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4.4.1. Solución numérica para el caso no relativista . . . . . . . . . 14

4.5. Resultados de la integración para RG y Newton para una ecuación
de estado c valores intermedios . . . . . . . . . . . . . . . . . . . . 16

4.6. Integración variando las condiciones iniciales . . . . . . . . . . . . . 18

1



Jorge Borque ÍNDICE
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1. Introducción

En este trabajo se van a estudiar las condiciones de estabilidad para las de-
nominadas estrellas compactas. Estos cuerpos son capaces de soportar el colapso
gravitatorio gracias a una presión de naturaleza cuántica, mientras que las estrellas
ordinarias lo hacen mediante una presión térmica.

Se realizará el análisis en condiciones de relatividad general y de gravedad new-
toniana y se compararán las diferencias entre ambas teoŕıas. Para poder hallar unas
conclusiones sólidas se van a estudiar diferentes modelos de estrellas compactas,
siendo algunos más f́ısicamente consistentes que otros, también se analizará como
cambian los cálculos numéricos variando las condiciones iniciales de integración.
Por último, se analizarán las condiciones de estabilidad de nuestros modelos más
realistas.

La ecuación que determina la relación entre la materia y la curvatura del espacio
tiempo es la ecuación de campo de Einstein,

Gµν = −8πGTµν , (1)

donde Gµν es el tensor de Einstein

Gµν = Rµν −
1

2
gµνR, (2)

que está formado por el tensor de curvatura de Ricci (Rµν), el escalar de Ricci
(R) y el tensor métrico (gµν). Este lado de la expresión representa la curvatura del
espacio-tiempo. Por otro lado, la parte derecha está relacionada con la concentra-
ción de materia, para ello se tiene el tensor de enerǵıa-momento, que está formado
por las densidades de enerǵıa, las densidades de momento y la presión en cada una
de las direcciones. Aśı, la ecuación relaciona la curvatura del espacio-tiempo y la
cantidad de materia (o enerǵıa) que hay en él, de forma que cuanta más cantidad
de materia (ya sea en forma de masa o de enerǵıa) mayor será la curvatura. Será
esta expresión la que se va a manipular para hallar la ecuación diferencial sobre la
que se centra este trabajo.

2. Ecuación de Tolman-Oppenheimer-Volkoff

Vamos a estudiar las soluciones estáticas y con simetŕıa esférica de las ecuacio-
nes de Einstein en el interior de una estrella. Consideramos un fluido ideal definido
por el tensor enerǵıa momento de la forma

Tµν = ρuµuν + P (gµν + uµν), (3)
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donde ρ y P son la densidad y la presión respectivamente. De las ecuaciones de
Einstein obtenemos tres ecuaciones independientes

8πT00 = 8πρ = G00, (4)

8πT11 = 8πP = G11, (5)

8πT22 = 8πP = G22. (6)

Estas ecuaciones relacionan la densidad y la presión con los elementos diagonales
del tensor de curvatura. Aśı pues, manipulando estas ecuaciones [13] [4] [6] se llega
a la expresión para la métrica que se tiene en el interior de un fluido estelar estático
y con simetŕıa esférica

ds2 = −e2φdt2 +

(
1− 2M(r)

r

)−1

dr2 + r2dΩ2, (7)

donde M(r) es la masa y φ es un análogo relativista del potencial gravitatorio
newtoniano cuya expresión es φ = 1

2
ln
(
1− 2M

r

)
. Obtenemos también la ecuación

de Tolman-Oppenheimer-Volkoff para equilibrio hidroestático, cuya expresión es

dP

dr
= −G

r2

[
ρ+

P (r)

c2

] [
M(r) + 4πr3P (r)

c2

] [
1− 2GM(r)

c2r

]−1

. (8)

donde
dM(r)

dr
= 4πρ(r)r2dr. (9)

Esta ecuación describe la estructura de una estrella que está bajo las condiciones
mencionadas al principio del apartado, su análisis permite hallar los ĺımites de
estabilidad del cuerpo si se tiene la ecuación de estado del fluido que forma la
estrella. Si las condiciones del problema son P << ρ y M(r) << r, la ecuación de
Tolman-Oppenheimer-Volkoff se reduce a

dP

dr
= −Gρ(r)M(r)

r2
, (10)

que es la ecuación de equilibrio hidrostático que se obtiene a través del formalismo
newtoniano. Esto es lógico puesto que estas dos condiciones definen el ya men-
cionado ĺımite newtoniano que separa el dominio relativista del dominio clásico
a la hora de describir el movimiento y la interacción de los cuerpos sometidos a
la gravedad. La ecuación (8) representa f́ısicamente el balance entre la fuerza que
actúa sobre la materia desde dentro y el peso de la materia que actúa sobre esta
en sentido opuesto. De esta forma se tiene que la variación de la presión respecto
al radio depende en primera instancia del término newtoniano al que se le añaden
tres factores que representan correcciones relativistas, es interesante añadir que el
tercer factor es una corrección dada por la relatividad general relacionada con el
tamaño máximo que puede tener la estrella, diverge cuando llegamos a un radio
cŕıtico R = 2GM/c2 llamado radio de Schwarzschild. Es interesante observar que
los factores de corrección están definidos con el mismo signo, de tal forma que en la
ecuación TOV el cambio de presión depende en mayor medida de la gravedad que
en la fórmula newtoniana. Es una forma sencilla de observar como la relatividad
general es un añadido sobre la gravedad newtoniana que dota a la gravedad de
mayor capacidad atractora.
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3. Estrellas compactas

Cuando una estrella ordinaria llega al estado final en su proceso evolutivo ya ha
consumido todo el hidrógeno y el helio [14]. Las reservas de helio se queman y for-
man ox́ıgeno y carbono, de tal forma que la estrella encoge y la presión del núcleo
aumenta considerablemente. En estos casos la estrella no debeŕıa poder mantenerse
gravitacionalmente, pues la presión no podŕıa igualar el colapso gravitatorio provo-
cado por la alta densidad del núcleo. Sin embargo, en este proceso entra en juego la
mecánica cuántica, pues aparece una presión de degeneración que consigue igualar
el tirón haćıa dentro que provoca la gravedad y que es muy diferente a la presión
térmica que es la que mantiene estables las estrellas ordinarias. Dependiendo de la
part́ıcula que provoque esta presión de degeneración se tienen las enanas blancas
o las estrellas de neutrones, estos dos tipos de cuerpos son los llamados estrellas
compactas. Si la masa de la estrella original tiene más de 9-10 masas solares se
formará una estrella de neutrones, si tiene menos se formará una enana blanca y
si contiene 30-70 masas solares colapsará hasta el punto en el que se formará un
agujero negro. Este tipo de objetos son el estado final de la evolución estelar pero
se diferencian de los otros tipos de estrellas en algunos aspectos:

1. Como ya se ha mencionado no utilizan combustible nuclear, pues ya se ha
agotado al llegar a este punto, por lo que están comprimidas hasta el máximo
que su masa les permite.

2. Son mucho menores en tamaño, puesto que tienen un ĺımite de masa que no
es muy elevado y un radio máximo que no llega al del sol [2] [3] [11] por tanto
su campo gravitatorio en la superficie es muy elevado.

3. Generalmente tienen campos magnéticos más fuertes que el resto de estrellas
(Entre 106 y 107 T).

Como se observa en la Figura 1 las estrellas de neutrones y las enanas blancas
son el paso final en la evolución estelar.

3.1. Enanas blancas

Cuando una estrella de masa menor que 10 M� agota su combustible nuclear se
forma una enana blanca. La gran mayoŕıa de estrellas, incluido el Sol, atraviesan
esta etapa en su evolución estelar. Estos astros están compuestos por átomos en
estado de plasma, a causa de la compresión que sufre la estrella sobre śı misma
debido a su propio peso la distancia entre los átomos decrece dejando menos espa-
cio a los electrones para moverse libremente. De esta forma la densidad del fluido

5



Jorge Borque 3 ESTRELLAS COMPACTAS

Figura 1: Esquema de la evolución estelar [1].

aumenta considerablemente y los electrones sufren las consecuencias del principio
de indeterminación y del principio de exclusión de tal forma que consiguen moverse
a mucha velocidad. Al tener un número tan elevado de electrones moviéndose a
velocidades tan altas se genera una presión de degeneración electrónica que con-
trarresta el colapso gravitacional de la estrella. Las enanas blancas son objetos
realmente densos, sólo superados por las estrellas de neutrones y los agujeros ne-
gros. Dado que la enerǵıa térmica que emiten es remanente poseen una luminosidad
muy débil y que disminuye conforme pasa el tiempo. Las enanas blancas también
pueden formarse como consecuencia de una supernova del tipo Ia. En 1931 [2] y
1935 [3] Subrahmanyan Chandrasekhar estudió cual era la masa máxima que pod́ıa
tener una enana blanca, esta masa es el ĺımite que permite a estas estrellas existir,
si una de ellas lo supera el colapso gravitatorio supera la presión de degeneración
y se forma un objeto más compacto, ya sea una estrella de neutrones o directa-
mente un agujero negro. El ĺımite es Mch = 1,44M� y Chandrasekhar se basó en
la ecuación de estado del gas de Fermi para calcularlo. Las enanas blancas poseen
temperaturas muy elevadas, pero se enfŕıan paulatinamente al no tener combusti-
ble para fusionar y generar enerǵıa caloŕıfica, cuando las enanas blancas se enfŕıan
completamente se forman nuevos astros llamados enanas negras, sin embargo, el
tiempo que debe pasar para que ocurra este fenómeno es mucho mayor que la edad
actual del universo, por lo que es virtualmente imposible llegar a observar un ob-
jeto de este tipo. Se han observado enanas blancas desde 0.17 hasta 1.33 masas
solares, aunque la máxima distribución se encuentra entre 0.5 y 0.7 masas solares.
Este tipo de estrellas es el más abundante del universo junto a las enanas rojas [8].
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3.2. Estrellas de neutrones

Cuando las enanas blancas tienen una masa elevada pueden contraerse de nue-
vo, el núcleo se calienta lo suficiente como para fusionar núcleos más pesados y
realiza este proceso por capas hasta que el núcleo está formado por hierro. La
estrella colapsa y explota en una supernova (tipo II, Ib o Ic) dejando como rema-
nente una estrella de neutrones. El origen de la presión que contrarresta el colapso
gravitacional en las estrellas de neutrones es similar al que ocurre en las enanas
bancas, la presión cuántica es provocada en este caso por neutrones (y una pe-
queña cantidad de protones) en vez de por electrones. Las estrellas de neutrones
tienen una masa de entre 1.35 y 2.1 la masa del Sol y un radio de entre 10-20
Km, por lo que su densidad es aun mayor que la que se encuentra en las enanas
blancas. El análogo para las estrellas de neutrones al ĺımite de Chandrasekhar de
las enanas blancas es el denominado ĺımite de Tolman-Oppehnheimer-Volkoff [11].
Hasta hace relativamente poco se créıa que el valor máximo posible para la masa
de una estrella de neutrones era de 2.9 M� [7], sin embargo, estudios recientes han
mostrado que este valor es 2.16 M� [12].

3.3. Ecuación de estado para estrellas compactas

Las ecuaciones diferenciales (8) y (10) junto con (9) necesitan una ecuación
más que relacione la presión con la densidad, considerando que ρ(r) = ε(r)/c2

(donde ε(r) es la densidad de enerǵıa) y utilizando ciertos principios de la mecánica
estad́ıstica se puede obtener la relación P (ε) [14]. Como ya se ha mencionado, las
enanas blancas están formadas por electrones completamente degenerados, aśı pues
se puede utilizar la estad́ıstica de Fermi-Dirac para hallar la ecuación de estado del
fluido formado por este plasma de electrones. Partimos de la función de distribución
de Fermi

ni =
1

e( εk−µ
kBT

) + 1
, (11)

donde µ es el potencial qúımico y ni la ocupación de estados. Esta distribución a
temperatura nula (β → ∞) se comporta como una función escalón: se hace 0 si
(εk−µ) > 0 y se hace 1 si (εk−µ) < 0. Conociendo la expresión que da el número
de estados disponibles para un momento k

dn =
4πk2

(2π~)3
dk, (12)

podemos integrarla para hallar la ocupación n(kF ) en el nivel de Fermi.

ne =
8π

(2π~)3

∫ kF

0

k2dk =
k3
F

3π2~3
(13)
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Ahora, la densidad de masa en términos de la masa del nucleon mN viene dada
por

ρ = mmN
A

Z
, (14)

donde A/Z = 2 si consideramos que la estrella está formada mayormente por 12C
y 16O. Aśı, podemos calcular el valor de kF

kF (ρ) = ~
(

3π2ρ

mN

Z

A

)1/3

(15)

Conociendo la relación de dispersión para una part́ıcula relativista, dada por

ε0 =
√

(kc)2 + (mec2)2, (16)

podemos calcular la contribución de los electrones a la densidad de enerǵıa

εe(kF ) =
8π

h3

∫ kF

0

(k2c2 +m2
ec

4)
1
2k2dk. (17)

La presión de un sistema con una distribución isótropa de momento viene dada
por

P =
1

3

8π

(2π~)3

∫ kF

0

K4C2

E(k)
, (18)

donde el factor 1/3 viene por la isotroṕıa. Desarrollando se llega a

p(kF ) =
8π

3(2π~)3

∫ kF

0

k4dk√
k2c2 +m2

ec
4

(19)

=
m4
ec

5

3π2~3

∫ kF /mec

0

(u2 + 1)−1/2u4du (20)

=
m4
ec

5

24π2~3

[
(2x3 − 3x)(1 + x2)1/2 + 3sinh−1(x)

]
. (21)

La densidad de enerǵıa está dominada por la densidad de masa de los nucleones
mientras que los electrones contribuyen mayormente a la presión. Aśı, se busca
llegar a una ecuación de la forma P = P (ε), considerando los casos x (( 1 y x )) 1,
es decir, kF << mec y kF >> mec respectivamente. Considerando el primer caso
se llega a

P (kF ) =
m4
ec

5

3π2~3

∫ kF /mec

0

(u2 + 1)−1/2c2k4 ≈ m4
ec

5

3π2~3

∫ kF /mec

0

u4du (22)

=
m4
ec

5

15π2~3

(
kF
mce

)
=

~2

15π2me

(
3π2ρZ

mNA

)5/3

. (23)

Recordando la relación ε = ρc2 llegamos a la ecuación de estado en el ĺımite no
relativista

P = K
5/3
no−rel (24)

donde

Kno−rel =
~2

15π2me

(
3π2ρZ

mNA

)5/3

. (25)
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Para el caso relativista (kF >> me) llegamos a

P = K
4/3
rel (26)

con

Krel =
~c

12π2

(
3π2ρZ

mNA

)4/3

. (27)

La ecuación general tiene la forma

P = KεΓ (28)

llamada ecuación de estado politrópica. Para este tipo de ecuaciones el factor Γ,
llamado exponente adiabático, viene dado por Γ = 1 + 1

n
donde n es el ı́ndice

adiabático, en los casos no relativista y relativista se tiene que n= 3/2 y n = 3
respectivamente.

Para las estrellas de neutrones se realiza un procedimiento análogo al anterior,
de tal forma que

Kno−rel =
~2

15π2mn

(
3π2ρZ

mNA

)5/3

(29)

y la Krel no cambia. Se observa que la Kno−rel es la misma para ambos tipos de
estrella pero cambiando la masa del electrón por la del neutrón.

4. Cálculos numéricos

Para estudiar los ĺımites de estabilidad y hallar el radio y la masa dada una
ecuación se debe integrar la ecuación que determina el equilibrio entre presión y
gravitación (ya sea la de Tolman-Oppenheimer-Volkoff o la de Newton) junto con la
ecuación que relaciona la masa con el radio. Para un fluido cuya ecuación de estado
P = P (ρ) es conocida, podemos determinar las configuraciones de equilibrio de la
siguiente forma: Elegimos una densidad central ρc que define una presión central
Pc = P (ρc), integramos las ecuaciones de M(r) y de equilibrio hasta que llegamos
al punto en el que la presión se hace nula. Llegados a este punto se puede obtener
la masa y el radio de la estrella dada una EoS y una presión central. El método
de integración debe ser numérico, pues como se ha mencionado anteriormente hay
escasas soluciones anaĺıticas. Existe gran variedad de métodos numéricos (Euler,
Verlet, Runge-Kutta 2º orden...), sin embargo, el escogido es el método de Runge
Kutta de 4º orden, pues es muy preciso y relativamente sencillo de implementar
en un código.
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4.1. Método de Runge-Kutta de 4º Orden

Para realizar la integración se implementa el método numérico de R-K, consiste
en un método iterativo que permite calcular la solución de una ecuación diferencial
ordinaria con mayor exactitud que el método de Euler o el método de Verlet.

El método permite hallar una aproximación numérica a la solución y(x) dado
un

y′(x) = f(x, y(x)) (30)

y conociendo una condición inicial y(x0) = y0. Este método nos permite discretizar
las ecuaciones diferenciales, en particular, para el de 4º orden se deben hallar

k0 = hf(xn, yn), (31)

k1 = hf(xn +
h

2
, yn +

k0

2
), (32)

k2 = hf(xn +
h

2
, yn +

k1

2
), (33)

k3 = hf(xn + h, yn + k2) (34)

yn+1 = yn +
1

6
(k0 + 2k1 + 2k2 + k3), (35)

donde h es el paso temporal. En el caso de nuestro problema se tienen que integrar
la ecuación (8) y la ecuación (9). Como la primera depende de la segunda se
debe definir una nueva serie de variables li similares a las ki e iterarlas antes que
ellas. Además, en el caso de esta integración el paso temporal h es realmente un
diferencial del radio de la estrella, que es la variable sobre la que se está haciendo
la integración. Integramos con la condición P (r) > 0 y con valores iniciales

M(0) = 0, (36)

P0 = Pc, (37)

donde P0 viene de sustituir ρ0 en la EoS. Se comienza el proceso desde r ≈ 0 1 y se
va aumentando el radio a cada paso hasta llegar al momento en el que P (R) = 0.
Este radio R es el radio final de la estrella y con él se puede hallar también la masa
final de esta.

1No se integra desde r = 0 estrictamente porque se produce una indeterminación en la ecuación
TOV.
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4.2. Resultados para estrellas de densidad constante

Para comprobar que el programa funciona correctamente estudiamos el caso
mas sencillo, la solución anaĺıtica para una estrella de densidad constante ρ0 (se
resuelve en el anexo B.1. La masa resultante al integrar la ecuación TOV con la
densidad independiente de la presión viene dada por la expresión (52). Además,
sabemos que existe un ĺımite superior para la masa.

(a) Masa vs Radio (b) Presión vs Radio

Figura 2: Resultados para densidad constante.

Comparando con el resultado teórico de la referencia [6] y con las soluciones
teóricas que vienen dadas en el anexo B.1 vemos que la integración de este caso par-
ticular arroja resultados matemáticamente consistentes, sin embargo, f́ısicamente
este resultado no tiene sentido, pues no existen estrellas cuya densidad no vaŕıe
conforme lo hace el radio.

4.3. Resultados de la integración para enanas blancas

En la sección 3.3 se han estudiado las estrellas compactas para los casos no
relativista y relativista, en este apartado se mostrarán las soluciones numéricas para
las enanas blancas y las estrellas de neutrones en ambos casos. Para que el cálculo
numérico sea computacionalmente más sencillo es conveniente adimensionalizar las
ecuaciones (8), (10) y (9), en este caso lo hacemos siguiendo las referencias [14],
[5], [11] y [15]. En el apéndice B.2 se adjuntan los cálculos aśı como los valores
iniciales de las constantes que genera la factorización. Para las enanas blancas
se va a realizar la integración utilizando la ecuación de equilibrio hidrostático de
Newton, pues las correcciones de la relatividad general no tienen mucha relevancia
para esta clase de astros [15].
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4.3.1. Solución numérica para el caso no relativista

Como ya hemos visto anteriormente tenemos dos casos ĺımite: el relativista y
el no relativista, para poder realizar la integración se debe conocer el rango de
presiones centrales de las enanas blancas. Se realiza la simulación para 3 valores
diferentes de P0.

Aśı, los resultados para las enanas blancas para electrones degenerados no re-
lativistas se recogen en el cuadro 1 y en la figura 3.

P0 (dyn/cm3) Masa (M�) Radio (Km)

2,5 · 1023 0.796 8411.35

2,5 · 1022 0.393 10589.26

2,5 · 1021 0.198 13331.09

Cuadro 1: Resultados de la masa M respecto al radio R en una enana blanca con
electrones no relativistas.

Figura 3: Evolución de la masa M respecto al radio R en una enana blanca con
electrones no relativistas.

Se observa que cuánto menor es la presión central mayor es el radio de la estrella
pero menor su masa final.

4.3.2. Solución numérica para el caso relativista

En el caso de una enana blanca con electrones relativistas se tienen los resul-
tados recogidos en el cuadro 2 y la figura 4.

12
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P0 (dyn/cm3) Masa (M�) Radio (Km)

5,62 · 1025 1.431 5710.65

5,62 · 1024 1.431 10155.14

5,62 · 1023 1.431 18058.60

Cuadro 2: Resultados de la masa M respecto al radio R en una enana blanca con
electrones relativistas.

Figura 4: Evolución de la masa M respecto al radio R en una enana blanca con
electrones relativistas.

Para este caso se puede observar que la masa es independiente de la presión
central, además, se constata que las estrellas para electrones no relativistas son más
masivas que las enanas blancas relativistas. El resultado de la masa final llama la
atención, pues esta depende directamente de las condiciones iniciales y debeŕıa
variar para diferentes densidades centrales. Sin embargo, se debe notar que el valor
de la masa es muy próximo al ĺımite de Chandrashekar, por tanto es posible que
sólo una de estas tres estrellas sea estable. Para saber cuál de ellas se debeŕıa
analizar la curva de estabilidad de la que hablaremos al final de este trabajo.

En la figura 5 se observa el perfil de la presión respecto al radio para el caso
en el que P0 = 2,5 · 1023 para la enana blanca relativista y la no relativista, es
interesante comparar estas figuras pues nos dan cierta información acerca de la
atmósfera de la estrella.
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(a) Caso relativista (b) Caso no relativista

Figura 5: Presión P respecto al radio R en enanas blancas.

Observamos que el perfil de decaimiento de la presión en el caso no relativista es
más lento, mientras que en el caso relativista la presión se hace casi 0 a unos 2000
Km, en el caso no relativista la presión no llega a estos valores hasta los 6000 Km.
Esto significa que la atmósfera es mucho mayor para el caso relativista que para
el caso no relativista. Por otro lado, el caso no relativista tiene menor masa pero
mayor radio, es decir, la estrella está formada por un fluido mucho menos denso.
Esto tiene mucho sentido, pues las part́ıculas no relativistas tienen una velocidad
mucho menor y por tanto generan una presión de degeneración menos intensa, lo
que implica una menor densidad.

4.4. Resultados de la integración para estrellas de neutro-
nes

Al ser objetos mucho más densos, las estrellas de neutrones sufren las correc-
ciones de la relatividad general de forma notable, aśı, se debe integrar la ecuación
TOV (anexo B.2).

4.4.1. Solución numérica para el caso no relativista

El resultado esperado para una estrella de neutrones no relativista es obtener
un cuerpo con un radio entre 10-20 Km y una masa menor que 2 M�.
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P0 (dyn/cm3) Masa (M�) Radio (Km)

1,63 · 1034 0.614 15.26

1,63 · 1033 0.351 20.11

1,63 · 1032 0.186 25.80

Cuadro 3: Resultados de la masa M respecto al radio R en una estrella de neutrones
con neutrones no relativistas.

Figura 6: Evolución de la masa M respecto al radio R en una estrella de neutrones
con neutrones no relativistas.

Observamos que la dependencia de la masa con la presión central es parecida
al caso análogo en enanas blancas, cuando disminuye una lo hace la otra. Sin
embargo, se observa que el radio de este tipo de estrellas es mucho menor que el
de las enanas blancas, pues se debe recordar que estos astros son el estado anterior
a formar un agujero negro, están muy cerca de la densidad ĺımite de colapso.

Por último, para la estrella de neutrones relativista se tiene un resultado dife-
rente al esperado, pues como se ve en la figura 7 la estrella posee un radio mucho
mayor del esperado.
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Figura 7: Evolución de la masa M respecto al radio R en una estrella de neutrones
con neutrones relativistas.

Esto ocurre debido a que en el modelo relativista las part́ıculas tienen velocida-
des cercanas a c generando aśı una presión muy alta, al acercarse a la superficie de
la estrella la presión disminuye y el modelo no es consistente, por tanto la condición
P (R) = 0 no se alcanza cuando debeŕıa. on

4.5. Resultados de la integración para RG y Newton para
una ecuación de estado c valores intermedios

Una vez hemos estudiado ya los casos ĺımites para las estrellas compactas es
conveniente realizar la integración con unos valores de K y Γ que determinen un
caso intermedio y más realista, pues que ninguno de los casos ĺımite existe f́ısi-
camente. En este apartado se estudiarán sólo estrellas de neutrones. Este análisis
nos va a permitir observar las diferencias entre la teoŕıa clásica y la relativista y
observar como afectan los cambios en los parámetros iniciales al resultado final de
la estrella. Como ya hemos visto anteriormente para describir el fluido de este tipo
de cuerpos se debe utilizar una ecuación de estado de forma

P = KρΓ. (38)

Aśı pues, se han escogido los parámetros [10]

K = 2 · 10−6, (39)

Γ = 2,75. (40)

Las Figuras 8, 9 y 10 representan el resultado de esta integración para la masa,
la presión y la densidad respectivamente mediante va aumentando el radio de la
estrella.
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Figura 8: Evolución de la masa M respecto al radio R.

Los resultados de la integración de las ecuaciones (8) y (9) se recogen en el
Cuadro 4.

Modelo Masa (M/M�) Radio (Km)

Gravedad Newtoniana 2.90 17.65

Relatividad general 1.65 14.27

Cuadro 4: Resultados integración para masa y radio.

Podemos observar que para el modelo clásico tenemos como resultado una es-
trella con mayor masa y mayor radio que la integración de la ecuación (8). Estos
resultados son f́ısicamente consistentes, pues como se ha mencionado anteriormen-
te, la relatividad general dota de más fuerza a la atracción gravitatoria, por tanto
el modelo relativista nos proporciona un astro con un radio menor, pues la presión
de degeneración aguanta menos ante ella. Para la densidad y la presión se tienen
9 y 10.

Figura 9: Evolución de la presión P respecto al radio R.
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En la Figura 9 se observa que la presión cae a 0 más lentamente para la ecua-
ción (10) dando como resultado que el radio R sea mayor al obtenido usando la
relatividad general.

Figura 10: Evolución de la densidad ρ respecto al radio R.

Observamos que la densidad también cae a 0, de tal forma que el perfil rela-
tivista cae más rápidamente coincidiendo en este aspecto con los resultados de la
figura 9.

4.6. Integración variando las condiciones iniciales

En el apartado anterior se han utilizado unos valores fijos de Γ y de K, además,
hemos observado que la teoŕıa adecuada para describir una estrella de neutrones
es la relatividad general. Esta última afirmación se hace más evidente al variar
ligeramente la presión central alrededor del valor que hemos usado inicialmente.
Además, para obtener un análisis más profundo de la relevancia de la ecuación de
estado es interesante realizar la integración variando los valores de la constante K
y el ı́ndice adiabático Γ. De esta forma podemos observar como afectan los valores
iniciales a los resultados para la masa y el radio final de nuestra estrella.

4.6.1. Integración variando la densidad central

Para la densidad central ρ0 se tienen las figuras 11 y 12.
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Figura 11: Evolución de la masa M respecto al radio R variando la densidad central
ρ0 en gravedad newtoniana.

Para la figura 11 se observa como el aumento de la densidad central conlleva un
aumento de la masa y el radio final de la estrella, esto se debe a que el modelo de
gravedad newtoniana no es realista para las estrellas de neutrones, por lo que no
tiene significado f́ısico realizar esta integración, si seguimos aumentando el valor
de la densidad central los resultados para la masa y el radio no convergerán a un
valor ĺımite y seguirán aumentando.

Figura 12: Evolución de la masa M respecto al radio R variando la densidad central
ρ0 en relatividad general.

Por el contrario, para la figura 12 se observa como la variación de la masa y el
radio final tienden a un valor ĺımite cercano a 14 Km y 2-3 M� respectivamente.
Es interesante observar que el aumento de la densidad central ya no implica un
aumento del radio final de la estrella, pues a partir de ρ0 = 5,5 · 1014 el resultado
decrece conforme aumenta ρ0. En este caso el modelo elegido es mucho más realista
y se ajusta a la realidad f́ısica de estos astros, pues como ya se ha explicado en
secciones anteriores la naturaleza de la materia que forma las estrellas de neutrones
hace a estos astros uno de los objetos más densos del universo, lo que implica que
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tienen un efecto mucho mayor en la curvatura del espacio-tiempo y, por lo tanto,
deben obedecer las ecuaciones de la relatividad general.

4.6.2. Integración variando los valores de la constante K y el coeficiente
adiabático Γ

Una vez estudiada la dependencia de los resultados al variar la densidad central
es interesante realizar el mismo proceso para las otras dos condiciones iniciales
relacionadas con la ecuación de estado politrópica, es decir, para la constante K y el
coeficiente adiabático. Aunque ya hemos visto que no tiene sentido f́ısico el modelo
clásico es interesante seguir observando las diferencias entre este y el relativista.
Al final del presente trabajo se estudiará con mayor detalle las implicaciones que
tiene la convergencia a un valor ĺımite y como se relaciona con la estabilidad de
estos objetos.

(a) Gravitación newtoniana (b) Relatividad general

Figura 13: Evolución de la masa M respecto al radio R variando la constante K.

De nuevo, se observa como para los mismos valores de K los resultados para
la integración relativista crecen más rapidamente. Sin embargo, en este caso no se
observa una convergencia en nuestro rango de valores escogidos.
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(a) Gravitación newtoniana (b) Relatividad General

Figura 14: Evolución de la masa M respecto al radio R variando el coeficiente
adiabático.

En la figura 14 se observa el mismo fenómeno que en la figura 13. La función
de Γ y K es caracterizar el fluido que forma la estrella, por tanto al variar estos
valores para una misma presión central estamos comparando fluidos diferentes que
forman estrellas que pueden o no existir f́ısicamente pero que no tendŕıan relación
entre ellas. Sin embargo, mantener estas dos magnitudes fijas variando la densidad
central nos va a permitir realizar un análisis sobre la estabilidad de un conjunto
de estrellas de neutrones formadas por el mismo fluido. Por tanto, vemos que la
presión central es una magnitud realmente importante en el estudio de las estrellas
de neutrones.

Los valores exactos de la masa y el radio para cada integración se recogen en
las tablas del Anexo A.

5. Modelo mixto para una estrella compacta

Cómo se mencionaba en 4.4.1, el resultado de la integración para estrellas de
neutrones relativistas no nos proporciona unos valores realistas. El modelo con
valores arbitrarios visto en 4.5 depende de consultar biograf́ıa y el significado f́ısico
de la constante K es difuso. Por tanto, se pueden mezclar los modelos relativista
y no relativista para generar un modelo fácilmente comprensible y con resultados
plausibles.

En el interior de la estrella de neutrones las part́ıculas están muy compactadas
y como se ha visto anteriormente esto genera una mayor presión de degenera-
ción, conforme nos acercamos a la superficie dicha presión disminuye, es decir, las
part́ıculas se mueven con menor velocidad. Por tanto, es lógico crear un modelo
en el que la integración comienza con neutrones relativistas, cuyas alt́ısimas ve-
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locidades se generan por la inmensa presión en el interior de a estrella; mientras
que mediante nos acercamos a la superficie se vuelven no relativistas, pues pierden
velocidad al sufrir menos presión de degeneración.

Este cambio se podŕıa producir de forma suave, sin embargo, por complejidad
se estudiará el caso más simple (y por tanto menos f́ısico), en el que dicho cambio
se produce a una presión fija y de forma abrupta.

Para una presión P0 = 6,94 · 1034 se obtiene el perfil de la figura 15.

Figura 15: Evolución de la masa M respecto al radio R para una estrella con modelo
mixto.

Es evidente que el cambio de modelo acelera la integración, dando unos valores
para el radio y la masa más realistas. Por otra parte, el hecho de haber cambiado el
modelo tan abruptamente provoca un cambio brusco en la función. Lo importante
en este modelo no es tanto el perfil como los resultados finales que nos puede dar.
Una de las cuestiones más importantes a la hora de implementar este modelo es
establecer el lugar en el que se pasa de un estado a otro. Se debe elegir un momento
en la integración adecuado. Este vendrá dado por el valor de la presión en ese
radio P (rcambio). En este caso, tras realizar la integración numerosas veces se ha
elegido que P (rcambio) = 8,13 · 1032 dyn/cm3. Esta elección se basa principalmente
en la consistencia de los resultados finales, pues si se escoge un valor mayor el
cambio no llega a hacerse y estaŕıamos en el caso de la estrella relativista. Hay que
notar también que aunque el valor de la presión es fijo, el valor de rcambio vaŕıa
dependiendo de la presión central escogida.

Para diferentes presiones centrales se tienen los resultados de la figura 16.
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Figura 16: Evolución de la masa M respecto al radio R para una estrella con modelo
mixto para diferentes presiones centrales P0.

Los resultados se encuentran en el apéndice A.

6. Estabilidad

Una vez se han integrado las ecuaciones para el valor de una presión central,
es decir, se han obtenido los valores del radio y de la masa para una determinada
EoS dado el valor de su presión en el centro de la estrella, se puede realizar un
análisis de la distribución de dichos valores dependiendo del valor de ρ0 escogido.
Esto se consigue realizando la integración para un rango de densidades o presiones
centrales.

La gráfica que se obtiene muestra la distribución de las masas y radios que se
puede obtener dada la ecuación de estado a partir de las condiciones de presión en
el centro de la estrella. A partir de dicha gráfica se obtiene información tal como
la máxima masa posible para los parámetros escogidos en la ecuación politrópica
y la estabilidad de la estrella.

La condición de estabilidad 2 viene dada por la derivada de la masa respecto a
la densidad central, de tal forma se tiene

2Esta condición es necesaria pero no suficiente, sin embargo, dada la naturaleza de los resul-
tados podemos considerar que es un criterio adecuado en este caso.
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dM

dρ0

> 0 estable, (41)

dM

dρ0

< 0 inestable. (42)

Aśı, para el rango 3, 0 · 1014 g/cm3 − 3 · 1015 g/cm3 de ρc en la estrella de la
sección 4.5 se obtiene la gráfica de la Figura 17.

[14] [15]

Figura 17: Masa como función del radio variando la presión central para una estrella
de neutrones con Γ = 2,75 y K = 2 · 10−6.

Por la condición de estabilidad sabemos pues que sólo serán estables las estrellas
cuyos valores se encuentran a la derecha del máximo, las que ocupan la parte
izquierda sufrirán colapso gravitatorio.

Podemos hacer el mismo análisis para para el modelo mixto de la sección an-
terior.
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Figura 18: Masa como función del radio variando la presión central para el modelo
mixto de una estrella de neutrones.

Aśı, para cada tipo de estrella tenemos los valores máximos de la masa que se
ven en el cuadro 5.

Modelo Masa (M�) Radio (Km)

Valores intermedios 2.910 12.350

Modelo mixto 1.0372 7.664

Cuadro 5: Valores máximos de la masa M y el radio R en una estrella de neutrones.

7. Conclusiones

En este trabajo hemos estudiado las ecuaciones que describen las propiedades
de los fluidos que forman las estrellas compactas. Se ha visto que a través de
la ecuación de Tolman-Oppenheimer-Volkoff y utilizando una ecuación de estado
(en nuestro caso politrópica) se pueden hallar los valores finales del radio y masa
conociendo la densidad en el centro.

Se han estudiado los modelos ĺımites para las enanas blancas y las estrellas de
neutrones, estableciendo que estos modelos dan resultados interesantes pero muy
alejados de los objetos que existen realmente. Por ello se han utilizado dos modelos
presumiblemente más veraces. En el primero de ellos se utilizan valores arbitrarios
recogidos de la literatura para realizar la integración, integrando en este modelo se
ha comprobado que la teoŕıa de la relatividad general es la adecuada para analizar
las estrellas de neutrones, mientras que la teoŕıa clásica de newton no arroja re-
sultados f́ısicamente correctos. Bajo este modelo también, se ha observado lo que
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ocurre al variar los valores iniciales de la integración. De esta forma hemos obtenido
que para los dos valores relacionados con la ecuación de estado (Γ y K) el radio y
masa final de la estrella aumentan conforme dichas magnitudes lo hacen. Sin em-
bargo, para la presión central en relatividad general ocurre un fenómeno reseñable,
puesto que al llegar a un valor máximo para la masa la siguiente integración da
unos resultados menores.

En el segundo modelo se han combinado los valores de K y Γ para estrellas
relativistas y no relativistas, de tal forma que se realiza el cambio entre ambos
valores en un determinado valor de la presión (matemáticamente hablando es como
integrar utilizando una ecuación de estado definida a trozos). Este modelo arroja
resultados bastante buenos que entran en el rango de las estrellas reales.

Por último, se han analizado las condiciones de estabilidad de las estrellas dado
el valor de la presión central, de tal forma que se han obtenido unos perfiles de la
relación masa final-radio final pudiendo conocer si la estrella es estable o colapsa
sólo con observar donde cae en la gráfica.
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A. Resultados de la integración

ρ0 (g/cm3) M/M� R (Km)

4 · 1014 1.81 16.23

4,5 · 1014 2.32 16.96

5 · 1014 2.90 17.65

5,5 · 1014 3.55 18.28

6 · 1014 4.27 18.89

6,5 · 1014 5.06 19.47

7 · 1014 5.93 20.02

Cuadro 6: Resultados de la masa M y radio R variando la densidad central ρ0 en
gravedad newtoniana.

ρ0 (g/cm3) M/M� R (Km)

4 · 1014 1.14 13.93

4,5 · 1014 1.34 14.14

5 · 1014 1.53 14.27

5,5 · 1014 1.70 14.35

6 · 1014 1.86 14.37

6,5 · 1014 2.01 14.36

7 · 1014 2.14 14.33

Cuadro 7: Resultados de la masa M y radio R variando la densidad central ρ0 en
relatividad general.
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K M/M� R (Km)

7 · 10−7 0.80 10.44

9 · 10−7 0.88 11.84

10−6 1.03 12.48

2 · 10−6 2.90 17.65

4 · 10−6 8.2 24.95

Cuadro 8: Resultados de la masa M y radio R variando la constante K en gravedad
newtoniana.

K M/M� R (Km)

7 · 10−7 0.47 9.59

9 · 10−7 0.64 10.64

10−6 0.72 11.10

2 · 10−6 1.53 14.27

4 · 10−6 2.73 17.41

Cuadro 9: Resultados de la masa M y radio R variando la constante K en relatividad
general.

Γ M/M� R (Km)

2.73 1.05 12.63

2.74 1.75 14.93

2.75 2.90 17.65

2.76 4.81 20.86

2.77 7.98 24.66

Cuadro 10: Resultados de la masa M y radio R variando el ı́ndice adiabático Γ en
gravedad newtoniana.
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Γ M/M� R (Km)

2.73 0.74 11.21

2.74 1.08 12.72

2.75 1.53 14.27

2.76 2.07 15.81

2.77 2.69 17.27

Cuadro 11: Resultados de la masa M y radio R variando el ı́ndice adiabático Γ en
relatividad general.

P0 (dyn/cm3) Masa (M�) Radio (Km)

6.94 ·1033 0.95 16.59

3.47 ·1034 1.17 15.71

6.94 ·1034 1.13 14.63

1.74 ·1035 1.03 12.97

3.47 ·1035 0.94 11.64

5.21 ·1035 0.88 10.87

Cuadro 12: Resultados de la masa M y radio R en el modelo mixto para diferentes
presiones centrales.

B. Cálculos

B.1. Solución de TOV para densidad constante

La ecuación TOV tiene un número limitado de soluciones anaĺıticas, y entre
ellas muchas no tienen un significado f́ısico relevante [9]. La solución anaĺıtica más
sencilla se da al analizar un fluido cuya densidad es constante, en este caso la
presión P es independiente de la densidad ρ0 [5]

ρ =

 ρ0 (r ≤ 0)

0 (r > 0)
(43)
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Para realizar este conjunto de operaciones se va a reescribir la ecuación (8) como

dP

dr
= −(ρ+ P )(M + 4πr3P )

r(r − 2M)
, (44)

Es decir, un sistema de unidades en el que c = M� = G = 1 que nos permite
ignorar estas constantes y hacer más llevaderos los cálculos. Con todo esto, resolver
la ecuación (9) es trivial y se obtiene

M(r) =
4

3
πρ0r

3 (45)

de tal forma que se puede insertar en (44) y se tiene

dP

dr
= −4

3
πr

(ρ0 + P )(ρ0 + 3P )

1− 8
3
πρ0r2

. (46)

Aśı pues, esta ecuación diferencial tiene variables separables y se puede integrar a
ambos lados de la igualdad con rangos de integración desde P hasta Pc = P (r = 0),
esto queda ∫ Pc

P

dP ′

(ρ0 + P ′)(ρ0 + 3P ′)
= −4

3
π

∫ r

0

r′dr′

1− 8
3
πρ0r′2

. (47)

Pese a que no es un cálculo inmediato, resolver ambas integrales es relativamente
sencillo, la expresión resultante es

1

2ρ0

[
ln

(
3P + ρ0

P + ρ0

)
− ln

(
3Pc + ρ0

Pc + ρ0

)]
=

1

4ρ0

ln

(
1− 8

3
πρ0r

2

)
, (48)

simplificando e introduciendo la masa m(r) = 4πρ0r3

3
se tiene

ρ0 + 3P

ρ0 + P
=
ρ0 + 3Pc
ρ0Pc

√
1− 2m

r
. (49)

En la superficie de la estrella la presión se vuelve nula, o lo que es lo mismo
P (R) = 0. Para encontrar la expresión del radio se despeja la anterior expresión
con P = 0 y r = R obteniéndose

R2 =
1

8πρ0

[
1− (ρ0 + Pc)

2

(ρ0 + 3Pc)2

]
, (50)

sustituyendo en (49) para eliminar Pc se llega a (cita)

P (r) = ρ0

[
(1− 2Mr2

R3 )1/2 − (1− 2M
R

)1/2

3(1− 2M
R

)1/2 − (1− 2Mr2

R3 )1/2

]
, (51)

donde

M =
4πρ0R

3

3
(52)

es la masa de la estrella.
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B.2. Adimensionalización de las ecuaciones TOV para la
simulación de estrellas compactas en sus ĺımites teóri-
cos

La ecuación de equilibrio hidrostático newtoniana es

dp

dr
= −Gm(r)ρ(r)

r2
, (53)

donde sabemos que ρ(r) = ε(r)/c2. Para adimensionalizar esta ecuación a valores
adimensionales definimos:

M(r) = M̃(r)M�, (54)

P = ε0p̃, (55)

ε = ε0ε̃. (56)

Tenemos M̃ , P̃ y ε̃ como los valores adimensionales. De la adimensionalización
de la masa llegamos a

dP

dr
= −R0

M̃(r)ε̃(r)

r2
, (57)

donde R0 = GM�
c2

= 1,47Km. De las expresiones para P y ε la ecuación politrópica
queda como

P̃ = K̃ε̃Γ, (58)

con
K̃ = KεΓ−1

0 . (59)

La ecuación de equilibrio hidroestático tiene ahora la siguiente forma

dP̃

dr
= −αP̃ (r)

1
ΓM̃(r)

r2
, (60)

siendo α

α =
R0

K̃
1
Γ

=
R0

(KεΓ−1
0 )

1
Γ

. (61)

De esta forma, despejando se llega a una expresión para obtener un ε0 depen-
diendo de un valor de α escogido. Por otro lado también se debe adimensionalizar
la ecuación (9), operando llegamos a

dM̃(r)

dr
= βr2P̃

1
Γ , (62)

con

β =
4πε0

M�c2(KεΓ−1
0 )

1
Γ

. (63)
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Aśı, tenemos ambas ecuaciones diferenciales con dimensiones de Km−1. La fac-
torización de la ecuación (8) sigue los mismos pasos y da como resultado

dP̃ (r)

dr
= −αP̃ (r)

1
Γ

r2

[
1 + K̃

1
Γ
P̃ (r)
] [

1 + δr3 P̃ (r)

M̃(r)

][
1− 2R0M̃(r)

r

]−1

(64)

donde

δ =
4π

M�c2

[
1

K

(
R0

α

)Γ
] 1

Γ−1

. (65)

Los valores de alfa escogidos para las integraciones (dados por [15], [14], [5] y
[6]) son los siguientes:

Tipo de estrella α (Km) ε0 (erg/cm3) β (Km−3)

Estrella de neutrones no relativista 1.00 1.61 ·1038 0.7636

Estrella de neutrones relativista 4.43 1.61 ·1038 3.374

Enana blanca no relativista 0.05 2.49 ·1037 0.0053

Enana blanca relativista 1.47 7.46 ·1039 52.46
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