Spiegel (2002) consider that individual 

investors take advantage of research relating to the family when the portfolio of new funds 

differ as much as possible from existing funds in the fund family. 

 Although considerable effort has been devoted to examining the portfolio 

differentiation within families and its influence on the family market share, the economic 
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and diversification implications for fund investors that concentrate their investment in 

one fund family remain more unknown.  

 This chapter analyses Euro equity mutual funds from December 1999 to June 2018 

in the Spanish mutual fund market, contributing to the literature on several aspects. 

Firstly, we analyse the correlation between portfolio holdings within the same family and 

between different families in order to conclude the diversification implications for 

investors who concentrate all of their fund investments in a single family. We address this 

correlation with the portfolio overlap measure. Our hypothesis is based on the idea that 

the higher the level of portfolio overlap between two funds, the higher the correlation 

between both funds and the lower the level of diversification for an investor who decides 

to invest in those two funds. We confirm a higher fund overlap within a family as 

documented in Elton et al. (2007). Therefore, individual investors can achieve better 

diversification if they do not focus on a single family and distribute their fund investments 

across different families. We also identify the characteristics of fund pairs with a high 

correlation. 

 Secondly, the chapter analyses the characteristics of families with a lower 

potential diversification for investors due to a higher correlation between the portfolio 

holdings of their funds. The type of fund family may also play an important role due to 

the high degree of concentration in the Spanish mutual fund market and the existence of 

a higher number of bank-owned fund management companies than in other European 

markets (EFAMA, 2018b). We find that larger families, which belong to a banking group 

and which do not have a considerable experience in the mutual fund market, show the 

highest portfolio overlap. Nevertheless, we do not only investigate the characteristics of 

the fund families with the highest portfolio overlap, we also deepen in the analysis of the 

autonomy in portfolio holding allocations of stock sectors within families. We propose a 
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measure to examine the autonomy in stock-picking on a twofold approach, depending on 

whether the general investment outline corresponds to the whole fund sample or to each 

fund family. Our results show that the autonomy in portfolio allocations of stock sectors 

is higher in smaller fund families with wider experience that do not belong to a banking 

group. 

 Thirdly, we study whether the similitude of portfolio holdings within family and 

thereby whether the family diversification, as well as manager autonomy within families 

is a determinant of the performance of investors who select a single family for all their 

fund investments. We find that a higher diversification and a higher autonomy of 

managers within families are positive factors for investors’ performance. 

 Therefore, the findings seem to reveal that investors who concentrate all funds in 

the same family could obtain higher returns in smaller fund families with wide experience 

that do not belong to a banking group, because in these families the diversification and 

manager autonomy are higher. These results have a relevant economic and social impact 

in the Spanish fund industry due to the high concentration and the high dependence on 

the banking sector (Ferreira and Ramos, 2009; Ferreira et al., 2013). Note that individual 

investors delegate more than 40% of investment money to the five largest fund families 

that belong to banking groups. Hence, the savings of a large proportion of Spanish 

investors depend on the efficiency of these families. 

The findings of this study also have several implications for fund managers and 

fund families. Managers who work in management companies with a lower level of 

manager’s autonomy in decision-making are less likely to stand out from others in this 

same company and therefore this limits their probability of promotion. Our study is also 

of interest for fund families because of the relation between past performance and future 

fund flows (Sirri and Tufano, 1998). In addition, this study is interesting for financial 
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supervisors to guide their supervision towards the insurance of investor protection and 

the efficiency of the market. According to Delpini et al. (2019; 2020), a high similarity 

among mutual funds is a sign of an industry with a high systemic risk and fragility, and 

consequently, a high possibility of contagion and propagation of the market shocks. 

 The remainder of this chapter is organised as follows. Section 2 describes the data. 

Section 3 presents the results of the portfolio overlap of fund pairs. Section 4 presents the 

results of the portfolio overlap within a fund family. Section 5 presents the results on the 

fund manager autonomy in the portfolio allocation. Section 6 presents the influence of 

portfolio overlap and fund manager autonomy on the individual investors’ returns. 

Section 7 concludes. 

 

2.2 Data and methodology 

 

2.2.1 Data 

We study the correlation of portfolio holdings between fund pairs in the same family and 

different families and its influence on individual investors’ performance and 

diversification in the Spanish equity mutual fund industry from December 1999 to June 

2018. The review of previous literature reveals that there are several authors who have 

studied holdings concentration. Elton et al. (2007) examine the extent of overlap in stock 

holdings for US mutual funds from 1998 to 2002 and Pool et al. (2015) study portfolio 

overlap of actively managed US equity funds whose managers live in the same city from 

1996 to 2010. More recently, Evans et al. (2020) study common ownership/portfolio 

overlap in US mutual funds over the 1990-2015 period.  

 Our chapter evaluates the extent of overlap between fund portfolio holdings in the 

Spanish Euro equity official category. The Spanish Securities Exchange Commissions 

(CNMV) establishes a classification of mutual funds according to the types of assets 
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included in the portfolios. Euro equity funds must invest more than 75% of their portfolio 

holdings in equities, and at least 60% of the total equity exposure must be issued by 

companies of the Euro area. Our sample is free of survivorship bias as it includes both, 

funds that have already disappeared and surviving funds. ETFs, index funds and funds 

with less than two years of data were excluded. In addition, we also control the mergers 

and acquisitions of fund and fund families as well as when one fund becomes managed 

by another different family. Our final sample includes 276 Euro equity mutual funds 

managed by 108 management companies (that is fund families), of which 63 companies 

manage more than one fund.  

 The monthly portfolio holdings of mutual funds included in our sample were 

obtained from the CNMV and Morningstar. The former provided monthly portfolio from 

1999 to 2006 for research purposes. After 2006, CNMV provides quarterly holdings. 

Therefore, we complete these official reports with monthly information from Morningstar 

when it is available. We match both databases using the ISIN code of mutual funds and 

stocks and analyse a total of 24,561 portfolio holdings. 

 CNMV also provides information about the characteristics of mutual funds and of 

fund families such as the inception date of funds, the fees, the monthly past annual gross 

and net return, and the fund family to which they belong. We also obtain the monthly size 

of each fund family as the sum of the total net assets of all fund categories within the 

family in the industry. Additionally, based on its governance structure, we distinguish 

between fund families that depend on a banking or insurance company (named as banking 

group for brevity reasons hereafter) or not (independent fund families). Finally, stock 

information is obtained from Datastream. 
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Table 2. 1 – Summary Statistics of the sample 
 

Panel A and Panel B report summary statistics of the mutual fund sample and fund families, respectively at four 

date points: Dec1999, Dec2005, Dec2011 and Jun2018. Panel C reports the average summary statistics of funds 

by the largest families (Families_Q1) and the smallest families (Families_Q5) at these four date points. #Funds 

is the number of funds in our sample. Fund_size is the monthly total net assets of funds in million euros. 

Fund_age is the age of funds in years from its inception date. Fund_#stocks is the number of stocks in portfolio 

holdings. Fund_fees is the management and deposit fee. Fund_return is the annual past gross return. #Families 

is the number of fund families in our sample, we distinguish between families that belong to a banking or 

insurance group (banking-families) and families that are independent (independent-families). Family_size is the 

monthly total net assets of all funds managed by fund families in the Spanish industry in million euros. 

Family_EuroEquity is the monthly total net assets managed by families in the euro equity category in million 

euros. Family_age is the age of fund families in years, obtained from the inception date of the oldest fund in the 

family. HHI is the normalised Herfindahl–Hirschman Index that ranges from 0 to 1. CR-4 index is the market 

share percentage of the four largest families.  
 

 Dec1999 Dec2005 Dec2011 Jun2018 
Panel A: Summary statistics of the mutual fund sample 

Dec1999 

Dec2005 

Dec2011 

Jun2018 

#Funds 139 165 126 89 

Fund_size                                               Mean 84.68 76.78 35.01 148.63 

Q1 116.56 102.58 36.00 180.92 

Q5 7.68 8.88 4.78 18.68 

Fund_age                                               Mean 4.14 8.04 13.15 17.77 

Q1 8.38 11.66 17.50 24.00 

Q5 1.32 4.53 8.79 12.64 

Fund_#stocks                                         Mean 49.71 47.30 42.89 48.30 

Q1 59.00 57.00 53.00 58.00 

Q5 34.00 35.00 32.00 34.00 

Fund_fees                                               Mean 0.17% 0.15% 0.16% 0.15% 

Q1 0.21% 0.19% 0.19% 0.18% 

Q5 0.12% 0.12% 0.14% 0.12% 

Fund_return                                           Mean 10.78% 24.52% -14.84% 3.95% 

Q1 15.81% 27.06% -12.06% 8.37% 

Q5 3.47% 21.59% -17.31% -0.97% 

Panel B: Summary statistics of the fund family sample 
#Families 72 69 56 51 

#Banking families 59 (81.94%) 56 (81.16%) 45 (80.36%) 36 (70.59%) 

#Independent families 13 (18.06%) 13 (18.84%) 11 (19.64%) 15 (29.41%) 

Family_size                                            Mean 1,947.82 2,858.46 2,283.66 5,167.97 

Q1 1,709.23 2,226.71 2,641.46 4,951.42 

Q5 81.36 9.88 5.78 19.68 

HHI 0.1453 0.1015 0.0810 0.0895 

CR-4 56.49% 54.40% 54.26% 52.93% 

Family_EuroEquity                                Mean 163.48 183.59 78.77 259.38 

Q1 126.30 195.06 77.28 259.87 

Q5 7.72 10.65 8.69 18.21 

HHI 0.1200 0.0762 0.1409 0.1065 

CR-4 55.91% 46.83% 58.18% 54.82% 

Family_age                                            Mean 9.40 15.88 21.13 26.88 

Q1  12.07 18.87 25.53 31.58 

Q5 8.34 14.28 20.19 25.29 

Panel C: Summary statistics of mutual funds by family 
Average Fund_size                     Families_Q1 156.79 157.29 66.21 376.50 

Families_Q5 13.48 25.36 14.64 30.43 

Average Fund_age                     Families_Q1 4.66 6.62 14.96 21.73 

   Families_Q5 4.18 7.92 12.53 14.93 

Average Fund_#stocks               Families_Q1 69.59 51.65 36.31 48.88 

Families_Q5 38.75 41.64 44.76 51.44 

Average Fund_fees                     Families_Q1 0.15% 0.14% 0.17% 0.16% 

Families_Q5 0.16% 0.15% 0.16% 0.14% 

Average Fund_return                 Families_Q1 14.45% 26.84% -18.11% 3.79% 

Families_Q5 4.70% 24.32% -12.58% 3.28% 
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 Panel A of Table 2.1 reports the summary statistics of our fund sample at different 

date points. It is noteworthy that the number of funds decrease over time. According to 

Climent (2013), this effect is related to the severe merging process caused by the strong 

reorganisation of the banking system in the Spanish market in recent years. Focusing on 

the characteristics of funds and families, we observe that the average total net assets of 

funds (Fund_size) is lower in December 2011 with respect to December 2005, which 

comes as no surprise given the global financial crisis. However, the trend of average fund 

size has recovered during the last years, reaching in June 2018 higher average size since 

December 2011. This recovery may be encouraged by low interest rates offered by bank 

deposits that have been replaced by mutual funds for many investors in recent years and 

the increase in investors’ confidence in professional investment advice.  

 The value of monthly fees shown in Table 2.1 does not undergo a significant 

change and the average number of stocks decreases slightly. Based on the past 12-month 

gross return, we can see that it is lower in December 2011 due to the economic crisis 

compared to the other three date points. 

 Panel B of Table 2.1 reports the summary statistics of the fund families in our 

sample. In line with the evolution of the number of funds, we also observe a negative 

pattern in the number of fund families. In addition, although the percentages of banking 

families that belong to a banking or insurance group is noteworthy higher, the weight of 

independent families increases slightly over the sample period, from 18.06% in December 

1999 to 29.41% in June 2018. With respect to the concentration level, Panel B shows that 

the market share percentage of the four largest families is around 50% throughout the 

whole sample period, both considering the total assets in the industry and the assets within 

the Euro equity category of our sample. Hence, our sample is representative of the 

Spanish mutual fund industry. In addition, the normalised Herfindahl–Hirschman index 
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(HHI) values of our study are similar to what is shown by Ferreira and Ramos (2009), 

who examine mutual fund industry competition and concentration in 27 countries. These 

authors report that the HHI in the European markets ranges from 0.04 to 0.219. The 

Spanish industry has a higher HHI with respect to other European markets such as U.K 

(0.040), France (0.066); Italy (0.069) and Germany (0.071). 

 Panel C of Table 2.1 shows that the average size and the average age of funds is 

remarkably higher within the largest families than within the smallest families. However, 

the differences are small in terms of the fees and past returns. Regarding to the number 

of stocks held in portfolio holdings, funds managed by the largest families seem to be 

more diversified in the early years of the sample period, however, both in December 2011 

and June 2018, the diversification level is higher in the portfolio holding within the 

smallest families. 

 

2.2.2 Methodology 

The first objective of the chapter is to analyse the correlation between two funds within 

the same family and the correlation across families and hence, investor diversification. 

We approach this correlation as the portfolio overlap between fund pairs. According to 

Elton et al. (2007) and Pool et al. (2015), we measure the pairwise overlap as the sum of 

minimum fraction in each stock k held by both funds in month t.14 

Portfolio overlap
i,j,t

 = ∑ min(wi,k,t; wj,k,t) x 100kєΨi,j,t
        (2.1) 

where Portfolio overlapi,j,t is the portfolio overlap between funds i and j in month t. wi,k,t 

is the portfolio weight of stock k in the fund i in month t. wj,k,t is the portfolio weight of 

stock k in the fund j in month t. Ψi,j,t is the set of all stocks held by fund i and fund j in 

                                                           
14 For robustness purposes, we also obtain the portfolio overlap according to the measure used in Delpini 

et al. (2019) and Fricke and Fricke (2021), see Appendix 2.1 for more details. 
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month t. The higher the portfolio overlap between two funds, the higher the correlation 

between two funds and the lower the diversification level for an investor who decides to 

invest in those two funds. 

 We also obtain the correlation between two funds at the industry and sector levels. 

Every stock is classified by sector and by industry according to FTSE Russel Industry 

Classification Benchmark (ICB) obtained from Datastream. To measure the portfolio 

overlap at the sector or at the industry levels, in Equation 2.1 k becomes the sector or the 

industry. 

 

2.3 Resemblance of fund portfolio holdings 
 

Panel A of Table 2.2 reports that the average portfolio overlap at stock level between any 

two funds in the sample is 30.50% during the sample period. Similarly, Elton et al. (2007) 

find that up to 34% of total net assets are held in common stocks for funds with the same 

investment objective. However, we observe that the annual average portfolio overlap 

decreases from 32.17% to 23.20% during the sample period. Regarding the sector and 

industry levels, Table 2.2 also reveals that the average overlaps are 58.89% and 66.14%, 

respectively, which as expected, are considerably higher than at the stock level. The 

results reveal a decrease in the average portfolio overlap that is lower at the sector and 

industry levels than at the stock level.15  

  

                                                           
15 The annual results of portfolio overlap at the sector and at the industry levels are in Appendix 2.2. 
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Table 2. 2 – Overall results of the portfolio overlap at the fund pair level 

 

Panel A, Panel B and Panel C report the results of portfolio overlap at the stock level, at the sector level 

and at the industry level, respectively. This table shows, for each year, the overall average portfolio overlap 

and the number of fund pairs within the same fund family and the number of fund pairs in different families, 

as well as their average overlap. In this table, we present a yearly report of the number of funds during the 

sample period, unlike in Table 2.1 where we present the total number only at three specific points during 

the sample period. The last column shows the results of the mean difference test between both specific 

averages with the p-value in parentheses. We apply the mean difference test for unpaired samples with 

different variance (in all cases the null hypothesis is rejected in the test of equal variance).16 In all columns, 

the annual average is obtained with the monthly portfolio overlap data. The study period starts in December 

1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, 

respectively. 

 

Panel A: Stock 

Year 

 

Portfolio 

overlap 

 

#fund pairs 

(same fund 

family) 

#fund pairs 

(different 

fund family) 

Portfolio 

overlap 

(same fund 

family) 

Portfolio 

overlap 

(different 

fund family) 

Mean-difference 

test 

2000 32.17% 282 11,520 44.35% 31.88% 12.47%***  (0.000) 

2001 30.95% 341 13,827 37.98% 30.76% 7.22%***   (0.000) 

2002 30.20% 354 14,261 36.73% 30.05% 6.68%***    (0.000) 

2003 32.23% 340 15,175 39.02% 32.08% 6.93%***    (0.000) 

2004 33.57% 337 13,592 41.54% 33.37%  8.17%***    (0.000) 

2005 33.07% 391 14,415 40.21% 32.87% 7.34%***     (0.000) 

2006 31.27% 421 15,621 37.18% 31.11% 6.07%***     (0.000) 

2007 29.27% 474 16,648 35.43% 29.03% 6.40%***     (0.000) 

2008 30.70% 468 16,032 35.22% 30.49% 4.73%***     (0.000) 

2009 29.27% 422 14,054 35.64% 29.02% 6.61%***     (0.000) 

2010 27.61% 255 10,917 34.46% 27.39% 7.06%***     (0.000) 

2011 27.74% 236 9,864 34.92% 27.53% 7.39%***     (0.000) 

2012 26.86% 193 7,712 34.51% 26.64% 7.88%***     (0.000) 

2013 26.14% 166 6,289 33.09% 25.95% 7.14%***     (0.000) 

2014 26.57% 97 4,619 31.79% 26.45% 5.33%***     (0.000) 

2015 27.05% 104 5,203 31.79% 26.93% 4.85%***     (0.000) 

2016 25.10% 93 4,737 27.66% 25.04% 2.61%***     (0.000) 

2017 23.12% 75 4,260 28.71% 22.96% 5.75%***     (0.000) 

2018 23.20% 65 4,061 28.73% 23.08% 5.65%***     (0.000) 

Dec1999-Jun2018 30.50% 994 32,982 37.36% 30.31% 7.05%***     (0.000) 

 
Panel B: Sector 

Dec1999-Jun2018 58.89% 994 32,982 64.18% 58.75% 5.43%***     (0.000) 

 
Panel C: Industry 

Dec1999-Jun2018 66.14% 994 32,982 70.92% 66.61% 4.91%***    (0.000) 

  

                                                           
16 For robustness purposes, we also apply the Kruskal-Wallis nonparametric test to examine the existence 

of differences between the portfolio overlap of fund pairs from the same family and from different families. 

The statistical significance of the results is the same. Note that this test has also been applied in Tables 2.4 

and 2.6. 
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 Following Elton et al. (2007), we differentiate between the fund pairs where both 

funds belong to the same management company (that is in the same fund family) and the 

fund pairs in different families. These authors initially argue two positions. On the one 

hand, they consider that the portfolio overlap of fund pairs in the same family could be 

lower than across families, suggesting that a fund family has incentives to offer non-

correlated portfolio holdings to prevent investors from going outside of the family to seek 

a higher diversification between funds, following Khorana and Servaes (2004). On the 

other hand, Elton et al. (2007) also contemplate that there are reasons to expect that the 

portfolio overlap may be higher within fund families than outside of them due to the 

access to the same information or the extent of a family management strategy. Similarly, 

Chen et al. (2004) and Cici et al. (2018) show that most mutual funds operate as part of 

fund families; the latter make strategic decisions that have an influence on the operation 

and performance of their funds.  

 We analyse 994 fund pairs with 167,848 portfolio overlap observations where 

both funds are in the same fund family and 32,982 fund pairs with 1,549,658 portfolio 

overlap observations where both funds are in different fund families. We compare the 

portfolio overlap between both groups and our first null hypothesis tested is: 

2.1H0: There are no significant differences between the portfolio overlap of fund pairs 

within the same fund family and fund pairs in different families. 

 Table 2.2 shows that, from December 1999 to June 2018, the average portfolio 

overlap of fund pairs within the same fund family and the average of fund pairs in 

different families at stock level are 37.36% and 30.31%, respectively. This finding reveals 

a difference between both groups equal to 7.05%, which is statistically significant at the 

1% level. This finding is consistent with financial literature (Elton et al., 2007; Pool et 

al., 2015). We also find a statistically significant difference between the overlap of fund 
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pairs within the same family and the overlap of fund pairs in different families when we 

measure the overlap at sector and industry levels. The results obtained when focusing on 

the industry and the sector increase the robustness of our conclusions, given that by using 

the stock for stock comparison, we omit a potential overlap in sector or industry that can 

occur when stocks are different.  

 We apply a panel data model to determine the characteristics of fund pairs with 

higher portfolio overlap at the stock level. Specifically, we estimate the following random 

effects (RE) model according to the result of Hausman test.  

 Portfolio overlap
i,j,t

 =  f (Fund_size
i,j,t

; Fund_age
i,j,t

; Fund_#stocks
i,j,t

;  

        Fund_fees
i,j,t

;  Fund_return
i,j,t

;  Fund_family
i,j,t

;  

        Timet;  εi,j,t)          (2.2) 

where the dependent variable is the Portfolio overlap
i,j,t 

between funds i and j in month t 

at the stock level and the independent variables are dummy variables. In order to define 

these dummy variables, we calculate the percentile rank of each characteristic for all the 

funds in our sample every month t (Fund_size; Fund_age; Fund_#stocks; Fund_fees; 

Fund_return), and we determine the quintile into which funds i and j are. For each 

characteristic, we include four dummy variables: Same takes a value equal to 1 when, in 

month t, funds i and j are in the same quintile and 0 otherwise. BothQ1 takes a value equal 

to 1 when, in month t, funds i and j are in the top quintile. BothQ5 takes a value equal to 

1 when, in month t, funds i and j are in the bottom quintile. Opposite is equal to 1 when 

in month t, either fund i or fund j is in the top quintile and in the other is in the bottom 

quintile. As a robustness test for the results in Table 2.2, the model also controls for 

whether or not a pair of funds belong to the same fund family. Fund_family
i,j,t

 is equal to 

1 when funds i and j in month t are in the same fund family and 0, otherwise. In addition, 
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we include the Timet variable in order to test the pattern of the portfolio overlap over time. 

Timet ranges from 1 in the first month to 223 in the last month. 

 Fund_size: is measured as the total net assets. According to Kacperczyk and Seru 

(2007), larger funds enjoy a greater reputation and pay higher wages, employing 

managers who are more skilled. Therefore, our hypothesis is based on the idea that 

managers of larger funds may have common information because they have more 

resources to access this information, and consequently, the portfolio overlap would be 

higher in fund pairs where both funds are among the largest. 

 Fund_age: is determined from mutual fund inception. Some authors argue that 

young funds are at a disadvantage as they might suffer from lack of market experience 

(Agnesens, 2013; Ben and Hellara, 2011). Chevalier and Ellison (1997) show that young 

funds behave differently from old funds with respect to the flow-performance 

relationship. Thus, the incentives of fund manager to alter the riskiness of portfolio is also 

different in both fund groups. In this line, we suggest that the fund age may influence the 

investment style and the management decisions by mutual fund managers. 

 Fund_fees: we include the management and the deposit fees of each fund. 

According to the previous literature, the effect of fund fees on managerial ability and fund 

behaviour is not clear. Prather et al. (2004) find a positive impact of fees on performance 

if these expenses are to support research. Gil-Bazo and Ruiz-Verdú (2009) find that fund 

performance worsens with increasing fund management fees, while Chen et al. (2004) 

argue that there is no relationship between management fees and fund performance. We 

suggest that fund fees may be related to a greater research effort and, therefore, managers 

of funds with higher fees have a higher level of information that leads them to make 

similar decisions in their portfolio holdings. 
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 Fund_#stocks: we obtain the number of stocks from portfolio holdings. Our 

intuition is based on the idea that the similarity of number of stocks held may be related 

to the portfolio overlap in a fund pair. Kacperczyk et al. (2005) find that managers of 

more diversified funds (that is with higher number of different stocks) hold a portfolio 

that closely resembles the total market portfolio. However, concentrated funds, which are 

the funds with a lower number of stocks, follow distinct investment styles. In accordance 

with these authors, we think that the portfolio overlap may be higher for the fund pairs in 

which both funds have a high number of stocks. 

 Fund_return: is the past annual gross return. Previous literature has documented 

that fund managers may have different reactions to extreme results of funds. On the one 

hand, managers of funds with a high past performance, may close positions influenced by 

the disposition effect (Cici, 2012). On the other hand, managers of funds that show the 

lowest past return may start to make different decisions or may follow a strategy of risk 

shifting based on a desire to improve their outcome in order to avoid withdrawals of funds 

by investors (Chen et al., 2010) because their reputations and salaries may depend on their 

performance record (Massa et al., 2009). However, others may continue to make similar 

decisions influenced by their cognitive biases or top-management strategies. In addition, 

the top-management could replace these managers, given that there is an inverse 

relationship between the likelihood of managerial replacement and past fund performance 

(Khorana, 1996). 

 Time: we include this variable because the Spanish mutual fund industry has 

suffered important structural changes due to the intense restructuring process of the 

financial sector in recent years. Therefore, we could expect that these structural changes 

have been able to influence the portfolio overlap pattern.  
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Table 2. 3 – Portfolio overlap and characteristics of mutual funds 

 

This table shows the results obtained by estimating Equation 2.2 using RE with robust standard errors, 

which is supported by the Hausman test, from December 1999 to June 2018. Where the dependent variable 

is the Portfolio Overlap
i,j,t 

at the stock level and the independent variables are dummy variables. We 

calculate the percentile rank of each fund-month in each characteristic (Fund_size, Fund_age, 

Fund_#stocks, Fund_fees and Fund_return) and we determine the quintile into which mutual funds are. 

For these characteristics, the model includes four dummy variables: Same takes a value equal to 1 when 

fund i and j in month t are in the same quintile; BothQ1 takes a value equal to 1 when funds i and j in month 

t are in the top quintile; BothQ5 takes a value equal to 1 when fund i and j in month t are in the bottom 

quintile; Opposite is equal to 1 when in month t, either fund i or fund j is in the top quintile and in the other 

is in the bottom quintile; Fund_family
i,j,t

 is equal to 1 when, in month t, funds i and j are in the same family; 

and Timet ranges from 1 in the first month to 223 in the last month. The p-value is reported in parentheses. 
***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

 Coefficient  
Constant  0.309***   (0.000) 

 

Fund_size 

Same    -0.001       (0.432) 

BothQ1  0.021***   (0.000) 

BothQ5   -0.010***   (0.000) 

Opposite   -0.002**    (0.027) 

 

Fund_age 

Same  0.005***   (0.000) 

BothQ1   -0.015***   (0.005) 

BothQ5 -0.031***   (0.000) 

Opposite  0.000       (0.666) 

  

Fund_#stocks 

Same  0.012***   (0.000) 

BothQ1  0.009***   (0.000) 

BothQ5 -0.021***   (0.000) 

Opposite -0.016***   (0.000) 

 

Fund_fees 

Same  0.010***    (0.000) 

BothQ1  0.015***     (0.000) 

BothQ5 -0.008***   (0.000) 

Opposite  0.000       (0.784) 

 

Fund_return 

Same  0.010***     (0.000) 

BothQ1 -0.009***   (0.000) 

BothQ5 -0.001       (0.279) 

Opposite -0.010***    (0.000) 

Fund_family  0.068***      (0.000) 

Time -0.003***      (0.000) 

#Observations 1,374,463 

Wald 2,241.69*** (0.000) 

R-squared 6.22% 

VIF 1.23 

 

 

 Table 2.3 shows the results of Equation 2.2.17 The coefficient of the dummy 

variable Fund_family is positive and statistically significant; this result gives robustness 

                                                           
17 In order to deal with possible endogeneity concerns, we also define Equations 2.2, 2.4 and 2.10 with 

independent variables lagged by one month. The results obtained are robust and are in Appendix 2.3. 
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to the finding of Table 2.2, showing that the portfolio overlap is higher for fund pairs 

within the same family than for fund pairs in different families. This result is in line with 

the findings of Elton et al. (2007) and Pool et al. (2015) who argue that this is due to 

shared analysts and other shared stock-selection resources. Regarding the Time variable, 

the results provide evidence on a significantly negative pattern over time. This finding 

corroborates the decrease of the average portfolio overlap shown in Table 2.2. 

 Focusing on the fund characteristics, we find that when two funds have very 

different sizes, or both are among the smallest funds; their portfolio overlap is 

significantly lower. In this line, Pool et al. (2015) also find that the overlap between funds 

that have different sizes is lower, statistically significant at the 1% level. However, we 

also find that in a pair where both funds are the largest, the portfolio overlap is 

significantly higher. These results are in line with our hypothesis that managers of large 

funds may have common skills and access to a common higher level of information. 

 According to the age variable, we find a significantly lower portfolio overlap 

amongst fund pairs in which both funds have very different ages. These results are in line 

with our hypothesis that fund managers alter the riskiness of portfolio holdings at different 

levels depending on the fund age. We also find that portfolio overlap is significantly 

higher in fund pairs with similar ages, but when these funds are not amongst neither the 

youngest nor the oldest funds. The oldest funds, which have sufficient experience in the 

market, could develop their own portfolio holding strategy allocation. While the youngest 

funds, which face the challenge of getting market share, have incentives to offer 

differentiated portfolios as much as possible from those existing funds according to 

Mamaysky and Spiegel (2002) and Khorana and Servaes (2012). 

 Table 2.3 also shows that the portfolio overlap is significantly higher (lower) in 

fund pairs that have the highest (lowest) number of stocks held in portfolio holdings and 
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the highest (lowest) fees. With regard to the number of stocks variable, the result is line 

with the conclusion of Kacperczyk et al. (2005) who argue that managers of more 

diversified funds hold portfolios that look like the total market portfolio and more 

concentrated funds follow distinct investment styles.  

 With respect to the fees variable, the results could be explained by the relationship 

between fund fees and a greater research effort. Thus, managers of funds with higher fees 

have a higher level of matching information that leads them to make similar decisions. 

 In relation to the past annual gross return, we find that the portfolio overlap is 

higher in fund pairs that have similar past annual gross returns, but we do not observe this 

result in cases where fund pairs have the highest or lowest past annual gross return. These 

results confirm our hypothesis that fund managers' reactions to an extreme performance 

may be different and consequently, the portfolio overlap between their funds is lower. 

 

2.4 Portfolio overlap across families and its determinants 
 

Our results show a higher correlation between fund pairs within the same family. In this 

section, we focus on portfolio holding similarities within a fund family. Previous 

literature reveals evidence that the top-management strategies are not the same in all 

families, thus, we may think that neither is the correlation between their funds. Evans et 

al. (2020) contribute to the literature on heterogeneity in management strategies between 

families, reconciling evidence of the coexistence of cooperative families and competitive 

families in the US mutual fund industry. In this line, we examine whether there are 

families that have a significantly higher portfolio overlap between their funds in order to 

study the existence of heterogeneity between families regarding the family portfolio 

overlap. Therefore, in this section, we test the following null hypothesis: 
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2.2H0: There are no significant differences between the portfolio overlap of different fund 

families. 

 We calculate the monthly family portfolio overlap as the average portfolio overlap 

of fund pairs within this fund family. 

  Family portfolio overlap
f,t

 =  Portfolio Overlap
i,j,t

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ x 100         (2.3) 

where Family portfolio overlap
f,t

 is the portfolio overlap within fund family f in month t. 

Portfolio Overlap
i,j,t

 is the portfolio overlap between funds i and j in month t when both 

funds belong to the same fund family f. 

 Table 2.4 shows that the average family portfolio overlap in the Spanish industry 

is equal to 33.31% at the stock level and it is 62.46% and 70.70% at the sector and industry 

levels, respectively.18 The findings also reveal that the family overlap at stock level 

decreases over time. We also obtain the family overlap weighted by the total net assets in 

Euro equity category and the family overlap weighted by the number of funds managed 

in this category. The findings at stock level show the weighted averages are higher than 

the equal-weighted average overlap which reveals evidence that the largest families with 

the highest number of funds have a higher family portfolio overlap. To test our null 

hypothesis, we split families into terciles according to their family overlap. We find that 

the average family portfolio overlap at stock level of fund families which are in the top 

tercile (T1) and the average of those which are in the bottom tercile (T3) are 55.55% and 

15.67%, respectively, with a difference equal to 39.89% that is statistically significant at 

the 1% level. Therefore, we reject the null hypothesis that all fund families have the same 

portfolio overlap between their funds. We obtain similar results when we measure the 

portfolio overlap at sector and industry levels. 

 

                                                           
18 The annual results of portfolio overlap at the sector and at the industry levels are in Appendix 2.2. 
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Table 2. 4 – Family portfolio overlap 

 

Panel A, Panel B and Panel C report the results of portfolio overlap at the stock level, at the sector level 

and at the industry level, respectively. This table shows the average family portfolio overlap and the average 

family portfolio overlaps weighted by total net assets in Euro equity category and weighted by number of 

Euro equity funds. The average overlap of families that are in the top tercile (T1) and the average overlap 

of families that are in the bottom tercile (T3). The last column shows the result of a mean-difference test 

between T1 and T3 with the p-value in parentheses. We apply the mean-difference test for paired samples. 

In all columns, the annual average is obtained with the monthly portfolio overlap data. The study period 

starts in December 1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, 

and 10% level, respectively. 

 

Panel A: Stock 

Year Family 

Overlap 

Family  

overlap 

(TNA- 

weighted) 

Family 

overlap  

(#funds- 

weighted) 

Family  

Overlap  

(T1) 

Family 

 Overlap  

(T3) 

Mean-difference test 

(T1-T3) 
2000 39.06% 43.67% 41.30% 70.07% 13.50% 56.57%***   (0.000) 

2001 36.59% 39.94% 37.39% 62.98% 15.04% 47.95%***   (0.000) 

2002 34.98% 39.57% 35.64% 62.14% 12.55% 49.59%***   (0.000) 

2003 36.05% 38.35% 36.93% 62.78% 14.78% 48.00%***   (0.000) 

2004 38.13% 40.63% 39.10% 63.20% 18.13% 45.07%***   (0.000) 

2005 34.19% 36.37% 36.78% 55.77% 16.82% 38.95%***   (0.000) 

2006 32.29% 34.19% 34.55% 53.63% 15.19% 38.44%***   (0.000) 

2007 30.71% 31.49% 32.39% 50.77% 15.53% 35.24%***   (0.000) 

2008 30.19% 32.09% 33.66% 51.52% 16.08% 35.44%***   (0.000) 

2009 30.94% 32.86% 33.62% 45.26% 18.65% 26.61%***   (0.000) 

2010 27.73% 32.60% 32.61% 47.89% 19.14% 28.75%***   (0.000) 

2011 28.18% 32.58% 34.41% 50.34% 19.95% 30.39%***   (0.000) 

2012 32.88% 31.06% 33.08% 47.21% 16.81% 30.40%***   (0.000) 

2013 37.19% 31.45% 32.11% 47.55% 15.80% 31.75%***   (0.000) 

2014 35.47% 31.34% 30.92% 48.45% 15.10% 33.36%***   (0.000) 

2015 35.23% 32.84% 31.21% 52.22% 15.14% 37.08%***   (0.000) 

2016 38.12% 30.65% 27.57% 48.59% 14.20% 34.39%***   (0.000) 

2017 35.49% 31.86% 28.30% 50.26% 13.71% 36.55%***   (0.000) 

2018 33.83% 30.62% 28.63% 50.26% 13.97% 36.29%***   (0.000) 

Dec1999-Jun2018 33.31% 34.57% 33.87% 55.55% 15.67% 39.89%***   (0.000) 

       

Panel B: Sector 

Dec1999-Jun2018 62.46% 61.61% 62.73% 76.79% 49.63% 27.17%***  (0.000) 

       

Panel C: Industry 

Dec1999-Jun2018 70.70% 69.84% 70.73% 83.52% 58.20% 25.32%***  (0.000) 
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 Once we find that there are families with a significantly higher portfolio overlap, 

we apply a panel data model to examine the family characteristics that enhance portfolio 

overlap.19 

 Family portfolio overlap
f,t

 =  f (Bankf,t; Family_size
f,t

; Family_age
f,t

;  

        Family_%EuroEquity
f,t

;  εf,t)      (2.4) 

where Family portfolio overlap
f,t

 is the portfolio overlap within fund family f in month t 

at stock level. Bankf,t takes a value equal to 1 when a fund family depends on a banking 

or insurance company according to its governance structure. Family_size
f,t 

is the log-

normal of total size of fund family f in month t. Family_age
f,t

 is the age of fund family f 

obtained from the inception date of the oldest fund in the family. Family_%EuroEquity
f,t

 

is the percentage of the assets under management in the Euro equity category with respect 

to the total assets under management in the industry within fund family f in month t. 

 Bank: Tykvová (2006) indicates that private independent fund companies 

typically concentrate in particular industries and establish networks in this industry within 

company. Therefore, we believe that there may be a higher family portfolio overlap within 

the independent fund families for a high degree of specialisation. 

 Family_size: is measured as the total assets under management within a family. 

According to Chen et al. (2004), the size of a fund erodes fund performance. However, 

Zhao (2004) argues that mutual fund families obtain benefits by charging fees to investors 

in all funds and, therefore, they have incentives to take action with the objective of 

                                                           
19 Our panel data shows autocorrelation and heteroscedasticity. Hence, we require a methodology that 

corrects the standard errors to solve these issues. Prais-Winsten, Generalised Least Squares (GLS), FE and 

RE with robust standard errors models take into account autocorrelation and heteroscedasticity. To verify 

the robustness of our results, we estimate Equations 2.4 and 2.10 using these four models. Regarding the 

FE and RE models, the Hausman test indicates that the FE model is the preferred specification. However, 

the time-invariant independent variables will be ignored by this specification (in Equations 2.4 and 2.10 the 

Bank variable has not change over the sample period in each family and hence, this affects as a time-

invariant variable) and in this case, the RE model may be a viable alternative (Hill et al., 2020). 
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increasing the investor inflows and therefore of maximising the total assets under 

management. In addition, based on these findings, we consider that fund families have 

incentives to offer new funds although these funds are similar to existing funds in order 

to increase the total assets under management, but preventing the existence of too large 

funds in the family. The result of the influence of family size on family portfolio overlap 

is interesting for individual investors because of the high market concentration in the 

Spanish market. 

 We also include the interaction between Bank and Family_size in order to 

distinguish larger fund families which belong to a banking group from the remaining 

families. We consider that within these families, the managers can have access to a high 

number of internal and external information reports because in this way the entire fund 

family benefits from the resources. In addition, based on the results of Table 2.4, which 

show that the TNA-weighted average is higher than the equal-weighted average overlap, 

we could expect the coefficient of this interaction to be positive and significant because 

the largest families belong to banking groups. Furthermore, our hypothesis is based on 

the idea that when we focus on the ownership of their own stocks by banking groups, the 

overlap is greater in fund families belonging to this banking group than in other families 

belonging to other banking groups. In this line, Massa and Rehman (2008) provide 

evidence that the ownership of an asset management company can have a significant 

impact on the portfolio holdings of funds.20  

                                                           
20 Previous literature has documented several factors and reasons that influence the bank-affiliated funds’ 

decisions to increase their holdings of the parent banks’ stocks. Golez and Marin (2015) document that fund 

managers serve the interest of the owners of asset management firms (the banks) with the aim to support 

their stock prices, specially, at the time of large price drops. In this sense, Gil-Bazo et al. (2020) show that 

the bank-affiliated funds support the prices of bonds issued by their parent banks during the Global 

Financial Crisis, GFC, in 2008 and the European sovereign debt crisis in 2011. Gómez-Bezares and 

Przychodzen (2018) also argue that the significant positive tendency to buy the parent banks’ equity for 

their bank-affiliated funds is motivated by both external pressure and individual taste.  
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 Family_age: we consider that families start with fewer resources and less ability 

to control the information of a large number of stocks and thus, our hypothesis is that the 

family portfolio overlap may be higher in families with a short experience in the fund 

market.  

 Family_%EuroEquity: we also include the weight of the Euro equity funds 

category within each family. Following the resources-based theory of the companies (see 

e.g. Silverman, 1999 cited by Casavecchia and Ge, 2019), the fund families with a greater 

focus on a certain category could possess more institutional advantages from experience 

and learning. In this line, Van Nieuwerburgh and Veldkamp (2010) argue that the private 

information acquisition through specialized learning results in a higher degree of asset 

concentration. Kacperczyk et al. (2005) also show that a higher degree of industry 

concentration is a measure of informational advantages. Therefore, the weight of the Euro 

equity funds category within a fund family may influence the family portfolio overlap. 

Specifically, our hypothesis is that the overlap may be higher in families with a higher 

weight in this category. 

 The results of the different models applied in Table 2.5 are robust. The findings 

reveal evidence that the family portfolio overlap is higher in families which do not belong 

to a banking or insurance company, in line with the conclusions of Sahlman (1990) and 

Barry (1994) about the higher degree of specialisation of private independent fund 

management companies. However, when we include the interaction between the dummy 

variable Bank and the variable Family_size, we find a higher family overlap in the larger 

banking families; these are the families which belong to larger banking groups. These 

results confirm our null hypothesis that these larger families may have interest in offering 

new funds, even when these new funds have similar portfolio holdings as existing funds. 

With this practice, the fund families would prefer to avoid very large funds in cases where 
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size erodes performance. In addition, large banking groups usually have the stock of their 

banks listed in stock exchange. When we focus on the overlap in portfolios of stocks of 

banking groups, we find a statistically significant overlap in the family which belongs to 

this specific group than in the rest of the families which belong to other banking groups.21  

 

Table 2. 5 – The fund family characteristics that enhance portfolio overlap 

 

This table shows the results obtained by estimating Equation 2.4 using Prais-Winsten, GLS, FE and RE 

with robust standard errors from December 1999 to June 2018. Where the dependent variable is 

Family portfolio overlap
f,t

 that is the portfolio overlap within fund family f in month t at the stock level and 

the independent variables are: Bankf,t that takes a value equal to 1 when a fund family depends on a banking 

or insurance company regarding its governance structure; Family_size
f,t 

is the log-normal of the total size 

of fund family f in month t; Bankf,t x Family_size
f,t 

is the interaction between the dummy variable Bankf,t 

and the variable Family_size
f,t 

; Family_age
f,t

 is the age of fund family f in month t obtained from the 

inception date of the oldest fund in the family; and Family_%EuroEquity
f,t

 is the percentage of the assets 

under management in the Euro equity category with respect to the total size of fund family f in month t. 

The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% 

level, respectively. 

 

 Prais- 

Winsten 

 

GLS 

Prais- 

Winsten 

 

GLS 

FE 

(robust 

standard 

errors) 

RE 

(robust 

standard 

errors) 
 Coefficient     Coefficient         Coefficient         Coefficient         Coefficient         Coefficient         

Constant 

 

  0.113*** 

(0.000) 

 -0.025       

 (0.627) 

    0.729*** 

  (0.000) 

     0.479*** 

  (0.000) 

    0.190*** 

 (0.001) 

0.112*** 

(0.003) 

Bank 

 

-0.123*** 

(0.000) 

 -0.076***   

 (0.000) 

  -0.828*** 

   (0.000) 

 -0.684*** 

 (0.000)  

-0.126** 

(0.016) 

Family_size 

 

  0.026*** 

(0.000) 

  0.033***   

 (0.000) 

 -0.024** 

  (0.034) 

-0.007 

 (0.468) 

-0.064** 

(0.034) 

-0.061** 

(0.035) 

Bank x Family_size 

   

    0.056*** 

  (0.000) 

 0.478*** 

 (0.000) 

 0.097** 

(0.026) 

0.099** 

(0.013) 

Family_age 

 

-0.004*** 

(0.000) 

  -0.005***   

(0.000) 

  -0.004*** 

 (0.000) 

-0.005*** 

 (0.000) 

-0.005** 

(0.045) 

-0.006** 

(0.037) 

Family_%EuroEquity 

 

0.040** 

(0.039) 

   0.074***   

(0.006) 

   0.062*** 

 (0.001) 

 0.074*** 

 (0.003) 

0.272** 

(0.012) 

0.280* 

(0.082) 

R-squared  23.74%   24.34%  8.17%  8.14% 

Wald 

 

      118.18***   

(0.000) 

 93.33***  

(0.000) 

  169.88*** 

(0.000) 

 

119.26*** 

 (0.000) 

  124.52*** 

(0.000) 

 

124.70*** 

 (0.000) 

Hausman Test 

     

26.12*** 

(0.000) 

#Observations 5,667 5,667 5,667 5,667 5,667 5,667 

                                                           
21 In the first, second and third largest fund families according to total net asset under management in the 

Spanish industry which belong to a banking group, we find that the family overlap in their banking group 

stock is equal to 4.23%, 4.56% and 2%, respectively. In all cases, the overlap is statistically significantly 

higher than in the rest of families belonging to other groups. 
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 There resulted are very remarkable in the Spanish mutual fund industry due to the 

high concentration and the high dependence on the banking sector with respect to other 

European markets as documented in previous studies (Ferreira and Ramos, 2009; Ferreira 

et al., 2013). According to data reported by Inverco (2018), the top 10 and top 5 fund 

management companies manage more than 75% and 40% of the total fund assets as 

opposed to other fund industries such as the UK market, where the top 10 and top 5 fund 

families represents the 45% and the 26% of the total fund assets (The Investment 

Association, 2018), In addition, the 87% of Spanish funds are managed by banking 

groups, a percentage of funds notably higher with respect to other European countries: 

France (23%); UK (25%); Portugal (38%) and Germany (69%) (EFAMA, 2018). 

 Table 2.5 also shows that the family overlap is higher in younger families, which 

may have fewer resources, and less ability to control information. Finally, the results 

show that the family portfolio overlap is higher in the families with a higher weight in the 

Euro equity category. In line with previous studies on the fund family specialization 

(Kacperczyk et al., 2005; Van Nieuwerburgh and Veldkamp, 2010; Casavecchia and Ge, 

2019), the top management of these families may allocate more resources in this category 

from which all of the family managers could benefit. 

 

2.5 Drivers of the level of autonomy of managers 
 

Several studies have focused on behaviours within fund families (Chen et al., 2004; Elton 

et al., 2007; Cici et al., 2018). They argue that most mutual funds operate as part of fund 

families which make strategic decisions that have an influence on the operations and 

performance of their own funds. However, these authors are implicitly considering the 

existence of coordination between decisions within fund families, focusing on the top 

management of a fund family, but neglecting the decisions at the individual level of fund 
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managers (Kempf and Ruenzi, 2008). Fund managers make differential decisions that 

may provide a significantly different result (positive or negative) to investors allowing 

the managers to promote themselves and stand out from others whether the return is 

significantly positive. In this sense, Agarwal et al. (2009) indicate that managerial 

incentives depend on fund performance. Mason et al. (2016) also argue that fund 

managers' position, reputation and salary depend on their performance records. 

 Our hypothesis is based on the idea that the managers’ decisions can be explained 

by both the influence of family top-management and the autonomy of fund managers. 

Kacperczyk and Seru (2012) consider the coexistence of two different family 

organisational structures: centralised and decentralised. They show that decentralised 

funds offer greater autonomy to their managers, as well as incentives and flexibility to 

produce more valuable information and thus, more benefits for investors than the 

centralised decision-making process. In this section, we first compute the fund manager 

autonomy within families and then, we study whether the fund manager autonomy is the 

same in all fund families, being the null hypothesis: 

2.3H0: There are no significant differences in autonomy between different fund families. 

 In line with Elton et al. (2007) who argue that a common family approach could 

result in similar exposures to various industries, we consider the portfolio overlap at the 

sector level as the approach of the general investment outline. Then, within this 

investment strategy, managers can choose specific stocks that are held in portfolio 

holdings. We evaluate this choice capacity on a twofold approach depending on whether 

the general investment outline corresponds to the whole fund sample or whether it 

corresponds to each fund family. Firstly, we compare for each fund pair i and j in month 

t the excess overlap (Excess Overlap) at the industry level (Portfolio Overlap (industry))  

over the stock level (Portfolio Overlap (stock)) as follows:  
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 Excess Overlap
i,j,t

 =  Portfolio Overlap (industry)
i,j,t 

−    

            Portfolio Overlap (stock)
i,j,t 

        (2.5) 

 Note that the higher the excess overlap at the industry level over the stock level the 

higher level of autonomy of these two fund managers in the selection of stocks within a 

certain industry because their portfolios at the stock level are more different than at the 

industry level. Even if they have a similar general investment outline, the resulting 

portfolios differ in terms of stocks when they select different specific stocks. 

 Secondly, we obtain the fund manager autonomy for each fund i in each month t 

with the average of its excess overlap values following two different approaches. In the 

first approach (Fund manager autonomy inter-family), the general investment outline 

corresponds to the whole fund sample and hence, the fund manager autonomy for each 

fund i is obtained with all the excess overlap values regardless of whether the fund i is 

compared with funds within its same family f or with funds of other families.. In the 

second approach (Fund manager autonomy intra-family), the general investment outline 

corresponds to the fund family and thus, the fund manager autonomy for each fund i is 

obtained with the excess overlap values of the comparisons with other funds that belong 

to the same family f. 

 Fund manager autonomy inter-family
i,t

=  Excess Overlap
i,t

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∀ i ≠ j and ∀ i ϵ f  (2.6)        

 Fund manager autonomy intra-family
i,t

= Excess Overlap
i,t

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∀ i ≠ j and ∀ i,j ϵ f (2.7) 

 Thirdly, we obtain the level of autonomy for each fund family f with the average 

of the fund manager autonomy values of all funds within the family, both at inter level 

(Inter-family autonomy) and intra level (Intra-family autonomy) as follows: 

 Inter-family autonomy
f,t

=  Fund manager autonomy inter-family
i,t

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       ∀ i ϵ f     (2.8) 

 Intra-family autonomy
f,t

=  Fund manager autonomy intra-family
i,t

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       ∀ i ϵ f     (2.9) 
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Table 2. 6 – Manager autonomy within fund families 
 

This table shows the average autonomy of managers within fund families, the average weighted by total 

net assets in Euro equity category and by number of Euro equity funds, the average within families that are 

in the top tercile (T1) and in the bottom tercile (T3). Panel A reports the results of inter-family autonomy 

and Panel B reports the results of intra-family autonomy as defined in Equations 2.8 and 2.9. The last 

column shows the result of a mean-difference test between T1 and T3 with the p-value in parentheses. In 

all columns, the annual data is obtained using the monthly data. ***, **, and * denote statistical significance 

at the 1%, 5%, and 10% level, respectively. 

 

Panel A: Inter-family autonomy 

 

family 

autonomy 

family 

autonomy 

(TNA- 

weighted) 

family 

autonomy 

(#funds-

weighted) 

family 

autonomy 

(T1) 

family 

autonomy 

(T3) 

Mean- 

difference  

test (T1-T3) 

2000 48.66% 55.15% 49.76% 54.97% 42.16% 12.81%***   (0.000) 

2001 48.66% 46.91% 44.86% 53.79% 43.63% 10.16%***   (0.000) 

2002 47.20% 41.29% 42.49% 52.45% 41.53% 10.92%***   (0.000) 

2003 47.94% 46.29% 45.90% 53.57% 41.77% 11.80%***   (0.000) 

2004 48.90% 50.67% 47.60% 54.84% 42.43% 12.41%***   (0.000) 

2005 48.71% 54.34% 49.23% 54.72% 41.91% 12.81%***   (0.000) 

2006 48.83% 41.12% 42.71% 54.44% 43.50% 10.95%***   (0.000) 

2007 47.96% 47.33% 43.67% 55.39% 42.91% 12.48%***   (0.000) 

2008 47.79% 47.91% 48.04% 53.63% 41.85% 11.78%***   (0.000) 

2009 46.84% 30.95% 49.53% 53.43% 40.98% 12.45%***   (0.000) 

2010 50.38% 38.39% 49.85% 56.08% 44.52% 11.55%***   (0.000) 

2011 50.36% 39.70% 47.10% 56.27% 44.59% 11.68%***   (0.000) 

2012 49.79% 53.02% 48.47% 56.18% 44.00% 12.18%***   (0.000) 

2013 51.48% 54.87% 48.38% 57.87% 45.90% 11.97%***   (0.000) 

2014 52.42% 50.07% 48.90% 58.98% 46.41% 12.56%***   (0.000) 

2015 51.88% 52.27% 50.01% 58.67% 45.54% 13.13%***   (0.000) 

2016 52.71% 48.60% 50.46% 59.09% 46.35% 12.74%***   (0.000) 

2017 53.06% 52.12% 51.68% 59.43% 46.46% 12.97%***   (0.000) 

2018 52.63% 52.65% 51.73% 59.08% 45.75% 13.33%***   (0.000) 

Dec1999-Jun2018 49.72% 47.47% 47.82% 55.03% 43.32% 11.71%***   (0.000) 
 

Panel B: Intra-family autonomy 

 

family 

autonomy 

family 

autonomy 

(TNA- 

weighted) 

family 

autonomy 

(#funds-

weighted) 

family 

autonomy 

(T1) 

family 

autonomy 

(T3) 

Mean- 

difference  

test (T1-T3) 

2000 32.52% 31.51% 31.95% 51.54% 13.28% 38.26%***   (0.000) 

2001 33.70% 31.93% 33.53% 49.98% 16.87% 33.10%***   (0.000) 

2002 33.73% 30.70% 32.41% 52.38% 14.98% 37.40%***   (0.000) 

2003 31.80% 30.88% 30.94% 47.80% 15.88% 31.92%***   (0.000) 

2004 32.73% 31.91% 31.64% 47.96% 17.51% 30.45%***   (0.000) 

2005 36.63% 33.97% 34.11% 50.74% 22.49% 28.24%***   (0.000) 

2006 37.89% 35.18% 35.18% 54.93% 22.03% 32.90%***   (0.000) 

2007 36.37% 36.87% 33.87% 56.71% 21.93% 34.79%***   (0.000) 

2008 37.04% 37.10% 36.37% 55.55% 20.86% 34.69%***   (0.000) 

2009 38.14% 32.10% 36.34% 52.79% 24.32% 28.47%***   (0.000) 

2010 38.75% 33.70% 37.82% 53.21% 25.18% 28.03%***   (0.000) 

2011 37.10% 32.69% 35.95% 52.61% 23.53% 29.08%***   (0.000) 

2012 39.37% 33.07% 37.61% 54.41% 26.95% 27.45%***   (0.000) 

2013 39.67% 34.15% 38.34% 55.74% 26.26% 29.48%***   (0.000) 

2014 42.05% 38.96% 41.02% 56.27% 27.49% 28.78%***   (0.000) 

2015 42.17% 40.91% 41.38% 56.51% 26.79% 29.72%***   (0.000) 

2016 45.20% 42.82% 44.72% 58.19% 29.75% 28.44%***   (0.000) 

2017 46.19% 42.49% 45.70% 60.34% 29.42% 30.92%***   (0.000) 

2018 45.54% 43.24% 44.63% 60.08% 29.43% 30.65%***   (0.000) 

Dec1999-Jun2018 38.02% 35.26% 36.80% 53.26% 21.64% 31.61%***   (0.000) 
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To examine whether the autonomy of managers is similar for all fund families, we 

split families into terciles according to these measures. Table 2.6 shows that we reject the 

null hypothesis in the mean-difference test between the average autonomy of managers 

within families that are in the top tercile (T1) and the average of those are in the bottom 

tercile (T3). Therefore, our findings indicate that the autonomy is significantly higher in 

some families than others, regardless of the level of autonomy meause used. 

We also observe that, in general, both the average weighted by total net assets and 

the average weighted by number of funds are lower than the equal-weighted average. This 

result reveals the autonomy of managers is higher in smaller families that could be 

explained by the fact that smaller families have less resources to obtain both internal and 

external reports on specific stocks from which fund managers' decisions can be adressed. 

Once we found that there are families with a significantly higher autonomy of 

managers than others, we apply a panel data model to detect the family characteristics 

that enhance the autonomy among funds within a family. Specifically, we use the 

following model. 

 Intra-family autonomyf,t =  f (Bankf,t; Family_size
f,t

; Family_age
f,t

;   

                Family_%EuroEquity
f,t

;  εf,t)     (2.10) 

where Intra-family autonomy
f,t

 is the autonomy level of managers within fund family f in 

the portfolio holding allocation. Bankf,t takes a value equal to 1 when fund family f is 

dependent on a banking or insurance group in accordance with the governance structure. 

Family_size
f,t 

is the log-normal of total size of fund family f in month t. Family_age
f,t

 is 

the age of fund family f obtained from the inception date of the oldest fund in the family. 

Family_%EuroEquity
f,t

 is the percentage of the assets under management in the Euro 

equity category with respect to the total size of fund family f in month t. 
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 We suggest that in the large fund families that belong to a banking group, the top-

management may have a greater influence on the selection of stocks within a specific 

sector, because the top-management may have a higher level of stock information 

obtained in other areas of analysis within the group. Jordan et al. (2012) find that the 

bank-affiliated institutional investors follow strongly recommendations issued by their 

own analysts. In addition, large families have more resources and more analysts that could 

have a significant influence on the trading decisions of fund managers. Therefore, our 

hypothesis is that there is less fund manager autonomy in the portfolio holding allocation 

within larger families which belong to banking groups. 

 

Table 2. 7 – The fund family characteristics that enhance the manager autonomy 
 

This table shows the results obtained by estimating Equation 2.10 using Prais-Winsten, GLS, FE and RE 

with robust standard errors from December 1999 to June 2018. Where the dependent variable is 

Intra-family autonomy
f,t

 which is the autonomy level of managers within fund family f in month t at the 

stock level and the independent variables are: Bankf,t is equal to 1 if a fund family depends on the banking 

or insurance company according to its governance structure;  Family_size
f,t 

is the log-normal of total size 

of fund family f in month t; Bankf,t x Family_size
f,t 

is the interaction between the dummy variable Bankf,t 

and the variable Family_size
f,t 

; Family_age
f,t

 is the age of fund family f obtained from the inception date 

of the oldest fund in the family; and Family_%EuroEquity
f,t

 is the percentage of the value in the Euro equity 

category with respect to the total size of fund family f in month t. The p-value is reported in parentheses. 

***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 
 

 Prais- 

Winsten 

 

GLS 

 

Prais- 

Winsten 

 

GLS 

 

FE 

(robust  

standard  

errors) 

RE 

(robust  

standard  

errors) 
 Coefficient     Coefficient         Coefficient         Coefficient         Coefficient         Coefficient         

Constant 

 

  0.525*** 

(0.000) 

0.488*** 

    (0.000) 

0.261 

(0.345) 

0.218** 

(0.019) 

0.529*** 

(0.005) 

0.273** 

(0.033) 

Bank 

 

0.129*** 

(0.000) 

0.088***
 

    (0.000) 

0.431*** 

(0.000) 

0.418*** 

(0.000)  

 0.108*** 

(0.006) 

Family_size 

 

 -0.025*** 

  (0.000) 

  -0.023*** 

    (0.000) 

-0.004 

(0.550) 

-0.002 

(0.827) 

0.058** 

(0.015) 

 0.053** 

(0.017) 

Bank x Family_size 

 

 

  

-0.024*** 

(0.002) 

-0.025*** 

(0.001) 

 -0.084** 

(0.016) 

-0.086*** 

(0.005) 

Family_age 

 

    0.007***    

  (0.000) 

0.007*** 

    (0.000) 

0.007*** 

(0.000) 

0.007*** 

(0.000) 

  0.002** 

(0.017) 

 0.003** 

(0.013) 

Family_%EuroEquity 

 

0.023    

  (0.119) 

0.068*** 

   (0.002) 

0.014 

(0.348) 

0.055** 

(0.015) 

0.100 

(0.343) 

-0.094 

(0.335) 

R-squared   50.56%  50.55%  14.27% 14.22% 

Wald 

 

351.44***    

  (0.000) 

197.97*** 

  (0.000) 

351.27*** 

(0.000) 

187.85*** 

(0.000) 

  123.90*** 

(0.000) 

119.90*** 

(0.000) 

Hausman Test 

     

27.68***  

(0.000) 

#Observations 5,667 5,667 5,667 5,667 5,667 5,667 
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 The results of the different models applied in Table 2.7 are robust. The findings 

report evidence of a lower fund manager autonomy in the portfolio holding allocation 

within larger families which belong to a banking group. Additionally, we also analyse the 

effect of family age on the manager autonomy. The results shown in Table 2.7 shows a 

higher autonomy in the stock-picking within a specific sector for older fund families. This 

finding is in line with the study of Kozubíková et al. (2016) who test whether the time 

spent in the market of a company influences the autonomy of employees. They report that 

the older companies tent to provide a higher freedom and flexibility to develop and 

implement new ideas and initiatives due to the high company's positioning and stability 

within the market. 

 

2.6 Performance of investors in a single fund family 

 

Previous literature reveals evidence that individual investors usually concentrate all of 

their fund investment in a single fund family. Our objective is to test whether this initial 

selection of fund family plays an important role in investors’ performance. We 

hypothesise that the level of overlap of the funds and manager autonomy in the portfolio 

holding allocation within a fund family could influence that performance. Elton et al. 

(2007) argue that investors are negatively affected when they pick a fund family with a 

high correlation between its funds. Kacperczyk and Seru (2012) also show that, compared 

with funds from families with a centralised decision-making process, funds from 

decentralised families offer greater autonomy to their managers, as well as incentives and 

flexibility to produce more valuable information and thus, resulting in more benefits for 

investors. Therefore, we suggest that individual investors could obtain benefits from a 

higher level of management autonomy in a setting in which fund managers freely pick 

stocks within each sector. 



134 

 

 In this section, to examine whether the family portfolio overlap and the fund 

manager autonomy within a family influence the performance of the fund and thus, the 

results for investors who decide to invest in it, we apply the following FE model according 

to the result of Hausman test: 

 Excess Family return
f,t 

 =  α + B1 Excess Family portfolio overlap
f,t

 +  

          +  B2 Excess Intra-family autonomy
f,t

 + εf,t     (2.11) 

where Excess Family return
f,t 

is the difference between the average daily net return of all 

funds in fund family f and the average daily net return of the rest of funds that are in other 

families different from family f on day t. Excess Family portfolio overlap
f,t

 is the 

difference between the average portfolio overlap of family f and the average portfolio 

overlap of all families. Excess Intra-family autonomy
f,t

 is the difference between the 

average autonomy in family f and the average autonomy from all families.  

 In Equation 2.11, the independent variables of each fund are included as the 

deviation from the average of all funds in our sample.22 We apply this model with daily 

return data, and we consider the constant monthly portfolio overlap data on every day of 

the month. 

 Table 2.8 shows the results of Equation 2.11. The findings reveal that the excess 

portfolio overlap in a family with respect to all funds in our sample has a statistically 

significantly negative influence on investors’ returns whereas, the excess fund manager 

autonomy has a significantly positive influence. 

  

                                                           
22 We obtain that the correlation coefficient between the variable Excess Family portfolio overlap

f,t
 and 

Excess Intra-family autonomy
f,t

 is negative and low, specifically, this is equal to -0.012. 
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Table 2. 8 – Family portfolio overlap, autonomy and investors return 
 

This table shows the results obtained by estimating Equation 2.11 using FE with robust standard errors, 

which is supported by the Hausman test, from December 1999 to June 2018. Where the variable is 

Excess Family return
f,t 

is the difference between the average daily net return of all funds in fund family f 

and the average daily net return of the rest of funds that are in other families different from family f on day 

t and the independent variables are: Excess Family portfolio overlap
f,t

 is the excess of portfolio overlap of 

fund family f with respect to the average portfolio overlap of all funds on day t; and 

Excess Intra-family autonomy
f,t

 is the difference between the average autonomy of managers in family f 

and the average autonomy of managers of all families. Net return data is provided daily and we consider 

that the monthly portfolio overlap data is constant during all the month. The p-value is reported in 

parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Therefore, individual investors who concentrate their funds in a single family with 

a high family portfolio overlap have under-diversified their fund investment decisions, as 

we found in previous sections, and they obtained a lower return. However, investors seem 

to benefit from a lower similarity between fund portfolio holdings and a higher degree of 

fund manager autonomy in the portfolio holding allocation within a family. Fund 

managers have more incentives and flexibility to add value to the fund management 

within families where is a higher level of autonomy in the portfolio holding allocation 

according to Kacperczyk and Seru (2012). Therefore, in view of the fact that individual 

investors concentrate their investment in a single family (Massa 2003; Clare et al., 2014; 

Gerken et al., 2018) we conclude that the initial selection of a fund family is a crucial 

decision for investors’ performance. 

 

 Coefficient 

Constant 

 

-0.001*** 

(0.001) 

Excess Family portfolio overlap 

 

-0.008** 

(0.027) 

Excess Intra-family autonomy 
0.013** 

(0.044) 

  
Hausman Test 6.24** 

R-squared 6.37% 

Wald 

 

62.30*** 

(0.000) 
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2.7 Conclusions 
 

Earlier literature finds that individual investors concentrate their fund investment 

decisions in a single fund family and thus, the potential diversification and performance 

of investors are restricted to this selected fund family. This chapter investigates whether 

the similitude between the portfolio holdings of funds, as well as the fund manager 

autonomy within a family is a determinant of performance for individual investors who 

select this fund family. 

 We find a higher similitude between portfolio holdings of funds in the same family 

than across families. Consequently, the potential diversification is lower for individual 

investors who concentrate all of their fund investments in a single family. Furthermore, 

the potential diversification is especially lower when investors invest in funds that belong 

to the same family and when these funds are large and of roughly the same size, hold 

roughly the same high number of stocks their portfolio, charge similarly high fees, are of 

similar ages and have similar past annual gross, but when these funds are not amongst 

neither the youngest nor the oldest funds and do not have the highest or lowest past annual 

gross return. 

 We find a greater correlation between funds within the same management 

company and, as a consequence, a lower diversification for investors who concentrate 

their funds in the same family. The results also show a significant difference between 

some fund families and others. Specifically, the similitude between portfolio holdings is 

higher in larger families which belong to a banking group and do not have wide 

experience in the fund market. These families could have incentives to offer two twin 

funds rather than one large one in order to prevent the fund size from eroding its 

performance, while taking full advantage of family-wide research. This type of research, 

in less experienced families, would be focused on fewer stocks. 
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 According to the economic implications for individual investors, we conclude that 

a higher similitude between portfolio holdings not only causes fund families to offer a 

lower diversification to individual investors, it also has a significantly negative economic 

effect on them. However, individual investors seem to benefit from a higher autonomy in 

portfolio holding allocation within stock sectors, which is a significant characteristic of 

smaller fund families with wide experience that do not belong to a banking group. Our 

findings reveal that investors could have incentives to invest in different families for a 

better diversification or in these families in which the potential diversification and fund 

manager autonomy are higher. These results are also interesting for the top management 

of mutual fund family because of the positive relation between past performance and 

future fund flows. Given that we find that diversification and manager autonomy manager 

have a positive impact on the investors' performance, the top management of fund 

families could consider encouraging diversification of portfolios between funds within 

the same family as well as manager’s autonomy in decision-making. 

 Therefore, although academics show that investors often concentrate all of their 

fund investments in the same family, we suggest that investors could improve their 

diversification level by selecting funds across families, given that the portfolio overlap 

between fund pairs in different families is lower. In this line, it would be interesting for 

future research to examine whether there are family pairs that have a significant similarity 

and to study the characteristics of these families. 

 Finally, the conclusions of this study have economic consequences in particular 

in the Spanish mutual fund market due to the high similarity level among portfolios within 

the five largest banking fund families, which manage more than 40% of investors’ 

investment funds. Hence, these findings are interesting for industry regulators because a 

large proportion of individual investors could have their investment fund decisions under-
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diversified. Nevertheless, the negative pattern of the portfolio overlap that is found could 

be an indication of an improvement in the efficiency within families and of a reduction 

in the systemic risk and fragility of the market, which functions as a mechanism for the 

propagation of shocks. 
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Appendix 2.1: Robustness analyses of the portfolio overlap 
 

 Following the studies of Delpini et al. (2019) and Fricke and Fricke (2021), we adopt the 

cosine similarity between funds i and j to measure the portfolio overlap between the two portfolios 

as follows: 

 Portfolio Similarity
i,j,t

 = 
∑ wi,k,t wj,k,t 

K
k=1

√∑ (wi,k,t)
2K

k=1 √∑ (wj,k,t)
2K

k=1

       (A2.1) 

where Portfolio Similarityi,j,t is the value of the portfolio similarity between funds i and j in month 

t; wi,k,t is the portfolio weight of stock k in the fund i in month t. wj,k,t is the portfolio weight of 

stock k in the fund j in month t. The magnitude of this metric depends on two factors: the number 

of common stocks and the weights attached to common stocks. 

 Table A2.1 provides the average portfolio similarity obtained in Equation A2.1. These 

results provide evidence about a higher similarity levels among portfolios than those reported by 

the portfolio overlap measure (Equation 2.1). Nevertheless, the Pearson correlation coefficient 

between both measures equals to 89.19%, 94.41% and 90.93% for the portfolio overlap at the 

stock, sector and industry levels, respectively (see Appendix 2.2 for more details). These 

correlation coefficients are statistically significant at 1%. Table A2.1 also reports a statistically 

significant higher similarity level in fund pairs within the same fund family than in fund pairs 

from different families. Figure A2.1 shows the evolution of the portfolio overlap and the portfolio 

similarity levels over time. As can be observed, both measures report a similar evolution over 

time 

 For robustness purposes, we also apply the similarity measure to the fund family analyses. 

The Pearson correlation coefficient between the family portfolio overlap values and the family 

portfolio similarity values is equal to 84.42% (statistically significant at the 1% level). The 

findings also lead us to reject the null hypothesis that all fund families have the same portfolio 

overlap between their funds. Finally, we obtain similar results on the characteristics of fund pairs 

with the highest portfolio overlap (Table A2.2) and the characteristics of fund families that 

enhance portfolio overlap among their funds (Table A2.3 y Table A2.4). 
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Table A2. 1– Overall results of the portfolio similarity at the fund pair level 

 

Panel A, Panel B and Panel C report the results of portfolio similarity at the stock level, at the sector level 

and at the industry level, respectively. This table shows, for each year, the overall average portfolio 

similarity and the number of fund pairs within the same fund family and the number of fund pairs in 

different families, as well as their average overlap. In this table, we present a yearly report of the number 

of funds during the sample period, unlike in Table 1 where we present the total number only at three specific 

points during the sample period. The last column shows the results of the mean difference test between both 

specific averages with the p-value in parentheses. We apply the mean difference test for unpaired samples 

with different variance (in all cases the null hypothesis is rejected in the test of equal variance). In all 

columns, the annual average is obtained with the monthly portfolio similarity data. The study period starts 

in December 1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 

10% level, respectively. 

 

Panel A: Stock 

Year 

 

Portfolio 

similarity 

#fund pairs 

(same fund 

family) 

#fund pairs 

(different 

fund family) 

Portfolio 

similarity 

(same fund 

family) 

Portfolio 

similarity 

(different 

fund family) 

Mean-difference 

test 

2000 43.51% 282 11,520 54.89% 43.24%  11.65%***    (0.000) 

2001 40.78% 341 13,827 44.79% 40.68% 4.11%***   (0.000) 

2002 39.72% 354 14,261 44.21% 39.62% 4.59%***    (0.000) 

2003 42.80% 340 15,175 48.98% 42.67% 6.32%***    (0.000) 

2004 45.71% 337 13,592 52.40% 45.54% 6.85%***    (0.000) 

2005 45.74% 391 14,415 52.48% 45.55% 6.93%***     (0.000) 

2006 42.80% 421 15,621 47.06% 42.68% 4.37%***     (0.000) 

2007 38.36% 474 16,648 43.00% 38.18% 4.82%***     (0.000) 

2008 37.73% 468 16,032 39.23% 37.66% 1.57%***     (0.000) 

2009 37.16% 422 14,054 41.78% 36.99% 4.79%***     (0.000) 

2010 36.06% 255 10,917 42.13% 35.87% 6.26%***     (0.000) 

2011 37.31% 236 9,864 45.98% 37.06% 8.92%***     (0.000) 

2012 34.73% 193 7,712 46.81% 34.37%   12.44%***      (0.000) 

2013 35.26% 166 6,289 42.92% 35.05% 7.87%***     (0.000) 

2014 35.59% 97 4,619 44.09% 35.39% 8.69%***     (0.000) 

2015 39.31% 104 5,203 45.05% 39.16% 5.89%***     (0.000) 

2016 36.21% 93 4,737 40.60% 36.12% 4.48%***     (0.000) 

2017 33.61% 75 4,260 41.38% 33.46% 7.92%***     (0.000) 

2018 34.80% 65 4,061 43.38% 34.63% 8.74%***     (0.000) 

Dec1999-Jun2018 40.94% 994 32,982 46.69% 40.79% 5.90%***     (0.000) 

 

Panel B: Sector 

Dec1999-Jun2018 69.40% 994 32,982 74.71% 69.26% 5.46%***     (0.000) 

 

Panel C: Industry 

Dec1999-Jun2018 75.60% 994 32,982 79.91% 75.48% 4.43%***    (0.000) 
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Figure A2. 1 - Evolution of the portfolio overlap and portfolio similarity  

among fund pairs 
 

This figure represents the evolution of the annual average for the portfolio overlap and the portfolio 

similarity among Spanish Euro equity funds obtained from monthly values from January 2000 to June 2018.  

 

 

 

 

 

 

 

 

 

 

 

  



150 

 

Table A2. 2 - Portfolio Similarity and characteristics of mutual funds 

 

This table shows the results obtained by estimating Equation 2.2 using the portfolio similarity measure and 

RE with robust standard errors from December 1999 to June 2018, where the dependent variable is the 

Portfolio Similarity
i,j,t 

at the stock level and the independent variables are dummy variables. We calculate 

the percentile rank of each fund-month in each characteristic (Fund_size, Fund_age, Fund_#stocks, 

Fund_fees and Fund_return) and we determine the quintile into which mutual funds are. For these 

characteristics, the model includes four dummy variables: Same takes a value equal to 1 when fund i and j 

in month t are in the same quintile; BothQ1 takes a value equal to 1 when funds i and j in month t are in the 

top quintile; BothQ5 takes a value equal to 1 when fund i and j in month t are in the bottom quintile; 

Opposite is equal to 1 when in month t, either fund i or fund j is in the top quintile and in the other is in the 

bottom quintile; Fund_family
i,j,t

 is equal to 1 when, in month t, funds i and j are in the same fund family; 

and Timet ranges from 1 in the first month to 223 in the last month. The p-value is reported in parentheses. 
***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

 Coefficient  
Constant  0.420***   (0.000) 

 

Fund_size 

Same    -0.001       (0.336) 

BothQ1  0.029***   (0.000) 

BothQ5   -0.021***   (0.000) 

Opposite   -0.010***   (0.000) 

 

Fund_age 

Same  0.005**    (0.012) 

BothQ1   -0.014***   (0.000) 

BothQ5 -0.041***   (0.000) 

Opposite -0.006        (0.458)        

  

Fund_#stocks 

Same  0.005***   (0.000) 

BothQ1  0.020***   (0.000) 

BothQ5 -0.014***   (0.000) 

Opposite -0.008***   (0.000) 

 

Fund_fees 

Same  0.002**     (0.013) 

BothQ1  0.022***     (0.000) 

BothQ5 -0.007***   (0.008) 

Opposite  0.001       (0.497) 

 

Fund_return 

Same  0.010***     (0.000) 

BothQ1 -0.010***   (0.000) 

BothQ5 -0.001       (0.357) 

Opposite -0.014***   (0.000) 

Fund_family  0.047***      (0.000) 

Time -0.004***      (0.000) 

#Observations 1,374,347 

Wald 1,496.63***  (0.000) 

R-squared 6.01% 

VIF 1.23 
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Table A2. 3 - Family portfolio similarity 
 

Panel A, Panel B and Panel C report the results of portfolio similarity at the stock level, at the sector level 

and at the industry level, respectively. This table shows the average family portfolio similarity and the 

average family portfolio similarity weighted by total net assets in Euro equity category and weighted by 

number of Euro equity funds. The average similarity of families that are in the top tercile (T1) and the 

average similarity of families that are in the bottom tercile (T3). The last column shows the result of a mean-

difference test between T1 and T3 with the p-value in parentheses. We apply the mean-difference test for 

paired samples. In all columns, the annual average is obtained with the monthly portfolio similarity data. 

The study period starts in December 1999 and ends in June 2018. ***, **, and * denote statistical significance 

at the 1%, 5%, and 10% level, respectively. 

 

Panel A: Stock       

Year 

Family 

portfolio 

similarity 

Family 

portfolio 

similarity 

(TNA- 

weighted) 

Family 

portfolio 

similarity 

(#funds- 

weighted) 

Family 

portfolio 

similarity 

(T1) 

Family 

portfolio 

similarity 

(T3) 

Mean-difference test 

(T1-T3) 

2000 50.44% 54.87% 52.55% 83.73% 21.72%   62.01%***   (0.000) 

2001 46.21% 47.19% 46.45% 75.40% 20.19% 55.20%***   (0.000) 

2002 43.63% 45.24% 44.01% 73.97% 16.63% 57.33%***   (0.000) 

2003 47.06% 46.20% 47.55% 77.48% 20.36% 57.11%***   (0.000) 

2004 51.71% 50.09% 51.50% 80.89% 24.79% 56.09%***   (0.000) 

2005 47.26% 48.69% 49.74% 72.05% 24.10% 47.95%***   (0.000) 

2006 46.21% 47.90% 46.89% 70.99% 24.45% 46.53%***   (0.000) 

2007 39.37% 37.42% 39.13% 61.53% 22.36% 39.16%***   (0.000) 

2008 37.97% 36.61% 38.04% 64.57% 20.20% 44.36%***   (0.000) 

2009 39.56% 44.61% 40.62% 61.24% 23.62% 37.62%***   (0.000) 

2010 40.95% 43.19% 40.74% 61.87% 24.30% 37.57%***   (0.000) 

2011 46.47% 42.51% 46.20% 67.81% 28.26% 39.54%***   (0.000) 

2012 46.16% 38.63% 46.69% 66.33% 25.05% 41.27%***   (0.000) 

2013 42.59% 37.35% 43.16% 60.61% 24.79% 35.81%***   (0.000) 

2014 43.64% 42.92% 43.84% 67.13% 22.32% 44.81%***   (0.000) 

2015 45.02% 46.21% 45.01% 68.66% 25.61% 43.04%***   (0.000) 

2016 39.77% 42.81% 40.00% 64.45% 21.68% 42.77%***   (0.000) 

2017 39.32% 43.35% 39.83% 62.80% 21.82% 40.97%***   (0.000) 

2018 41.43% 42.72% 42.04% 64.83% 23.66% 41.16%***   (0.000) 

Dec1999-Jun2018 44.03% 44.22% 44.52% 70.50% 22.63% 47.87%***   (0.000) 

       

Panel B: Sector       

Dec1999-Jun2018 73.47% 71.32% 73.25% 89.23% 57.01% 32.22%***   (0.000) 

       

Panel C: Industry       

Dec1999-Jun2018 80.33% 78.25% 80.09% 93.51% 65.84% 27.68%***   (0.000) 
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Table A2. 4 - The fund family characteristics that enhance portfolio similarity 
 

This table shows the results obtained by estimating Equation 2.4 using the portfolio similarity and Prais-

Winsten, GLS, FE and RE with robust standard errors from December 1999 to June 2018. Where the 

dependent variable is Family Portfolio Similarity 
f,t

 that is the portfolio overlap within fund family f in 

month t at the stock level and the independent variables are: Bankf,t that takes a value equal to 1 when a 

fund family depends on a banking or insurance company regarding its governance structure; 

Family_size
f,t 

is the log-normal of the total size of fund family f in month t; Bankf,t x Family_size
f,t 

is the 

interaction between the dummy variable Bankf,t and the variable Family_size
f,t 

; Family_age
f,t

 is the age of 

fund family f in month t obtained from the inception date of the oldest fund in the family; and 

Family_%EuroEquity
f,t

 is the percentage of the assets under management in the Euro equity category with 

respect to the total size of fund family f in month t. The p-value is reported in parentheses. ***, **, and * 

denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

 
Prais- 

Winsten 

 

 

GLS 

 

Prais- 

Winsten 

 

 

GLS 

 

FE 

(robust  

standard 

errors) 

RE 

(robust  

standard 

errors) 
 Coefficient     Coefficient         Coefficient         Coefficient         Coefficient         Coefficient         

Constant 

 

  0.494*** 

(0.000) 

     0.501***      

 (0.000) 

     0.502***      

 (0.000) 

     0.496***      

 (0.000) 

     0.540***      

 (0.000) 

    0.552***      

 (0.000) 

 

Bank 

 

 

-0.040*** 

(0.002) 

 

-0.013**   

 (0.034) 

 

 -0.050***   

 (0.001) 

 

 -0.024***   

 (0.005) 

  

 -0.179***   

 (0.000) 

 

 

Family_size 

 

 

0.001* 

(0.087) 

 

0.001* 

 (0.074) 

 

-0.017  

 (0.123) 

 

  -0.012*  

 (0.070) 

 

-0.023**   

 (0.012) 

 

-0.018**   

 (0.030) 

 

 

Bank x Family_size 

 

 

 

  

 0.018**   

 (0.010) 

 

0.013**    

 (0.048) 

 

  0.022**   

 (0.017) 

 

0.016**   

 (0.044) 

 

 

Family_age 

 

-0.002** 

(0.034) 

  -0.004***   

(0.000) 

-0.002**   

 (0.040) 

 -0.004***   

(0.000) 

 -0.005***   

 (0.000) 

  -0.007***   

(0.000) 

 

Family_%EuroEquity 

 

 

  0.059*** 

(0.005) 

 

0.033**   

(0.019) 

 

   0.065***   

 (0.003) 

 

0.032**   

(0.012) 

 

0.033   

(0.377) 

 

 -0.007*   

(0.082) 

 

R-squared  16.24%  16.26%  6.04% 6.04% 

Wald 

 

      29.36***   

(0.000) 

 32.95***  

(0.000) 

 30.85***  

(0.000) 

89.95***  

(0.000) 

 211.1***  

  (0.000) 

84.2***  

   (0.000) 

Hausman Test     

70.2***  

(0.000) 

#Observations 5,667 5,667 5,667 5,667 5,667 5,667 
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Appendix 2.2: The portfolio overlap and the portfolio similarity at the 

sector and industry levels 

 

Table A2. 5 – The sectors and industries of stocks within portfolio holdings 

 

This table reports the industries and sectors to which the stocks within mutual funds’ portfolio holdings 

according to FTSE Russel Industry Classification Benchmark (ICB) obtained from Datastream. 

 

Industry Sector 

Technology Technology 

Telecommunications Telecommunications 

Health Care Health Care 

Financials 

Banks 

Financial Services 

Insurance 

Real Estate Real Estate 

Consumer Discretionary 

Automobiles and Parts 

Consumer Products and Services 

Media 

Retailers 

Travel and Leisure 

Consumer Staples 
Food, Beverage and Tobacco 

Personal Care, Drug and Grocery Stores 

Industrials 
Construction and Materials 

Industrial Goods and Services 

Basic Materials 
Basic Resources 

Chemicals 

Energy Energy 

Utilities Utilities 

 

 

 

  



154 

 

Table A2. 6 – Overall results of the portfolio overlap among fund pairs at the 

sector level 
 

This table shows, for each year, the overall average portfolio overlap at the sector level and the number of 

fund pairs within the same fund family and the number of fund pairs in different families, as well as their 

average overlap. In this table, we present a yearly report of the number of funds during the sample period. 

The last column shows the results of the mean difference test between both specific averages with                            

the p-value in parentheses. We apply the mean difference test for unpaired samples with different variance 

(in all cases the null hypothesis is rejected in the test of equal variance). In all columns, the annual average 

is obtained with the monthly portfolio overlap data. The study period starts in December 1999 and ends in 

June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

Year 

 

Portfolio 

overlap 

 

#fund pairs 

(same fund 

family) 

#fund pairs 

(different 

fund 

family) 

Portfolio 

overlap 

(same fund 

family) 

Portfolio 

overlap 

(different 

fund 

family) 

Mean-difference 

test 

2000 59.75% 282 11,520 69.94% 59.51% 10.42%***    (0.000) 

2001 59.76% 341 13,827 67.07% 59.58% 7.48%***   (0.000) 

2002 57.24% 354 14,261 61.86% 57.14% 4.71%***    (0.000) 

2003 58.31% 340 15,175 62.78% 58.22% 4.55%***    (0.000) 

2004 59.75% 337 13,592 65.50% 59.61% 5.88%***    (0.000) 

2005 60.38% 391 14,415 65.39% 60.24% 5.14%***     (0.000) 

2006 60.16% 421 15,621 64.02% 60.05% 3.97%***     (0.000) 

2007 59.86% 474 16,648 61.91% 59.79% 2.12%***     (0.000) 

2008 59.71% 468 16,032 64.82% 59.47% 5.34%***     (0.000) 

2009 57.40% 422 14,054 62.48% 57.20% 5.28%***     (0.000) 

2010 57.97% 255 10,917 62.85% 57.81% 5.04%***     (0.000) 

2011 57.36% 236 9,864 61.65% 57.24% 4.41%***     (0.000) 

2012 55.83% 193 7,712 61.44% 55.67% 5.77%***     (0.000) 

2013 57.43% 166 6,289 61.18% 57.33% 3.84%***     (0.000) 

2014 58.21% 97 4,619 62.13% 58.12% 4.00%***     (0.000) 

2015 57.38% 104 5,203 62.77% 57.25% 5.52%***     (0.000) 

2016 56.98% 93 4,737 60.56% 56.90% 3.66%***     (0.000) 

2017 56.68% 75 4,260 61.78% 56.58% 5.20%***     (0.000) 

2018 56.68% 65 4,061 61.70% 56.58% 5.12%***     (0.000) 

Dec1999-Jun2018 58.89% 994 32,982 64.18% 58.75% 5.43%***     (0.000) 
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Table A2. 7 – Overall results of the portfolio overlap among fund pairs at the 

industry level 
 

This table shows, for each year, the overall average portfolio overlap at the industry level and the number 

of fund pairs within the same fund family and the number of fund pairs in different families, as well as their 

average overlap. In this table, we present a yearly report of the number of funds during the sample period. 

The last column shows the results of the mean difference test between both specific averages with the p-

value in parentheses. We apply the mean difference test for unpaired samples with different variance (in all 

cases the null hypothesis is rejected in the test of equal variance). In all columns, the annual average is 

obtained with the monthly portfolio overlap data. The study period starts in December 1999 and ends in 

June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

Year 

 

Portfolio 

overlap 

 

#fund pairs 

(same fund 

family) 

#fund 

pairs 

(different 

fund 

family) 

Portfolio 

overlap 

(same 

fund 

family) 

Portfolio 

overlap 

(different 

fund family) 

Mean-difference 

test 

2000 66.94% 282 11,520 76.81% 66.70% 10.10%***    (0.000) 

2001 66.43% 341 13,827 72.73% 66.27% 6.46%***  (0.000) 

2002 64.08% 354 14,261 68.58% 63.98% 4.59%***    (0.000) 

2003 64.90% 340 15,175 69.07% 64.81% 4.26%***    (0.000) 

2004 66.77% 337 13,592 72.15% 66.64% 5.50%***    (0.000) 

2005 67.43% 391 14,415 71.79% 67.31% 4.48%***     (0.000) 

2006 66.48% 421 15,621 69.50% 66.40% 3.09%***     (0.000) 

2007 66.62% 474 16,648 67.96% 66.57% 1.38%***     (0.000) 

2008 65.70% 468 16,032 70.55% 65.47% 5.07%***     (0.000) 

2009 63.99% 422 14,054 69.05% 63.80% 5.24%***     (0.000) 

2010 65.60% 255 10,917 70.17% 65.45% 4.72%***     (0.000) 

2011 65.94% 236 9,864 69.50% 65.84% 3.66%***     (0.000) 

2012 65.46% 193 7,712 70.70% 65.31% 5.39%***     (0.000) 

2013 66.58% 166 6,289 70.15% 66.48% 3.67%***     (0.000) 

2014 67.06% 97 4,619 71.12% 66.97% 4.15%***     (0.000) 

2015 66.83% 104 5,203 71.85% 66.70% 5.14%***     (0.000) 

2016 67.34% 93 4,737 71.28% 67.26% 4.02%***     (0.000) 

2017 67.22% 75 4,260 73.11% 67.10% 6.01%***     (0.000) 

2018 66.77% 65 4,061 71.59% 66.68% 4.90%***     (0.000) 

Dec1999-Jun2018 66.14% 994 32,982 70.92% 66.01%  4.91%***     (0.000) 
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Table A2. 8 – Family portfolio overlap at the sector level 

 

This table shows the average family portfolio overlap at the sector level and the average family portfolio 

similarity weighted by total net assets in Euro equity category and weighted by number of Euro equity 

funds. The average similarity of families that are in the top tercile (T1) and the average similarity of families 

that are in the bottom tercile (T3). The last column shows the result of a mean-difference test between T1 

and T3 with the p-value in parentheses. We apply the mean-difference test for paired samples. In all 

columns, the annual average is obtained with the monthly portfolio similarity data. The study period starts 

in December 1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 

10% level, respectively. 

 

Panel A: Stock 

Year 
Family 

Overlap 

Family 

overlap 

(TNA-

weighted) 

Family 

overlap 

(#funds-

weighted) 

Family 

Overlap 

(T1) 

Family 

Overlap 

(T3) 

Mean-difference 

test (T1-T3) 

2000 64.13% 67.87% 66.39% 82.45% 47.63% 34.83%***   (0.000) 

2001 62.86% 66.37% 64.21% 79.93% 47.55% 32.38%***   (0.000) 

2002 61.61% 64.21% 60.62% 79.36% 44.51% 34.85%***   (0.000) 

2003 60.74% 62.55% 60.74% 78.48% 45.22% 33.27%***   (0.000) 

2004 63.37% 65.68% 63.78% 79.13% 49.78% 29.36%***   (0.000) 

2005 62.27% 63.11% 63.24% 76.34% 49.67% 26.67%***   (0.000) 

2006 62.46% 62.25% 63.55% 75.60% 50.38% 25.22%***   (0.000) 

2007 61.11% 61.66% 60.26% 75.75% 52.32% 23.43%***   (0.000) 

2008 62.67% 62.00% 63.89% 77.95% 49.42% 28.53%***   (0.000) 

2009 62.91% 54.91% 62.49% 75.71% 48.22% 27.49%***   (0.000) 

2010 61.57% 55.98% 62.22% 76.45% 50.33% 26.12%***   (0.000) 

2011 62.83% 55.11% 61.10% 74.33% 50.47% 23.86%***   (0.000) 

2012 64.27% 54.92% 60.57% 72.04% 51.00% 21.04%***   (0.000) 

2013 63.53% 56.71% 61.33% 71.16% 52.56% 18.60%***   (0.000) 

2014 61.85% 61.19% 62.30% 73.60% 52.71% 20.88%***   (0.000) 

2015 60.88% 64.07% 63.43% 74.12% 53.63% 20.48%***   (0.000) 

2016 62.58% 63.86% 62.44% 73.65% 51.67% 21.98%***   (0.000) 

2017 62.49% 64.64% 64.64% 75.54% 53.24% 22.30%***   (0.000) 

2018 62.41% 64.41% 65.96% 77.53% 55.21% 22.32%***   (0.000) 

Dec1999-Jun2018 62.46% 61.61% 62.73% 76.80% 49.30% 

49.30% 

 

27.20%***   (0.000) 
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Table A2. 9 – Family portfolio overlap at the industry level 

 

This table shows the average family portfolio overlap at the industry level and the average family portfolio 

similarity weighted by total net assets in Euro equity category and weighted by number of Euro equity 

funds. The average similarity of families that are in the top tercile (T1) and the average similarity of families 

that are in the bottom tercile (T3). The last column shows the result of a mean-difference test between T1 

and T3 with the p-value in parentheses. We apply the mean-difference test for paired samples. In all 

columns, the annual average is obtained with the monthly portfolio similarity data. The study period starts 

in December 1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 

10% level, respectively. 

 

Panel A: Stock 

Year 
Family 

Overlap 

Family 

overlap 

(TNA-

weighted) 

Family 

overlap 

(#funds-

weighted) 

Family 

Overlap 

(T1) 

Family 

Overlap 

(T3) 

Mean-difference 

test (T1-T3) 

2000 71.11% 75.13% 73.18% 86.17% 56.15% 30.01%***   (0.000) 

2001 69.82% 71.79% 70.62% 85.33% 54.77% 30.56%***   (0.000) 

2002 68.60% 70.15% 67.38% 85.06% 51.58% 33.47%***   (0.000) 

2003 67.79% 69.10% 67.34% 83.72% 52.40% 31.31%***   (0.000) 

2004 70.84% 72.53% 70.83% 84.46% 58.29% 26.16%***   (0.000) 

2005 70.78% 70.25% 70.82% 82.47% 59.28% 23.19%***   (0.000) 

2006 70.34% 69.27% 70.21% 82.07% 58.26% 23.80%***   (0.000) 

2007 70.30% 68.34% 66.20% 82.55% 59.02% 23.52%***   (0.000) 

2008 72.30% 69.10% 69.91% 83.83% 56.29% 27.53%***   (0.000) 

2009 72.98% 64.91% 69.94% 82.51% 56.68% 25.82%***   (0.000) 

2010 72.80% 66.24% 69.83% 83.94% 58.87% 25.06%***   (0.000) 

2011 74.23% 65.26% 69.33% 82.85% 58.79% 24.06%***   (0.000) 

2012 73.00% 64.12% 69.61% 81.11% 61.07%  20.03%***   (0.000) 

2013 70.52% 65.60% 70.45% 80.50% 61.26% 19.24%***   (0.000) 

2014 68.68% 70.30% 71.58% 83.71% 60.72%  22.99%***   (0.000) 

2015 67.81% 73.75% 72.99% 82.78% 63.49% 19.28%***   (0.000) 

2016 70.09% 73.81% 73.65% 82.04% 63.95% 18.08%***   (0.000) 

2017 70.54% 74.77% 76.49% 83.99% 65.06% 18.93%***   (0.000) 

2018 70.80% 74.31% 75.74% 84.44% 65.43% 19.00%***   (0.000) 

Dec1999-Jun2018 70.70% 69.84% 70.73% 83.52% 58.20% 25.32%***   (0.000) 
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Table A2. 10 – Overall results of the portfolio similarity among fund pairs at the 

sector level 
 

This table shows, for each year, the overall average portfolio similarity at the sector level and the number 

of fund pairs within the same fund family and the number of fund pairs in different families, as well as their 

average overlap. In this table, we present a yearly report of the number of funds during the sample period. 

The last column shows the results of the mean difference test between both specific averages with the p-

value in parentheses. We apply the mean difference test for unpaired samples with different variance (in all 

cases the null hypothesis is rejected in the test of equal variance). In all columns, the annual average is 

obtained with the monthly portfolio overlap data. The study period starts in December 1999 and ends in 

June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

Year 

 

Portfolio 

overlap 

 

#fund pairs 

(same fund 

family) 

#fund pairs 

(different 

fund family) 

Portfolio 

overlap 

(same fund 

family) 

Portfolio 

overlap 

(different 

fund family) 

Mean-difference 

test 

2000 70.90% 282 11,520 80.91% 70.67%   10.24%***   (0.000) 

2001 70.46% 341 13,827 76.65% 70.30% 6.35%***   (0.000) 

2002 67.45% 354 14,261 70.27% 67.38% 2.89%***    (0.000) 

2003 68.86% 340 15,175 72.68% 68.78% 3.90%***    (0.000) 

2004 70.44% 337 13,592 76.72% 70.28% 6.44%***    (0.000) 

2005 71.87% 391 14,415 76.99% 71.72% 5.27%***     (0.000) 

2006 71.78% 421 15,621 75.28% 71.68% 3.60%***     (0.000) 

2007 70.49% 474 16,648 72.18% 70.43% 1.75 %***     (0.000) 

2008 69.83% 468 16,032 74.92% 69.59% 5.33%***     (0.000) 

2009 66.74% 422 14,054 72.07% 66.54% 5.53%***     (0.000) 

2010 67.60% 255 10,917 73.75% 67.40% 6.35%***     (0.000) 

2011 67.34% 236 9,864 73.38% 67.16% 6.22%***     (0.000) 

2012 64.08% 193 7,712 72.43% 63.83% 8.60%***     (0.000) 

2013 67.04% 166 6,289 71.72% 66.91% 4.81%***     (0.000) 

2014 68.04% 97 4,619 74.44% 67.89% 6.55%***     (0.000) 

2015 67.15% 104 5,203 74.54% 66.96% 7.58%***     (0.000) 

2016 65.88% 93 4,737 71.09% 65.77% 5.32%***     (0.000) 

2017 65.69% 75 4,260 72.32% 65.56% 6.76%***     (0.000) 

2018 65.90% 65 4,061 72.14% 65.78% 6.36%***     (0.000) 

Dec1999-Jun2018 69.40% 994 32,982 74.71% 69.26% 5.46%***     (0.000) 
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Table A2. 11 – Overall results of the portfolio similarity among fund pairs at the 

industry level 

 

This table shows, for each year, the overall average portfolio similarity at the industry level and the number 

of fund pairs within the same fund family and the number of fund pairs in different families, as well as their 

average overlap. In this table, we present a yearly report of the number of funds during the sample period. 

The last column shows the results of the mean difference test between both specific averages with the p-

value in parentheses. We apply the mean difference test for unpaired samples with different variance (in all 

cases the null hypothesis is rejected in the test of equal variance). In all columns, the annual average is 

obtained with the monthly portfolio overlap data. The study period starts in December 1999 and ends in 

June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

Year 

 

Portfolio 

overlap 

 

#fund pairs 

(same fund 

family) 

#fund 

pairs 

(different 

fund 

family) 

Portfolio 

overlap 

(same 

fund 

family) 

Portfolio 

overlap 

(different 

fund family) 

Mean-difference 

test 

2000 76.66% 282 11,520 86.00% 76.44%  9.55%***    (0.000) 

2001 75.64% 341 13,827 81.18% 75.50%  5.67%***   (0.000) 

2002 73.18% 354 14,261 76.14% 73.11% 3.02%***    (0.000) 

2003 73.69% 340 15,175 77.20% 73.61% 3.59%***    (0.000) 

2004 75.70% 337 13,592 80.88% 75.57% 5.31%***    (0.000) 

2005 77.48% 391 14,415 81.47% 77.37% 4.09%***     (0.000) 

2006 76.98% 421 15,621 78.97% 76.93% 2.04%***     (0.000) 

2007 76.65% 474 16,648 76.73% 76.65% 0.08%***     (0.000) 

2008 74.85% 468 16,032 78.72% 74.67% 4.05%***     (0.000) 

2009 72.20% 422 14,054 76.94% 72.02% 4.91%***     (0.000) 

2010 74.03% 255 10,917 78.88% 73.88% 5.00%***     (0.000) 

2011 75.00% 236 9,864 79.39% 74.87% 4.52%***     (0.000) 

2012 73.76% 193 7,712 80.89% 73.55% 7.33%***     (0.000) 

2013 76.07% 166 6,289 79.64% 75.97% 3.66%***     (0.000) 

2014 76.99% 97 4,619 81.86% 76.88% 4.98%***     (0.000) 

2015 77.38% 104 5,203 83.76% 77.22% 6.54%***     (0.000) 

2016 77.44% 93 4,737 82.41% 77.33% 5.07%***     (0.000) 

2017 77.52% 75 4,260 84.38% 77.38% 6.99%***     (0.000) 

2018 77.38% 65 4,061 83.28% 77.27% 6.01%***     (0.000) 

Dec1999-Jun2018 75.60% 994 32,982 79.91% 75.48% 4.42 %***     (0.000) 
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Table A2. 12 – Family portfolio similarity at the sector level 

 

This table shows the average family portfolio similarity at the sector level and the average family portfolio 

similarity weighted by total net assets in Euro equity category and weighted by number of Euro equity 

funds. The average similarity of families that are in the top tercile (T1) and the average similarity of families 

that are in the bottom tercile (T3). The last column shows the result of a mean-difference test between T1 

and T3 with the p-value in parentheses. We apply the mean-difference test for paired samples. In all 

columns, the annual average is obtained with the monthly portfolio similarity data. The study period starts 

in December 1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, and 

10% level, respectively. 

 

Panel A: Stock 

Year 
Family 

Overlap 

Family 

overlap 

(TNA-

weighted) 

Family 

overlap 

(#funds-

weighted) 

Family 

Overlap 

(T1) 

Family 

Overlap 

(T3) 

Mean-difference 

test (T1-T3) 

2000 74.84% 78.77% 76.93% 91.86% 56.31% 35.55 %***   (0.000) 

2001 73.19% 75.36% 74.12% 90.67% 55.51% 35.16%***   (0.000) 

2002 70.19% 72.26% 69.43% 90.48% 49.09% 41.39%***   (0.000) 

2003 70.67% 72.02% 70.80% 90.29% 50.11% 40.17%***   (0.000) 

2004 74.29% 76.13% 74.38% 91.36% 56.48% 34.88%***   (0.000) 

2005 74.09% 74.08% 74.78% 89.05% 57.94% 31.11%***   (0.000) 

2006 75.67% 73.88% 75.10% 89.41% 60.37% 29.05%***   (0.000) 

2007 73.79% 72.85% 70.95% 89.36% 61.43% 27.92%***   (0.000) 

2008 72.32% 71.55% 73.65% 91.23% 55.61% 35.63%***   (0.000) 

2009 69.81% 64.91% 71.70% 89.81% 52.84% 36.97%***   (0.000) 

2010 73.36% 64.24% 73.21% 90.62% 56.24% 34.39%***   (0.000) 

2011 74.36% 62.13% 73.94% 89.41% 58.23% 31.18%***   (0.000) 

2012 72.74% 61.19% 72.44% 86.77% 58.36% 28.41%***   (0.000) 

2013 71.90% 63.62% 71.95% 83.62% 59.93% 23.69%***   (0.000) 

2014 74.47% 72.02% 74.53% 87.78% 61.46% 26.32%***   (0.000) 

2015 75.28% 76.10% 74.90% 87.80% 62.22% 25.58%***   (0.000) 

2016 72.21% 74.76% 71.80% 85.60% 59.18% 26.42%***   (0.000) 

2017 73.44% 75.13% 73.03% 85.98% 61.58% 24.40%***   (0.000) 

2018 75.21% 75.61% 74.13% 87.89% 64.55% 23.33%***   (0.000) 

Dec1999-Jun2018 73.47% 71.32% 73.25% 89.23% 57.01% 32.22%***   (0.000) 
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Table A2. 13 – Family portfolio similarity at the industry level 

 

This table shows the average family portfolio similarity at the industry level and the average family 

portfolio similarity weighted by total net assets in Euro equity category and weighted by number of Euro 

equity funds. The average similarity of families that are in the top tercile (T1) and the average similarity of 

families that are in the bottom tercile (T3). The last column shows the result of a mean-difference test 

between T1 and T3 with the p-value in parentheses. We apply the mean-difference test for paired samples. 

In all columns, the annual average is obtained with the monthly portfolio similarity data. The study period 

starts in December 1999 and ends in June 2018. ***, **, and * denote statistical significance at the 1%, 5%, 

and 10% level, respectively. 

 

Panel A: Stock 

Year 
Family 

Overlap 

Family 

overlap 

(TNA-

weighted) 

Family 

overlap 

(#funds-

weighted) 

Family 

Overlap 

(T1) 

Family 

Overlap 

(T3) 

Mean-difference 

test (T1-T3) 

2000 80.17% 83.90% 82.13% 94.32% 63.38% 30.94%***   (0.000) 

2001 78.63% 79.62% 79.30% 94.22% 62.04% 32.18%***   (0.000) 

2002 76.03% 77.31% 75.33% 94.23% 56.17% 38.05%***   (0.000) 

2003 75.57% 76.65% 75.69% 92.85% 56.27% 36.58%***   (0.000) 

2004 79.57% 81.02% 79.36% 93.84% 64.46% 29.37%***   (0.000) 

2005 80.59% 79.87% 80.59% 92.65% 67.14% 25.51%***   (0.000) 

2006 81.19% 78.55% 79.89% 92.97% 67.86% 25.11%***   (0.000) 

2007 79.00% 77.55% 75.81% 93.00% 68.41% 24.59%***   (0.000) 

2008 77.27% 76.97% 77.98% 94.31% 62.43% 31.88%***   (0.000) 

2009 76.49% 73.17% 77.50% 93.21% 61.82% 31.38%***   (0.000) 

2010 79.20% 73.84% 78.77% 94.46% 64.28% 30.18%***   (0.000) 

2011 80.57% 72.02% 80.10% 94.28% 65.79% 28.48%***   (0.000) 

2012 81.28% 71.48% 80.85% 92.61% 69.79%  22.82%***   (0.000) 

2013 80.34% 71.97% 80.06% 91.22% 69.24% 21.98 %***  (0.000) 

2014 82.58% 79.57% 82.34% 93.90% 70.31%  23.59 %***  (0.000) 

2015 85.07% 85.55% 84.56% 93.73% 75.62% 18.10%***   (0.000) 

2016 84.09% 84.82% 83.58% 92.38% 74.84% 17.54%***   (0.000) 

2017 85.46% 85.52% 85.12% 93.84% 76.15% 17.68%***   (0.000) 

2018 85.71% 85.66% 84.84% 94.96% 77.05% 17.90%***   (0.000) 

Dec1999-Jun2018 80.33% 78.52% 80.09% 93.51% 65.84% 27.67%***   (0.000) 
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Appendix 2.3: Model specifications with independent variables lagged 

by one month 
 

Table A2. 14 - Portfolio overlap and characteristics of mutual funds 

 

This table shows the results obtained by estimating Equation 2.2 using RE with robust estandar errors from 

December 1999 to June 2018, where the dependent variable is the Portfolio Overlap
i,j,t 

at the stock level 

and the independent variables are dummy variables. We calculate the percentile rank of each fund-month 

in each characteristic (Fund_size, Fund_age, Fund_#stocks, Fund_fees and Fund_return) and we determine 

the quintile into which mutual funds are. For these characteristics, the model includes four dummy 

variables: Same takes a value equal to 1 when fund i and j in month t-1 are in the same quintile; BothQ1 

takes a value equal to 1 when funds i and j in month t-1 are in the top quintile; BothQ5 takes a value equal 

to 1 when fund i and j in month t-1 are in the bottom quintile; Opposite is equal to 1 when in month t-1, 

either fund i or fund j is in the top quintile and in the other is in the bottom quintile; Fund_family
i,j,t

 is equal 

to 1 when, in month t-1, funds i and j are in the same fund family; and Timet ranges from 1 in the first month 

to 223 in the last month.  The p-value is reported in parentheses. ***, **, and * denote statistical significance 

at the 1%, 5%, and 10% level, respectively. 

 

 Coefficient  
Constant  0.308***   (0.000) 

 

Fund_size 

Same    -0.001       (0.306) 

BothQ1  0.020***   (0.000) 

BothQ5   -0.016***   (0.000) 

Opposite   -0.002**    (0.031) 

 

Fund_age 

Same  0.005***   (0.003) 

BothQ1   -0.011***   (0.000) 

BothQ5 -0.034***   (0.000) 

Opposite -0.009       (0.110) 

  

Fund_#stocks 

Same  0.011***   (0.000) 

BothQ1  0.004**     (0.028) 

BothQ5 -0.016***   (0.000) 

Opposite -0.015***   (0.000) 

 

Fund_fees 

Same  0.002***    (0.000) 

BothQ1  0.013***     (0.000) 

BothQ5 -0.009***   (0.000) 

Opposite  0.002       (0.299) 

 

Fund_return 

Same  0.009***     (0.000) 

BothQ1 -0.008***   (0.000) 

BothQ5 -0.001       (0.646) 

Opposite -0.009***    (0.000) 

Fund_family  0.062***      (0.000) 

Time -0.002***      (0.000) 

#Observations 1,073,378 

Wald 1,419.26***  (0.000) 

R-squared 5.95% 

VIF 1.24 
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Table A2. 15 - The fund family characteristics that enhance portfolio overlap 
 

This table shows the results obtained by estimating Equation 2.4 using Prais-Winsten, GLS, FE and RE 

with robust estandar errors from December 1999 to June 2018. Where the dependent variable is 

Family portfolio overlap
f,t

 that is the portfolio overlap within fund family f in month t at the stock level and 

the independent variables are: Bankf,t that takes a value equal to 1 when a fund family depends on a banking 

or insurance company regarding its governance structure; Family_size
f,t 

is the log-normal of the total size 

of fund family f in month t-1; Bankf,t x Family_size
f,t 

is the interaction between the dummy variable Bankf,t 

and the variable Family_size
f,t 

; Family_age
f,t

 is the age of fund family f in month t-1 obtained from the 

inception date of the oldest fund in the family; and Family_%EuroEquity
f,t

 is the percentage of the assets 

under management in the Euro equity category with respect to the total size of fund family f in month t-1. 

The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% 

level, respectively. 

 

 
Prais- 

Winsten 

 

 

GLS 

Prais- 

Winsten 

 

 

GLS 

FE 

(robust  

standard 

errors) 

RE 

(robust  

standard 

errors) 
 Coefficient     Coefficient         Coefficient         Coefficient         Coefficient         Coefficient         

Constant 

 

 -0.377*** 

(0.000) 

    -0.413***      

 (0.000) 

  0.754*** 

(0.000) 

     0.662*** 

 (0.000) 

    0.142* 

       (0.067) 

       1.119*** 

   (0.004) 

 

Bankt-1 

 

 

-0.124*** 

(0.000) 

 

 -0.080***   

 (0.000) 

 

 -1.489***   

 (0.000) 

 

-1.338*** 

 (0.000) 

  

 -1.309** 

   (0.019) 

 

Family_sizet-1 

 

 

  0.065*** 

(0.000) 

 

  0.063***   

 (0.000) 

 

-0.028* 

 (0.068) 

 

-0.024** 

 (0.042) 

 

-0.063* 

(0.051) 

 

-0.060* 

 (0.053) 

 

Bankt-1 x Family_sizet-1 

 

   

  0.109*** 

(0.000) 

 

 0.099*** 

 (0.000) 

 

 0.102** 

(0.029) 

 

 0.104** 

 (0.016) 

 

Family_aget-1 

 

-0.004*** 

(0.000) 

  -0.005***   

(0.000) 

-0.004*** 

(0.001) 

-0.004*** 

 (0.000) 

-0.006** 

(0.039) 

-0.006** 

 (0.031) 

 

Family_%EuroEquityt-1 

 

 

  0.229*** 

(0.000) 

 

   0.221***   

(0.006) 

 

 0.286*** 

(0.000) 

 

 0.255*** 

 (0.000) 

 

 0.261** 

(0.015) 

 0.267** 

 (0.011) 

R-squared  12.83%  14.00%  9.73% 9.70% 

Wald 

 

      161.26***   

(0.000) 

 225.22***  

(0.000) 

  230.35*** 

(0.000) 

 

280.66*** 

 (0.000) 

  124.30*** 

(0.000) 

 106.40** 

 (0.000) 

 

Hausman Test 

     

117.70***  

(0.000) 

#Observations 4,856 4,856 4,856 4,856 4,856 4,856 
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Table A2. 16 - The fund family characteristics that enhance the manager 

autonomy  
 

This table shows the results obtained by estimating Equation 2.10 using Prais-Winsten, GLS, FE and RE 

with robust estandar errors from December 1999 to June 2018. Where the dependent variable is 

Intra-family autonomy
f,t

which is the autonomy level of managers within fund family f in month t at the 

stock level and the independent variables are: Bankf,t is equal to 1 if a fund family depends on the banking 

or insurance company according to its governance structure;  Family_size
f,t 

is the log-normal of total size 

of fund family f in month t-1; Bankf,t x Family_size
f,t 

is the interaction between the dummy variable Bankf,t 

and the variable Family_size
f,t 

; Family_age
f,t

 is the age of fund family f obtained from its start date in 

month t-1; and Family_%EuroEquity
f,t

 is the percentage of the value in the Euro equity category with 

respect to the total size of fund family f in month t-1. The p-value is reported in parentheses. ***, **, and * 

denote statistical significance at the 1%, 5%, and 10% level, respectively. 

 

 
Prais- 

Winsten 

 

 

GLS 

Prais- 

Winsten 

 

 

GLS 

FE 

(robust  

standard 

errors) 

RE 

(robust  

standard 

errors) 
 Coefficient     Coefficient         Coefficient         Coefficient         Coefficient         Coefficient         

Constant 

 

0.898*** 

(0.000) 

0.953*** 

    (0.000) 

0.181*    

(0.099) 

0.193** 

(0.039) 

0.584**    

       (0.038) 

    0.251** 

(0.040) 

Bankt-1 

 

 

0.110*** 

(0.000) 

0.126***
 

    (0.000) 

 0.976***   

 (0.000) 

 0.976*** 

(0.000)  

 1.113*** 

(0.007) 

Family_sizet-1 

 

 

 -0.050*** 

  (0.000) 

  -0.053*** 

    (0.000) 

0.009   

  (0.306) 

  0.007 

      (0.320) 

  0.055**   

 (0.027) 

      0.051** 

(0.031) 

 

Bankt-1 x Family_sizet-1 

 

   

  -0.069***   

 (0.000) 

 

-0.067*** 

 (0.000) 
 

-0.087**  

 (0.016) 

 

-0.087*** 

(0.006) 

 

Family_aget-1 

 

    0.004***    

  (0.000) 

  0.004*** 

    (0.000) 

   0.004***    

 (0.000) 

 0.005*** 

 (0.000) 

 0.003**    

 (0.020) 

 0.003 

(0.163) 

 

Family_%EuroEquityt-1 

 

 

0.047    

  (0.107) 

 

0.032 

   (0.110) 

 

0.009    

  (0.731) 

 

0.033 

    (0.120) 

 

-0.084    

  (0.457) 

 

-0.078 

(0.453) 

 

R-squared   12.12%     13.36%    14.62% 14.59% 

Wald 

 

 

    299.11***    

  (0.000) 

476.17*** 

  (0.000) 

     

369.25***    

  (0.000) 

   

589.13*** 

(0.000) 

    20.80***    

  (0.000) 

   

104.20*** 

(0.000) 

 

Hausman Test 

     

20.06***  

(0.000) 

#Observations 4,856 4,856 4,856 4,856 4,856 4,856 
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CHAPTER 3: 

 

FUND TRADING DIVERGENCE AND 

PERFORMANCE CONTRIBUTION 
 

 

-“Being different simply means you have something 

unique to offer the world.”-  

Scarlett Vespa 

 

 

Synopsis 

 

Considering that the most distinct trading decisions are crucial to evaluate the 

ability of fund managers to add value, this chapter aims to examine the trading 

divergence level among mutual funds and to capture its determinants and its 

performance consequences. We propose a measure that is more informative 

than the traditional overlap metrics, providing evidence of a positive and 

significant trend of fund trading divergence over time, especially after the 

Global Financial Crisis (GFC) of 2008. Our results also show a negative 

influence of market stress on the trading divergence level; however, different 

reactions of fund managers are detected in the successive market shocks of the 

period analysed. Interestingly, we find that divergent trading implies a 

significantly greater contribution to subsequent fund performance than do 

convergent decisions. 
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3.1 Introduction 
 

Through comparisons between active and passive fund management, mutual fund 

research has focused on the skills and added value of managers, showing that on average, 

active funds do not outperform benchmarks (Jensen, 1968; Fama and French, 2010). 

However, shedding light on the ability of fund managers to add value, other studies 

document a positive relationship between the value created and trading activity 

(Wermers, 2000; Dahlquist et al., 2000; Engström, 2004). Along this line, Cremers and 

Petajisto (2009) find that portfolio holdings that differ from the benchmark weights show 

a higher performance. More recently, using the information of portfolio holdings and 

trading decisions, Fulkerson (2013) develops a new measure of the value of active mutual 

fund management and reveals that most of the skill documented by previous literature 

arises from correctly trading stocks within industries. Jiang et al. (2014) also find that in 

actively managed funds, overweighted stocks perform substantially better than 

underweighted stocks. 

 The aim of this chapter is to isolate the trading decisions that are distinct regarding 

those carried out by other funds, that is, to obtain the trading divergence level among 

funds. Due to the importance of the trading divergence level for examining the value 

added by managers, we focus on this level in the Spanish market and evaluate the 

differences in the trading decisions of funds, considering the influence of the stock traded, 

the type of trading decision (buying, selling or no trading) and the portfolio weight on the 

total net assets (TNA) of funds. 

 An important economic principle extended to research on mutual fund managers 

is that financial agents can obtain excess returns if and only if they manage to stand out 

from other funds, showing that management skills a competitive advantage (Berk and 

Van Binsbergen, 2015). In this line, Khorana and Servaes (2007) document that product 
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differentiation strategies are effective in obtaining market share, and thus, the market 

share is higher in families in which the new fund is more differentiated than the existing 

offerings. Furthermore, a greater level of difference among funds has a significantly 

positive influence not only on the family share in the market but also on the financial 

system. Getmansky et al. (2016), Guo et al. (2016) and Delpini et al. (2018; 2019) 

document that a significant similarity among funds plays an important role in the 

transmission of financial difficulties and can make the financial system more fragile. 

 First, we examine the evolution of the trading divergence level among equity 

mutual funds from January 2000 to June 2020 in the Spanish industry, and we explore the 

main breakpoints in its evolution. We hypothesise that the trading divergence level among 

funds follows a positive pattern, especially within the same family, to reduce costs and to 

increase market share. We could also expect an increase in the divergence level driven by 

the desire for greater efficiency in the mutual fund industry. 

 Second, we study the different determinants of the trading divergence among 

funds. Specifically, we examine the influence of previous holdings, market stress and 

stock characteristics. We may expect that those fund pairs that have more similarity in 

their previous holdings also show a lower divergence level among their trading decisions 

during the following period. Furthermore, we could also expect that market stress 

supposes a negative influence on the trading divergence level among funds. A high 

market stress level implies high levels of uncertainty about the fundamental value of 

financial assets and information asymmetry in the market (Hakkio and Keeton, 2009); 

moreover, this information asymmetry is higher for riskier stocks (Easley et al., 1996; 

Aslan et al., 2011; Martins and Paulo, 2014) and non-domestic stocks (Barron and Ni, 

2008), causing fund managers to experience several feelings and emotions, such as fear 

and panic, that influence their financial decisions (Birâu, 2012). Therefore, due to 
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potential compensation and reputational incentives, fund managers may tend to hold less 

risky and more familiar stocks in their portfolio and may have more incentives to make 

decisions similar to those of others (Karunanayake et al., 2010; Khan et al., 2011). In 

addition, we study whether the trading divergence level is driven by certain stocks, as 

previous research shows that the trading decisions of fund managers are influenced by 

stock characteristics. Particularly, the stock characteristics that have attracted greater 

research attention are the size, the previous volatility and return, and the information level 

available in the market about them. 

 Finally, this chapter studies the consequences of trading divergence on subsequent 

fund performance and thus on industry efficiency. Although previous literature has 

argued the inability of the active fund to outperform the benchmark, Cremers and 

Petajisto (2009), Cohen et al. (2010) and Jiang et al. (2014) document that fund managers 

generate added value through some decisions. We hypothesise that divergent trading 

decisions have a higher contribution to fund performance than do convergent trading 

decisions. 

 In the context of similarity, the correlation among funds’ trading has been studied 

by the previous literature. Kacperczyk and Seru (2012) examine coordination in fund 

families, calculating the number of positive and negative changes in portfolio holdings 

by each stock for all funds within a family. Pool et al. (2015) also test whether socially 

connected fund managers have more similar holdings and trades. However, for several 

reasons, from a divergence perspective, we study the relationship among the trading 

decisions of funds. First, we can capture not only the “active” divergence that occurs 

when the two compared funds trade in the same stock but also the “passive” divergence 

that occurs when one fund trades in a stock and the other fund does not. No fund will 

present a trading overlap in stocks that it has not traded; however, it could present a 
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trading divergence depending on whether the other fund has traded that stock. Second, 

the divergence trading measure proposed in this study allows us to differentiate between 

the cases in which a fund buys (or sells) a certain stock and another fund does not trade 

in this stock and the cases in which both funds trade in the opposite direction; however, 

under the overlap trading methodology, both cases are considered the same. 

 This chapter is related to the literature that examines the funds’ trading decisions, 

especially the growing literature that examines the similarity level among portfolios. 

However, this study differs in several aspects. First, we focus on the trading divergence 

level among funds by proposing a measure that simultaneously takes into account both 

buying and selling decisions. Hence, our measure is more informative than previous 

buying overlap and selling overlap metrics. Second, we study the influence of the 

similarity level of portfolios and stock characteristics on the trading divergence level. 

Third, we distinguish between the contribution of divergent and convergent trading 

decisions to fund performance. 

 This chapter contributes to the literature on the development of the fund industry 

and on the comparison of behaviour before and after the Global Financial Crisis, GFC, 

(2008) in the market. This chapter shows a significantly positive pattern in the trading 

divergence level, especially after the GFC of 2008. In addition, our findings suggest that 

fund managers do not show the same behaviour for the different market shocks during 

the sample period. 

 The findings of the study have several implications for industry regulators because 

the trading divergence level supposes a significantly positive influence on the fund's 

performance and thus on the industry efficiency. In addition, according to Delpini et al. 

(2018; 2019), the trading divergence level could influence the systemic fragility of the 

financial system. Due to the significantly positive effect of trading divergence on fund 
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performance, this study also has implications for the top management of fund families. 

Brown and Wu (2014) document that on average; good family performance has a positive 

effect on the fund flows of its member funds. Therefore, top management within families 

may be interested in motivating managers to seek investment opportunities and to trade 

in the other family funds differently. Finally, the findings have implications for fund 

managers because these managers’ reputation and remuneration depend on their 

performance records (Mason et al., 2016). 

 The rest of the chapter is organised as follows. Section 2 describes the data and 

methodology. Section 3 studies the evolution of trading divergence among funds. Section 

4 focuses on the determinants of this phenomenon. Section 5 focuses on performance and 

efficiency consequences, and Section 6 is the conclusion. 

 

3.2 Data and methodology 

 

3.2.1 Data 

We analyse the trading divergence among fund pairs in the Spanish equity mutual fund 

industry from January 2000 to June 2020. Our sample includes funds classified by the 

Spanish Securities Exchange Commission (CNMV) as Euro equity funds, which invest at 

least 75% of their portfolio holdings in equity assets with a minimum of 60% of the equity 

allocation in euro zone domiciled companies. The sample is free of survivorship bias, 

including both surviving and dead funds. ETFs, index funds and funds with less than 2 

years of data were excluded. This leads to a final sample of 315 Euro equity mutual funds 

managed by 114 fund families. 
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Table 3. 1 – Summary Statistics of the sample 

 

This table shows summary statistics for our sample at five date points: March 2000, March 2005, March 

2010, March 2015 and March 2020. Specifically, this table includes the mean, quintile 1 value (Q1), and 

quintile 5 value (Q5) of each fund characteristic. #Funds is the number of funds in our sample; #Families 

is the number of fund families in our sample; #Families with more than one fund is the number of fund 

families that manage more than one fund in our sample; Fund_size is the monthly total net assets of funds 

in million euros; Fund_age is the age of funds in years, and we obtain the fund’s age from its inception 

date; Fund_fees is the funds’ monthly management and deposit fees; Fund_return is the funds’ annual past 

gross return; Fund_moneyflows is the funds' monthly relative money flows; and Fund_#stocks is the 

number of distinct stocks held by the funds’ monthly portfolio holdings. 

 

 

March 

2000 

March 

2005 

March 

2010 

March 

2015 

March 

2020 

#Funds 159 166 151 95 90 

#Families 76 68 66 47 52 

#Families_more than one fund 35 31 34 25 23 

Fund_size                           Mean        95,182 59,947 34,442 94,234 59,343 

Q1 115,824 74,558 33,549 140,799 65,782 

Q5 8,442 6,049 5,119 18,572 8,753 

Fund_age                              Mean 4 8 11 16 18 

Q1 8 11 16 21 25 

  Q5 1 4 7 11 11 

Fund_fees                             Mean 0.17% 0.15% 0.16% 0.19% 0.14% 

 Q1 0.21% 0.19% 0.19% 0.20% 0.17% 

Q5 0.12% 0.12% 0.13% 0.15% 0.11% 

Fund_return                        Mean -0.33% -0.87% 6.51% 3.41% 0.14% 

Q1 2.06% -0.09% 8.03% 4.04% 1.21% 

Q5 -2.95% -1.49% 4.69% 2.76% -1.30% 

Fund_moneyflows               Mean 5.04% 5.93% -0.46% 0.78% -0.83% 

Q1 11.46% 3.53% 0.31% 3.33% 1.50% 

Q5 -1.02% -1.96% -3.28% -2.92% -3.26% 

Fund_#stocks                      Mean 52 44 39 40 41 

Q1 67 55 50 49 49 

Q5 34 31 27 31 30 

 

 The CNMV database includes monthly portfolio holdings from December 1999 to 

December 2006 and quarterly holdings from March 2007 to June 2020. When available 

from the private information source Morningstar, the monthly portfolio holdings are 

obtained and used to complete the quarterly portfolio holdings from CNMV. We use the 

ISIN codes of both the funds and the portfolio holdings for the merger of the two 
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datasets.23 The detailed portfolio holdings information allows us to determine the trading 

decisions made by the mutual funds. The CNMV database also includes information about 

the fund size, the family to which each fund belongs, the fund inception date, the 

management and deposit fees, and the net asset value (NAV). 

 Stock information is obtained from DataStream, which provides information 

about the prices, return and the market capitalization of stocks and considers the main 

capital operations, such as splits and the payment of dividends. 

 Table 3.1 reports the summary statistics of the sample. This table shows that due 

to the severe merging process caused by the strong reorganization of the banking system 

in the Spanish market during the last decade, both the number of funds (#Funds) and the 

number of fund families (#Families) decrease over time. Regarding fund size, Table 3.1 

shows that the average fund size (Fund_size) decreases after the GFC of 2008 and then 

recovers, reaching a statistically significantly higher value than before the crisis. 

However, the average fund size in March 2020 is similar to that in March 2005 because 

of the significant decline produced in 2020. 

 Table 3.1 also shows that in March 2015, the fund fees (Fund_fees) are higher 

than the rest of the data points. However, the value of the fees has decreased in recent 

years, reaching the smallest value in March 2020. In addition, we observe that both fund 

returns (Fund_returns) and fund flows (Fund_flows) have shown a negative trend during 

recent years, showing negative values in March 2020. Finally, we find that the number of 

stocks within the portfolio (Fund_#stocks) decreases slightly over time. 

  

                                                           
23 Therefore, we control 100% of the monthly portfolio holdings of the funds in our sample from December 

1999 until December 2006 and approximately 83% of the monthly holdings from January 2007 to June 

2020. 
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3.2.2 Methodology 

3.2.2.1 Mutual fund trading decisions 

Previous studies have documented two approaches to capture mutual fund trading: the 

change in the portfolio weight of each stock in each mutual fund (Grinblatt and Titman, 

1993) and the change in the number of shares (Alexander et al., 2007). We follow the 

methodology of Alexander et al. (2007) to capture mutual fund trading decisions because 

this approach is more accurate and is not biased by passive changes in portfolio weights 

due to price changes during the trading period (Jiang et al., 2007). 

 For each stock s, we first measure the change in the number of this stock’s shares 

held by mutual fund i in period t.24 Second, we calculate the amount of each trading 

decision by multiplying the change in the number of shares by the average market price 

of stock s in month t. 

 

3.2.2.2 Mutual fund trading decisions 

Once we know the amount of each trading decision of each fund for each stock in each 

month, we calculate the weight of each trading decision on the fund’s TNA. 

Subsequently, we compare these trading weights on each stock for each fund pair to 

obtain the level of trading divergence among them. 

 We propose a measure of the divergence level in which the trading divergence 

executed among a fund pair is related to its maximum potential trading divergence. This 

metric includes both the buying and selling decisions of funds, which allows us to capture 

in a single measure three different cases of divergence: (1) when fund i and fund j trade 

in the same direction in stock s, that is, when both funds buy or sell stock s but with 

different weights; (2) when fund i and fund j trade in the opposite direction in stock s, 

                                                           
24 We consider corporate actions, such as stock splits, to obtain the number of shares. 



174 

 

that is, when one fund buys stock s and the other fund sells this stock; and (3) when fund 

i buys (or sells) in stock s and fund j does not trade in this stock. 

 Note that the trading overlap measures in the financial literature (e.g., Pool et al., 

2005) do not distinguish the case in which a fund buys (or sells) a stock and the other 

fund does not trade this stock from the case in which a fund buys (or sells) a stock and 

the other fund trade in the opposite direction. However, the actual trading divergence is 

higher in the second case. 

 Based on these considerations, we calculate the actual trading divergence for each 

fund pair in each month as the sum of all trading comparisons between both funds and 

calculate the maximum possible divergence as the sum of the maximum divergence 

between them in buying and selling decisions. If the two funds buy (or both funds sell), 

the maximum is given by the fund with a higher trading weight in absolute value. If one 

fund buys and the other sells, the maximum possible divergence is given by the sum of 

both trading weights in absolute value. 

 Finally, our divergence measure considers the portfolio weights in the previous 

month to control that a fund cannot sell a stock if this position is not included in the 

portfolio holdings. Therefore, we exclude the excess trading of one fund that cannot be 

made by the other fund due to its previous holding portfolio from both the actual trading 

divergence and from the maximum possible divergence. 
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 Specifically, the actual trading divergence with respect to the potential trading 

divergence between fund i and fund j in each month t is computed as follows: 

 TDi,j,t = 
∑ |ti,s,t  -  s tj,s,t| - ∑ ExcTDi,s,t  - s ∑ ExcTDj,s,t  s

∑ ( Max |Ci,j,s,t| + Max |Vi,j,s,t|s ) - ∑ ExcTDi,s,t  - s ∑ ExcTDj,s,t  s
   ,          (3.1) 

where ti,s,t and tj,s,t is the traiding weight of fund i and fund j, respectively, for the stock s 

in the month t. This is positive when the fund buys and negative when the fund sells. 

Max |Ci,j,s,t| = Max ( |C
i,s,t

| , |C
j,s,t

|) is the higher weight of the buying decisions between 

fund i and fund j for the stock s in the month t.  

|C
i,s,t

| =  ti,s,t  if  ti,s,t > 0 ,    or   |C
i,s,t

| =  0            if   ti,s,t < 0. 

|C
j,s,t

| = tj,s,t    if  tj,s,t > 0 ,    or    |C
j,s,t

| =  0           if   tj,s,t < 0. 

Max |Vi,j,s,t|= Max ( |V
i,s,t

| , |V
j,s,t

|) is the higher weight in absolute value of selling 

decisions between fund i and fund j for the stock s in the month t.  

|V
i,s,t

| =  |ti,s,t|  if  ti,s,t > 0 ,    or   |V
i,s,t

| =  0            if   ti,s,t  < 0. 

|V
j,s,t

| =  |tj,s,t|  if  tj,s,t < 0,     or   |V
j,s,t

| =  0     if  tj,s,t < 0. 

ExcTDi,s,t is the excess trading of fund i for stock s in the month t, which cannot be made 

by fund j due to its previous stock holding portfolio. 

ExcTDi,s,t =  | min (0 , (ti,s,t + Wj,s,t-1)) |             if  ti,s,t  < 0. 

ExcTDi,s,t =  0                                                            if  ti,s,t  ≥ 0.   

ExcTDj,s,t is the excess trading of fund j for stock s in the month t, which cannot be made 

by fund i due to its previous stock holding portfolio. 

ExcTDj,s,t =  | min (0 , (tj,s,t + Wi,s,t-1)) |             if  tj,s,t < 0. 

ExcTDj,s,t =  0                                                            if  tj,s,t ≥ 0. 

 

3.3 The evolution of trading divergence among mutual funds 
 

In this section, our aim is to study whether the level of trading divergence is constant over 

time or not and whether it shows a given trend. We first obtain the trading divergence 

level among mutual fund pairs of the Spanish Euro-Zone equity mutual fund industry 

from 2000 to 2020. 
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Table 3. 2 – Overall results of the trading divergence among fund pairs 

 

This table reports the results of the trading divergence (TD) among fund pairs for each year. Section A 

shows the mean and the standard deviation (St. Dvt.) of the trading divergence level among all fund pairs. 

Section B shows the number of fund pairs within the same family and the mean and the St. Dvt. of their 

trading divergence level. Section C shows the number of fund pairs in different fund families and the mean 

and the St. Dvt. of their trading divergence level. Section D shows the mean and the St. Dvt. difference 

between the value of fund pairs in the same family and the value of fund pairs in different families. ***, **, 

and * denote statistical significance at the 1%, 5%, and 10% levels, respectively, in the mean difference test 

between both groups of fund pairs. Note that in this table, we present a yearly report of the number of fund 

pairs compared during each year, while Table 3.1 presents the total number of funds only at five specific 

points of the sample period. 

 

 

 
 Section A 

 All fund pairs 

 Section B.  

Fund pairs in  

the same fund family 

 Section C 

 Fund pairs in  

different fund families 

 Section D 

 Difference   

(same-different family) 

 

Year 

  

Mean 

TD 

 

 

St. Dvt. 

TD 

 

 

#fund 

pairs 

 

Mean 

TD 

 

St. Dvt. 

TD 

 

#fund 

pairs 

Mean 

TD 

St. Dvt. 

TD 

  

Mean 

TD 

 

St. Dvt.  

TD 

 

2000  95.64% 6.75%  325 80.71% 23.30%  13,879 95.97% 5.43%  -15.27%*** 17.87%***  

2001  96.49% 6.52%  478 82.62% 23.84%  16,282 96.89% 4.70%  -14.26%*** 19.14%***  

2002  96.69% 6.24%  363 83.36% 24.64%  14,475 96.99% 4.71%  -13.63%*** 19.92%***  

2003  96.78% 5.96%  340 84.20% 23.70%  14,622 97.05% 4.57%  -12.85%*** 19.14%***  

2004  96.61% 6.43%  337 83.52% 24.65%  13,672 96.94% 4.78%  -13.41%*** 19.87%***  

2005  96.65% 6.15%  391 84.66% 22.96%  14,613 96.98% 4.52%  -12.32%*** 18.44%***  

2006  96.36% 6.38%  432 84.03% 23.40%  15,352 96.70% 5.27%  -12.67%*** 18.13%***  

2007  94.88% 6.89%  465 83.19% 21.22%  16,529 95.32% 5.17%  -12.13%*** 16.05%***  

2008  94.35% 8.04%  476 84.31% 21.96%  16,244 94.81% 6.37%  -10.50%*** 15.59%***  

2009  95.28% 7.22%  436 84.52% 21.71%  14,492 95.68% 5.63%  -11.16%*** 16.08%***  

2010  96.37% 6.12%  267 86.64% 21.65%  11,458 96.68% 4.52%  -10.04%*** 17.13%***  

2011  96.73% 6.07%  239 86.71% 23.53%  9,727 97.02% 4.30%  -10.31%*** 19.23%***  

2012  96.47% 6.49%  193 87.90% 22.72%  7,764 96.72% 5.11%  - 8.82%*** 17.61%***  

2013  96.82% 5.78%  167 88.75% 21.05%  6,171 97.04% 4.53%  - 8.29%*** 16.52%***  

2014  96.45% 5.92%  98 88.33% 22.12%  4,625 96.63% 4.83%  - 8.30%*** 17.30%***  

2015  96.88% 5.23%  104 90.61% 16.57%  4,655 97.04% 4.48%  - 6.43%*** 12.08%***  

2016  97.49% 4.46%  100 92.42% 13.49%  4,909 97.60% 3.97%  - 5.18%***  9.52%***  

2017  97.74% 4.70%  89 91.98% 14.50%  4,753 97.85% 4.19%  - 5.88%*** 10.31%***  

2018  97.88% 4.37%  73 92.56% 13.43%  4,732 97.97% 3.95%  - 5.42%***  9.48%***  

2019  97.70% 4.51%  60 93.33% 11.19%  4,311 97.78% 4.25%  - 4.45%***  6.94%***  

2020  97.55% 4.19%  62 94.31% 8.62%  4,077 97.61% 4.02%  - 3.30%***  4.60%***  

2000-2020  96.56% 6.37%  1,190 87.08% 22.68%  35,521 96.82% 4.93%  -9.74%*** 17.75%***  

 

  



177 

 

  Table 3.2 presents the average of the divergence level of all fund pairs as well as 

these averages split according to whether the fund pairs belong to the same fund family 

or not. We find that the trading divergence level is lower among fund pairs within the 

same family. This result is consistent with the findings of previous literature that show a 

higher portfolio overlap among fund pairs within the same family than among fund pairs 

in different fund families (Chen et al., 2004; Elton et al., 2007). Pomorski (2009) also 

shows that when funds belonging to the same family trade the same stock in the same 

direction, this stock outperforms. 

 The development of the mutual fund industry in recent decades has increased 

competition in the industry. Fund families could have incentives to offer different funds 

to increase their market share (Gavazza, 2011). Similarly, due to personal promotion and 

recognition concerns in a competitive environment, fund managers may also have 

incentives to generate added value in the management of their funds. In addition, the GFC 

of 2008 is included in our sample period. This crisis caused an intense reorganization of 

the Spanish banking system (Montes, 2014), and this reorganization was also translated 

to fund and fund family mergers (Neal and García-Iglesias, 2013). Therefore, the 

consolidation of the industry and the GFC provided incentives to increase the trading 

divergence among funds in an attempt to achieve a higher fund diversification and a 

higher efficiency level in the mutual fund industry.25 In addition, Delpini et al. (2019) 

conclude that the GFC stimulated the decrease in the similarity level among portfolios.

 Therefore, our first hypothesis in this study is as follows: 

3.1H: The trading divergence level among mutual fund pairs increases over time. 

  

                                                           
25 According to DeYoung et al. (2009), the larger and more diversified financial services firms are more 

likely to come out of the restructuring periods in the financial market. 
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 To test this hypothesis, we use a dynamic panel-data model. Specifically, we apply 

the generalised method of moments (GMM) method of Arellano and Bower (1995) and 

Blundell and Bond (1998) on a quarterly basis as follows: 26 

 TDi,j,t = i,j,t +  γi,tTDi,j,t-1 + 1Timet + 2Fund_familyi,j,t + 3Size_ Differencei,j,t + 

  + 4Age_Differencei,j,t + 5Fees_Differencei,j,t  +  

  + 6Return_Differencei,j,t  + 7#Stocks_Differencei,j,t  + 

+ 8MoneyFlows_Differencei,j,t  +  εi,j,t ,           (3.2) 

where TD
i,j,t  and TD

i,j,t-1 are the average trading divergence between funds i and j in quarter 

t and t-1, respectively. Time
t ranges from 1 in the first quarter to 82 in the last quarter. 

Fund_family
i,j,t

 is equal to 1 if funds i and j in quarter t belong to the same mutual fund  

family and equal 0 otherwise. Size_Differencei,j,t, Age_ Differencei,j,t, Fees_Differencei,j,t, 

Return_Differencei,j,t, #Stocks_Differencei,j,t and MoneyFlows_Differencei,j,t are the 

absolute values of the differences among the sizes, ages, fees, returns related to the last 

twelve months, number of stocks held in portfolios and the relative money flows of funds 

i and j in quarter t. 

 This model allows us to study the relationship between trading divergence and the 

Time variable that captures the trend of this divergence during the sample period. For 

robustness reasons, the model includes six control variables for the differences among the 

characteristics of funds in each fund pair. 

 Fund_family: We include this variable to control whether a fund pair belongs to 

the same family. The inclusion of this control variable is explained by the fact that, as we 

                                                           
26 The dynamic model has also been carried out on a yearly basis. However, the dynamic model has not 

been applied on a monthly basis as a consequence of non-adequate degrees of freedom due to the relative 

relationship between the number of individuals (in our study, the number of fund pairs) and the number of 

time periods (Roodman, 2009). In this situation, previous literature proposed grouping data in longer 

periods of time (for example, the grouping of monthly data into quarterly data), reducing thus the number 

of time periods (Pesaran et al., 1989; Lee et al., 1990). For robustness purposes, we also apply the fixed 

effects (FE) model in monthly, quarterly, and annual computations. 
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can observe in Table 3.2, the trading divergence level is lower among fund pairs within 

the same fund family than across families, in line with the findings of previous studies. 

 Size_Difference: We include the difference among the sizes of funds in each pair 

to control for its potential effect on the trading divergence level. The previous literature 

finds differences among the trading characteristics of large and small funds, although the 

findings of several studies run in the opposite direction. To reinforce the idea of 

differences among funds depending on their sizes, Busse et al. (2021) document that to 

avoid incurring higher trading costs, larger funds trade less frequently and hold more 

liquid stocks and larger stocks than do smaller funds. However, Pástor et al. (2020) find 

that larger funds are better diversified and that they trade more. 

 Age_Difference: We consider including the difference of age among fund pairs 

because previous literature points out that the flow-performance relation is stronger for 

younger funds than for older funds (Chevalier and Ellison, 1997). Therefore, this age 

difference may have an influence on the trading divergence level among funds. 

 Fees_Difference: According to previous studies, fund fees also influence the 

expected level of fund trading. Malhotra and McLeod (1997), Livingston and O’Neal 

(1996) and Rabarison (2016) show a significantly positive relationship between fees and 

fund trading volume. Consequently, we hypothesise that the greater (lower) the difference 

in fees among the pair of funds is, the greater (lower) the difference among their trading 

volumes. 

 Return_Difference: Previous studies document a significant relationship between 

the fund’s past return and trading behaviour. Sirri and Tufano (1998) and Del Guercio 

and Tkac (2002) show that mutual fund investors disproportionately allocate more capital 

to funds with the highest recent returns. Given this, managers of funds with worse past 

returns may have more incentives than managers of funds with better past returns to seek 
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new opportunities that allow the fund to improve its results (Carpenter, 2000; Chen, 

2009). For that reason, we consider that the greater the difference in past returns among 

the pairs of funds is, the greater the difference in incentives to seek new investment 

opportunities, which could influence the trading divergence among them. 

 #Stocks_Difference: We approximate the level of diversification of a fund with 

the number of stocks within its portfolio. According to Anderson (2013), high-frequency 

traders tend to hold less diversified portfolios. Several researchers document an opposite 

result for these relationships (Pástor et al., 2020). Thus, we consider that the fund 

diversification level may influence the fund trading level. 

 MoneyFlows_Difference: We consider that two funds with very different money 

flows may show a higher trading divergence because a fund attracting positive money 

flows will tend to make buying decisions, while a fund suffering large money outflows 

will tend to make selling decisions. In this line, Dubofsky (2010) documents a 

significantly positive relationship between the fund trading level and the fund flows and 

argues that an excessive trading level in mutual funds is a consequence of large positive 

flows. 

 Given the previous discussion regarding the funds’ different trading behaviour 

depending on the funds’ characteristics, we could presume that the greater the difference 

among fund characteristics is, the greater the probability that the trading divergence 

among them will be high. 

 Section A of Table 3.3 presents the results of Equation 3.2 for all fund pairs during 

the whole sample period (January 2000-June 2020). The results show that the coefficient 

of the Time variable is significantly positive at the 5% level. Therefore, we find that the 
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trading divergence increases over time, although the values are in a narrow range.27 This 

result is also observed in Figure 3.1. 

Note that the values of the trading divergence level are high since the methodology 

of this study not only captures the “active” divergence that occurs when both compared 

funds trade in a certain stock (both trade in the same direction or in the opposite 

directions) but also the “passive” divergence that occurs when a fund trades in a certain 

stock and the other fund does not trade in this stock. 

 

Table 3. 3 – The evolution of the trading divergence and characteristics  

of mutual funds 
 

This table shows the results obtained from Equation 3.2 with the dynamic model on a quarterly basis. 

Section A shows the coefficients and p-values for the whole sample period (January 2000-June 2020). 

Section B shows the coefficients and p-values for the sub-period comprising January 2000 to December 

2009. Section C shows the coefficients and p-values for the sub-period comprising January 2010 to June 

2020. The dependent variable, TD
i,j,t  is the trading divergence among funds i and j in quarter t, and the 

independent variables are the following: TD
i,j,t-1 is the trading divergence among funds i and j in quarter t-1; 

Time
t ranges from 1 in the first quarter of our sample period to 82 in the last quarter; Fund_family

i,j,t
 is equal 

to 1 when funds i and j in quarter t belong to the same fund family and                                                                                      

it is equal to 0, otherwise; Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, 

#Stocks_Differencei,j,t, and MoneyFlows_Differencei,j,t are the absolute values of the differences between 

the size, age, fees, yearly past return, number of stocks held in the portfolio and relative money flows of 

fund i and j in quarter t, respectively. The p-value is reported in parentheses. ***, **, and * denote statistical 

significance at the 1%, 5%, and 10%, respectively. 

 

   Section A  

Period 2000-2020 

 Section B  

Sub-period:2000-2009 

 Section C  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value)  Coefficient (p-value) 

Constant     0.8693***  (0.000)    0.9406***   (0.000)    0.8626***  (0.000) 

TDt-1     0.0812***   (0.000)    0.0735***     (0.000)    0.0481***    (0.000) 

Time     0.0001**    (0.030)   -0.0012***     (0.000)           0.0006***  (0.000) 

Fund_family    -0.1204***  (0.000)   -0.1488***   (0.000)   -0.0380***  (0.000) 

Size_Difference    -0.0002         (0.884)    0.0007***    (0.003)          0.0005**     (0.036) 

Age_Difference     0.0230***  (0.000)   -0.0460***   (0.000)    0.0566***  (0.000) 

Fees_Difference     -0.0455         (0.844)   -0.7563          (0.178)    0.3631         (0.110) 

Return_Difference     -0.0040***  (0.000)    0.0083***   (0.000)   -0.0098***  (0.000) 

#Stocks_Difference     0.0002***   (0.000)    0.0002***    (0.000)    0.0001***   (0.002) 

MoneyFlows_Difference      0.0009*     (0.080)      0.0050***   (0.000)   -0.0062***  (0.000) 

  Wald     1,383.5*** (0.000)          2,419.5***  (0.000)          322.39*** (0.000) 

VIF                   1.02  1.03             1.03 
1 Model was estimated with Robust Standard Errors. 
2 Variance Inflation Factors (VIF) values are widely acceptable in the literature. 

                                                           
27 The dynamic model on a quarterly and annual basis and the FE model on a monthly, quarterly and annual 

basis provide similar findings for the Time variable and for the control variables, showing thus the 

robustness in our findings (see Appendix 3.1 for more details). 
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Although the results show that the trading divergence increases over the sample 

period, Figure 3.1 also shows a different pattern before and after the GFC (2008). We 

apply the Bai-Perron test to find structural breaks in the level of trading divergence, and 

we find that 2009 is the main breakpoint in the pattern of trading divergence. 

 

Figure 3. 1 – Evolution of the trading divergence level for all fund pairs 

 

This figure represents the evolution of the trading divergence level for all fund pairs from January 2000 to 

June 2020. The value is computed quarterly based on the average of their months. 

 

 

 

 According to the results of the Bai-Perron test, we split the whole sample period 

into two sub-periods: sub-period 1 comprises the period from January 2000 to December 

2009, and sub-period 2 comprises the period from January 2010 to June 2020. Section B 

and Section C of Table 3.3 show the results for each sub-period. The evidence suggests 

that in the sub-period 2000-2009, the trading divergence tends to decrease, while the sub-

period 2010-2020 presents an increasing divergence evolution, in line with the findings 

of Delpini et al. (2019). 

 Regarding the control variables, we find that the Fund_family and 

#Stocks_Difference variables are significantly negative and positive, respectively, in the 

whole period and when the period is split it into the two sub-periods. Therefore, we find 

a lower trading divergence in fund pairs when the pairs are within the same family (as 



183 

 

previously shown in Table 3.2) and when the difference in the numbers of stocks held in 

their portfolios is low. We also find that in the two sub-periods, the trading divergence 

level is lower in fund pairs with similar size. In addition, the results show significant 

opposite results between the sub-periods for the rest of the control variables 

(Age_Difference, Return_Difference and MoneyFlows_Difference), which does not allow 

clear conclusions about the influence of these variables. Finally, the difference in fund 

fees does not seem to show a significant influence on the trading divergence level among 

funds for either the whole period or the sub-periods. 

 

3.4 Determinants of the trading divergence among mutual funds 

 

3.4.1 Management and external market determinants 

This section aims to identify the determinants that may influence the trading divergence 

among mutual funds. Specifically, we study to what extent the trading divergence 

between two mutual funds is explained by (1) the previous holding of both funds and (2) 

by the level of market stress. 

 Portfolio overlap: We consider that funds that have a high (low) portfolio overlap 

in their previous holdings may show less (more) trading divergence in the subsequent 

period. In this sense, previous studies have documented a similar investment 

style/objective and common access to the same information and resources as the main 

cause of portfolio overlap among any fund pair (e.g., see Elton et al., 2007; Pool et al., 

2015) and the high correlation among their performance (Brown and Wu, 2016). 

Therefore, our second hypothesis is as follows: 

3.2H: Previous portfolio overlap negatively influences the level of trading divergence 

among mutual funds. 
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 Market stress: The trading behaviour of fund managers may differ under different 

market conditions, as documented in the literature. Raddatz and Schmukler (2012) find 

that both investors and fund managers react to periods of market stress with substantial 

adjustments in their decisions and pro-cyclical behaviour, reducing their exposure in 

riskier countries. Furthermore, several studies argue that investment agents prefer to take 

risks on more visible stocks (Covrig et al., 2001) and on more familiar stocks (Garlappi 

et al., 2007; Epstein and Schneider, 2008) and that this preference could be enhanced with 

a higher stress in the market. Therefore, moments of high stress in the market may incite 

fund managers to buy less risky and more familiar stocks and to sell risky stocks; thus, 

this common trading objective may result in a lower trading divergence level during these 

periods. 

 Similarly, Karunanayake et al. (2010) and Khan et al. (2011) argue that the cost 

and time of processing information are higher in market stress periods, increasing the 

incentives of fund managers to make decisions similar to those made by others. Kodres 

and Pritsker (2002) also affirm that negative news and financial stress tend to generate 

contagion and imitation among fund managers. In addition, social comparisons (Karau 

and Williams, 1993) and the influence of the performance records of managers on their 

compensation (Kempf et al., 2009; Maug and Naik, 2011) may evoke a conformity goal 

of not differing from others in periods of higher market stress. 

 Consequently, we could expect a significantly negative relationship between the 

trading divergence level and market stress. Our third hypothesis is as follows: 

3.3H: Market stress negatively influences the level of trading divergence among mutual 

funds. 
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 To examine the determinants of the level of trading divergence (TD), we apply 

the dynamic generalized method of moments (GMM) model of Arellano and Bower 

(1995) and Blundell and Bond (1998) on a quarterly basis as follows:28 

 TDi,j,t = i,j,t + γi,j,tTDi,j,t-1 + 1Portfolio_Overlapi,j,t-1 + 2Market Stresst + 

+ 3Fund_familyi,j,t + 4Size_Differencei,j,t + 5Age_Differencei,j,t + 

+ 6Fees_Differencei,j,t + 7Return_Differencei,j,t  +                                            

+ 8#Stocks_Differencei,j,t + 9MoneyFlows_Differencei,j,t + εi,j,t ,     (3.3)  

where Portfolio_Overlapi,j,t-1 is the average portfolio overlap between funds i and j in 

quarter t-1.29 Market Stresst: is the level of equity market stress measured with the Spanish 

Financial Market Stress Indicator (FMSI)30 of CNMV. The rest of the control variables 

are defined in Equation 3.2. 

 Table 3.4 presents the results of Equation 3.3 for the 2000-2009 sub-period and 

the 2010-2020 sub-period. The findings show that the previous portfolio overlap of a fund 

pair significantly influences its subsequent trading divergence and that the fund pairs with 

a higher (or lower) previous portfolio overlap show a lower (or higher) divergence level 

among their following trading decisions, as expected according to 3.2H. In addition, the 

results show that the coefficient of the market stress variable is significantly negative in 

both sub-periods, highlighting that market stress negatively influences the level of 

divergence among funds trading decisions. This finding is in line with the studies showing 

                                                           
28 We apply Equation 3.3 to each sub-period (2000-2009 and 2010-2020) because we find different patterns 

in the trading divergence level between both periods, as documented in the previous section. In addition, 

we apply Equation 3.3 for monthly, quarterly and annual frequency, and we use both the dynamic and FE 

model, as in Equation 3.2 (see Appendix 3.2 for more details). 
29 Following the methodology used by Elton et al. (2007) and Pool et al. (2015), we obtain the portfolio 

overlap. 
30 The FMSI was introduced by Cambón and Estévez (2016) and is used in several studies, such as Kremer 

(2016). FMSI is similar to the “Composite Indicator of Systemic Stress” that Holló et al. (2012) proposed 

for the euro area as a whole. This indicator represents a real-time measure of systemic risk and tries to 

quantify stress in the Spanish financial system. Specifically, to capture the stress in the equity market, the 

index comprises three individual stress indicators, namely, volatility, liquidity and sudden asset price 

movements that are common in a period of financial crisis. 
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that in periods of high market stress, there is a higher likelihood of convergence as well 

as a greater incentive for managers to make decisions similar to those of others 

(Karunanayake et al., 2010; Khan et al., 2011), as stated in 3.3H. 

 

Table 3. 4 – Determinants of the trading divergence among mutual funds 

 

This table shows the results obtained from Equation 3.3 with the dynamic model on a quarterly basis. 

Section A shows the coefficients and p-values for the sub-period comprising January 2000 to December 

2009. Section B shows the coefficients and p-values for the subperiod comprising January 2010 to June 

2020. The dependent variable, TD
I,j,t is the trading divergence among funds i and j in quarter t and the 

independent variables are as follows: TD
I,j,t-1 is the trading divergence among funds i and j in quarter t-1; 

Market Stresst is the level of equity market and is measured with the Spanish Financial Market Stress 

Indicator (FMSI); Portfolio_Overlapi,j,t-1 is the portfolio overlap of funds i and j in quarter t-

1; Fund_family
I,j,t

 is equal to 1 when funds i and j in quarter t are within the same fund family and                            

it is equals 0, otherwise; Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, 

 #Stocks_Differencei,j,t, and MoneyFlows_Differencei,j,t are the absolute values of the differences between 

the size, age, fees, yearly past return, number of stocks held in the portfolio and relative money flows of 

funds i and j in quarter t. The p-value is reported in parentheses. ***, **, and * denote statistical significance 

at the 1%, 5%, and 10% levels, respectively. 

 

   Section A  

Sub-period:2000-2009 

 Section B  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value) 

Constant   0.9197***  (0.000)    0.9471***  (0.000) 

TDt-1   0.0584***    (0.000)    0.0316***    (0.000) 

Market Strees   -0.0919***   (0.000)        -0.0010**   (0.034) 

Portfolio_Overlapt-1   -0.1058***    (0.000)   -0.0196***    (0.000) 

Fund_family   -0.1308***  (0.000)   -0.0376***  (0.000) 

Size_Difference    0.0004**      (0.039)    0.0001***   (0.000) 

Age_Difference    0.0350***   (0.000)   -0.0139***  (0.000) 

Fees_Difference    -0.3774         (0.480)    0.1866         (0.559) 

Return_Difference     0.0005      (0.709)   -0.0093***  (0.000) 

#Stocks_Difference    0.0001***    (0.000)    0.0001***   (0.000) 

MoneyFlows_Difference    0.0028***  (0.000)   -0.0073***  (0.000) 

Wald   3,561.63*** (0.000)           503.71***   (0.000) 

  VIF   1.06  1.05 
1 Equation was estimated with Robust Standard Errors. 
2 Variance Inflation Factors (VIF) values are widely acceptable in the literature. 

 

 The findings of the control variables are consistent with the results obtained in 

Equation 3.2, that is, there is a lower trading divergence among fund pairs that are within 

the same fund family, have a smaller difference in their size, and have a smaller difference 

in the number of stocks held in their portfolios. 
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3.4.2 Trading divergence considering the previous fund holdings 

In the previous section, we find that trading divergence is affected by the previous 

holdings of the funds analysed. However, fund managers could have the same perception 

of stock behaviour in the market, as the managers consider the information and 

recommendations from analysts.31 Consequently, in their portfolio holdings, they will 

tend to have an exposure consistent with that perception, and thus, considering their initial 

position, they will buy, sell or refrain from trading to adjust the stock weight in the 

portfolio. Hence, funds with different initial positions in portfolio holdings for certain 

stocks could show different trading decisions (which could lead to a trading divergence) 

to achieve a similar weight32 according to the analysts' recommendations. For that reason, 

the trading divergence obtained in Equation 3.1 may be overvalued. In this section, we 

approach a more accurate trading divergence measure by excluding the contribution to 

divergence caused by trading decisions that led to similar final portfolio weights. 

 First, we determine the difference in the portfolio weight in each stock s for each 

fund pair in both the previous period t-1 and the current period t (see Equations 3.4 and 

3.5). Second, we calculate the variation between the holding divergence (HD) in the 

current period and that observed in the previous period. 

 HDi,j,s,t = |wi,s,t - wj,s,t|                            (3.4) 

 HDi,j,s,t-1 = |wi,s,t-1 - wj,s,t-1|                                      (3.5) 

                                                           
31The impact of the analysts' recommendations on the trading decisions of fund managers has been 

documented by many studies, even after controlling for other trading determinants (Jegadeesh et al., 2004; 

Chen and Cheng, 2006; Barber et al., 2007). More recently, Frank and Kert (2013) show that fund managers 

attribute high information value to consensus forecast revisions and that thus, mutual funds significantly 

increase (decrease) their holdings in stocks when any of the consensus forecast measures increases 

(decreases) within the quarter prior to the observation period. 
32 For illustrative proposes, the portfolio weights of the funds i and j in the stock s at the beginning of month 

t are equal to 1.5% and 6%, respectively. During the period t, the fund i buys in the stock s, and the weight 

of this buying decision is equal to 1.5%. However, the fund j sells in the stock s, and the weight of this 

selling decision is equal to 2.5%. Finally, at the end of month t, the portfolio weights of funds i and j in the 

stock s are equal to 3% and 3.5%, respectively. Therefore, both funds trade in stock s in opposite direction, 

but these trading decisions result in a more similar portfolio weight in this stock. 
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 Once we have calculated both holding divergences, we try to capture the portion 

of false trading divergence (FTD) in each fund pair for each stock s in each month t. 

 FTDi,j,s,t =  max (0, HDi,j,s,t - HDi,j,s,t-1)          (3.6) 

 Then, we calculate a more accurate trading divergence measure (TD*) between 

fund i and fund j in each month t as follows: 

 TD*i,j,t = 
∑ |ti,s t -  s tj,s,t|  - ∑ ExcTDi,s,t  - s ∑ ExcTDj,s,t  s - ∑ FTDi,j,s,t s

∑ (Max |Ci,j,s,t| + Max |Vi,j,s,t|s ) - ∑ ExcTDi,s,t  -s  ∑ ExcTDj,s,t  s
                (3.7) 

 Note that we conduct the following analyses in the chapter with this more accurate 

trading divergence measure (TD*). Appendix 3.3 shows the results obtained by using TD*. 

We find similar results for its evolution (Figure A3.1 and Table A3.10) and for the 

influence of market stress (Table A3.11) as those found with the original measure. 

However, Table A3.10 and Table A3.11 shows that the use of TD* leads to the loss of 

significance of the Fund_family variable, which means that there are no significant 

differences among the fund pairs in the same family and those in different families. This 

could be explained by the fact that the probability that trading decisions will lead to 

similar positions in portfolios is greater among funds that belong to different families, 

since, as previously documented, mutual funds in the same family already show a higher 

previous holding overlap. 

 

3.4.3 Trading divergence patterns in market shocks 

In the previous section, we find that the level of market stress is a determinant that has a 

significantly negative influence on the trading divergence level among mutual funds. 

However, it is interesting to analyse in more detail the reaction of the fund managers in 

shock moments in which market stress shoots up and then to compare these reactions 

across the different shocks within the sample period. 



189 

 

 Specifically, for our sample period, in terms of market stress, we identified three 

important shocks, occurring in (1) January–March 2008, (2) March–April 2011 and (3) 

March–April 2020, in which the level of market stress showed increases equal to 197%, 

107% and 180%, respectively. These shocks coincided with the outbreaks of the GFC 

(2008), the European debt crisis (2011) and the COVID-19 crisis. 

 Regarding the GFC (2008), most studies about mutual funds focus on the role of 

institutional investors in propagating the crisis. These studies document a common pattern 

of investors who liquidated their fund positions by selling stocks that turned "toxic" and 

illiquid because they faced liquidity needs (Manconi et al., 2012). Regarding the 

sovereign debt crisis of the Eurozone (2011), although it mainly affected government 

bonds and monetary funds, equity funds were also influenced by the derived 

consequences that were observed in the return of stocks in the European market. Bhanot 

et al. (2014) find evidence of spillovers from the bond yield to Eurozone financial stock 

returns. In this line, Gallagher et al. (2020) show that managers rebalanced and adjusted 

their portfolio risk to avoid information-sensitive European risks and to especially avoid 

holding stocks from European countries with higher credit risk. 

 Concerning the COVID-19 crisis, recent studies document the preliminary results 

of the initial impact of this pandemic crisis on financial systems an increase in systematic 

risk and market volatility due to policy interventions (Zaremba et al., 2020; Zhang et al., 

2020) and the stock market contagion (Akhtaruzzaman et al., 2020). For the mutual fund 

industry, Mirza et al. (2020) and Rizvi et al. (2020) document a transition from riskier to 

relatively safer stocks and a clear switch to the non-cyclical sector investment due to the 

reactions of industries to sudden COVID-related news announcements (Goodell and 

Huynh, 2020). Regarding the impact on the performance and efficiency of mutual funds, 
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Pástor and Vorsatz (2020) find that most active funds underperform passive benchmarks 

during the COVID-19 pandemic. 

 For several reasons, we could expect to find different reactions from equity fund 

managers to the market shocks of 2008 and 2020. First, the different situations of the 

financial system in both moments could have led managers to react in different ways. 

Spatt (2020) documents that at the beginning of 2008, the financial system was infected, 

as financial institutions often held excessive exposure to mortgage-related instruments 

that had declined substantially in value. However, at the beginning of the COVID-19 

crisis, the financial system was strong. Second, both crises also have a completely 

different origin: a financial origin in the 2008 crisis and a sanitary one in the 2020 crisis. 

Third, the greater transparency and investor protection required in financial markets with 

the several reforms and measures of recent years and the higher experience and learning 

of fund managers who have faced other past market shocks may imply that they currently 

show a different behaviour. Greenwood and Nagel (2009) and Seru et al. (2010) document 

that negative prior experiences in the market influence investor behaviour through the 

learning process. Finally, in the GFC, fund managers showed a common tendency to sell 

toxic products, as Manconi et al. (2012) document, while in the COVID-19 crisis, they 

may consider this moment a chance to seek new investment opportunities (Spatt, 2020). 

 Regarding the European sovereign debt crisis, although its cause was linked to the 

GFC in 2008, this crisis did not show the same impact in all countries or on all 

institutional investors (Gallagher et al., 2020). Therefore, we might think that not all 

managers reacted in the same way and that their reaction depended on their exposure to 

the countries and assets with the worst credit ratings. 

 We first study the reaction of fund managers in terms of the trading divergence 

level in the periods of the three market shocks mentioned above. Specifically, we compare 
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the average of the trading divergence level before and during the shock period in each of 

them, applying the mean difference test. Second, we compare the results of this test across 

the three shocks. 

 

Table 3. 5 – Trading divergence patterns in the different economic crises 
 

This table shows the results of the comparison between the different market stress shocks in terms of the 

trading divergence (TD*) level among fund pairs. Panel A shows the results of the shock in the GFC (2008), 

Panel B shows the results of the shock in the European debt crisis (2011), and Panel C shows the results of 

the shock in the COVID-19 crisis (2020). The first column includes the specific period of the shock. The 

second and third columns show the mean and the standard deviation (St. Dvt.) of the trading divergence 

level in each period. The fourth and fifth columns show the differences in the mean and St. Dvt between 

the stock period and the previous period. The p-value is reported in parentheses. ***, **, and * denote 

statistical significance at the 1%, 5%, and 10% levels, respectively, in the mean difference test. 
 

Panel A: GFC (2008) 

 
 

 

 

 

 Difference 
 

   Shock period-Previous period 

 
 Mean  St. Dvt.   Mean  St. Dvt.  

 TD*  TD*  TD*  TD* 

Shock period: January – March 2008  69.33%  21.45%  
  

 

-  3 months:   October - December 2007  73.55%  19.60%  -4.22%***  (0.000)  1.85%***  (0.000) 

-  6  months:  July - December 2007  72.47%  19.96%  -3.14%***  (0.000)  1.49%***  (0.000) 

-  9 months:   April - December 2007  73.02%  19.45%  -3.69%***  (0.000)  2.00%***  (0.000) 

- 12 months:  January - December 2007  73.13%  19.25%  -3.80%***  (0.000)  2.20%***  (0.000) 

 
Panel B: The European debt crisis (2011) 

 
 

 

 

 

 Difference 
 

     Shock period-Previous period 

 
 Mean  St. Dvt.   Mean  St. Dvt.  

 TD*  TD*  TD*  TD* 

Shock period: July - August 2011  81.31%  17.25%  
  

 

-  3 months:  April - June 2011  78.46%  18.30%  2.85%***  (0.000)  -1.05%***  (0.000) 

-  6  months: January - June 2011  78.45%  17.62%  2.86%***  (0.000)  -0.37%***  (0.000) 

-  9 months:  October 2010 - June 2011  77.78%  17.96%  3.53%***  (0.000)  -0.70%***  (0.000) 

- 12 months: July 2010 - June 2011  77.43%  18.27%  3.89%***  (0.000)  -1.02%***  (0.000) 

 
Panel C: The COVID-19 crisis (2020) 

 
 

 

 

 

 Difference 
 

     Shock period-Previous period 

 
 Mean  St. Dvt.   Mean  St. Dvt.  

 TD*  TD*  TD*  TD* 

Shock period: March - April 2020  83.12%  15.49%   
 

 

-  3 months:  December - February 2020  82.39%  17.72%  0.73%***  (0.000)  -2.23%***  (0.000) 

-  6  months: September - February 2020  82.90%  17.37%  0.23%***  (0.000)  -1.88%***  (0.000) 

-  9 months:  June 2019 - February 2020  82.88%  17.31%  0.24%***  (0.000)  -1.82%***  (0.000) 

- 12 months: March 2019 - February 2020  82.38%  17.58%  0.74%***  (0.000)  -2.08%***  (0.000) 
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 Table 3.5 shows the results of the comparison among the trading divergence 

patterns in the different crises. In the shock of 2008, we find that the trading divergence 

level decreases significantly compared to the level of divergence in the pre-crisis shock. 

In addition, the results show that during the market shock period, the dispersion in the 

level of trading divergence among the least and most divergent funds is higher because 

although in general, the level of divergence decreased, the fund pairs that showed less 

previous divergence mainly explained this decrease. 

 However, in the market shock of 2020, we observe that the trading divergence 

level slightly increases compared to the level in previous months and that the dispersion 

decreases due to the divergence of previously least divergent (or most divergent) fund 

pairs increases (or decreases). Previous researchers document that in periods with high 

market stress, there is a higher level of uncertainty about stocks (Hakkio and Keeton, 

2009; Martins and Paulo, 2014) and a greater incentive for fund managers to make 

decisions similar to those of others (Patev and Kanaryan, 2003; Karunanayake et al., 

2010; Khan et al., 2011). Therefore, among the funds with a lower previous divergence, 

the effect of a higher level of uncertainty may be predominant. In the search for new 

investment opportunities in line with the behaviour documented by Spatt (2020), this 

effect may cause an increase in the trading divergence level among those fund pairs. 

Furthermore, this could explain the difference of this shock with the 2008 shock, in which 

the trend of funds was to undo toxic positions, while in 2020, there seems to be a trend of 

seeking opportunities. The fund pairs with the highest level of prior trading divergence 

may show behaviour towards the market during this shock period, as in 2008. 

 Regarding the Eurozone crisis, during the marked stress shock period, as during 

the 2020 crisis, we observe a general increase in the level of trading divergence, which 

could be related to the rebalancing of portfolio holdings. Gallagher et al. (2020) document 
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a tendency to remove positions exposed to the European riskiest countries with the worst 

credit rating and to bet on other investment alternatives. However, the results of the 2011 

shock should be considered with caution since it was still a period of recovery from the 

global crisis. 

 

3.4.4 The influence of stock characteristics on the trading divergence at the 

stock level 

We next examine whether the trading divergence level is driven by stock characteristics. 

This analysis could be interesting for fund managers, for the top management of families, 

for investors and for regulators, as it could help them to identify the stocks with which 

managers could provide value added to fund management in the industry. 

 Previous literature shows that mutual funds have a preference for certain stocks 

and that the trading decisions of fund managers depend on the stock information available 

for these stocks. Falkenteins (1996) finds that mutual funds show an aversion to small 

stocks with low idiosyncratic volatility and little information. Similarly, Aggarwal et al. 

(2005) document that funds tend to invest in large firms that have better accounting 

quality. Brands et al. (2006) find that active managers exhibit preferences for stocks 

exhibiting high-price variance, large market capitalization, greater levels of analyst 

coverage and lower variability in analysts’ earnings forecasts. Gompers and Metrick 

(2001) also study institutional investors’ demand for stocks and find that these investors 

invest in stocks, which are larger, liquid and have had relatively low returns in the 

previous year. In contrast to these results, Otten and Bams (2002) reveal a fund preference 

for small stocks, and Covrig et al. (2006) find similarities and differences in the stock 

preferences of domestic and foreign fund managers. Nevertheless, the authors show that 

both manager groups prefer stocks with high return on equity and low return variability. 
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 Some studies propose that institutional investors tend to converge in buying large 

stocks because these investors follow common market signals (Lin and Swanson, 2003; 

Sias, 2004; Lu et al., 2012). However, other studies indicate that convergence is more 

pronounced in small stocks because fund managers may receive lower and bounded 

information from these stocks (Huang et al., 2010; Liao et al., 2011). 

 Following the measure proposed in this study, we aggregate the trading 

divergence of all fund pairs by each stock s in each month t as shown in Equation 3.8: 

 TD*s,t = 
∑ ( ∑ |ti,s t s -  tj,s,t| - ∑ ExcTDi,s,t  - s ∑ ExcTDj,s,t s - FTDi,j,s,t )i,j|i<j  

∑ ( ∑ (Max |Ci,j,s,t| + Max |Vi,j,s,t|s ) - ∑ ExcTDi,s,t -s ∑ ExcTDj,s,t)  si,j|i<j  
            (3.8) 

 Then, to examine the stock characteristics that influence the level of trading 

divergence at the stock level, we apply the FE model on a quarterly basis as follows: 33 

 TD*s,t = s,t + 1Stock_returns,t + 2Stock_volatilitys,t + 3Stock_sizes,t + 

  + 4Stock_popularitys,t + εs,t ,         (3.9) 

where TD*s,t is the average trading divergence level among funds for stock s in quarter t 

and the independent variables are as follows: Stock_returns,t is the return of stock s in 

quarter t related to the last twelve months in absolute value. Stock_volatilitys,t is the 

volatility of stock s in quarter t and is measured as the standard deviation of its return 

during the last twelve months. Stock_sizes,t is the market capitalization of stock s in 

quarter t. Stock_popularitys,t  is the popularity level of stock s in quarter t and is measured 

with the relation between the number of funds that trade the stock and the number of 

funds existing in that quarter in the sample. 

  

                                                           
33 The selection of the model is supported by the Hausman test, which suggests the use of FE instead of 

Random effects (RE). Robust standard errors are used in the estimation. For robustness purposes, we also 

apply the FE model in monthly and annual computations. The dynamic model has not been applied in 

Equation 3.9 because the Sargan test (1958) shows over-identifying restrictions. Note that to be 

overidentified just means that there are more instruments than endogenous variables. In this case, the 

literature recommends the use of static panel data models (see Appendix 3.4 for more details). 
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Table 3. 6 – Stock characteristics and trading divergence among mutual funds 
 

This table shows the results obtained from Equation 3.9 with the FE model on a quarterly basis. Section A 

shows the results for all fund pairs. Section B shows the results for fund pairs within the same family. 

Section C shows the results for fund pairs in different fund families. The dependent variable,  TD*s,t is the 

trading divergence level among funds for stock s in quarter t, and the independent variables are as follows: 

Stock_returns,t  is the absolute value of the yearly past return of stock s in quarter t; Stock_volatilitys,t is the 

volatility of stock s in quarter t and is measured as the standard deviation of its return during the last year; 

Stock_sizes,t is the market capitalization of stock s in quarter t; and Stock_popularitys,t  is the popularity level 

of stock s in quarter t and is measured with the percentage of funds that trade in the stock s within our 

sample. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, 

and 10% levels, respectively. 

 

  
Section A 

 All fund pairs 

 Section B  

Fund pairs in  

the same fund family 

  Section C  

Fund pairs in  

different fund families 

  Coefficient (p-value)  Coefficient (p-value)   Coefficient (p-value) 

Constant   0.9459***   (0.000)    0.9358***   (0.000)    0.9537***   (0.000) 

Stock_return    0.0022          (0.406)   -0.0029**       (0.039)    0.0038**       (0.015) 

Stock_volatility   -0.0234         (0.231)   -0.0846***   (0.002)          -0.0036          (0.812) 

Stock_Size  -0.0029***   (0.001)        0.0059*      (0.084)   -0.0035***   (0.000) 

Stock_popularity   -0.4469***   (0.000)       -0.8770***    (0.000)   -0.4223***   (0.000) 

F      162.7***      (0.000)          111.37***  (0.000)           143.75*** (0.000) 

R2  12.03%           15.30%         22.59% 

Hauman Test     243.48***     (0.000)          13.43***  (0.009)           731.17*** (0.000) 

 

 Table 3.6 shows the influence of the stock characteristics on the trading 

divergence level in that stock among fund pairs. The influence of the previous return is 

not statistically significant when considering all fund pairs. However, if we focus on 

within (or across) families, we observe a lower (or higher) divergence level in the stocks 

with a extreme previous performance (both very positive and very negative previous 

performance). This result suggests that within a family, the top management who 

influences managers' trading decisions may have a common opinion about stocks with 

outstanding performance, which results in similar trading decisions in these stocks among 

their funds. However, across families, the existence of extreme positive (or negative) 

performance leads to a higher divergence because each family can see investment 

opportunities in different stocks. On the other hand, most managers could have the same 

interest in the remaining undistinguished stocks regardless of the fund family to which 

the funds belong. 
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 Stock volatility has a negative influence on the trading divergence level, but this 

effect is only statistically significant for fund pairs belonging to the same family. This 

finding provides evidence about the internal control of the risk management level within 

families and how this internal control results in a lower divergence trading level in the 

more volatile stocks among their funds. In the analysis of all fund pairs or of the fund 

pairs in different families, we also find a lower trading divergence level in larger stocks, 

which could be explained by the fact that the information available on these stocks is 

greater (Lin and Swanson, 2003; Sias, 2004; Lu et al., 2012). However, we find a lower 

level of trading divergence in small stocks within families, shedding light on the fact that 

fund managers could have a greater autonomy to make decisions about large companies, 

while the trading decisions for small companies are more influenced by the guidelines 

from the family's top management (i.e., investment directors). Finally, we find a lower 

level of trading divergence in stocks with a higher level of popularity in the market, 

regardless of whether analysing funds from the same family or from different families. 

 

3.5 Performance consequences of the divergent trading 
 

In the previous sections, we study the evolution and determinants of the trading 

divergence level among funds. In this section, we examine its consequences for fund 

performance. First, we study the influence of the trading divergence level on the 

subsequent fund performance. Second, we approximate the average contribution of 

divergent and convergent trading decisions to fund performance. 

 

3.5.1 The influence of trading divergence on fund performance 

Previous literature examines the abilities of active funds to outperform the benchmark 

and the value added of the managers’ trading decisions. Some studies show that active 
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funds do not outperform the benchmark (Jensen, 1968; Fama and French, 2010); 

however, recent studies document superior skills in certain trading decisions. Cremers 

and Petajisto (2009) document that an active fund manager can attempt to outperform the 

benchmark only by taking positions that are different from the benchmark. They find 

strong evidence for performance persistence for funds with the highest active share. Jiang 

et al. (2014) also demonstrate superior abilities in active fund management because 

managers overweight (or underweight) the stocks that show better (or worst) performance 

than the benchmark. 

  Similarly, Cohen et al. (2010) find that the best ideas of active managers 

outperform the market and the other stocks in their portfolios. In addition, Alexander et 

al. (2007) and Andreu et al. (2017) find that trading decisions based on valuation criteria 

have a significantly positive influence on fund performance. We hypothesise that the most 

distinct trading decisions of a fund manager and thus, the most divergent decisions with 

respect to the remaining funds are based on valuation criteria since his (or her) position, 

reputation and compensation depend on his or her fund's performance records (Mason et 

al., 2016). Consequently, we could expect a significantly positive relationship between 

the trading divergence level and the subsequent fund performance, and our fourth 

hypothesis is as follows: 

3.4H: The trading divergence level positively influences subsequent fund performance. 

 To test this hypothesis, we first obtain the average divergence level of each fund 

i in each month t with respect to the rest of the funds (TD*i,t).  

 TD*i,t = TD*i,j,t
̅̅ ̅̅ ̅̅ ̅̅ ̅          (3.10) 

 Then, we run the following FE model on a quarterly basis as follows:34 

                                                           
34 The selection of the model is supported by the Hausman test, which suggests the use of FE instead of 

RE. Robust standard errors are used in the estimation. For robustness purposes, we also apply the FE model 

in monthly and annual computations (see Appendix 3.5 for more details). 
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 Fund_Performancei,t+n = i,t + 1TD*
i,t

 + 2Fund_sizei,t + 3Fund_agei,t  + 

           + 4Fund_feesi,t + 5Fund_#stocksi,t + 6Fund_flowsi,t  + εi,t ,   (3.11) 

where Fund_Performancei,t+n represents the alpha of fund i in quarter t+n and is measured 

through the capital asset pricing model (CAPM), the Fama and French three-factor model 

and the Carhart four-factor model, with n ∈ {3,6,12} months. TD*i,t is the average trading 

divergence level of fund i in quarter t, as defined in Equation 3.10. Fund_size, Fund_age, 

Fund_fees, Fund_#stocks, Fund_flows are the size, age, fees, number of stocks held in 

portfolios and relative money flows of fund i in quarter t, respectively. 

 Table 3.7 shows a significantly positive relationship between the subsequent fund 

performance and the trading divergence level. Therefore, our results provide evidence 

that funds that make the most divergent trading decisions in the industry outperform their 

counterparts, even after controlling for their characteristics. We could think that some 

funds only trade in stocks that seem to involve an investment opportunity but that also 

suppose a relatively high risk level. Consequently, compared to other funds, these funds 

that trade in those stocks are supposed to make more divergent trading decisions. 

 Regarding the control variables, in general terms, we observe that fund age, fund 

fees and fund money flows have a significantly positive influence on fund performance. 

Our findings support the findings of previous studies, which document a positive 

influence of the fund experience and that higher fees can result in higher gross returns 

(Ferreira et al., 2013) and reflect the investors’ ability to predict future fund performance 

(i.e., the “smart money” effect first documented by Gruber 1996 and Zheng 1999). In 

addition, in line with the previous literature documenting that fund size erodes its 

performance (Kacperczyk and Seru, 2007; Pástor et al., 2015), Table 3.7 shows a 

significantly negative influence of the size variable. Finally, the number of stocks in 

portfolio holdings does not seem to have a significant influence on fund performance. 



199 

 

Table 3. 7 – The trading divergence and the subsequent fund performance 

 

This table shows the results obtained from Equation 3.11 on a quartely basis. Section A shows the results obtained with the fund alpha of the CAPM. Section B shows the results 

obtained with the fund alpha of the Fama and French three-factor model. Section C shows the results obtained with the fund alpha of the Carhart four-factor model. We estimate 

the alphas by using rolling windows of 60 (t+3), 120 (t+6) and 240 (t+12) daily data. The dependent variable is the subsequent performance of the fund i in quarter t, and the 

independent variables are as follows: TD*i,t is the average of the trading divergence level of fund i in quarter t; Fund_size
i,t

 is the average of the relativised size of fund i in 

quarter t; Fund_age
i,t

 is the average of the relativised age of fund i in quarter t; Fund_fees
i,t

 is the average fees of fund i in quarter t; Fund_#stocks
i,t

 is the average number of 

stocks held by fund i in quarter t; and Fund_flows
i,t

 is the average relative money flows fund i in the year t. The p-value is reported in parentheses. ***, **, and * denote 

statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

 
Fund_Performance

i,t
 

 Section A: CAPM  Section B: 3Factors  Section C: 4Factors 

 t+3 t+6 t+12  t+3 t+6 t+12  t+3 t+6 t+12 

Constant  

 

-0.0009*** 

(0.000) 

-0.0007*** 

(0.000) 

-0.0005*** 

(0.000) 

 -0.0006*** 

(0.000) 

-0.0007*** 

(0.000) 

-0.0007*** 

(0.000) 

 -0.0005*** 

(0.000) 

-0.0007*** 

(0.000) 

-0.0006*** 

(0.000) 

TD 

 

 0.0008*** 

(0.000) 

 0.0006*** 

(0.000) 

 0.0005*** 

(0.000) 

  0.0004*** 

(0.000) 

 0.0005*** 

(0.000) 

 0.0006*** 

(0.000) 

  0.0003*** 

(0.000) 

 0.0005*** 

(0.000) 

 0.0005*** 

(0.000) 

Fund_size 

 

-0.0001*** 

(0.002) 

 -0.0001*** 

(0.004) 

-0.0001** 

(0.028) 

  -0.0001*** 

(0.006) 

-0.0001** 

(0.024) 

-0.0001 

(0.230) 

  -0.0001*** 

(0.003) 

-0.0001** 

(0.027) 

-0.0001 

(0.261) 

Fund_age 

 

  0.0001  

(0.107) 

   0.0001*  

(0.054) 

  0.0001** 

(0.017) 

   0.0002*** 

 (0.000) 

  0.0002*** 

 (0.000) 

  0.0002*** 

(0.007) 

  0.0002*** 

(0.000) 

0.0002*** 

(0.000) 

  0.0001** 

(0.019) 

Fund_fees 

 

0.0542** 

(0.020) 

0.0453** 

(0.022) 

0.0026        

(0.880) 

 0.0346* 

(0.067) 

0.0305* 

(0.054) 

0.0105 

(0.540) 

 0.0337*    

(0.072) 

   0.0267* 

(0.093) 

0.0021 

(0.903) 

Fund_#stocks 

 

0.0001 

(0.244) 

0.0001 

(0.913) 

0.0001 

(0.515) 

 0.0001 

(0.628) 

0.0001 

(0.445) 

0.0001 

(0.226) 

 0.0001 

(0.617) 

0.0001 

(0.312) 

0.0001 

(0.155) 

Fund_flows 

 

0.001 

(0.167) 

  0.0001** 

(0.010) 

  0.0001*** 

 (0.003) 

 0.0001 

(0.316) 

  0.0001*** 

 (0.003) 

   0.0001** 

(0.010) 

 0.0001 

(0.275) 

0.0001** 

(0.010) 

0.0001***  

(0.005) 

F 

 

 19.20*** 

 (0.000) 

14.01*** 

(0.000) 

 12.11*** 

 (0.000) 

 9.11*** 

(0.000) 

  13.52*** 

 (0.000) 

 13.79*** 

(0.000) 

 6.86*** 

(0.000) 

13.15*** 

(0.000) 

13.19*** 

(0.000) 

R2 1.41% 1.85% 2.61%  1.52% 2.20% 3.09%  2.24% 2.07% 3.01% 

Hausman test 

 

 17.19*** 

(0.000) 

 43.01*** 

(0.000) 

 81.18*** 

(0.000) 

  54.08*** 

(0.000) 

 13.52*** 

(0.000) 

 52.26*** 

(0.000) 

  60.81*** 

(0.000) 

 58.75*** 

(0.000) 

 49.44*** 

(0.000) 
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3.5.2 The contribution of divergent trading decisions to fund performance 

According to Equation 3.7, we compare the contribution of the actual trading divergence 

and the contribution of the actual trading convergence of funds to their performance. 

Then, our fifth hypothesis is as follows: 

3.5H: The contribution of divergent trading decisions to fund performance is significantly 

higher than that of convergent trading decisions. 

 First, we obtain the actual trading divergence (ATD*) and the actual trading 

convergence (ATC*) between fund i and fund j in each month t as follows: 

 

          =  ∑ (ti,s,t - s tj,s,t) - ∑ ExcTDi,s,t -s  ∑ ExcTDj,s,t s - ∑ FTDi,j,s,t           if s  

             (ti,s,t  -  tj,s,t)>0 

 ATD*
i,j,s,t 

          =  ∑ (ti,s,t - s tj,s,t) + ∑ ExcTDi,s,t +s  ∑ ExcTDj,s,t + s ∑ FTDi,j,s,t       if s  

            (ti,s,t  - tj,s,t)<0         (3.12) 

 

 ATC*
i,j,s,t  =  min (PTDi,j,s,t  - ATD*

i,j.s,t ; ti,s,t)       (3.13) 

 

where ATD*
i,j,s,t is the numerator of Equation 3.7 and represents the more accurate actual 

trading divergence between funds i and j in stock s and month t, controlling the sign of 

the trading divergence for each fund within each pair.35 ATC*
i,j,s,t is the actual trading 

convergence between funds i and j in stock s and month t. This measure is calculated as 

the difference between the potential trading divergence (PTD) that is represented for the 

denominator in Equation 3.7 and the ATD* for each fund pair in each stock s, controlling 

that this difference is not greater than the trading weight of fund i in stock s. 

 Second, for each fund pair in each month, we obtain the contribution of the actual 

trading divergence (C_ATD) and the contribution of the actual trading convergence 

(C_ATC) to their fund performance, multiplying the ATD* and the ATC* of the fund pair 

                                                           
35 Note that in a fund pair, one fund could buy in a certain stock, while the other fund could sell in this 

stock. Whether the subsequent performance of this stock is positive, the contribution of this trading 

divergence to the performance will be positive for the buying fund and negative for the selling fund. 
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in each stock by the stock alpha. Then, we sum all of these multiplications (see Equations 

3.14 and 3.15).  

 C_ATD*
i,j,t+n = ∑ (ATD

i,j,s,t

*  . αs,t+n) s    ∀ j≠i      (3.14) 

 C_ATC*
i,j,t+n = ∑ (ATC

i,j,s,t

*  . αs,t+n) s   ∀ j≠i      (3.15) 

where C_ATD*
i,t+n is the contribution of the actual trading divergence between funds i 

and j in month t+n. C_ATC*
i,t is the contribution of the actual trading convergence 

between funds i and j in month t+n. αs,t+n is the subsequent alpha of stock s in month 

t+n.36 

 Third, for each fund in each month, we obtain the C_ATD* and the C_ATC* as the 

mean of all comparisons of a given fund with the rest of the funds (see Equations 3.16 

and 3.17). 

 C_ATD*
i,t+n =  C_ATD

i,j,t+n

∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          (3.16) 

 C_ATC*
i,t+n =  C_ATC

i,j,t+n

∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅         (3.17) 

where C_ATD*
i,t+n is the average contribution of the actual trading divergence of fund i 

in month t+n. C_ATC*
i,t is the average contribution of the actual trading convergence of 

fund i in month t+n. 

 Finally, we compare the values of C_ATD* and C_ATC* through the mean 

difference test. Table 3.8 shows that the contribution of trading divergence to fund 

performance is significantly higher than the contribution of trading convergence, as stated 

in 3.5H. The results show a significantly positive difference of up to 0.15% in the annual 

performance. This outstanding conclusion provides evidence that fund managers who 

seek distinct trading strategies are more prone to offer added value to their shareholders. 

  

                                                           
36 For robustness purposes, similarly to Equation 3.11, in this analysis, we also consider the alpha with the 

CAPM, the Fama and French three-factor model, and the Carhart four-factor model, with n ∈ {3,6,12} 

months. 
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Table 3. 8 – Stock characteristics and trading divergence among mutual funds 

 

This table reports the results of the average contribution of the actual trading divergence level (C_ATD) 

and the average of the contribution of the actual trading convergence level (C_ATC) to the fund 

performance in annual computation and the difference between both values (C_ATD – C_ATC). Panel A 

shows the results obtained with the stock alpha of the capital asset pricing model (CAPM). Panel B shows 

the results obtained with the stock alpha of the Fama and French three-factor model. Panel C shows the 

results obtained with the stock alpha of the Carhart four-factor model. We estimate the alphas by using 

rolling windows of 60 (t+3), 120 (t+6) and 240 (t+12) daily data. The p-value is reported in parentheses. 
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively, in the mean 

difference test. 

 

Panel A: CAPM    

  t+3 t+6 t+12 

C_ATD  0.0216%  0.0168%  0.0102% 

C_ATC  -0.0075% -0.0694% -0.0089% 

C_ATD – C_ATC  0.0291%** 

(0.023) 

  0.0862%***    

(0.000) 

    0.0192%***   

 (0.003) 

     
Panel B: 3Factors    

  t+3 t+6 t+12 

C_ATD  0.0370%  0.0136%  0.0083% 

C_ATC  -0.1161% -0.0022% -0.0094% 

C_ATD – C_ATC  0.1531%** 

(0.000) 

      0.0158%*** 

(0.000) 

    0.0177%***    

(0.002) 

     
Panel C: 4Factors    

  t+3 t+6 t+12 

C_ATD   0.0126%  0.0086%  0.0136% 

C_ATC  -0.1120% -0.0197% -0.0020% 

C_ATD – C_ATC   0.1245%***    

(0.000) 

  0.0283%***    

(0.000) 

    0.0155%**    

(0.012) 

 

3.6 Conclusions 
 

In this chapter, we link the strand of the literature that analyses the ability of mutual fund 

managers to add value to their shareholders and the research topic focused on the 

divergence among the managers’ trading decisions. Specifically, we capture to what 

extent the trading of a fund differs with respect to that for the rest of the funds in any 

period and how these divergent decisions contribute to fund performance, considering 

that this distinct trading may be an important source of the value added by fund managers. 

 We find that funds that belong to the same family present lower levels of divergent 

trading. However, the higher similarity among funds of the same family documented by 

the previous research and our evidence of a lower trading divergence among funds with 
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a higher previous portfolio overlap lead us to control the potential influence of the 

previous holdings, obtaining thus a more accurate value of the trading divergence level. 

Even when controlling this effect, we find an increase in distinct trading among funds, 

especially after the GFC of 2008. 

 Our analyses also reveal that the level of trading divergence is lower in periods 

with high market stress. This finding is in line with previous studies indicating that 

managers tend to reduce risk and invest in popular stocks in critical situations. 

Nevertheless, we find different reactions in terms of the trading divergence across the 

different market shocks that have occurred during the period analysed. This result could 

be explained by the different origins and strength levels of the financial system in each 

crisis and the learning process of managers from past negative market experiences. 

 Our findings also indicate that the trading divergence level is driven by certain 

stock characteristics. Specifically, we find a lower trading divergence in small stocks with 

an extreme performance and risk among funds within the same family. These results 

suggest an internal influence of the top management of families on certain investment 

opportunities and the existence of internal risk control within families. In addition, in line 

with documenting that managers show a higher interest in visible and well-known stocks, 

we find a lower trading divergence level in stocks with a higher level of popularity. 

 Finally, our study shows that funds with higher levels of trading divergence obtain 

significantly higher performance. This noteworthy evidence is confirmed when we 

compare the performance contribution of divergent trading decisions with the convergent 

trading’s performance contribution, revealing that fund managers generate added value 

with their distinct trading decisions. These findings are interesting for fund families and 

managers and should increase their willingness to seek new investment opportunities to 

add value in portfolio management.



 

  



205 

 

3. References 
 

Aggarwal, R., Klapper, L., & Wysocki, P. D. (2005). Portfolio preferences of foreign 

institutional investors. Journal of Banking & Finance, 29(12), 2919-2946. 

Alexander, G. J., Cici, G., & Gibson, S. (2007). Does motivation matter when assessing 

trade performance? An analysis of mutual funds. The Review of Financial Studies, 

20(1), 125-150. 

Akhtaruzzaman, M., Boubaker, S., & Sensoy, A. (2021). Financial contagion during 

COVID–19 crisis. Finance Research Letters, 38, 101604. 

Anderson, A. (2013). Trading and under-diversification. Review of Finance, 17(5), 1699-

1741. 

Andreu, L., Mateos, L., & Sarto, J. L. (2017). The Value Added by Trading Based on 

Valuation Criteria. International Review of Finance, 17(3), 327-352. 

Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation 

of error-components models. Journal of Econometrics, 68(1), 29-51. 

Aslan, H., Easley, D., Hvidkjaer, S., & O’Hara, M. (2011). The characteristics of 

informed trading: implications for asset pricing. Journal of Empirical Finance, 18, 

782-801. 

Barber, B. M., Lehavy, R., & Trueman, B. (2007). Comparing the stock recommendation 

performance of investment banks and independent research firms. Journal of 

Financial Economics, 85(2), 490-517. 

Barron, J. M., & Ni, J. (2008). Endogenous asymmetric information and international 

equity home bias: the effects of portfolio size and information costs. Journal of 

International Money and Finance, 27(4), 617-635. 

Berk, J. B., & Van Binsbergen, J. H. (2015). Measuring skill in the mutual fund industry. 

Journal of Financial Economics, 118(1), 1-20. 



206 

 

Bhanot, K., Burns, N., Hunter, D., & Williams, M. (2014). News spillovers from the 

Greek debt crisis: Impact on the Eurozone financial sector. Journal of Banking & 

Finance, 38, 51-63. 

Birâu, F.R. (2012), The impact of behavioral finance on stock markets, University of 

Târgu Jiu, Economy Series, No. 3, 45-50. 

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic 

panel data models. Journal of Econometrics, 87(1), 115-143. 

Brands, S., Gallagher, D. R., & Looi, A. (2006). Active investment manager portfolios 

and preferences for stock characteristics. Accounting & Finance, 46(2), 169-190. 

Brown, N. C., Wei, K. D., & Wermers, R. (2014). Analyst recommendations, mutual fund 

herding, and overreaction in stock prices. Management Science, 60(1), 1-20. 

Brown, D. P., & Wu, Y. (2016). Mutual fund flows and cross‐fund learning within 

families. The Journal of Finance, 71(1), 383-424. 

Busse, J. A., Chordia, T., Jiang, L., & Tang, Y. (2021). Transaction costs, portfolio 

characteristics, and mutual fund performance. Management Science, 67(2), 1227-

1248. 

Cambón, M. I., & Estévez, L. (2016). A Spanish financial market stress index (FMSI). 

The Spanish Review of Financial Economics, 14(1), 23-41. 

Carpenter, J. N. (2000). Does option compensation increase managerial risk appetite? The 

Journal of Finance, 55(5), 2311-2331. 

Chen, J., Hong, H., Huang, M., & Kubik, J. D. (2004). Does fund size erode mutual fund 

performance? The role of liquidity and organization. American Economic Review, 

94(5), 1276-1302. 

Chen, X., & Cheng, Q. (2006). Institutional holdings and analysts' stock 

recommendations. Journal of Accounting, Auditing & Finance, 21(4), 399-440. 



207 

 

Chen, H. L., & Pennacchi, G. G. (2009). Does prior performance affect a mutual fund's 

choice of risk? Theory and further empirical evidence. Journal of Financial and 

Quantitative Analysis, 44, 745-775. 

Chevalier, J., & Ellison, G. (1997). Risk taking by mutual funds as a response to 

incentives. Journal of Political Economy, 105(6), 1167-1200. 

Cohen, R. B., Polk, C., & Silli, B. (2010). Best ideas. Available at SSRN 1364827. 

Cohen, L., Frazzini, A., Malloy, C., (2008). The small world of investing: Board 

connections and mutual fund returns. Journal of Political Economy 116(5), 951-

979. 

Covrig, V., Lau, S. T., & Ng, L. (2006). Do domestic and foreign fund managers have 

similar preferences for stock characteristics? A cross-country analysis. Journal of 

International Business Studies, 37(3), 407-429. 

Cremers, K. M., & Petajisto, A. (2009). How active is your fund manager? A new 

measure that predicts performance. The Review of Financial Studies, 22(9), 3329-

3365. 

Dahlquist, M., Engström, S., & Söderlind, P. (2000). Performance and characteristics of 

Swedish mutual funds. Journal of Financial and Quantitative Analysis, 409-423. 

Del Guercio, D., & Tkac, P. A. (2002). The determinants of the flow of funds of managed 

portfolios: Mutual funds vs. pension funds. Journal of Financial and Quantitative 

Analysis, 523-557. 

Delpini, D., Battiston, S., Caldarelli, G., & Riccaboni, M. (2019). Systemic risk from 

investment similarities. PLoS One, 14(5), e0217141. 

Delpini, D., Battiston, S., Caldarelli, G., Riccaboni, M., (2018). The network of us mutual 

fund investments: diversification, similarity and fragility throughout the global 

financial crisis arXiv preprint: 1801.02205. 



208 

 

DeYoung, R., Evanoff, D. D., & Molyneux, P. (2009). Mergers and acquisitions of 

financial institutions: A review of the post-2000 literature. Journal of Financial 

Services Research, 36(2-3), 87-110. 

Dubofsky, D. A. (2010). Mutual fund portfolio trading and investor flow. Journal of 

Banking & Finance, 34(4), 802-812. 

Easley, D., Kiefer, N. M., O'hara, M., & Paperman, J. B. (1996). Liquidity, information, 

and infrequently traded stocks. The Journal of Finance, 51(4), 1405-1436. 

Elton, E. J., Gruber, M. J., & Green, T. C. (2007). The impact of mutual fund family 

membership on investor risk. Journal of Financial and Quantitative Analysis, 

42(2), 257-277. 

Engström, S., & Westerberg, A. (2004). Information costs and mutual fund flows, 555. 

SSE/EFI Working paper series in Economics and Finance. 

Epstein, L. G., & Schneider, M. (2008). Ambiguity, information quality, and asset 

pricing. The Journal of Finance, 63(1), 197-228. 

Falkenstein, E. G. (1996). Preferences for stock characteristics as revealed by mutual fund 

portfolio holdings. The Journal of Finance, 51(1), 111-135. 

Fama, E., and K. R. French (2010), Luck Versus Skill in the Cross-Section of Mutual 

Fund Returns, Journal of Finance, 65, 1915–47. 

Ferreira, M. A., Keswani, A., Miguel, A. F., & Ramos, S. B. (2013). The determinants of 

mutual fund performance: A cross-country study. Review of Finance, 17(2), 483-

525. 

Franck, A., & Kerl, A. (2013). Analyst forecasts and European mutual fund trading. 

Journal of Banking & Finance, 37(8), 2677-2692. 

Fulkerson, J. A. (2013). Is timing everything? The value of mutual fund manager trades. 

Financial Management, 42(2), 243-261. 



209 

 

Gallagher, E. A., Schmidt, L. D., Timmermann, A., & Wermers, R. (2020). Investor 

information acquisition and money market fund risk rebalancing during the 2011–

2012 eurozone crisis. The Review of Financial Studies, 33(4), 1445-1483. 

Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model 

uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41-

81. 

Gavazza, A. (2011). Demand spillovers and market outcomes in the mutual fund industry. 

The RAND Journal of Economics, 42(4), 776-804. 

Getmansky, M., Girardi, G., Hanley, K. W., Nikolova, S., & Pelizzon, L. (2016). Portfolio 

similarity and asset liquidation in the insurance industry. 

Greenwood, R., & Nagel, S. (2009). Inexperienced investors and bubbles. Journal of 

Financial Economics, 93(2), 239-258. 

Grinblatt, M., & Titman, S. (1993). Performance measurement without benchmarks: An 

examination of mutual fund returns. Journal of Business, 66(1), 47-68. 

Gruber, Martin, 1996, Another puzzle: The growth in actively managed mutual funds, 

Journal of Finance 51, 783–810. 

Gompers, P. A., & Metrick, A. (2001). Institutional investors and equity prices. The 

Quarterly Journal of Economics, 116(1), 229-259. 

Goodell, J. W., & Huynh, T. L. D. (2020). Did Congress trade ahead? Considering the 

reaction of US industries to COVID-19. Finance Research Letters, 36, 101578. 

Guo, W., Minca, A., Wang, L., (2016). The topology of overlapping portfolio networks. 

Stat. Risk Model. 33 (3–4), 139–155. 

Hakkio, C. S., & Keeton, W. R. (2009). Financial stress: what is it, how can it be 

measured, and why does it matter? Economic Review, 94(2), 5-50. 



210 

 

Heath, C., & Tversky, A. (1991). Preference and belief: Ambiguity and competence in 

choice under uncertainty. Journal of Risk and Uncertainty, 4(1), 5-28. 

Holló, D., Kremer, M., Lo Duca, M., (2012). CISS-a composite indicator of 

systemicstress in the financial system. European Central Bank, Macroprudential 

ResearchNetwork, Working paper series March 2012, No.1426. 

Huang, W., Liu, Q., Rhee, S. G., & Zhang, L. (2010). Return reversals, idiosyncratic risk, 

and expected returns. The Review of Financial Studies, 23(1), 147-168. 

Jegadeesh, N., Kim, J., Krische, S. D., & Lee, C. M. (2004). Analyzing the analysts: 

When do recommendations add value? The journal of Finance, 59(3), 1083-1124. 

Jensen, M. C. (1968), The Performance of Mutual Funds in the Period 1945–1964, 

Journal of Finance, 23, 389–416. 

Jiang, H., M. Verbeek, and Y. Wang (2014), Information Content When Mutual Funds 

Deviate from Benchmarks, Management Science, 60, 2038–53 

Jiang, G. J., Yao, T., & Yu, T. (2007). Do mutual funds time the market? Evidence from 

portfolio holdings. Journal of Financial Economics, 86(3), 724-758. 

Kacperczyk, M., & Seru, A. (2007). Fund manager use of public information: New 

evidence on managerial skills. The Journal of Finance, 62(2), 485-528. 

Kacperczyk, M., & Seru, A. (2012). Does firm organization matter? Evidence from 

centralized and decentralized mutual funds. Unpublished Working paper, New York 

University. 

Khan, H., Hassairi, S. A., & Viviani, J. L. (2011). Herd behavior and market stress: The 

case of four European countries. International Business Research, 4(3), 53. 

Khorana, A., & Servaes, H. (2007). Competition and conflicts of interest in the US mutual 

fund industry. London Business School working paper. 



211 

 

Karau, S. J., & Williams, K. D. (1993). Social loafing: A meta-analytic review and 

theoretical integration. Journal of Personality and Social Psychology, 65(4), 681. 

Karunanayake, I., Valadkhani, A., & O'brien, M. (2010). Financial crises and 

international stock market volatility transmission. Australian Economic Papers, 

49(3), 209-221. 

Kempf, A., Ruenzi, S., & Thiele, T. (2009). Employment risk, compensation incentives, 

and managerial risk taking: Evidence from the mutual fund industry. Journal of 

Financial Economics, 92(1), 92-108. 

Khan, H., Hassairi, S. A., & Viviani, J. L. (2011). Herd behavior and market stress: The 

case of four European countries. International Business Research, 4(3), 53. 

Kodres, L. E., & Pritsker, M. (2002). A rational expectations model of financial 

contagion. The Journal of Finance, 57(2), 769-799. 

Kremer, M. (2016). Macroeconomic effects of financial stress and the role of monetary 

policy: a VAR analysis for the euro area. International Economics and Economic 

Policy, 13(1), 105-138. 

Lee, K. C., Pesaran, M. H., & Pierse, R. G. (1990). Testing for aggregation bias in linear 

models. The Economic Journal, 100(400), 137-150. 

Liao, T. L., Huang, C. J., & Wu, C. Y. (2011). Do fund managers herd to counter investor 

sentiment? Journal of Business Research, 64(2), 207-212. 

Lin, A. Y., & Swanson, P. E. (2003). The behavior and performance of foreign investors 

in emerging equity markets: Evidence from Taiwan. International Review of 

Finance, 4(3‐4), 189-210. 

Livingston, M., & O'Neal, E. S. (1996). Mutual fund brokerage commissions. Journal of 

Financial Research, 19(2), 273-292. 



212 

 

Lu, Y. C., Fang, H., & Nieh, C. C. (2012). The price impact of foreign institutional 

herding on large-size stocks in the Taiwan stock market. Review of Quantitative 

Finance and Accounting, 39(2), 189-208. 

Manconi, A., Massa, M., & Yasuda, A. (2012). The role of institutional investors in 

propagating the crisis of 2007–2008. Journal of Financial Economics, 104(3), 491-

518. 

Malhotra, D. K., & McLeod, R. W. (1997). An empirical analysis of mutual fund 

expenses. Journal of Financial Research, 20(2), 175-190. 

Martins, O. S., & Paulo, E. (2014). Information asymmetry in stock trading, economic 

and financial characteristics and corporate governance in the Brazilian stock 

market. Revista Contabilidade & Finanças, 25(64), 33-45. 

Mason, A., Agyei-Ampomah, S., & Skinner, F. (2016). Realism, skill, and incentives: 

Current and future trends in investment management and investment performance. 

International Review of Financial Analysis, 43, 31-40. 

Maug, E., & Naik, N. (2011). Herding and delegated portfolio management: The impact 

of relative performance evaluation on asset allocation. The Quarterly Journal of 

Finance, 1(02), 265-292. 

Mirza, N., Naqvi, B., Rahat, B., & Rizvi, S. K. A. (2020). Price reaction, volatility timing 

and funds’ performance during Covid-19. Finance Research Letters, 36, 101657. 

Montes, C. P. (2014). The effect on competition of banking sector consolidation 

following the financial crisis of 2008. Journal of Banking & Finance, 43, 124-136. 

Neal, L., & García-Iglesias, M. C. (2013). The economy of Spain in the euro-zone before 

and after the crisis of 2008. The Quarterly Review of Economics and Finance, 53(4), 

336-344. 



213 

 

Otten, R., & Bams, D. (2002). European mutual fund performance. European financial 

management, 8(1), 75-101. 

Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2020). Fund tradeoffs. Journal of Financial 

Economics, 138(3), 614-634. 

Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2015). Scale and skill in active 

management. Journal of Financial Economics, 116(1), 23-45. 

Pesaran, M. H., Pierse, R. G., & Kumar, M. S. (1989). Econometric analysis of 

aggregation in the context of linear prediction models. Econometrica: Journal of 

the Econometric Society, 57(4), 861-888. 

Pomorski, L. (2009). Acting on the most valuable information: Best idea'trades of mutual 

fund managers. Available at SSRN 1108186. 

Pool, V. K., Stoffman, N., & Yonker, S. E. (2015). The people in your neighborhood: 

Social interactions and mutual fund portfolios. The Journal of Finance, 70(6), 

2679-2732. 

Rabarison, M. K. (2016). New insights into mutual fund brokerage commissions. Journal 

of Economics and Finance, 40(3), 492-513. 

Raddatz, C., and S. L. Schmukler (2012): On the international transmission of shocks: 

micro-evidence from mutual fund portfolios, Journal of International Economics 

Review, 94(5), 1276-1302. 

Rizvi, S. K. A., Mirza, N., Naqvi, B., & Rahat, B. (2020). Covid-19 and asset management 

in EU: A preliminary assessment of performance and investment styles. Journal of 

Asset Management, 21(4), 281-291. 

Roodman, D. (2009). A note on the theme of too many instruments. Oxford Bulletin of 

Economics and Statistics, 71(1), 135-158. 



214 

 

Seru, A., Shumway, T., & Stoffman, N. (2010). Learning by trading. The Review of 

Financial Studies, 23(2), 705-739. 

Sias, R. W. (2004). Institutional herding. The Review of Financial Studies, 17(1), 165-

206. 

Sirri, E. R., & Tufano, P. (1998). Costly search and mutual fund flows. The Journal of 

Finance, 53(5), 1589-1622. 

Spatt, C. S. (2020). A tale of two crises: The 2008 mortgage meltdown and the 2020 

COVID-19 Crisis. The Review of Asset Pricing Studies, 10(4), 759-790. 

Wermers, R. (2000). Mutual fund performance: An empirical decomposition into stock‐

picking talent, style, transactions costs, and expenses. The Journal of Finance, 

55(4), 1655-1695. 

Zaremba, A., Kizys, R., Aharon, D. Y., & Demir, E. (2020). Infected markets: Novel 

coronavirus, government interventions, and stock return volatility around the globe. 

Finance Research Letters, 35, 101597. 

Zheng, L. (1999). Is money smart? A study of mutual fund investors' fund selection 

ability. The Journal of Finance, 54(3), 901-933. 

Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of 

COVID-19. Finance Research Letters, 36, 101528. 

  



215 

 

Appendix 3.1: Robustness analyses of the results of the evolution of the 

trading divergence among mutual funds 
 

Table A3. 1 – The evolution of the trading divergence and characteristics of 

mutual funds (dynamic model on a yearly basis) 
 

This table shows the results obtained from Equation 3.2 with the dynamic model on a yearly basis. Section 

A shows the coefficients and p-values for the whole sample period (January 2000-June 2020). Section B 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

C shows the coefficients and p-values for the sub-period comprising January 2010 to June 2020. The 

dependent variable, TD
i,j,t  is the trading divergence among funds i and j in year t, and the independent 

variables are the following: TD
i,j,t-1 is the trading divergence among funds i and j in year t-1;                     

Time
t ranges from 1 in the first year of our sample period to 21 in the last year; Fund_family

i,j,t
 is equal to 

1 when funds i and j in year t belong to the same fund family and it                                                                                               

is equal to 0, otherwise; Size_Differencei,j,t,  Age_Differencei,j,t,  Fees_Differencei,j,t, Return_Differencei,j,t, 

#Stocks_Differencei,j,t, and MoneyFlows_Differencei,j,t are the absolute values of the differences between 

the size, age, fees, yearly past return, number of stocks held in the portfolio and relative money flows of 

fund i and j in year t, respectively. The p-value is reported in parentheses. ***, **, and * denote statistical 

significance at the 1%, 5%, and 10%, respectively. 

 

   Section A  

Period 2000-2020 

 Section B  

Sub-period:2000-2009 

 Section C  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value)  Coefficient (p-value) 

Constant    0.4915***   (0.000)    0.5186***   (0.000)    0.6640***  (0.000) 

TDt-1    0.4750***     (0.000)    0.4752***     (0.000)    0.2698***    (0.000) 

Time        0.0001       (0.638)   -0.0024***     (0.000)    0.0015***  (0.000) 

Fund_family   -0.0722***   (0.000)   -0.0933***     (0.000)   -0.0300***  (0.002) 

Size_Difference      -0.0002**      (0.014)   -0.0003***    (0.005)    0.0004**     (0.023) 

Age_Difference    0.0222***   (0.000)    -0.0047      (0.114)    0.0492***  (0.000) 

Fees_Difference     -0.6547           (0.105)      -2.2763**       (0.016)   -0.5864         (0.133) 

Return_Difference     0.0056***    (0.003)    0.0249***   (0.000)   -0.0161***  (0.000) 

#Stocks_Difference   -0.0050***      (0.001)    0.0002***    (0.000)    0.0001***   (0.002) 

MoneyFlows_Difference      0.0002***     (0.000)      0.0088***   (0.000)  -0.0078**    (0.016) 

  Wald         2,348.89***  (0.000)        4,595.21***  (0.000)          441.13***   (0.000) 
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Table A3. 2 – The evolution of the trading divergence and characteristics of 

mutual funds (FE on a monthly basis) 

 

This table shows the results obtained from Equation 3.2 with the FE model on a monthly basis. Section A 

shows the coefficients and p-values for the whole sample period (January 2000-June 2020). Section B 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

C shows the coefficients and p-values for the sub-period comprising January 2010 to June 2020. The 

dependent variable, TD
i,j,t  is the trading divergence among funds i and j in month t, and the independent 

variables are the following: TD
i,j,t-1 is the trading divergence among funds i and j in month t-1; Time

t ranges 

from 1 in the first month of our sample period to 246 in the last month; Fund_family
i,j,t

 is equal to 1 when 

funds i and j in month t belong to the same fund family and it is equal to 0 otherwise; 

Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t and 

MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly past 

return, number of stocks held in the portfolio and relative money flows of fund i and j in month t, 

respectively. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 

5%, and 10%, respectively. 

 

   Section A  

Period 2000-2020 

 Section B  

Sub-period:2000-2009 

 Section C  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value)  Coefficient (p-value) 

Constant     0.9633***  (0.000)    0.9881***   (0.000)    0.9384***    (0.000) 

Time     0.0001***  (0.000)   -0.0002***   (0.000)           0.0001***    (0.000) 

Fund_family    -0.1031***  (0.000)   -0.1285***   (0.000)   -0.0659***    (0.000) 

Size_Difference    -0.0003***  (0.000)          -0.0003***   (0.000)   -0.0003***    (0.003) 

Age_Difference     0.0027**    (0.020)   -0.0248***   (0.000)    0.0235***    (0.000) 

Fees_Difference      -3.6112***  (0.000)           2.7024***   (0.000)   -0.6148***    (0.000) 

Return_Difference      0.0080***  (0.000)    0.0013        (0.177)              -0.0008         (0.482)            

#Stocks_Difference     0.0002***    (0.000)    0.0002***    (0.000)    0.0000         (0.420)            

MoneyFlows_Difference     .0.0011***    (0.001)      0.0012***   (0.000)   -0.0086***    (0.000) 

Wald   103.7*** (0.000)  143.31*** (0.000)  89.66*** (0.000) 
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Table A3. 3 – The evolution of the trading divergence and characteristics of 

mutual funds (FE on a quarterly basis) 
 

This table shows the results obtained from Equation 3.2 with the FE model on a quarterly basis. Section A 

shows the coefficients and p-values for the whole sample period (January 2000-June 2020). Section B 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

C shows the coefficients and p-values for the sub-period comprising January 2010 to June 2020. The 

dependent variable, TD
i,j,t  is the trading divergence among funds i and j in quarter t, and the independent 

variables are the following: TD
i,j,t-1 is the trading divergence among funds i and j in quarter t-1; Time

t ranges 

from 1 in the first quarter of our sample period to 82 in the last quarter; Fund_family
i,j,t

 is equal to 1 when 

funds i and j in quarter t belong to the same fund family and it is  equal to 0, otherwise; 

Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t and 

MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly past 

return, number of stocks held in the portfolio and relative money flows of fund i and j in quarter t, 

respectively. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 

5%, and 10%, respectively. 

 

   Section A  

Period 2000-2020 

 Section B  

Sub-period:2000-2009 

 Section C  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value)  Coefficient (p-value) 

Constant     0.9559***  (0.000)    0.9889***   (0.000)    0.9330***    (0.000) 

Time     0.0001***  (0.000)   -0.0008***   (0.000)    0.0005***    (0.000) 

Fund_family    -0.0966***  (0.000)   -0.1197***   (0.000)   -0.0632***    (0.000) 

Size_Difference    -0.0004***  (0.000)   -0.0002**     (0.013)   -0.0004***    (0.002) 

Age_Difference     0.0036***  (0.001)   -0.0223***   (0.000)    0.0260***    (0.000) 

Fees_Difference      -0.0084        (0.952)    0.7988**      (0.018)               0.4871***    (0.000) 

Return_Difference      0.0057***  (0.000)    0.0026**      (0.015)              -0.0045***    (0.000) 

#Stocks_Difference     0.0002***   (0.000)    0.0002***     (0.000)    0.0000*         (0.055) 

MoneyFlows_Difference    -0.0007      (0.126)      0.0041***    (0.000)   -0.0085***    (0.000) 

  Wald     71.89*** (0.000)    261.55*** (0.000)          97.86*** (0.000) 
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Table A3. 4 – The evolution of the trading divergence and characteristics of 

mutual funds (FE on a yearly basis) 
 

This table shows the results obtained from Equation 3.2 with the FE model on a yearly basis. Section A 

shows the coefficients and p-values for the whole sample period (January 2000-June 2020). Section B 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

C shows the coefficients and p-values for the sub-period comprising January 2010 to June 2020. The 

dependent variable, TD
I,j,t  is the trading divergence among funds i and j in year t, and the independent 

variables are the following: TD
I,j,t-1 is the trading divergence among funds i and j in year t-1; Time

t ranges 

from 1 in the first year of our sample period to 21 in the last year; Fund_family
I,j,t

                                                                

is equal to 1 when funds i and j in year t belong to the same fund family and it is equal to 0, otherwise; 

Size_Differencei,j,t,  Age_Differencei,j,t,  Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t  

And MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly 

past return, number of stocks held in the portfolio and relative money flows of fund i and j in year t, 

respectively. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 

5%, and 10%, respectively. 

 

   Section A  

Period 2000-2020 

 Section B  

Sub-period:2000-2009 

 Section C  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value)  Coefficient (p-value) 

Constant     0.9547***  (0.000)    0.9906***   (0.000)    0.9379***  (0.000) 

Time     0.0004***  (0.000)   -0.0033***   (0.000)    0.0016***  (0.000) 

Fund_family    -0.0930***  (0.000)   -0.1121***   (0.000)   -0.0616***  (0.000) 

Size_Difference    -0.0004         (0.884)   -0.0002***    (0.005)   -0.0004***  (0.009) 

Age_Difference     0.0037***  (0.000)   -0.0216***   (0.000)    0.0211***  (0.000) 

Fees_Difference       0.2757         (0.345)   -1.6621***    (0.003)   -0.4656*       (0.096) 

Return_Difference      0.0137***  (0.000)    0.0056***   (0.001)   -0.0079***  (0.000) 

#Stocks_Difference     0.0002***   (0.000)    0.0002***    (0.000)         0.0000**     (0.038) 

MoneyFlows_Difference     -0.0011         (0.254)      0.0068***   (0.000)        -0.0071***  (0.004) 

  Wald     76.22*** (0.000)       269.72***  (0.000)            74.67*** (0.000) 
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Appendix 3.2: Robustness analyses of the results of the determinants of 

the trading divergence among mutual funds 
 

Table A3. 5 – Determinants of the trading divergence among mutual funds 

(dynamic model on a yearly basis) 
 

This table shows the results obtained from Equation 3.3 with the dynamic model on a yearly basis. Section 

A shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. 

Section B shows the coefficients and p-values for the subperiod comprising January 2010 to June 2020. 

The dependent variable, TD
i,j,t is the trading divergence among funds i and j in year t and the independent 

variables are as follows: TD
i,j,t-1 is the trading divergence among funds i and j in year t-1; Market Stresst is 

the level of equity market and is measured with the Spanish Financial Market Stress Indicator (FMSI); 

Portfolio_Overlapi,j,t-1 is the portfolio overlap of funds i and j in year t-1; Fund_family
I,j,t

 is equal to 1 when 

funds i and j in year t are within the same fund family and equals 0 otherwise; 

Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t and 

MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly past 

return, number of stocks held in the portfolio and relative money flows of funds i and j in year t. The p-

value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 

respectively. 

 

   Section A  

Sub-period:2000-2009 

 Section B  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value) 

Constant     0.5533***  (0.000)    0.7790***   (0.000) 

TDt-1     0.4309***    (0.000)    0.2180***    (0.000) 

Market Strees         -0.0071***    (0.000)        -0.0054***    (0.000) 

Portfolio_Overlapt-1    -0.0880***    (0.000)   -0.0855***    (0.000) 

Fund_family    -0.0942***   (0.000)   -0.0313***   (0.001) 

Size_Difference    -0.0006***  (0.000)    0.0005***  (0.002) 

Age_Difference     0.0341***  (0.000)    0.0002         (0.966) 

Fees_Difference     -2.2659***  (0.008)  -1.2975***   (0.000) 

Return_Difference      0.0101***   (0.000)  -0.0184***   (0.000) 

#Stocks_Difference     0.0001***   (0.000)   0.0001***    (0.000) 

MoneyFlows_Difference     0.0022         (0.151)  -0.0130***   (0.000) 

Wald   4,327.21*** (0.000)  562.68***   (0.000) 
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Table A3. 6 – Determinants of the trading divergence among mutual funds (FE 

model on a monthly basis) 
 

This table shows the results obtained from Equation 3.3 with the EF model on a monthly basis. Section A 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

B shows the coefficients and p-values for the subperiod comprising January 2010 to June 2020. The 

dependent variable, TD
i,j,t is the trading divergence among funds i and j in month t and the independent 

variables are as follows: TD
i,j,t-1 is the trading divergence among funds i and j in month t-1; Market Stresst 

is the level of equity market and is measured with the Spanish Financial Market Stress Indicator (FMSI); 

Portfolio_Overlapi,j,t-1 is the portfolio overlap of funds i and j in month t-1; Fund_family
I,j,t

 is equal to 1 

when funds i and j in month t are within the same fund family and equals 0 otherwise; 

Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t and 

MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly past 

return, number of stocks held in the portfolio and relative money flows of funds i and j in month t. The p-

value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 

respectively. 

 

   Section A  

Sub-period:2000-2009 

 Section B  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value) 

Constant    0.9867***   (0.000)    0.9954***  (0.000) 

Market Strees    -0.0150***   (0.000)        -0.0022***  (0.000) 

Portfolio_Overlapt-1   -0.0873***     (0.000)   -0.0734***    (0.000) 

Fund_family   -0.1289***   (0.000)   -0.0584***  (0.000) 

Size_Difference   -0.0004***   (0.000)   -0.0002*     (0.098) 

Age_Difference     0.0107***   (0.000)   -0.0158***  (0.000) 

Fees_Difference    -4.8217***   (0.000)   -0.9773***  (0.000) 

Return_Difference    -0.0015*     (0.085)   -0.0023**    (0.039) 

#Stocks_Difference    0.0001***    (0.000)    0.0000*     (0.081) 

MoneyFlows_Difference   -0.0016***    (0.000)   -0.0091***  (0.000) 

Wald           327.79***   (0.000)  99.86***   (0.000) 
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Table A3. 7 – Determinants of the trading divergence among mutual funds (FE 

model on a quarterly basis) 
 

This table shows the results obtained from Equation 3.3 with the EF model on a quarterly basis. Section A 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

B shows the coefficients and p-values for the subperiod comprising January 2010 to June 2020. The 

dependent variable, TD
i,j,t is the trading divergence among funds i and j in quarter t and the independent 

variables are as follows: TD
i,j,t-1 is the trading divergence among funds i and j in quarter t-1; Market Stresst 

is the level of equity market and is measured with the Spanish Financial Market Stress Indicator (FMSI); 

Portfolio_Overlapi,j,t-1 is the portfolio overlap of funds i and j in quarter t-1; Fund_family
I,j,t

 is equal to 1 

when funds i and j in quarter t are within the same fund family and equals 0 otherwise; 

Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t and 

MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly past 

return, number of stocks held in the portfolio and relative money flows of funds i and j in quarter t. The p-

value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 

respectively. 

 

   Section A  

Sub-period:2000-2009 

 Section B  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value) 

Constant    0.9800***   (0.000)    0.9948***  (0.000) 

Market Strees    -0.0196***   (0.000)        -0.0013***  (0.009) 

Portfolio_Overlapt-1   -0.0995***    (0.000)   -0.0716***    (0.000) 

Fund_family   -0.1207***  (0.000)   -0.0570***  (0.000) 

Size_Difference   -0.0002***  (0.002)   -0.0003**   (0.024)       

Age_Difference    0.0238***  (0.000)   -0.0214***  (0.000) 

Fees_Difference     1.5274***  (0.000)    0.0091         (0.948) 

Return_Difference    -0.0023**   (0.024)         -0.0068***  (0.000) 

#Stocks_Difference    0.0001***   (0.000)    0.0000***   (0.000) 

MoneyFlows_Difference    0.0001         (0.843)   -0.0094***  (0.000) 

Wald   483.84***   (0.000)           112.12***   (0.000) 
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Table A3. 8 – Determinants of the trading divergence among mutual funds (FE 

model on a yearly basis) 
 

This table shows the results obtained from Equation 3.3 with the EF model on a yearly basis. Section A 

shows the coefficients and p-values for the sub-period comprising January 2000 to December 2009. Section 

B shows the coefficients and p-values for the subperiod comprising January 2010 to June 2020. The 

dependent variable, TD
i,j,t is the trading divergence among funds i and j in year t and the independent 

variables are as follows: TD
i,j,t-1 is the trading divergence among funds i and j in year t-1; Market Stresst is 

the level of equity market and is measured with the Spanish Financial Market Stress Indicator (FMSI); 

Portfolio_Overlapi,j,t-1 is the portfolio holding overlap of funds i and j in year t-1; Fund_family
I,j,t

                              

is equal to 1 when funds i and j in year t are within the same fund family, and it is equals 0 otherwise;  

Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, #Stocks_Differencei,j,t and 

MoneyFlows_Differencei,j,t are the absolute values of the differences between the size, age, fees, yearly past 

return, number of stocks held in the portfolio and relative money flows of funds i and j in year t. The p-

value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 

respectively. 

 

   Section A  

Sub-period:2000-2009 

 Section B  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value) 

Constant    0.9855***  (0.000)    1.0002***  (0.000) 

Market Strees    -0.0234***   (0.000)        -0.0049***  (0.000) 

Portfolio_Overlapt-1   -0.1124***    (0.000)   -0.0925***    (0.000) 

Fund_family   -0.1123***  (0.000)   -0.0544***  (0.000) 

Size_Difference   -0.0003***  (0.000)   -0.0003**    (0.012) 

Age_Difference    0.0244***  (0.000)   -0.0168***  (0.000) 

Fees_Difference    -0.0234         (0.962)   -1.2307***  (0.000) 

Return_Difference    -0.0019         (0.224)   -0.0147***  (0.000) 

#Stocks_Difference    0.0001***    (0.000)    0.0001***   (0.000) 

MoneyFlows_Difference   -0.0079***  (0.000)   -0.0122***  (0.000) 

Wald   432.16***   (0.000)           123.85***   (0.000) 
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Appendix 3.3: Results of the trading divergence measure (TD*) that 

takes into account the initial positions 
 

Table A3. 9 – Overall results of the TD* among fund pairs 

 

This table reports the results of the TD* among fund pairs for each year. Section A shows the mean and the 

standard deviation (St. Dvt.) of the trading divergence level among all fund pairs. Section B shows the 

number of fund pairs within the same family and the mean and the St. Dvt. of their trading divergence level. 

Section C shows the number of fund pairs in different fund families and the mean and the St. Dvt. of their 

trading divergence level. Section D shows the mean and the St. Dvt. difference between the value of fund 

pairs in the same family and the value of fund pairs in different families. ***, **, and * denote statistical 

significance at the 1%, 5%, and 10% levels, respectively, in the mean difference test between both groups 

of fund pairs. Note that in this table, we present a yearly report of the number of fund pairs compared during 

each year, while Table 3.1 presents the total number of funds only at five specific points of the sample 

period. 

 

 

 
 Section A 

 All fund pairs 

 Section B.  

Fund pairs in  

the same fund family 

 Section C 

 Fund pairs in  

different fund families 

 Section D 

 Difference   

(same-different family) 

 

Year 

  

Mean 

TD 

 

 

St. Dvt. 

TD 

 

 

#fund 

pairs 

 

Mean 

TD 

 

St. Dvt. 

TD 

 

#fund 

pairs 

Mean 

TD 

St. Dvt. 

TD 

  

Mean 

TD 

 

St. Dvt.  

TD 

 

2000  76.74% 17.84%  325 65.55% 28.27%  13,879 76.99% 17.46%  -11.44%*** 10.82%***  

2001  76.80% 19.17%  478 68.32% 28.23%  16,282 77.04% 18.79%  - 8.72%***  9.44%***  

2002  76.89% 19.06%  363 68.89% 28.11%  14,475 77.07% 18.77%  - 8.19%***  9.35%***  

2003  76.99% 19.01%  340 69.10% 27.34%  14,622 77.16% 18.75%  - 8.05%***  8.59%***  

2004  77.34% 18.17%  337 68.75% 27.11%  13,672 77.56% 17.83%  - 8.81%***  9.28%***  

2005  77.50% 18.13%  391 68.96% 26.30%  14,613 77.73% 17.80%  - 8.77%***  8.50%***  

2006  77.63% 18.12%  432 69.06% 26.54%  15,352 77.86% 17.78%  - 8.80%***  8.76%***  

2007  73.13% 19.25%  465 67.03% 24.83%  16,529 73.37% 18.97%  - 6.34%***  5.87%***  

2008  69.40% 21.12%  476 65.42% 26.42%  16,244 69.59% 20.82%  - 4.17%***  5.60%***  

2009  74.72% 19.47%  436 69.45% 25.94%  14,492 74.92% 19.15%  - 5.47%***  6.79%***  

2010  76.86% 18.03%  267 72.17% 24.59%  11,458 77.01% 17.76%  - 4.84%***  6.83%***  

2011  78.35% 18.08%  239 72.34% 26.56%  9,727 78.53% 17.74%  - 6.19%***  8.82%***  

2012  76.95% 19.32%  193 73.83% 25.41%  7,764 77.04% 19.11%  - 3.21%***  6.30%***  

2013  81.52% 17.18%  167 76.59% 25.09%  6,171 81.66% 16.90%  - 5.07%***  8.20%***  

2014  81.64% 15.83%  98 76.47% 24.34%  4,625 81.76% 15.56%  - 5.29%***  8.77%***  

2015  80.33% 16.73%  104 76.66% 22.07%  4,655 80.42% 16.57%  - 3.75%***  5.51%***  

2016  81.29% 16.93%  100 78.80% 19.81%  4,909 81.34% 16.86%  - 2.54%***  2.95%***  

2017  84.49% 15.85%  89 81.12% 19.57%  4,753 84.56% 15.76%  - 3.44%***  3.31%***  

2018  84.60% 15.16%  73 80.47% 19.34%  4,732 84.68% 15.06%  - 4.21%***  4.28%***  

2019  82.43% 17.53%  60 79.04% 18.10%  4,311 82.50% 17.52%  - 3.46%***  0.58%***  

2020  82.86% 16.54%  62 79.29% 18.56%  4,077 82.94% 16.49%  - 3.64%***  2.07%***  

2000-2020  77.40% 18.59%  1,190 69.82% 26.52%  35,521 77.61% 18.29%  -7.78%***  8.23%***  
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Table A3. 10 – The evolution of the TD* and the characteristics of mutual funds 

 

This table shows the results of Equation 3.2 using the TD*. Section A shows the coefficients and p-values 

for the whole sample period (January 2000-June 2020). Section B shows the coefficients and p-values for 

the sub-period comprising January 2000 to December 2009. Section C shows the coefficients and p-values 

for the sub-period comprising January 2010 to June 2020. The dependent variable, TD
i,j,t  is the trading 

divergence among funds i and j in quarter t, and the independent variables are the following: TD
i,j,t-1 is the 

trading divergence among funds i and j in quarter t-1; Time
t ranges from 1 in the first quarter of our sample 

period to 82 in the last quarter; Fund_family
i,j,t

 is equal to 1 when funds i and j in quarter t belong to the 

same fund family and it is equals 0 otherwise; Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, 

Return_Differencei,j,t, #Stocks_Differencei,j,t and MoneyFlows_Differencei,j,t are the absolute values of the 

differences between the size, age, fees, yearly past return, number of stocks held in the portfolio and relative 

money flows of fund i and j in quarter t, respectively. The p-value is reported in parentheses. ***, **, and * 

denote statistical significance at the 1%, 5%, and 10%, respectively. 

 

   Section A  

Period 2000-2020 

 Section B  

Sub-period:2000-2009 

 Section C  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value)  Coefficient (p-value) 

Constant      0.6192***  (0.000)    0.7686***    (0.000)   0.7330***   (0.000) 

TDt-1      0.0922***   (0.000)    0.0963***      (0.000)   0.3465***    (0.000) 

Time     0.0002***   (0.000)      -0.0039***    (0.000)   0.0005***   (0.000) 

Fund_family    -0.0043      (0.648)   -0.0004       (0.968)         0.0002      (0.988) 

Size_Difference     0.0004         (0.305)    0.0018***    (0.001)    0.0046***    (0.000) 

Age_Difference     0.1196***  (0.000)   -0.0524***   (0.000)  -0.0232       (0.216) 

Fees_Difference          3.4764***   (0.000)       1.3253           (0.260)         5.6024***    (0.000) 

Return_Difference     0.0067**    (0.019)    0.0299***   (0.000)   -0.0193***  (0.001) 

#Stocks_Difference     0.0527***   (0.000)    0.0573***    (0.000)    0.0650***   (0.000) 

MoneyFlows_Difference       0.0008*     (0.080)      0.0008***   (0.000)   -0.0003***  (0.000) 

  Wald     6,298.27*** (0.000)      8,865.85***  (0.000)          637.56*** (0.000) 

VIF                   1.02  1.03             1.03 
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Table A3. 11 – Determinants of the of the TD* 

 

This table shows the results of Equation 3.3 using the TD*. Section A shows the coefficients and p-values 

for the sub-period comprising January 2000 to December 2009. Section B shows the coefficients and p-

values for the subperiod comprising January 2010 to June 2020. The dependent variable, TD
i,j,t is the trading 

divergence among funds i and j in quarter t and the independent variables are as follows: TD
i,j,t-1 is the trading 

divergence among funds i and j in quarter t-1; Market Stresst is the level of equity                                                      

market and is measured with the Spanish Financial Market Stress Indicator (FMSI);  Fund_family
I,j,t

 is 

equal to 1 when funds i and j in quarter t are within the same fund family and                                                                            

it is equals 0 otherwise; Size_Differencei,j,t, Age_Differencei,j,t, Fees_Differencei,j,t, Return_Differencei,j,t, 

#Stocks_Differencei,j,t and MoneyFlows_Differencei,j,t  are the absolute values of the differences between the 

size, age, fees, yearly past return, number of stocks held in the portfolio and relative money flows of funds 

i and j in quarter t. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 

1%, 5%, and 10% levels, respectively. 

 

   Section A  

Sub-period:2000-2009 

 Section B  

Sub-period:2010-2020 

   Coefficient (p-value)  Coefficient (p-value) 

Constant             0.6095***   (0.000)           0.8068***   (0.000) 

TDt-1             0.0823***    (0.000)           0.0298***     (0.000) 

Market Strees            -0.9746***   (0.000)               -0.0328***   (0.000) 

Fund_family            -0.0164       (0.139)           0.0060       (0.719) 

Size_Difference             0.0014**       (0.011)           0.0041***     (0.000) 

Age_Difference             0.1795***   (0.000)          -0.0788***   (0.000) 

Fees_Difference             -2.9030**      (0.014)           4.8370 ***   (0.000) 

Return_Difference             0.0323***   (0.000)          -0.0208***   (0.000) 

#Stocks_Difference             0.0515***    (0.000)           0.0600***     (0.000) 

MoneyFlows_Difference             0.0006***   (0.000)           0.0002***   (0.000) 

Wald   1,365.53*** (0.000)  961.88***  (0.000) 

VIF   1.06  1.05 
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Figure A3. 1 – Evolution of the of the TD* for all fund pairs 

 

This figure represents the evolution of the more accurate trading divergence level for all fund pairs from 

January 2000 to June 2020. The value is computed quarterly based on the average of their months. 
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Appendix 3.4: Robustness analyses of the influence of the stock 

characteristics on the trading divergence among mutual funds 

 

Table A3. 12 – Stock characteristics and trading divergence among mutual funds 

(FE model on a monthly basis) 
 

This table shows the results obtained from Equation 3.9 with the FE model on a monthly basis. Section A 

shows the results for all fund pairs. Section B shows the results for fund pairs within the same family. 

Section C shows the results for fund pairs in different fund families. The dependent variable,  TD*s,t is the 

trading divergence level among funds for stock s in month t, and the independent variables are as follows: 

Stock_returns,t  is the absolute value of the yearly past return of stock s in month t; Stock_volatilitys,t is the 

volatility of stock s in month t and is measured as the standard deviation of its return during the last year; 

Stock_sizes,t is the market capitalization of stock s in month t; and Stock_popularitys,t  is the popularity level 

of stock s in month t and is measured with the percentage of funds that trade in the stock s within our 

sample. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, 

and 10% levels, respectively. 

 

  
Section A 

 All fund pairs 

 Section B  

Fund pairs in  

the same fund family 

  Section C  

Fund pairs in  

different fund families 

  Coefficient (p-value)  Coefficient (p-value)   Coefficient (p-value) 

Constant     0.9299***   (0.000)      0.9181***    (0.000)    0.9368***   (0.000) 

Stock_return      0.0029          (0.225)     -0.0046**        (0.014)    0.0048**       (0.029) 

Stock_volatility     -0.0086         (0.637)     -0.0818***    (0.001)           0.0028          (0.861) 

Stock_Size    -0.0039***   (0.001)          0.0059*      (0.052)   -0.0044***   (0.000) 

Stock_popularity    -0.3393***   (0.000)         -0.7246***     (0.000)   -0.3167***   (0.000) 

F     133.12***   (0.000)   102.13***    (0.000)           109.62*** (0.000) 

R2  11.24%           13.75%         11.42% 

Hauman Test     243.48***    (0.000)         69.10***  (0.009)           1879.17*** (0.000) 
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Table A3. 13 – Stock characteristics and trading divergence among mutual funds 

(FE model on a yearly basis) 
 

This table shows the results obtained from Equation 3.9 with the FE model on a yearly basis. Section A 

shows the results for all fund pairs. Section B shows the results for fund pairs within the same family. 

Section C shows the results for fund pairs in different fund families. The dependent variable,  TD*s,t is the 

trading divergence level among funds for stock s in year t, and the independent variables are as follows: 

Stock_returns,t  is the absolute value of the yearly past return of stock s in year t; Stock_volatilitys,t is the 

volatility of stock s in year t and is measured as the standard deviation of its return during the last year; 

Stock_sizes,t is the market capitalization of stock s in year t; and Stock_popularitys,t  is the popularity level 

of stock s in year t and is measured with the percentage of funds that trade in the stock s within our sample. 

The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% 

levels, respectively. 

 

  
Section A 

 All fund pairs 

 Section B  

Fund pairs in  

the same fund family 

  Section C  

Fund pairs in  

different fund families 

  Coefficient (p-value)  Coefficient (p-value)   Coefficient (p-value) 

Constant   0.9537***   (0.000)    0.9464***   (0.000)    0.9656***   (0.000) 

Stock_return    0.0038          (0.105)    0.0037           (0.390)    0.0064**       (0.011) 

Stock_volatility   -0.0036         (0.812)  -0.1015***   (0.003)          -0.0117          (0.435) 

Stock_Size  -0.0035***   (0.005)           0.0054       (0.179)   -0.0026**      (0.021) 

Stock_popularity   -0.4223***   (0.000)          -0.9430***    (0.000)   -0.5110***   (0.000) 

F     143.75***     (0.000)          103.11***  (0.000)        152.27*** (0.000) 

R2  12.59%           18.34%         26.55% 

Hauman Test     731.17***     (0.000)          5.99***  (0.009)           337.20*** (0.000) 
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Appendix 3.5: Robustness analyses of the influence of the trading divergence on subsequent fund performance 

 

Table A3. 14 – The trading divergence and the subsequent fund performance (on a monthly basis) 

 

This table shows the results obtained from Equation 3.11 on a monthly basis. Section A, Section B and Section C show the results obtained with the fund alpha of the CAPM, 

with the alpha of the three-factor model, and with the four-factor model, respectively. We estimate the alphas by using rolling windows of 60 (t+3), 120 (t+6) and 240 (t+12) 

daily data. The dependent variable is the subsequent performance of the fund i in month t, and the independent variables are as follows: TD*i,t is the average of the trading 

divergence level of fund i in month t; Fund_size
i,t

 is the average of the relativised size of fund i in month t; Fund_age
i,t

 is the average of the relativised age of fund i in month 

t; Fund_fees
i,t

 is the average fees of fund i in month t. Fund_#stocks
i,t

 is the average number of stocks held by fund i in month t; and Fund_flows
i,t

 is the average relative money 

flows fund i in month t. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels. 

 

 Fund_Performance 

 Section A : CAPM  Section B: 3Factors  Section C: 4Factors 

 t+3 t+6 t+12  t+3 t+6 t+12  t+3 t+6 t+12 

Constant  

 

-0.0005*** 

(0.000) 

-0.0004*** 

(0.000) 

-0.0003*** 

(0.000) 

 -0.0005*** 

(0.000) 

-0.0003*** 

(0.000) 

-0.0004*** 

(0.000) 

 -0.0005*** 

(0.000) 

-0.0005*** 

(0.000) 

-0.0004*** 

(0.000) 

TD 

 

 0.0004*** 

(0.000) 

 0.0003*** 

(0.000) 

  0.0002*** 

(0.000) 

  0.0003*** 

(0.000) 

 0.0003*** 

(0.000) 

 0.0003*** 

(0.000) 

  0.0002*** 

(0.000) 

 0.0002*** 

(0.000) 

 0.0002*** 

(0.000) 

Fund_size 

 

-0.0001** 

(0.014) 

-0.0001** 

(0.044) 

-0.0001 

(0.166) 

 -0.0001* 

(0.090) 

-0.0001 

(0.240) 

-0.0001 

(0.519) 

 -0.0001** 

(0.041) 

-0.0001 

(0.167) 

-0.0001 

(0.541) 

Fund_age 

 

  0.0001  

(0.199) 

     0.0001** 

(0.019) 

     0.0002*** 

(0.007) 

   0.0002*** 

 (0.001) 

  0.0001*** 

 (0.008) 

  0.0002*** 

(0.001) 

  0.0002*** 

(0.001) 

0.0002*** 

(0.000) 

   0.0002*** 

(0.004) 

Fund_fees 

 

0.0351* 

(0.059) 

0.0305* 

(0.056) 

-0.0036        

(0.777) 

 0.0257* 

(0.095) 

  0.0253*** 

(0.007) 

0.0050 

(0.701) 

   0.0263*    

(0.082) 

    0.0198* 

(0.088) 

0.0001 

(0.999) 

Fund_#stocks 

 

0.0001 

(0.294) 

0.0001 

(0.956) 

0.0001 

(0.445) 

 0.0001 

(0.717) 

0.0001 

(0.592) 

0.0001 

(0.248) 

 0.0001 

(0.753) 

0.0001 

(0.251) 

0.0001 

(0.134) 

Fund_flows 

 

0.0001 

(0.373) 

 0.0001* 

(0.060) 

 0.0001** 

 (0.018) 

 0.0001 

(0.599) 

0.0001* 

 (0.073) 

  0.0001** 

(0.039) 

 0.0001 

(0.484) 

0.0001* 

(0.082) 

0.0001**  

(0.019) 

F 

 

12.34*** 

(0.000) 

8.06*** 

(0.000) 

7.26*** 

(0.000) 

 8.20*** 

(0.000) 

8.97*** 

(0.000) 

7.39*** 

(0.000) 

 6.16*** 

(0.000) 

8.81*** 

(0.000) 

6.81*** 

(0.000) 

R2 1.40% 1.54% 1.51%  2.02% 2.80% 1.59%  2.74% 1.23% 1.43% 

Hausman test 

40.84*** 

(0.000) 

   232.00*** 

(0.000) 

 72.13*** 

(0.000) 

  87.43*** 

(0.000) 

  23.40*** 

(0.000) 

 66.59*** 

(0.000) 

  98.51*** 

(0.000) 

 88.58*** 

(0.000) 

 57.01*** 

(0.000) 
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Table A3. 15 – The trading divergence and the subsequent fund performance (on a yearly basis) 

 

This table shows the results obtained from Equation 3.11 on a yearly basis. Section A, Section B and Section C show the results obtained with the fund alpha of the CAPM, 

with the alpha of the three-factor model, and with the four-factor model, respectively. We estimate the alphas by using rolling windows of 60 (t+3), 120 (t+6) and 240 (t+12) 

daily data. The dependent variable is the subsequent performance of the fund i in year t, and the independent variables are as follows: TD*i,t is the average of the trading 

divergence level of fund i in year t; Fund_size
i,t

 is the average of the relativised size of fund i in year t; Fund_age
i,t

 is the average of the relativised age of fund i in year t; 

Fund_fees
i,t

 is the average fees of fund i in year t; Fund_#stocks
i,t

 is the average number of stocks held by fund i in year t; and Fund_flows
i,t

 is the average relative money flows 

fund i in the year t. The p-value is reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

 Fund_Performance 

 Section A : CAPM  Section B: 3Factors  Section C: 4Factors 

 t+3 t+6 t+12  t+3 t+6 t+12  t+3 t+6 t+12 

Constant  

 

-0.0012*** 

(0.000) 

-0.0010*** 

(0.000) 

-0.0008*** 

(0.000) 

 -0.0009*** 

(0.000) 

-0.0009*** 

(0.000) 

-0.0009*** 

(0.000) 

 -0.0007*** 

(0.000) 

-0.0008*** 

(0.000) 

-0.0008*** 

(0.000) 

TD 

 

 0.0011*** 

(0.000) 

 0.0009*** 

(0.000) 

 0.0007*** 

(0.000) 

  0.0006*** 

(0.000) 

 0.0007*** 

(0.000) 

 0.0008*** 

(0.000) 

  0.0004*** 

(0.000) 

 0.0006*** 

(0.000) 

 0.0007*** 

(0.000) 

Fund_size 

 

-0.0001*** 

(0.002) 

 -0.0001*** 

(0.000) 

-0.0001** 

(0.025) 

  -0.0001*** 

(0.005) 

 -0.0001*** 

(0.001) 

-0.0001 

(0.202) 

  -0.0001*** 

(0.005) 

-0.0001***  

(0.001) 

-0.0001 

(0.217) 

Fund_age 

 

  0.0001  

(0.600) 

  0.0001  

(0.155) 

   0.0002*** 

(0.005) 

   0.0002*** 

 (0.003) 

  0.0002*** 

 (0.000) 

   0.0002*** 

(0.003) 

  0.0002*** 

(0.002) 

 0.0002*** 

(0.001) 

   0.0002*** 

(0.005) 

Fund_fees 

 

0.1381** 

(0.046) 

0.0932* 

(0.062) 

0.0409        

(0.303) 

 0.1080* 

(0.073) 

0.0653 

(0.126) 

0.0432 

(0.229) 

 0.0937   

(0.123) 

   0.0466 

(0.253) 

0.0250 

(0.471) 

Fund_#stocks 

 

0.0001 

(0.335) 

0.0001 

(0.739) 

0.0001 

(0.545) 

 0.0001 

(0.973) 

0.0001 

(0.569) 

-0.0001 

(0.191) 

 0.0001 

(0.917) 

0.0001 

(0.301) 

-0.0001 

(0.122) 

Fund_flows 

 

 0.0004*** 

(0.008) 

  0.0003** 

(0.045) 

 0.0003** 

 (0.033) 

 0.0002* 

(0.079) 

 0.0002** 

 (0.038) 

  0.0003** 

(0.029) 

 0.0002 

(0.169) 

0.0002** 

(0.025) 

 0.0003**  

(0.026) 

F 

 

 27.36*** 

 (0.000) 

17.81*** 

(0.000) 

 13.55*** 

 (0.000) 

 13.29*** 

(0.000) 

  16.27*** 

 (0.000) 

 15.02*** 

(0.000) 

 8.02*** 

(0.000) 

13.55*** 

(0.000) 

14.39*** 

(0.000) 

R2 6.43% 5.73% 5.16%  3.52% 5.40% 5.37%  2.54% 4.95% 5.50% 

Hausman test 

 

 76.84*** 

 (0.000) 

 66.68*** 

(0.000) 

 54.02*** 

(0.000) 

  70.30*** 

(0.000) 

 58.14*** 

(0.000) 

 20.67*** 

(0.000) 

  78.42*** 

(0.000) 

 60.26*** 

(0.000) 

 21.41*** 

(0.000) 
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FINAL CONCLUSIONS 
 

Here, I summarise the main conclusions and contributions of the thesis. The main reasons 

why I have investigated several abilities of fund managers: the importance of mutual 

funds in the financial system and their economic and social impacts on individual 

investors due to the great amount of money managed in this industry, and the essential 

role of managers in managing fund portfolios. The thesis is also motivated by the lack of 

empirical studies that focus on the learning process in the mutual fund industry and by 

the aim of exploring the consequences of the similarity level among portfolios and the 

divergence level among managers’ trading decisions in the Spanish market. 

 In Chapter 1, we identify the important trading decisions of funds based on the 

hypothesis that not all decisions have the same importance in terms of the performance 

and risk of a fund and thus, the same impact on its learning process. In this chapter, we 

argue that important trading decisions simultaneously have a relatively high importance 

with respect to a fund’s total net assets (TNA), a significantly higher importance with 

respect to other trading decisions made by the fund, and a significantly higher importance 

with respect to other trading decisions of the other funds in the same stock. 

 We analyse the evolution of the percentage of important trading decisions that 

result in a significantly negative impact on fund performance as a metric of the funds' 

learning process from their important past errors. This chapter provides evidence of a 

significant decreasing trend in the percentage of funds' important trading errors over the 

sample period that indicates the level of learning process in the mutual fund industry over 

time.  

 Then, we examine the learning ability of each fund family with respect to the 

remaining families. The findings show that a large number of fund families drives this 
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learning process, by showing a significant decrease in the percentage of the important 

errors of their member funds equal to or greater than the industry average.  

 Furthermore, we study whether two important characteristics of the Spanish fund 

families influence the learning process: the family size and their dependence on banking 

and insurance groups. In general terms, we do not find evidence of a significant influence 

by these characteristics in the learning of mutual funds. 

 The findings of this chapter have several implications for individual investors, 

fund managers, supervisors, and the overall efficiency of the fund industry. The decrease 

in important errors by the fund’s management could encourage investors to allocate their 

savings to this industry due to greater confidence in professional management. In 

addition, this process may have a positive influence on the compensation of fund 

managers and the overall efficiency of the industry. Further, this study could be 

interesting for supervisors who ensure investor protection and promote good practices in 

the fund industry.  

 In addition, given that individual investors could hold more than one mutual fund 

in order to reduce the level of idiosyncratic risk, another important topic is the similarity 

level among portfolio holdings. The literature has shown that individual investors will 

concentrate all their investments in a financial company because of the switching costs. 

Specifically, this behaviour and the demand spillover effects are common in the mutual 

fund industry. Therefore, Chapter 2 focuses on the similarity level among mutual funds 

and the manager’s autonomy in the portfolio allocation within families. 

 The findings show that the fund concentration in a single family has a significantly 

negative impact on the potential diversification. Furthermore, the results show that the 

potential diversification is definitely lower for individual investors who concentrate all of 

their fund investments in larger families, which belong to a bank-holding group and do 
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not have wide experience in the fund market. Furthermore, in this chapter, we find less 

autonomy for managers in the portfolio allocation within the fund families with these 

characteristics.  

 In this chapter, we also analyse the consequences of the similarity level among 

portfolios and the manager’s autonomy on the individual investors’ return. The findings 

show that a greater similarity among funds not only causes fund families to offer less 

diversification to individual investors but also has a significantly negative effect on their 

returns, while the influence of autonomy for managers is significantly positive.  

The implications of this chapter are also especially interesting in the Spanish 

mutual fund industry because of its high concentration level and its dependence on the 

banking sector. According to the findings of this chapter, fund families with a higher 

market share show a higher portfolio overlap among their funds.  

The results obtained in Chapter 2 about the economic implication of the great 

similarity among mutual funds and the autonomy of managers in the portfolio allocation 

for individual investors lead us to focus on the divergence level among the funds' trading 

decisions and the ability to add value through their distinct decisions. 

Chapter 3 presents a measure that captures to what extent the trading of a fund in 

any period differs from the rest of the funds. In accordance with the results obtained in 

Chapter 2, we find a lower level of trading divergence among fund pairs belonging to the 

same family than those from different families. We also observe that the decisions of the 

funds are more different from each other over time, especially since the GFC of 2008 at 

which time the severe mutual fund merging process began that caused the strong 

reorganization of the Spanish banking system.  

In Chapter 3, we study the determinants of the divergence level in trading. 

Concretely, we show that the trading divergence is influenced by the previous holdings; 
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a fact that leads us to control for the initial positions in the divergence measure. With this 

control, the trading divergence in fund pairs of the same family is not significantly 

different compared to the trading divergence in fund pairs of different families. This loss 

of statistical significance is logical because pairs in the same family start from more 

similar positions according to the results in Chapter 2. Despite this control of the previous 

holdings, we find that the level of market stress has a significantly negative influence on 

the level of trading divergence among funds. Therefore, the likelihood that a fund will 

make more distinct trading decisions in relation to the rest of funds is lower in market 

stress periods. This relation could be driven mainly by the common aim of managers to 

hold less risky stocks and invest in more popular stocks during critical market 

circumstances. However, Chapter 3 also shows that the behaviour of fund managers in 

terms of the level of trading divergence is not the same across the different market shocks 

in the sample period. The natural origin of each shock and the learning in portfolio 

management could have an important role in this finding.   

This chapter also presents the influence of the stock characteristics on the level of 

trading divergence. The results provide evidence on a greater similarity among trading 

decisions in the smallest stocks with extreme behaviour in terms of the past return and 

volatility within families. This finding indicates an internal influence at the family level 

on the decisions in those stocks, which could be an investment opportunity but also imply 

a high risk level. However, the outlook of investment opportunities may be different 

across families due to their individual investment and risk policies for portfolio 

management. 

Finally, in line with the results of Chapter 2 about the significantly negative 

influence of the greater similarity among portfolios and the low autonomy of managers 

on the investors’ returns, this chapter shows that a high level of trading divergence  results 
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in a high fund performance. Furthermore, Chapter 3 also shows that mutual funds have 

the ability to add more value through their distinctive trading decisions due to the higher 

performance contribution of divergent trading decisions compared to convergent 

decisions. This chapter has important implications for fund managers, for the top-

management of the families, and for regulators because of this significantly positive 

relationship. Due to the significantly positive influence of the trading divergence on fund 

performance that is encouraged by the top management of fund families, managers may 

increase their interest in seeking investment opportunities and trading differently with 

respect to other fund.



s.  
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RESUMEN Y CONCLUSIONES 
(SUMMARY IN SPANISH) 

 
Tal y como recoge el Real Decreto 99/2011, de 28 de enero, por el que se regulan las 

enseñanzas oficiales de Doctorado, las tesis doctorales que quieran optar a la Mención 

Internacional deben incluir los principales contenidos de la misma en dos lenguas 

oficiales para la comunicación científica. 

Dado que el indioma de redacción de la tesis es el inglés, a continuación, se 

presenta un resumen de la tesis doctoral desarrollada en español, con el objetivo de que 

la misma pueda ser considerada para la obtención de la Mención de Internacional. 
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MOTIVACIÓN 

 

Los gestores de fondos de inversión toman sus decisiones en base a la información que 

obtienen de diversas fuentes internas y externas, entra las cuales, se puede destacar la 

experiencia, el proceso de aprendizaje, la interacción social, las directrices recibidas 

desde la sociedad gestora (familia de fondos) de la que formen parte, así como la 

estrategia que se sigue dentro de la misma. Estos agentes financieros deciden los títulos 

en los que invierten y su importancia dentro de las carteras, procurando un nivel de 

diversificación óptimo.  

 Por tanto, los partícipes se benefician de la diversificación de la cartera de forma 

automática, independientemente de la cantidad invertida. Esta diversificación intrínseca 

hace que, en general, invertir en uno fondos sea más seguro que invertir en un título 

individual. Además, los partícipes podrían buscar una mayor diversificación, invirtiendo 

en diferentes fondos, sin embargo, diferente no es siempre lo mismo que diverso. En este 

sentido, el nivel de similitud entre las carteras es un aspecto importante dentro de la 

industria de fondos de inversión, así como la autonomía de los gestores en la selección de 

títulos y su habilidad para generar valor añadido con sus decisiones más divergentes en 

la industria.  

 Esta Tesis Doctoral consta de tres capítulos empíricos sobre tres importantes 

habilidades de los gestores de fondos: aprendizaje, autonomía y gestión divergente. 

Además, se incluye una introducción sobre la industria española de fondos de inversión, 

en la cual se muestran algunas estadísticas relacionadas con su evolución y se hace 

referencia a sus características específicas más importantes.  

 En el primer capítulo, se estudia el proceso de aprendizaje en la gestión de 

carteras. Este capítulo se basa en la hipótesis de que, se aprende de los errores cuando las 

consecuencias duelen y, por lo tanto, los gestores aprenden de los errores, especialmente, 
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cuando estos errores tienen graves consecuencias en el rendimiento del fondo. Este 

estudio está motivado por la falta de investigación sobre el proceso de aprendizaje en la 

gestión de carteras con respecto a la gestión empresarial. Este mayor nivel de 

investigación sobre el aprendizaje en el ámbito corporativo podría explicarse porque las 

consecuencias de un error importante en una empresa podrían ser drásticas e incluso 

suponer su cierre, mientras que, desde la perspectiva de gestión de carteras, las 

consecuencias de un error importante pueden ser relevantes, pero menos drásticas o 

definitivas debido a su mayor diversificación. Sin embargo, el proceso de aprendizaje en 

la industria de fondos de inversión merece que se le preste atención desde el ámbito de la 

investigación porque la eficiencia de este mercado tiene importantes implicaciones 

sociales y económicas. 

 El capítulo dos examina el nivel de similitud entre las carteras de los fondos de 

inversión y sus implicaciones para los inversores individuales en términos de 

diversificación y rentabilidad. De acuerdo con la literatura, los inversores individuales 

tienden a concentrar sus diferentes fondos en la misma familia. Esto podría explicarse por 

el coste económico y tiempo invertido que implica un cambio de proveedor (switching 

cost). Este proceso mental por parte de los inversores justifica el interés de estudiar el 

nivel de similitud entre las carteras de los fondos de inversión, especialmente, entre 

aquellos fondos que pertenecen a la misma familia. Cabe resaltar que, esta tendencia por 

parte de los partícipes a concentrar sus inversiones en fondos de la misma familia es 

especialmente interesante en la industria española debido a su alta concentración y 

dependencia a los grupos bancarios y aseguradoras. También, se estudian las 

características de las familias de fondos con un mayor nivel de similitud entre sus carteras. 

Finalmente, en cada familia de fondos, se analiza la autonomía de los gestores cuando 

seleccionan títulos dentro de cada industria, así como sus implicaciones económicas. 
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 El tercer capítulo se centra en el nivel de divergencia entre las decisiones de 

gestión de los fondos de inversión, controlando las posiciones previas en las carteras. Este 

capítulo se justifica por el objetivo de vincular los estudios recientes sobre la habilidad 

de los gestores para generar valor añadido y los estudios que analizan la diversidad 

existente entre los fondos. En particular, este capítulo estudia hasta qué punto las 

decisiones de compra y venta de los distintos fondos difieren entre ellas y cómo este nivel 

de divergencia contribuye a la performance de la cartera. La hipótesis a contratar se basa 

en la idea de que las decisiones de compra y venta más diferentes de los gestores de fondos 

pueden ser una fuente importante de valor añadido. 
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INTRODUCCIÓN: LA INDUSTRIA ESPAÑOLA 

DE FONDOS DE INVERSIÓN 
 

A continuación, se muestran datos evolutivos del volumen patrimonial gestionado, el 

número de partícipes y el número de fondos existentes en la industria española de fondo 

de inversión, con el objetivo de analizar su desarrollo tanto desde la perspectiva de la 

demanda como de la oferta. 

 Según los datos de la Asociación de Instituciones de Inversión Colectiva 

(INVERCO), la industria de fondos de inversión gestionaba un patrimonio de 206.166 

millones de euros en diciembre de 1999, mientras que, en junio de 2020, esta cantidad 

fue aproximadamente superior en 55.000 millones de euros, alcanzándose un total de 

260.895 millones de euros. Aunque estas cifras reflejan un extraordinario crecimiento, se 

debe tener en cuenta que la evolución del sector no se ha producido de forma sostenida 

en el tiempo, ya que se ha visto afectada en varias ocasiones por las crisis financieras. 

Los datos muestran el fuerte impacto negativo de la crisis financiera global de 2008 y la 

crisis de deuda soberana europea, el cual provoco una importante disminución en la 

cantidad gestionada de 49% de diciembre de 2007 a diciembre de 2012. La industria 

comenzó a recuperarse a partir del año 2013, aunque no fue hasta 2017 cuando se 

alcanzaron cifras similares a las que se mostraban antes de la crisis de 2008. El 

extraordinario crecimiento de la industria de fondos de inversión durante los últimos años 

se ha visto motivado por la recuperación de la confianza de los inversores en el 

asesoramiento profesional, y por la bajada de los tipos de interés que ha generado una 

situación de incertidumbre entre los ahorradores e inversores. Estos han dejado de 

encontrar un atractivo en los depósitos bancarios y como consecuencia, han empezado a 

migrar sus ahorros hacía otros instrumentos financieros y en especial, hacía los fondos de 

inversión. Sin embargo, la crisis provocada por la COVID-19 también ha implicado un 
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ligero descenso en el patrimonio gestionado. Concretamente, el importe total de los 

activos gestionados en la industria de fondos disminuyo alrededor de un 6% entre 

diciembre de 2019 y junio de 2020. Por lo tanto, se pone de manifiesto la importante 

vulnerabilidad de la demanda en esta industria a la situación económica. 

 La evolución del número de inversores también muestra un patrón similar a la 

evolución del patrimonio gestionado por los fondos. En diciembre de 1999, esta industria 

tenía aproximadamente 8 millones de inversores, mientras que, en junio de 2020, esta 

cifra ascendía a 11,2 millones de inversores. El número de inversores nos permite 

comprender el gran impacto económico y social que tiene la industria de fondos en 

España y, por tanto, la gran importancia que tiene la eficiencia en la gestión de los fondos, 

porque de ello depende, el ahorro de una parte importante de la población española. 

 El crecimiento del número de fondos en el mercado muestra la evolución de la 

oferta del sector. Se observa un crecimiento notable en el número de fondos españoles 

desde 1999 hasta 2009. Sin embargo, desde entonces, la tendencia ha sido negativa. Esta 

observación podría relacionarse con el proceso de restructuración bancaría del sistema 

financiero español durante la última década. Con este proceso, se tenía como objetivo 

mejorar la eficiencia del mercado e implico un número importante de fusiones de fondos 

y sociedades gestoras. 

 Centrándonos en la oferta en la industria de fondos, si bien la evolución y el 

crecimiento de esta industria son notables y los partícipes pueden seleccionar entre una 

amplia gama de fondos y familias, la industria española se caracteriza por estar muy 

concentrada. En este sentido, los datos muestran que, en junio de 2020, las cinco mayores 

gestoras de España controlan el 62% de los activos totales invertidos en esta industria por 

el 71% de los partícipes. Esta evidencia sobre el nivel alto de concentración es todavía 
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más pronunciada cuando se consideran las dos gestoras más grandes que controlan 

aproximadamente el 34% del patrimonio total.  

 Como reflejan los datos, este mercado se encuentra lejos del paradigma de la 

competencia perfecta y así, las familias de fondos disfrutan de un alto poder de mercado 

en el sector de los fondos de inversión. En esta línea, Losada (2015) argumenta que los 

partícipes no disfrutan de la información perfecta sobre los fondos de inversión que se 

ofrecen en el mercado. Estos se enfrentan a altos costes económicos y tiempo invertido 

en la búsqueda de información cuando cambian de proveedor, lo que les lleva a concentrar 

sus inversiones de fondos en una sola familia. Otro aspecto importante a resaltar, en la 

oferta de fondos de inversión, es la alta dependencia del sector a los grupos bancarios y 

aseguradoras. Aunque la importancia relativa de las familias de fondos independientes 

sigue una tendencia positiva, el peso de este tipo de gestoras es todavía pequeño en 

comparación con otras industrias europeas. 
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Capítulo 1:  Aprendes cuando duele: evidencia en la 

industria de fondos de inversión. 
 

Introducción 

El comportamiento de los gestores ha sido un tópico que ha atraído la atención de los 

investigadores desde distintos puntos de vista. Así, el objetivo de este estudio es mostrar 

eficiencia empírica sobre el proceso de aprendizaje en la gestión de fondos de inversión 

a partir de los errores importantes derivados de decisiones importantes. En este estudio, 

dentro del ámbito de la gestión de fondos de inversión, se considera una decisión 

importante a aquella compra o venta de un título realizada en un mes concreto que 

representa simultáneamente una alta importancia relativa en relación con: (1) el tamaño 

del fondo calculado con el valor total neto de los activos gestionado, (2) el resto de 

decisiones de gestión del mismo fondo con otros activos diferentes en el mismo mes y (3) 

las decisiones de gestión tomadas por el resto de fondos con el mismo título en el mismo 

mes. Posteriormente, esta decisión importante en la gestión de carteras será un error 

importante si tiene un impacto significativamente negativo en el rendimiento posterior 

del fondo. 

 Estrechamente relacionado con la práctica de la toma de decisiones, el aprendizaje 

es el proceso mediante el cual la información se convierte en conocimiento, y permite la 

constitución progresiva de un conjunto de técnicas y conocimientos que ayudan a mejorar 

la eficiencia, tal y como se establece en el concepto de “aprender haciendo”, que fue 

inicialmente estudiado por Arrow (1962). En este sentido, la literatura previa ha 

identificado tres niveles de aprendizaje: aprendizaje a nivel de individuo, aprendizaje a 

nivel de grupo y aprendizaje a nivel de organización (Crossan et al., 1999). 

Concretamente, el aprendizaje a nivel de organización ha generado un gran interés entre 

profesionales y académicos en el entorno económico y empresarial, ya que se le considera 
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un activo estratégico para las organizaciones, en el que se basan las ventajas competitivas 

sostenibles en el tiempo (March, 1991; Adams y Lamont, 2003; Hatch y Dyer, 2004). 

 En lo que tiene que ver con la gestión de fondos de inversión, los investigadores 

defienden que tanto el proceso de toma de decisiones, como el proceso de aprendizaje no 

son específicos de un gestor. En esta línea, Chen et al. (2004), Nanda et al. (2004) y Cici 

et al. (2018) consideran que la sociedad gestora (familia de fondos), como entidad en sí, 

influye de forma significativa en la gestión de sus fondos. También, Jones y Shanken 

(2005) y Brown y Wu (2016) encuentra que el hecho de pertenecer a una familia de fondos 

genera la oportunidad de disfrutar de un aprendizaje global, algo que no es posible cuando 

los gestores trabajan de forma independiente. Asi como Sevcenko y Ethiraj (2018) 

documentan que el aprendizaje individual genera externalidades positivas a nivel de 

familia de fondos. 

 Respecto a la medida de aprendizaje, números trabajos han estudiado este proceso 

como la reducción de los sesgos cognitivos identificados en la literatura sobre finanzas 

conductuales (Dhar y Zhu, 2006; Campbell, 2006; Nicolosi et al., 2009; Seru et al., 2009; 

Koestner et al., 2017). Estos autores identifican la experiencia como la principal fuente 

aprendizaje, medida tanto por el número de años de experiencia como por el número de 

operaciones acumuladas en los mercados financieros. De manera similar, Offerman y 

Sonnemans (1998) y Kempf et al. (2017) analizan la importancia del concepto “aprender 

haciendo” y muestran que la experiencia está asociada a una mejor capacidad de gestión. 

 Centrándonos en la habilidad de aprendizaje a nivel de organización, Crossan y 

Bapuji (2003) utilizan la medida tradicional de aprendizaje relacionada con las llamadas 

curvas de aprendizaje, donde el aprendizaje interno de una organización es una función 

en el tiempo. En este capítulo, el proceso de aprendizaje se mide a través de la evolución 

del porcentaje de errores importantes en la gestión de los fondos de inversión. Este 
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enfoque es consistente con el aprendizaje motivado principalmente por los errores del 

pasado, siguiendo los estudios de Zhao (2011) y Marsick y Watkins (2015) y teniendo 

presente que, no todas las decisiones en la gestión de carteras tienen la misma 

contribución a la rentabilidad del fondo y, por tanto, la misma influencia en el proceso de 

aprendizaje. Según Zhao (2011) y Marsick y Watkins (2015), existe una relación positiva 

entre el sentimiento negativo causado por cometer errores y la motivación para aprender 

de estos errores. 

 Por tanto, el primer capítulo de la tesis contribuye a la literatura de varias maneras. 

En primer lugar, se analiza el proceso de aprendizaje en la gestión profesional de fondos 

de inversión, en lugar de analizarse en el comportamiento de los inversores individuales, 

ampliamente estudiado en la literatura. En segundo lugar, se contribuye a la literatura con 

el análisis del proceso de aprendizaje basado en el supuesto de que no todas las decisiones 

tienen la misma importancia relativa y contribución a la rentabilidad del fondo y, así, la 

misma influencia en este proceso. Se considera que el aprendizaje está motivado 

principalmente por lo errores pasados que tienen consecuencias graves. En tercer lugar, 

se analiza el proceso de aprendizaje a nivel de industria y familia de fondos, siguiendo el 

enfoque de aprendizaje a nivel organizacional que defiende que la capacidad de 

aprendizaje dentro de una organización o entidad no es específica de un individuo. 

 

Datos y metodología 

En este capítulo, se analiza el proceso de aprendizaje en los fondos de inversión 

clasificados, según la vocación inversora, en la categoría renta variable euro en la 

industria española, en el periodo de tiempo comprendido entre enero 2000 y junio 2014. 

 Cabe destacar que la industria española representa un marco interesante para el 

objetivo principal de este estudio por diferentes razones. En primer lugar, la industria 
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española de fondos de inversión es una de las industrias europeas más importantes en 

términos de número de fondos registrados, situándose en el quinto lugar del ranking 

(EFAMA, 2018), lo que pone de manifiesto la importancia de las consecuencias 

económicas de los análisis realizados. En segundo lugar, esta industria se caracteriza por 

una alta concentración dado que las 10 sociedades gestoras de fondos de inversión más 

grandes gestionan más del 75% del patrimonio total (Inverco, 2018) así como por una alta 

dependencia a la banca. En tercer lugar, el gran auge de los fondos de inversión españoles 

tuvo lugar durante la década de los noventa, por lo tanto, el periodo analizado coincide 

con la etapa de madurez, evitando así posibles efectos de las etapas de expansión y 

crecimiento que pudieran afectar al proceso de aprendizaje (Penrose, 1959; Autio et al., 

2000). 

 La muestra está compuesta por un total de 292 fondos de inversión gestionados 

por 101 sociedades gestoras: 145 fondos de inversión Renta Variable Domestica y 147 de 

Renta Variable Euro. Resaltar que, en este estudio, se han controlado las adquisiciones y 

fusiones de los fondos de la muestra. Además, no se ha exigido que los fondos hayan 

nacido durante el periodo temporal analizado, así como tampoco que estos permanezcan 

vivos al final del periodo de análisis, por lo tanto, la base de datos está libre de sesgo de 

supervivencia. 

 La información de las carteras de los fondos de inversión se ha obtenido de la 

Comisión Nacional del Mercado de Valores (CNMV) y de Morningstar. La fusión de la 

información procedente de ambas bases de datos permite que se controlen todas las 

carteras trimestrales y más del 80% de las carteras mensuales. Concretamente, se analizan 

20.572 decisiones de gestión a partir de los datos extraídos de las carteras de los fondos 

de inversión. 
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 En relación con la metodología aplicada, se realizan tres análisis: (1) análisis del 

proceso de aprendizaje a nivel de industria, (2) análisis del proceso de aprendizaje a nivel 

de familia de fondos y (3) análisis de la influencia de las características de las familias en 

su nivel de aprendizaje.  

 Centrándonos en el análisis a nivel de industria, en primer lugar, se identifican las 

decisiones de compra y venta de activos siguiendo el enfoque de cambio en el número de 

títulos (Alexander et al., 2007). La comparación entre dos carteras mensuales 

consecutivas de un fondo, junto con la información bursátil de los títulos proporcionada 

por Datastream permite obtener el número de títulos comprados o vendidos por el fondo 

de inversión durante ese periodo. Una vez que se conoce el número de títulos que han 

sido comprados o vendidos, se calcula el importe económico de cada decisión, 

multiplicando el cambio en el número de acciones por su precio medio en el mercado, 

durante el mes correspondiente. 

 En segundo lugar, se calcula la importancia relativa de cada decisión de compra y 

venta, dividiendo la cuantía de la misma entre el patrimonio total del fondo, y 

posteriormente, se identifican las compras y ventas importantes, aplicando tres filtros 

independientes. Estos filtros se basan en tres condiciones necesarias para que una decisión 

sea considerada como compra o venta importante en la gestión de los fondos de inversión. 

Con el primer filtro, se considera que decisión de compra o venta es importante cuando 

su importancia relativa es significativamente alta. Con el segundo filtro, se asume que 

una decisión es importante cuando su importancia relativa es significativamente mayor a 

la importancia relativa del resto de decisiones tomadas por el mismo fondo con el resto 

de títulos durante el mismo mes. En el tercer filtro, se considera que una decisión es 

importante si su importancia relativa es significativamente mayor a la de las decisiones 

tomadas por el resto de fondos con el mismo título en el mismo mes. Finalmente, se 
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considera que una compra o venta se encuentra definitivamente entre las decisiones 

importantes, cuando esta supera los tres filtros explicados de forma simultánea.  

 En tercer lugar, una vez que se han identificados las decisiones importantes, se 

procede a identificar los errores importantes, es decir, esas decisiones importantes que 

tienen un impacto significativamente negativo en la rentabilidad posterior del fondo. Para 

ello, se calcula el impacto económico de cada decisión, multiplicando su importancia 

relativa por el alfa de Jensen del título correspondiente. Con el objetivo de dar robustez a 

los resultados obtenidos, se aplica este tercer paso con el alfa calculada a partir de 60, 120 

y 240 datos diarios. El objetivo es observar si los resultados son similares en el corto 

plazo (alfa a 3 meses) y en el medio y largo plazo (alfas a 6 y 12 meses). Se selecciona, 

el 20% de las decisiones importantes con el impacto económico más negativo en la 

rentabilidad del fondo: el 10% de las compras importantes y el 10% de las ventas 

importantes. No obstante, se aplica también deciles y cuartiles en la identificación de 

estos errores importantes por motivos de robustez. 

 Finalmente, se calcula el porcentaje anual de errores importantes para cada fondo 

en cada año, dividiendo el número de errores en compras y ventas entre el número de 

compras y ventas totales, respectivamente, y se analiza la evolución de este porcentaje, 

aplicando el modelo dinámico de datos de panel (Arellano y Bover, 1995; Blundell y 

Bond, 1998) con tendencia. Además, para verificar la robustez de los resultados, 

incluimos cinco variables de control sobre las características de los fondos de inversión y 

la situación del mercado: tamaño del fondo, antigüedad del fondo, número de títulos en 

la cartera, índice de rotación y rentabilidad del benchmark. 

 En el segundo análisis a nivel de familia de fondos, se parte del porcentaje de 

errores importantes obtenido en el primer análisis a nivel de industria y se aplica el mismo 

modelo, incluyendo adicionalmente una variable dummy (Familia) que toma valor 1 
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cuando el fondo está gestionado por la familia en cuestión. De esta manera, esta variable 

dummy tiene el mismo valor en todos los fondos gestionados por esta familia. En este 

modelo, también se incluye la interacción entre la variable dummy Familia y la variable 

Tiempo la cual captura la tendencia del porcentaje de errores importantes a lo largo del 

tiempo. Esta interacción nos permite comparar el nivel de aprendizaje de cada familia de 

fondos con respecto al nivel global de aprendizaje en la industria.  

 En el tercer análisis, se pretende determinar si existen diferencias significativas 

entre el nivel de aprendizaje de las diez familias de fondos más grandes registradas en 

España y el nivel de aprendizaje del resto de familias. En la misma línea, se analiza si 

existen diferencias significativas entre familias independientes y dependientes de grupos 

bancarios o aseguradoras. Para alcanzar ambos objetivos, se estima el modelo utilizado 

en los dos primeros análisis, pero en este caso, se incluye una variable dummy que permite 

distinguir entre las diez familias de fondos más grandes y el resto de familias, para el 

primer objetivo y entre las familias independientes y dependientes, para el segundo 

objetivo.  

 

Resultados empíricos y conclusiones alcanzadas 

El primer análisis en este capítulo muestra que el porcentaje de errores importantes en la 

gestión de los fondos de inversión renta variable euro registrados en la industria española 

disminuye significativamente con el tiempo. Estos errores importantes son consecuencias 

de importantes decisiones de compra o venta que cumplen los tres filtros, explicados en 

el apartado de metodología, cuyo impacto en la rentabilidad posterior del fondo es 

significativamente negativo. Se concluye que esta tendencia decreciente en el porcentaje 

de errores importantes muestra la capacidad general de la industria de fondos de inversión 

para aprender de los errores cometidos en el pasado. Los resultados de este estudio 
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siguieren que, detrás de los errores hay una fuente de aprendizaje que lleva a los gestores 

de fondos de inversión a cometer menos errores a lo largo del tiempo, y apoyan la 

hipótesis de que cuanto más negativo es el impacto de los errores, mayor es la motivación 

para aprender y evitar cometer los mismos errores en el futuro, es decir, “se aprende 

cuando algo duele”. Este resultado es consistente tanto cuando se calcula el efecto de las 

decisiones a corto plazo (alfa de Jensen a 3 meses) como cuando se calcula a medio y 

largo plazo (alfas de Jensen a 6 y 12 meses). 

 La variable dependiente retardada permite controlar el posible sesgo de 

endogeneidad en el modelo y su influencia positiva y significativa indica que cada fondo 

presenta patrones individuales en sus decisiones de gestión que tienden a persistir en el 

tiempo y como consecuencia, algunos fondos son más propensos a cometer errores. De 

esta manera, los fondos que cometen el mayor número de errores en el pasado son también 

los que cometen el mayor número de errores en el futuro. 

 En relación con las variables de control, el tamaño y la edad del fondo no muestran 

una clara influencia en el porcentaje de errores importantes, sin embargo, los resultados 

indican que los fondos más diversificados, es decir, aquellos con un mayor número de 

títulos en sus carteras, y con índices de rotación más bajos cometen menos errores 

importantes. Con respecto al resultado de número de títulos, este se podría explicar 

porque, en general, las decisiones de gestión en las carteras más diversificadas tienden a 

representar un valor relativamente menor y, por lo tanto, la probabilidad de cometer 

errores importantes también es menor. En la misma línea, el resultado sobre el índice de 

rotación podría explicarse porque cuando este es bajo, se toman menos decisiones y así, 

la probabilidad de cometer un error también es menor. Finalmente, se encuentra una 

relación negativa entre el porcentaje de errores y la rentabilidad de mercado. De esta 
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manera, se muestra evidencia de que es más probable que se cometan errores importantes 

en los mercados bajistas que en los alcistas. 

 En el segundo análisis, los resultados indican que el nivel de aprendizaje del 70% 

(o más del 60%) de las familias de fondos es mayor o similar al nivel de aprendizaje 

global en la industria española de fondos renta variable nacional (fondos renta variable 

euro). Por lo tanto, se muestra evidencia empírica de que el proceso de aprendizaje 

documentado en el primer análisis está impulsado por un número importante de familias 

de fondos de inversión. 

 En el tercer análisis, en el cual se analiza el papel del tamaño de la familia de 

fondos, así como el papel de la dependencia a grupos bancarios o aseguradoras en el 

proceso de aprendizaje, los resultados obtenidos muestran que ninguna de estas 

características tiene una influencia significativa en el aprendizaje de la familia. 
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Capítulo 2: Diversificación y autonomía en las 

familias de fondos: implicaciones para los inversores 
 

Introducción 

El desarrollo de la industria de fondos de inversión ha implicado un aumento importante 

en el número de inversores individuales que participan en los mercados financieros, 

delegando la gestión de sus ahorros a los gestores de fondos de inversión. Esto se ve 

reflejado en los 15,6 mil millones de euros gestionados por 60.000 fondos en la industria 

europea de fondos de inversión (EFAMA, 2018). 

 La diversificación es una de las principales ventajas que ofrecen los fondos de 

inversión a los inversores individuales (Markowitz, 1952; Sharpe, 1964; Statman, 2004; 

y Goetzmann y Kumar, 2008, entre otros). Sin embargo, Moreno y Rodríguez (2013) 

indican que los fondos de inversión no están siempre bien diversificados y, por lo tanto, 

los inversores deben invertir en más de un fondo para reducir el riesgo idiosincrático en 

las carteras. Además, en lo que se refiere a la selección de los fondos de inversión, la 

literatura encuentra que los inversores primero selecionan la entidad financiera (familia 

de fondos), y posteriormente, eligen los diferentes fondos dentro de la familia selecionada 

(Massa 2003). En esta línea, Gerker et al. (1996) y Massa (2003) encuentran que es más 

probable que, los inversores que han invertido previamente en una familia de fondos 

seleccionan un fondo de inversión de esta misma familia, en futuras decisiones de 

inversión a que lo seleccionan aquellos inversores que no han invertido anteriormente. 

Esto puede estar explicado por el hecho de que los inversores pueden mover sus ahorros 

entre diferentes fondos de inversión dentro de la misma familia de fondos a un menor 

coste que entre distintas familias, invirtiendo menos esfuerzos en el proceso de búsqueda 

y selección. 
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 En lo que se refiere al proceso de toma de decisiones en la gestión de carteras, 

estudios recientes encuentran que las decisiones de los gestores de los fondos de inversión 

están influenciadas por diferentes factores internos como: las experiencias pasadas 

(Menkhoff et al., 2006; Kempf et al., 2017), la propia intuición (Brown y Davies, 2017) 

o en nivel de familiaridad o preferencia hacía determinados títulos (Pool et al., 2015), y 

factores externos, entre los cuales cabe destacar: la información obtenida a través de la 

interacción social (Pool et al., 2015); las recomendaciones de expertos y analistas 

financieros (Brown et al., 2014); el nivel de competencia y cooperación con otros gestores 

(Kempf y Ruenzi, 2008; Simutin, 2013; Evans et al., 2020) y la estrategia interna de la 

familia (Kacperczyk y Seru, 2012; Sevcenko y Ethiraj, 2018). 

 Centrándonos en la gestión interna dentro de cada familia de fondos, diferentes 

estudios ponen de manifiesto la importancia de maximizar el uso de los recursos internos, 

coordinando internamente las decisiones de los gestores, así como la importancia de la 

reputación global a nivel de familia de fondos que depende de la gestión de todos sus 

fondos. 

 En esta línea, Elton et al. (2007) encuentran que los rendimientos de los fondos 

dentro de una familia tienden a estar altamente correlacionados y argumentan que esta 

mayor correlación se debe principalmente a los títulos comunes que se mantienen en las 

carteras. Además, la posible existencia de directrices por parte de los altos directivos 

también puede conducir a posiciones similares en las carteras de los fondos e implicar 

una reducción de la autonomía de los gestores en las decisiones de compra y venta de 

títulos (Kacperczyk y Seru, 2012).  

 En esta línea, el objetivo de este capítulo es analizar si la concentración de fondos 

dentro de la misma familia influye en la diversificación de los inversores individuales. En 

el primer análisis de este capítulo, se analiza el nivel de similitud entre las carteras de los 
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fondos de inversión renta variable euro en la industria española, distinguiendo entre 

parejas de fondos en las cuales ambos fondos pertenecen la misma familia y parejas de 

fondos en las cuales cada fondo pertenece a una familia diferente. Posteriormente, se 

estudian las características de las parejas de fondos que muestran un mayor nivel de 

similitud entre sus carteras. 

 En el segundo análisis, el capítulo se centra en el nivel de similitud entre carteras 

dentro de cada familia. De esta manera, se obtiene el nivel de similitud entre los diferentes 

fondos dentro de cada familia, y se contrasta si hay familias con un nivel de similitud 

entre sus fondos significativamente mayor al de otras familias con el objetivo de estudiar 

la existencia de heterogeneidad entre las diferentes familias en términos de 

diversificación. 

 En el tercer análisis, se propone una medida para captar la autonomía que tiene 

los gestores dentro de cada familia en el proceso de selección de títulos pertenecientes a 

una industria concreta. Posteriormente, de la misma manera que se procede con el nivel 

de similitud entre carteras, se estudia si hay familias con un nivel de autonomía 

significativamente mayor, así como las características de estas familias. 

 Finalmente, se analiza si el nivel de similitud entre los distintos fondos de 

inversión, y en nivel de autonomía en la selección de títulos dentro de una industria 

específica son factores determinantes de la rentabilidad que obtienen los inversores que 

concentrar su selección de fondos de inversión en una sola familia. 

 

Datos y metodología 

Se estudia el nivel de similitud entre las carteras de los fondos de inversión clasificados 

en la categoría renta variable euro, en la industria española, desde diciembre de 1999 a 

junio de 2018. Varios trabajos se han centrado en analizar el nivel de similitud entre 
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carteras en el mercado estadounidense. En esta línea, Elton et al. (2007) y Evans et al. 

(2020) examinan el nivel de similitud entre los fondos de inversión en EE.UU. desde 1998 

hasta 2002 y desde 1990 hasta 2015, respectivamente. También, Pool et al. (2015) 

estudian el nivel de similitud entre las carteras de los fondos ofertados en EE.UU., 

gestionados por profesionales que viven en la misa zona o barrio dentro de la misma 

ciudad. Sin embargo, el estudio desarrollado en este capítulo es el primero que analiza la 

similitud entre carteras en el mercado español, que se caracteriza por una alta 

concentración y dependencia al sector bancario (Ferreira y Ramos, 2009; Ferreira et al., 

2013). Según los datos reportados por INVERCO, las diez y cinco familias de fondos más 

grandes gestionan el 75% y 40% del patrimonio, respectivamente. Por otro lado, el 87% 

de los fondos están gestionados por familias que pertenecen a un grupo bancario o 

aseguradora. Se han excluido los fondos ETFs y fondos indexados, y se ha exigido que el 

fondo tenga un mínimo de 24 observaciones mensuales. De esta manera, la muestra está 

compuesta por un total de 276 fondos gestionados por 108 familias de fondos. 

 Las carteras mensuales de los fondos, se obtiene de la base de datos de la Comisión 

Nacional del Mercado de Valores (CNMV) y de Morningstar. En la CNMV, se han 

obtenido las carteras mensuales desde 1999 hasta 2006 y las carteras mensuales 

trimestrales desde enero de 2007 hasta junio de 2018 que se complementan con las 

carteras mensuales disponible en Morningstar, analizando así un total de 24.561 

posiciones de cartera. En la CNMV, también se obtiene información sobre las 

características de los fondos y sociedades gestoras (familias de fondos). En este estudio, 

se distingue entre las gestoras dependientes y las gestoras independientes.  

 En lo que se refiere a la metodología utilizada, el nivel de similitud entre los 

diferentes fondos se obtiene a través de la medida utilizada por Elton et al. (2007) y Pool 

et al. (2015). Se obtiene el nivel de similitud tanto a nivel de título como a nivel de sector 
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e industria de acuerdo a la clasificación industrial (ICB) de PTSE Russel, obtenida en 

Datastream. 

 En el primer análisis, se analizan las características de las parejas de fondos con 

carteras similares. Se utiliza un modelo en el que se contrasta si las parejas de fondos que 

mantienen carteras más similares, son también más similares en términos de tamaño, 

edad, número de títulos, comisiones y rentabilidad pasada. Además, en este modelo, 

también se contrasta si el nivel de similitud entre carteras es significativamente mayor 

entre las parejas de fondos dentro de la misma familia y las parejas en las cuales cada uno 

de los fondos pertenece a una familia diferente. 

 En el segundo análisis, se obtiene el nivel de similitud entre carteras dentro de 

cada familia de fondos, y se estudia si hay familias con mayor nivel de similitud entre sus 

fondos, aplicando tanto el test paramétrico de diferencia de medias como el test no 

paramétrico de Kruskal-Wallis, por motivos de robustez. 

 En el tercer análisis, se obtiene el nivel de autonomía dentro de cada familia. Se 

propone una medida de autonomía con un doble enfoque, que se basa en la intuición de 

que, el exceso de similitud a nivel de industria sobre el nivel de similitud a nivel de título 

capta la autonomía de los gestores en la selección de títulos específicos dentro de cada 

industria. En el primer enfoque, para obtener el nivel de autonomía en cada familia, se 

consideran todas las comparaciones de sus fondos, independientemente si estos se 

comparan con fondos de la misma familia o con fondos en otras familias. Sin embargo, 

en el segundo enfoque, solo se consideran las parejas de fondos en las que ambos fondos 

pertenecen a la misma familia. Posteriormente, también se utilizan el test paramétrico de 

diferencia de medias y el test no paramétrico de Kruskal-Wallis para contrastar si el nivel 

de autonomía en la selección de títulos es significativamente mayor en algunas familias, 

considerando ambos enfoques.  
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 Finalmente, se analiza si el nivel de similitud entre carteras y el nivel de autonomía 

son determinantes de la rentabilidad que obtienen los inversores individuales y, por lo 

tanto, si los partícipes que concentrar todas sus inversiones en fondos dentro de la misma 

familia podrían obtener mejores resultados en determinadas familias, en función de 

ambos factores. 

 

Resultados empíricos y conclusiones alcanzadas 

Los resultados del análisis del nivel de similitud entre carteras muestran que las parejas 

de fondos, en las que ambos fondos pertenecen a la misma familia mantienen carteras 

más similares que las parejas de fondos en diferentes familias. Especialmente, el nivel de 

similitud es significativamente mayor entre las carteras de los fondos grandes. Sin 

embargo, en las parejas de fondos pequeños o con tamaños muy diferentes la parte común 

entre sus carteras es significativamente menor. Este resultado está en línea con la hipótesis 

de que los gestores de fondos grandes tienen habilidades comunes, así como un acceso 

común a un mayor nivel de información. 

 En relación con la edad de los fondos, los resultados muestran que el grado de 

similitud entre carteras es significativamente mayor entre las parejas de fondos con 

edades similares. Sin embargo, no se observa este resultado entre los fondos más antiguos 

o con una menor experiencia en el mercado. Por un lado, se podría pensar que los fondos 

más antiguos tienen la experiencia suficiente para poder desarrollar su propia estrategia 

de gestión de carteras. Por otro lado, los fondos más jóvenes que suelen enfrentarse al 

reto de aumentar su participación en el mercado, podrían tener mayores incentivos a 

ofrecer carteras lo más diferentes posibles al resto, siguiendo una estrategia de 

diferenciación de producto, en línea con los estudios de Mamaysky y Spiegel (2002), 

Massa (2003) y Khorana y Servaes (2012). 
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 También, los resultados muestran que la parte común entre carteras es 

significativamente mayor en las parejas de fondos más diversificados que aplican 

comisiones de gestión más altas. Con respecto al número de títulos en la cartera, este 

resultado está en línea con el estudio de Kacperczyk et al. (2005). Estos autores 

documentan que los gestores de los fondos más diversificados mantienen posiciones más 

similares a la cartera global del mercado, sin embargo, los gestores de los fondos más 

concentrados siguen estilos de inversión más distintivos. En relación con las comisiones, 

el resultado obtenido podría estar explicado por la relación positiva, documentada por la 

literatura, entre los gastos de gestión y el esfuerzo realizado en la búsqueda de 

información, para tomar las decisiones de gestión en consecuencia.  

 Finalmente, los resultados muestran que el nivel de similitud entre carteras es 

significativamente mayor en las parejas de fondos que han tenidos una rentabilidad 

similar durante el último año. No obstante, no se observa este resultado cuando la 

rentabilidad ha sido muy positiva o muy negativa. Esta observación confirma nuestra 

hipótesis de que las reacciones de los gestores de fondos ante un nivel extremo de 

rentabilidad (muy positivo o muy negativo) pueden ser significativamente diferentes, y, 

en consecuencia, las posiciones entre sus carteras. 

 Una vez que se ha analizado el nivel de similitud en las posiciones de las carteras, 

distinguiendo entre parejas de fondos en la misma familia y parejas de fondos en distintas 

familias, y se muestra evidencia de que la concentración de fondos en una sola familia 

tiene una influencia negativa y significativa en el nivel de diversificación de los 

inversores. Posteriormente, este capítulo se centra en la diversificación entre fondos 

dentro de cada familia. Se tiene como objetivo explorar la heterogeneidad entre las 

familias de fondos en términos de diversificación. En esta línea, Evans et al. (2020) 

contribuye a la literatura sobre la heterogeneidad de estrategias de gestión entre las 
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distintas familias de fondos, mostrando evidencia sobre la coexistencia de estrategias 

competitivas y cooperativas.  

 En este estudio, se contrasta la hipótesis nula que establece que no existen 

diferencias significativas en este fenómeno entre las diferentes familias. Los resultados 

muestran que, en promedio, en nivel de similitud entre carteras en las familias que se 

posicionan en tercil superior asciende a 55.55%, sin embargo, este porcentaje es igual a 

15.67% en las familias pertenecientes al tercil inferior. De esta manera, la diferencia entre 

los valores de similitud de las familias que se posicionan en el tercil superior frente a las 

que están en el tercil inferior es igual a 39.89%, estadísticamente significativa al 1%. Por 

tanto, se muestra evidencia de que hay familias en las que el nivel de similitud entre 

carteras es significativamente superior con respecto a otras familias.  

 Este resultado lleva al análisis de las características de las familias en las que el 

nivel de similitud entre carteras es significativamente mayor. Para alcanzar este objetivo 

se aplican diferentes modelos por motivos de robustez. En este sentido, se obtiene que los 

resultados son consistentes y muestran un mayor nivel de similitud entre carteras en las 

familias grandes que pertenecen a un grupo bancario o aseguradora. En relación con la 

experiencia de la familia de fondos en el mercado, los resultados muestran evidencia de 

una mayor similitud en las familias de fondos con menos experiencia en el mercado. 

Finalmente, en este análisis, se documenta que la diversificación entre fondos es 

significativamente inferior en aquellas familias con una mayor cantidad de dinero 

gestionado en la categoría de fondos renta variable euro. 

 No obstante, en este capítulo, no solo se analiza la heterogeneidad entre familias 

de fondos en términos de diversificación. También, se analiza si hay familias de fondos 

en las cuales, el nivel de la autonomía en la selección de títulos dentro de una industria 

específica es significativamente mayor. Los resultados muestran que los gestores de 
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fondos disfrutan de una mayor autonomía en la selección de títulos dentro de las familias 

de fondos antiguas de menor tamaño que no dependen del sector bancario. 

 Finalmente, se documenta que el nivel de similitud entre carteras tiene una 

influencia negativa y significativa en la rentabilidad que obtienen los inversores cuando 

concentran la selección de fondos en una misma familia. Sin embargo, los inversores 

parecen beneficiarse de una mayor autonomía en la selección de títulos. Estos resultados 

son especialmente interesantes en la industria española, ya que las familias grandes que 

dependen del sector bancario gestionan más de 40% de los fondos, y son estas las que 

precisamente muestran un mayor nivel de similitud entre sus fondos y una menor 

autonomía, lo que influye de forma negativa y significativa en la rentabilidad que 

obtienen los inversores. Para terminar, cabe resaltar la tendencia negativa de este 

fenómeno a lo largo del tiempo, lo que podría traducirse en una mejora de la eficiencia 

del sector. Según lo documentado por la literatura, una alta similitud entre carteras es 

señal de una industria con alto riesgo sistémico, y, en consecuencia, de una alta 

posibilidad de contagio y propagación de los shocks de mercado. 
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Capítulo 3: Nivel de divergencia entre las decisiones 

de gestión de los fondos de inversión y su 

contribución a la performance de la cartera. 
 

Introducción 

La habilidad de los gestores de fondos de inversión para generar valor añadido a la 

rentabilidad del fondo es un elemento de gran interés, tanto desde el punto de vista 

académico como desde el punto de vista profesional. La literatura previa ha analizado el 

valor añadido generado por los gestores, comparando el desempeño de la gestión pasiva 

y la gestión activa. Sin embargo, existe una cierta controversia sobre los resultados 

obtenidos. Por un lado, hay estudios que muestran que los fondos que siguen una gestión 

activa no superan a sus índices de referencia (benchmark) (Jensen, 1968; Fama y French, 

2010). Por otro lado, varios estudios documentan que las posiciones de las carteras que 

más se diferencias de las posiciones mantenidas por el benchmark llevan asociada una 

rentabilidad significativamente mayor (Wermers, 2000; Dahlquist et al., 2000; Engström, 

2004; Cremers y Petajisto, 2009; Fulkerson, 2013; Jiang et al., 2014). 

 El objetivo de este capítulo es identificar aquellas decisiones de compra y venta 

más diferentes en la gestión de un fondo de inversión con respecto a las decisiones 

tomadas por otros fondos, teniendo en cuenta los títulos negociados, el tipo de decisión 

(compra, venta o mantener posición) y su importancia relativa calculada sobre el tamaño 

total del fondo. De esta manera, se obtiene en qué medida las decisiones de gestión de los 

fondos de inversión se diferencia entre sí. También, se tiene como objetivo analizar la 

contribución de estas decisiones divergentes a la performance del fondo.  

 Uno de los principios económicos más importante, extendido a la gestión de 

carteras, establece que los gestores pueden obtener un exceso de rentabilidad, si, y solo 

si, logran diferenciarse del resto de fondos, utilizando las habilidades de gestión como 
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una ventaja competitiva. Además, Khorana y Servaes (2007) documentan que las 

estrategias de diferenciación contribuyen a obtener una mayor participación en el 

mercado. Por tanto, se considera que tanto los gestores como las familias de fondos tiene 

incentivos para ofrecer una gestión diferente que genere valor añadido. Además, un 

mayor nivel de divergencia entre las decisiones de gestión también podría tener una 

influencia positiva en el sistema financiero. En esta línea, Getmansky et al. (2016), Guo 

et al. (2016) y Delpini et al. (2018; 2019) documentan que una similitud significativa 

entre las carteras de los fondos de inversión juega un papel importante en la transmisión 

de las dificultades financieras, y puede implicar que el sistema financiero sea más frágil. 

 En este capítulo, en primer lugar, se analiza la evolución del nivel de divergencia 

entre las decisiones de gestión de los fondos de inversión españoles, clasificados en la 

categoría renta variable euro, durante el periodo transcurrido entre enero de 2000 y junio 

de 2020. El desarrollo de la industria de fondos de inversión en las últimas décadas ha 

implicado un aumento en el nivel de competencia (Gavazza, 2011). De esta manera, las 

familias y gestores de fondos podrían verse más motivados a ofrecer una gestión más 

divergente en este entorno más competitivo, con el objetivo de aumentar su participación 

en el mercado y promocionar en sus puestos de trabajo, respectivamente. Además, la 

crisis financiera global de 2008 implico un proceso de fusiones y adquisiciones de fondos 

de inversión sin precedentes, lo que también ha podido influir en este fenómeno, 

provocando un aumento en el nivel de divergencia entre los distintos fondos. Por todo 

ello, cabría esperar una tendencia positiva en el nivel de divergencia en la gestión de los 

fondos de inversión. 

 En segundo lugar, este capítulo se centra en el análisis de los factores internos de 

gestión y los factores externos a nivel del mercado financiero que tienen una influencia 

significativa en este fenómeno. Concretamente, se examina la influencia de las posiciones 
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previas mantenidas en las carteras, el nivel de estrés en el mercado de renta variable y las 

características de los títulos. En lo que se refiere a las posiciones previas en las carteras, 

se espera que las parejas que presentan un mayor nivel de similitud entre sus carteras 

previas, también muestren un nivel de divergencia más bajo entre sus decisiones de 

gestión, durante el periodo posterior. 

  Respecto al nivel de estrés en el mercado, cabe destacar que la literatura previa 

ha documentado que el comportamiento de los agentes financieros puede variar en 

función de las condiciones de mercado. En este sentido, Hakkio y Keeton (2009) 

argumentan que un nivel de estrés alto en el mercado implica altos niveles de 

incertidumbre sobre los valores fundamentales de los activos financieros, así como, una 

importante asimetría de información en el mercado, provocando sentimientos de miedo y 

pánico en los agentes financieros. Especialmente, este nivel alto de incertidumbre y 

asimetría se encuentra en los títulos extranjeros más arriesgados (Aslan et al., 2011; 

Martins y Paulo, 2014; Barron y Ni, 2008). De esta manera, la preferencia a asumir 

riesgos en los títulos más conocidos con los que se está más familiarizado, la cual ha sido 

documentada por varios estudios (Covrig et al., 2001; Garlappi et al., 2007; Epstein y 

Schneider, 2008), podría acentuarse en momentos de estrés en el mercado (Birâu, 2012). 

En esta línea, Raddatz y Schmukler (2012) encuentran que, tanto los inversores como los 

gestores de fondos de inversión reaccionan a los periodos de estrés con ajustes 

importantes en sus decisiones, y con un comportamiento procíclico, reduciendo así sus 

exposiciones a países y títulos de mayor riesgo. De esta manera, los momentos de alto 

estrés en el mercado pueden incitar a todos los gestores a comprar títulos menos 

arriesgados y más conocidos, y así, este objetivo común de gestión resultar en un nivel 

bajo de divergencia entre las decisiones de gestión de los fondos. Además, Karunanayake 

et al. (2010) y Khan et al. (2011) argumentan que el coste económico y el tiempo invertido 
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en la búsqueda y procesamiento de la información son mayores en los periodos de estrés 

alto en el mercado, lo que podría aumentar los incentivos de los gestores para tomar 

decisiones similares a otros. Por tanto, se podría esperar que el nivel de estrés en el 

mercado tenga una influencia significativa y negativa en el nivel de divergencia entre las 

decisiones de gestión de los fondos. 

 Finalmente, dado que la literatura previa ha documentado que los gestores tienen 

preferencias hacía ciertos títulos con determinadas características, y así, estas 

características afectan a sus decisiones, se analiza la influencia de las mismas en este 

fenómeno. Aggarwal et al. (2005) documentan que los fondos de inversión tienden a 

invertir en títulos grandes con valores fundamentales altos. En la misma línea, Gompers 

y Metrick (2001) y Brands et al. (2006) encuentran que los gestores de fondos de 

inversión tienden a invertir en títulos grandes, líquidos y volátiles que han tenido 

rendimientos bajos durante el último año. Sin embargo, Otten y Bams (2002) y Covrig et 

al. (2006) encuentran una mayor preferencia por títulos poco volátiles con un rendimiento 

pasado alto. Además, algunos estudios encuentran que los inversores institucionales 

tienden a converger en las compras de títulos grandes, siguiendo las señales comunes del 

mercado (Lin y Swanson, 2003; Sias, 2004; Lu et al., 2012). Mientras otros autores como 

Huang et al. (2010) y Liao et al. (2011), indican que la convergencia es más pronunciada 

en títulos pequeños, justificando que los gestores de los fondos reciben información sobre 

estos títulos más limitada y precisa al mismo tiempo. 

 En tercer lugar, en este capítulo, se estudian las implicaciones económicas de las 

decisiones distintivas de los fondos de inversión. Concretamente, la hipótesis contrastada 

es que las decisiones divergentes tienen una contribución en el rendimiento del fondo 

significativamente mayor que la que tienen las decisiones convergentes, siguiendo los 

estudios de Cremers y Petajisto (2009), Cohen et al. (2010) y Jiang et al. (2014). Estos 
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autores encuentran que los gestores de carteras generan valor añadido con las decisiones 

que más les separan del índice de referencia. 

 El tercer capítulo de la tesis contribuye a la literatura de varias maneras. Por un 

lado, este estudio está relacionado con la literatura previa que analiza el nivel de similitud 

entre los fondos de inversión, sin embargo, se propone una medida de divergencia en la 

que se incluyen las decisiones de compra y venta de forma conjunta a diferencia de la 

metodología utilizada en estudios anteriores. También, se analiza la influencia de las 

posiciones previas en las carteras y las características de los títulos en este fenómeno. 

Además, se finaliza el capítulo distinguiendo entre la contribución económica de las 

decisiones divergentes y la contribución de las decisiones convergentes a la performance 

de la cartera. 

 Por otro lado, este capítulo contribuye a la literatura sobre el desarrollo de la 

industria de fondos de inversión, la comparación del comportamiento de los gestores de 

fondos de inversión entre los periodos pre-crisis y post-crisis y el análisis de la reacción 

a los shocks de mercado por parte de los mismos. 

 

Datos y metodología 

En este capítulo, se analiza el nivel de divergencia en las decisiones de gestión entre las 

parejas de fondos españoles, clasificados en la categoría renta variable euro, desde enero 

de 2000 hasta junio de 2020. No se ha exigido que los fondos hayan nacido durante el 

periodo analizado, así como tampoco que permanezcan vivos al final de periodo. De esta 

manera, la muestra está libre de sesgo de supervivencia. Además, se han excluido los 

fondos ETFs, los fondos indexados y aquellos fondos con menos de 24 carteras 

mensuales. Esto conduce a que la muestra final este compuesta por 315 fondos de 

inversión renta variable euro gestionados por 114 familias de fondos.  
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 De la base de datos de la CNMV, se obtienen las carteras mensuales de todos los 

fondos de la muestra reportadas desde diciembre de 1999 hasta diciembre de 2006 y las 

carteras trimestrales desde enero de 2007 hasta junio de 2020. Adicionalmente, durante 

este segundo tramo, las carteras trimestrales se completan con las carteras mensuales de 

Morningstar, cuando están disponibles en esta base de datos. Se usa en código ISIN para 

la fusión de la información procedentes de ambas bases de datos. También, de la CNMV, 

se ha obtenido información sobre el tamaño de los fondos, la entidad gestora (familia de 

fondos) con su correspondiente número de registro en cada momento, fecha de inicio del 

fondo, las comisiones de gestión y depósito y el valor liquidativo. 

 En Datastream, se ha obtenido información sobre el precio, rentabilidad y 

capitalización bursátil de los títulos en las carteras de los fondos. Cabe resaltar que se han 

controlado las principales operaciones de capital como splits, contrasplis y pago de 

dividendos. 

 Centrándonos en la metodología aplicada en este capítulo, en primer lugar, se 

determina el importe de cada decisión comercial de la misma forma que en el primer 

capítulo, es decir, multiplicando el cambio en el número de títulos durante un periodo y 

el precio medio del título en ese periodo. Posteriormente, se calcula el peso de cada 

decisión con respecto al tamaño del fondo medido con el valor total neto de los activos 

gestionados. Finalmente, se comparan estos pesos para cada título en cada pareja de 

fondos y en cada mes, para obtener así, el nivel de divergencia de gestión entre ambos 

fondos en ese mes.  

 Se propone una medida para captar en qué medida se diferencia las decisiones de 

gestión entre los distintos fondos de inversión, en la cual la divergencia realizada se 

relativiza con respecto a la divergencia máxima posible entre cada pareja de fondos en 

cada periodo. Esta medida incluye decisiones de compra y venta de forma conjunta en 
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una sola medida, lo que permite identificar tres casos de divergencia: (1) cuando dos 

fondos operan en la misma dirección en un título, es decir, los dos compran o los dos 

venden, aunque el peso de las decisiones sea diferente; (2) cuando los dos fondos toman 

decisiones opuestas en un título, es decir, uno compra y otro vende; (3) cuando un fondo 

compra o vende un título y el otro fondo no negocia con este título. Además, en esta 

medida, se tienen en cuenta los pesos de los títulos en las carteras previas de los fondos, 

con el objetivo de controlar los casos en los que un fondo no puede vender en un título 

porque no lo tiene en la cartera. 

 En el primer análisis, el objetivo es analizar si el nivel de divergencia entre las 

decisiones de gestión de los fondos de inversión es constante en el tiempo o si, por el 

contrario, muestra una tendencia determinada. Se aplica el modelo dinámico GMM, de 

Arellano y Bover (1995) y Blundell y Bond (1998) con tendencia, en el cual se incluyen 

las características de los fondos (tamaño, edad, comisiones, rentabilidad pasada, número 

de títulos en la cartera y flujos monetarios), controlando así, los posibles efectos de las 

mismas en este fenómeno. Además, se aplica el test de Bai-Perron con el objetivo de 

identificar los puntos de corte en la evolución del nivel de divergencia.  

 En el segundo análisis, se analiza la influencia de las posiciones en las carteras 

previas, el estrés de mercado y las características de los títulos. En los dos primeros casos, 

se aplica el mismo modelo que en el primer análisis, incluyendo el nivel de similitud entre 

las carteras de los fondos al final de periodo previo, calculado con la medida utilizada por 

Elton et al. (2007) y Pool et al. (2015) y el nivel de estrés en el mercado renta variable, 

obtenido en la CNMV, el cual fue introducido por Cambón y Estévez (2016). Los 

resultados obtenidos en este análisis sobre el impacto de las posiciones previas llevan a 

que, en la medida propuesta, se controlen las posiciones iniciales y las posiciones finales, 

excluyendo el nivel de divergencia procedentes de decisiones divergentes que llevan a 
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posiciones finales más similares. En el tercer caso, se obtiene el nivel de divergencia a 

nivel de título y se analiza la influencia de sus características (rentabilidad, volatilidad, 

tamaño y nivel de popularidad en el mercado). 

 En el tercer análisis, se distingue entre la aportación económica de las decisiones 

convergentes y decisiones divergentes a la performance del fondo, así como también, se 

analiza la influencia de este fenómeno en la performance de la cartera. 

  

Resultados empíricos y conclusiones alcanzadas 

Los resultados obtenidos en el primer análisis llevado a cabo en este capítulo nos permiten 

concluir la existencia de una tendencia global negativa en la evolución del nivel de 

divergencia de gestión entre los diferentes fondos. No obstante, a pesar de que se 

encuentra esta evolución global negativa, se observa un punto de inflexión en la tendencia 

en el año 2008, lo que podría relacionarse con el inicio del importante proceso de 

reestructuración bancaria. De esta manera, hasta el año 2008 el nivel de divergencia sigue 

una tendencia positiva que posteriormente, se revierte. En lo que se refiere a las 

características de los fondos y variables de control, en ambos sub-periodos en los que se 

divide el periodo global de análisis (teniendo en cuenta el punto de inflexión 

mencionado), se observa una menor divergencia entre las decisiones de gestión en las 

parejas de fondos pertenecientes a la misma familia con respecto a las parejas de fondos, 

en las cuales cada fondo pertenece a una familia distinta. Este resultado está en línea con 

los resultados del capítulo 2 sobre el nivel de similitud entre carteras. También, en ambos 

sub-periodos, se observa un menor nivel de divergencia de gestión entre parejas de fondos 

con un tamaño y un número de títulos en cartera similares. Sin embargo, los resultados 

muestran resultados opuestos entre los dos sub-periodos para el resto de características 

(edad, rentabilidad pasada y flujos monetarios), por lo que no se pueden obtener 
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conclusiones claras sobre la influencia de las mismas en este fenómeno. Por último, la 

diferencia en las comisiones parece no mostrar una influencia significativa en el nivel de 

divergencia de gestión entre las parejas de fondos, resultado consistente en ambos sub-

periodos. 

 En el segundo análisis abordado en este capítulo, se observa que aquellas parejas 

de fondos de inversión que muestran un menor nivel de similitud entre sus carteras previas 

son los que cometen decisiones de compra y venta más diferentes. También, se encuentra 

que el nivel de estrés de mercado tiene una influencia negativa y significativa en este 

fenómeno. De manera que, en momentos de alto estrés, los gestores de fondos de 

inversión tienden a converger más en sus decisiones de compra y venta que en momentos 

de bajo estrés. El primer hallazgo sobre la influencia de las carteras lleva a que se proceda 

a controlar las posiciones previas y finales en las carteras, en cada periodo y así, excluir 

el nivel de divergencia que, en realidad, implica converger en posiciones. No obstante, a 

pesar del control en este sentido, el resultado relacionado con el nivel de estrés es 

consistente, manteniendo su influencia negativa y significativa.  

 En relación con la influencia de la situación del mercado, además de estudiarse el 

efecto del estrés de mercado en este fenómeno, se analiza la reacción de los gestores de 

los fondos de inversión, en términos de divergencia de gestión, a los distintos shocks de 

mercado que tienen lugar durante el periodo de análisis. Concretamente, los tres shocks 

de mercado más importantes coinciden con el inicio de la crisis económica de 2008 

(enero-marzo 2008), la crisis de deuda soberana de 2011 (marzo-abril 2011) y la crisis 

COVID-2019 de 2020 (marzo-abril 2020). En este sentido, los resultados muestran que 

los gestores de fondos de inversión no reaccionan de la misma manera a los diferentes 

shocks de mercado. Se concluye que esto puede deberse a diferentes factores como la 

distinta causa de cada shock o la situación financiera, en cada uno de esos momentos. 
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 En el tercer análisis realizado, los resultados también indican que el nivel de 

divergencia entre las decisiones de gestión de los distintos fondos de inversión está 

impulsado por ciertas características a nivel de título. Concretamente, entre parejas de 

fondos pertenecientes a la misma familia, se encuentra un menor nivel de divergencia en 

títulos pequeños con un nivel extremo de rentabilidad pasada, bien muy positiva o bien 

muy negativa y una alta volatilidad. Estos resultados sugieren la existencia de una 

influencia interna por parte de la alta dirección, dentro de las familias de fondos, en las 

decisiones de gestión sobre determinadas oportunidades extremas de inversión, así como 

la existencia de un control interno del riesgo a nivel de organización. Además, en línea 

con los estudios que documenta una preferencia hacía los títulos más conocidos en el 

mercado, se encuentra un menor nivel de divergencia en los títulos más populares. 

 Finalmente, se encuentra que los fondos de inversión que tomas decisiones de 

compra y venta más diferentes obtienen un rendimiento significativamente mayor. 

Además, esta evidencia notable se dota de robustez cuando se compara la contribución 

que las decisiones divergentes tienen a la performance de las carteras con respecto a la 

contribución que tienen las decisiones convergentes. Los resultados muestran evidencia 

de que los gestores de fondos de inversión generan valor añadido a través de sus 

decisiones más divergentes. De esta manera, tanto las familias como los gestores de 

fondos de inversión pueden verse motivados a buscar nuevas oportunidades de inversión 

con el objetivo de diferenciarse del resto en la industria, y así también, ofrecer mayor 

valor a aquellos inversores que les delegan la gestión de sus ahorros.
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CONCLUSIONES FINALES 
 

A continuación, se resumen las principales conclusiones y aportaciones de la tesis. En 

este sentido, las principales razones que me han llevado a investigar las habilidades de 

los gestores de fondos de inversión han sido, por un lado, la importante cantidad 

gestionada en la industria de fondos de inversión, y, por tanto, el importante impacto 

económico y social de la gestión de carteras en los inversores individuales. Por otro lado, 

ha sido el importante papel que tiene los gestores de fondos en esta industria. La tesis 

también está motivada por la falta de estudios que analizan el proceso de aprendizaje en 

la industria de fondos de inversión, y por el objetivo de explorar la influencia del nivel de 

similitud entre carteras dentro de una familia de fondos en la rentabilidad y diversificación 

que se ofrece a los inversores, así como la habilidad de los gestores para tomar decisiones 

diferentes que generen valor añadido en la industria de fondos. 

 En el primer capítulo, se identifican las decisiones de compra y venta importantes 

que toman los gestores de los fondos de inversión, basándose en la hipótesis de que no 

todas las decisiones de gestión tienen la misma importancia en términos de rentabilidad 

y riesgo, y, por lo tanto, el mismo impacto en el proceso de aprendizaje. En este capítulo, 

se argumenta que la cuantía de las decisiones importantes representa un porcentaje alto 

con respecto al tamaño del fondo durante el periodo correspondiente y su importancia 

relativa es significativamente mayor a la de otras decisiones tomadas por el fondo con 

otros títulos en el mismo mes, así como, a la importancia de las decisiones del resto de 

fondo con el mismo título en el mismo mes. 

 El objetivo del primer capítulo es analizar la evolución del porcentaje de errores 

importantes como medida del proceso de aprendizaje en la industria de fondos a partir de 

los errores importantes cometidos en el pasado. En este sentido, los resultados muestran 

que el porcentaje de errores importantes siguen una tendencia decreciente durante el 
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periodo analizado. Posteriormente, en este capítulo, se examina la capacidad de 

aprendizaje de cada familia de fondos con respecto al nivel global de aprendizaje en la 

industria. Los resultados obtenidos provienen evidencia de que un número importante de 

familias impulsa el proceso de aprendizaje en esta industria. En estas familias de fondos, 

la disminución del porcentaje de errores es igual o superior a la disminución promedio 

obtenida en el análisis a nivel de industria.  

 Finalmente, en este capítulo, se estudia si el tamaño de la familia y su dependencia 

a grupos bancarios y aseguradoras influyen en la evolución del porcentaje de errores 

importantes. En términos generales, los resultados no muestran una influencia 

significativa de estas características en el proceso de aprendizaje. 

 Los resultados obtenidos en los análisis del primer capítulo tienen implicaciones 

relevantes para los inversores individuales, gestores de fondos de inversión y 

supervisores, así como para la eficiencia global de la industria de fondos. La disminución 

de errores importantes en la gestión de carteras podría incentivar el interés de los 

partícipes por invertir sus ahorros en esta industria debido a una mayor confianza en la 

gestión profesional. También, este proceso puede tener una influencia positiva en la 

compensación económica y reconocimiento del trabajo de los gestores de fondos, y en la 

eficiencia global de la industria. Finalmente, este estudio es interesante para el órgano 

supervisor que procura por la protección de los inversores y promueve las buenas 

prácticas de gestión. 

 No obstante, dado que los inversores podrían invertir en más de un fondo con el 

objetivo de reducir el nivel de riesgo idiosincrático de las carteras, otra característica 

importante es el nivel de similitud entre las carteras de los fondos. En la literatura se ha 

documentado que los inversores individuales tienden a concentrar todas sus inversiones 

en la misma familia de fondos debido al coste económico y tiempo invertido que implica 
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un cambio de proveedor. En este sentido, el segundo capítulo de la tesis se centra en el 

análisis de la parte común de las carteras de los fondos y la autonomía en la selección de 

títulos dentro de cada industria. 

 Los resultados obtenidos en el segundo capítulo muestran que la concentración de 

las inversiones en una misma familia de fondos tiene un impacto negativo y significativo 

en el nivel de diversificación, especialmente, cuando las familias de fondos son grandes, 

dependen de un grupo bancario o aseguradora y su experiencia en la industria de fondos 

es relativamente reducida. También, los resultados ponen de manifiesto que, en las 

familias con estas características, el nivel autonomía en la selección de títulos es 

significativamente menor.  

 Finalmente, en este capítulo, se analizan las implicaciones del nivel de similitud 

entre las carteras de los fondos y el nivel de autonomía en la rentabilidad que obtienen 

los inversores, cuando concentrar todas sus inversiones de fondos dentro de la misma 

familia. Los resultados documentan que una mayor similitud entre los fondos dentro de 

una familia no solo implica que se esté ofreciendo un menor nivel de diversificación 

potencial a los inversores individuales, sino que también tiene un efecto negativo y 

significativo en la rentabilidad obtenida. 

 Por tanto, los resultados obtenidos en este capítulo son especialmente interesantes 

en el marcado español de fondos por su alta concentración y dependencia al sector 

bancario. De acuerdo con los resultados obtenidos, las familias de fondos con una mayor 

participación en el mercado, muestran un mayor nivel se similitud entre sus carteras. 

 Los resultados obtenidos en el segundo capítulo conducen a analizar el nivel de 

divergencia entre las decisiones de compra y venta que toman los fondos de inversión, y 

su capacidad para generar valor añadido a través de sus decisiones distintivas. 
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 En el tercer capítulo, se propone una medida que capta en qué medida las 

decisiones de gestión de un fondo se diferencias de las decisiones que se toman en el resto 

de fondos. En línea con los resultados obtenidos en el segundo capítulo, se encuentra un 

menor nivel de divergencia en las decisiones de gestión para las parejas de fondos, en las 

cuales ambos fondos pertenecen a la misma familia. En lo que se refiere a la evolución 

de este fenómeno, se observa que las decisiones de los fondos son más diferentes entre sí 

con el paso del tiempo, especialmente, después de la crisis financiera global de 2008, y 

del inicio del proceso de fusiones de fondos y familias de fondos provocado por la 

importante restructuración bancaria en el sistema financiero. 

 En segundo lugar, en el tercer capítulo se analizan los determinantes que impulsan 

la divergencia en la gestión de carteras. Se proporciona evidencia de que las parejas de 

fondos con carteras previas más similares son las parejas que muestran un menor nivel de 

divergencia entre sus decisiones de compra y venta. Este resultado lleva a que, en la 

medida de divergencia propuesta, se controle el nivel de similitud entre las carteras 

previas y finales, excluyendo la parte de las decisiones divergentes que llevan a converger 

en posiciones. Controlando por este aspecto, se observa que la mayor divergencia entre 

fondos de diferentes familias pierde su significación estadística. Esta pérdida de 

significación parece lógica ya que las parejas de fondos en la misma familia ya parten de 

posiciones previas más similares.  

 No obstante, a pesar de este control, los resultados muestran que el nivel de estrés 

tiene una influencia negativa y significativa en este fenómeno. Por tanto, la probabilidad 

de que, en un fondo se toman decisiones más diferentes con respecto al resto de fondo es 

menor en los periodos de alto estrés en el mercado. Sin embargo, en este capítulo, también 

se encuentra que los gestores no han reaccionado de la misma manera a los diferentes 

shocks de mercado, que han tenido lugar durante el periodo analizado, en términos de 
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divergencia en la gestión de sus fondos. El diferente origen de cada uno de los shocks y 

el proceso de aprendizaje en la industria de fondos podrían tener un papel importante en 

este resultado. 

 Este capítulo también se centra en la influencia que tienen las características de 

los títulos en este fenómeno. Este análisis proporciona resultados interesantes dado que, 

para las parejas de fondos en la misma familia, se observa una menor divergencia en las 

compras y ventas de títulos pequeños con un comportamiento extremo en términos de 

rentabilidad y volatilidad, que podrían considerarse una oportunidad de inversión, pero 

también implicar un alto nivel de riesgo. Se debe tener en cuenta que las perspectivas 

sobre oportunidades de inversión pueden ser diferentes entre las distintas familias de 

fondos debido a sus políticas distintivas de inversión y riesgo. 

 Finalmente, en línea con los resultados obtenidos en el segundo capítulo, se 

documenta que los fondos, en los cuales se toman decisiones de gestión más diferentes, 

muestran una rentabilidad posterior significativamente mayor. La influencia positiva de 

este fenómeno en la performance de las carteras se confirma cuando se encuentra que la 

contribución de las decisiones divergentes a la rentabilidad del fondo es 

significativamente mayor a la contribución de las decisiones convergentes.  

 El tercer capítulo de la tesis tiene implicaciones relevantes para los gestores de 

carteras, las familias de fondos y el órgano supervisor. Dado que los gestores de los 

fondos de inversión parecen tener una cierta capacidad para generar valor añadido con 

sus decisiones más distintivas, estos agentes financieros podrían aumentar su interés hacía 

la búsqueda de oportunidades de inversión y tomar decisiones más divergentes.
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