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1. Introduccion

En este trabajo se van a estudiar las condiciones de estabilidad para las de-
nominadas estrellas compactas. Estos cuerpos son capaces de soportar el colapso
gravitatorio gracias a una presion de naturaleza cuantica, mientras que las estrellas
ordinarias lo hacen mediante una presién térmica.

Se realizara el andlisis en condiciones de relatividad general y de gravedad new-
toniana y se compararan las diferencias entre ambas teorias. Para poder hallar unas
conclusiones sélidas se van a estudiar diferentes modelos de estrellas compactas,
siendo algunos maés fisicamente consistentes que otros, también se analizara como
cambian los calculos numéricos variando las condiciones iniciales de integracion.
Por dltimo, se analizaran las condiciones de estabilidad de nuestros modelos mas
realistas.

La ecuacién que determina la relacion entre la materia y la curvatura del espacio
tiempo es la ecuaciéon de campo de Einstein,

G = —87GT,,, (1)
donde G, es el tensor de Einstein
1
G;U/ = R/U/ - §guuRa (2)

que esta formado por el tensor de curvatura de Ricci (R, ), el escalar de Ricci
(R) y el tensor métrico (g, ). Este lado de la expresién representa la curvatura del
espacio-tiempo. Por otro lado, la parte derecha esté relacionada con la concentra-
cién de materia, para ello se tiene el tensor de energia-momento, que esta formado
por las densidades de energia, las densidades de momento y la presion en cada una
de las direcciones. Asi, la ecuacion relaciona la curvatura del espacio-tiempo y la
cantidad de materia (o energia) que hay en él, de forma que cuanta méas cantidad
de materia (ya sea en forma de masa o de energia) mayor serd la curvatura. Serd
esta expresion la que se va a manipular para hallar la ecuacion diferencial sobre la
que se centra este trabajo.

2. Ecuacién de Tolman-Oppenheimer-Volkoft

Vamos a estudiar las soluciones estaticas y con simetria esférica de las ecuacio-
nes de Einstein en el interior de una estrella. Consideramos un fluido ideal definido
por el tensor energia momento de la forma

T,ul/ = pU Uy + P(guu + uuu)v (3)
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donde p y P son la densidad y la presién respectivamente. De las ecuaciones de
Einstein obtenemos tres ecuaciones independientes

87TT00 = 87Tp = Ggo, (4)
87TT11 = 87TP = GH, (5)
87TT22 =8P = GQQ. (6)

Estas ecuaciones relacionan la densidad y la presiéon con los elementos diagonales
del tensor de curvatura. Asi pues, manipulando estas ecuaciones [13] |4] [6] se llega
a la expresion para la métrica que se tiene en el interior de un fluido estelar estatico
y con simetria esférica

2M(r)

r

~1
ds® = —e*?dt* + (1 — > dr? + r*dQ?, (7)
donde M (r) es la masa y ¢ es un andlogo relativista del potencial gravitatorio
newtoniano cuya expresion es ¢ = %ln (1 — M) Obtenemos también la ecuacién

'
de Tolman-Oppenheimer-Volkoff para equilibrio hidroestatico, cuya expresion es

P _ G[ . P P()] [} _26M@)] ™
| -

(8)

dr 72 c? c? cr

] [M(r) + 47

donde

dM(r)

dr
Esta ecuacion describe la estructura de una estrella que esta bajo las condiciones
mencionadas al principio del apartado, su andlisis permite hallar los limites de
estabilidad del cuerpo si se tiene la ecuacién de estado del fluido que forma la
estrella. Si las condiciones del problema son P << py M(r) << r, la ecuacién de
Tolman-Oppenheimer-Volkoff se reduce a
P M

P __Goln)r) o
que es la ecuacion de equilibrio hidrostatico que se obtiene a través del formalismo
newtoniano. Esto es légico puesto que estas dos condiciones definen el ya men-
cionado limite newtoniano que separa el dominio relativista del dominio cldsico
a la hora de describir el movimiento y la interacciéon de los cuerpos sometidos a
la gravedad. La ecuacion representa fisicamente el balance entre la fuerza que
actua sobre la materia desde dentro y el peso de la materia que actia sobre esta
en sentido opuesto. De esta forma se tiene que la variacién de la presion respecto
al radio depende en primera instancia del término newtoniano al que se le anaden
tres factores que representan correcciones relativistas, es interesante anadir que el
tercer factor es una correccion dada por la relatividad general relacionada con el
tamano maximo que puede tener la estrella, diverge cuando llegamos a un radio
critico R = 2GM/c? llamado radio de Schwarzschild. Es interesante observar que
los factores de correcciéon estan definidos con el mismo signo, de tal forma que en la
ecuaciéon TOV el cambio de presion depende en mayor medida de la gravedad que
en la formula newtoniana. Es una forma sencilla de observar como la relatividad
general es un anadido sobre la gravedad newtoniana que dota a la gravedad de
mayor capacidad atractora.

= 4np(r)rdr. (9)
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3. Estrellas compactas

Cuando una estrella ordinaria llega al estado final en su proceso evolutivo ya ha
consumido todo el hidrégeno y el helio [14]. Las reservas de helio se queman y for-
man oxigeno y carbono, de tal forma que la estrella encoge y la presion del nicleo
aumenta considerablemente. En estos casos la estrella no deberia poder mantenerse
gravitacionalmente, pues la presion no podria igualar el colapso gravitatorio provo-
cado por la alta densidad del niicleo. Sin embargo, en este proceso entra en juego la
mecanica cuantica, pues aparece una presion de degeneracion que consigue igualar
el tirén hacia dentro que provoca la gravedad y que es muy diferente a la presion
térmica que es la que mantiene estables las estrellas ordinarias. Dependiendo de la
particula que provoque esta presién de degeneracion se tienen las enanas blancas
o las estrellas de neutrones, estos dos tipos de cuerpos son los llamados estrellas
compactas. Si la masa de la estrella original tiene mas de 9-10 masas solares se
formard una estrella de neutrones, si tiene menos se formara una enana blanca y
si contiene 30-70 masas solares colapsara hasta el punto en el que se formara un
agujero negro. Este tipo de objetos son el estado final de la evolucion estelar pero
se diferencian de los otros tipos de estrellas en algunos aspectos:

1. Como ya se ha mencionado no utilizan combustible nuclear, pues ya se ha
agotado al llegar a este punto, por lo que estan comprimidas hasta el maximo
que su masa les permite.

2. Son mucho menores en tamano, puesto que tienen un limite de masa que no
es muy elevado y un radio maximo que no llega al del sol [2] [3] [11] por tanto
su campo gravitatorio en la superficie es muy elevado.

3. Generalmente tienen campos magnéticos mas fuertes que el resto de estrellas
(Entre 10% y 107 T).

Como se observa en la Figura [l las estrellas de neutrones y las enanas blancas
son el paso final en la evolucion estelar.

3.1. Enanas blancas

Cuando una estrella de masa menor que 10 M agota su combustible nuclear se
forma una enana blanca. La gran mayoria de estrellas, incluido el Sol, atraviesan
esta etapa en su evolucién estelar. Estos astros estan compuestos por atomos en
estado de plasma, a causa de la compresion que sufre la estrella sobre si misma
debido a su propio peso la distancia entre los atomos decrece dejando menos espa-
cio a los electrones para moverse libremente. De esta forma la densidad del fluido
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Figura 1: Esquema de la evoluciéon estelar ||

aumenta considerablemente y los electrones sufren las consecuencias del principio
de indeterminacion y del principio de exclusiéon de tal forma que consiguen moverse
a mucha velocidad. Al tener un ntmero tan elevado de electrones moviéndose a
velocidades tan altas se genera una presion de degeneracién electréonica que con-
trarresta el colapso gravitacional de la estrella. Las enanas blancas son objetos
realmente densos, sélo superados por las estrellas de neutrones y los agujeros ne-
gros. Dado que la energia térmica que emiten es remanente poseen una luminosidad
muy débil y que disminuye conforme pasa el tiempo. Las enanas blancas también
pueden formarse como consecuencia de una supernova del tipo Ta. En 1931 y
1935 |3] Subrahmanyan Chandrasekhar estudio cual era la masa maxima que podia
tener una enana blanca, esta masa es el limite que permite a estas estrellas existir,
si una de ellas lo supera el colapso gravitatorio supera la presion de degeneracion
y se forma un objeto méds compacto, ya sea una estrella de neutrones o directa-
mente un agujero negro. El limite es M., = 1,44M y Chandrasekhar se bas6 en
la ecuacién de estado del gas de Fermi para calcularlo. Las enanas blancas poseen
temperaturas muy elevadas, pero se enfrian paulatinamente al no tener combusti-
ble para fusionar y generar energia calorifica, cuando las enanas blancas se enfrian
completamente se forman nuevos astros llamados enanas negras, sin embargo, el
tiempo que debe pasar para que ocurra este fenémeno es mucho mayor que la edad
actual del universo, por lo que es virtualmente imposible llegar a observar un ob-
jeto de este tipo. Se han observado enanas blancas desde 0.17 hasta 1.33 masas
solares, aunque la maxima distribucion se encuentra entre 0.5 y 0.7 masas solares.
Este tipo de estrellas es el mas abundante del universo junto a las enanas rojas [§].
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3.2. Estrellas de neutrones

Cuando las enanas blancas tienen una masa elevada pueden contraerse de nue-
vo, el nicleo se calienta lo suficiente como para fusionar nticleos més pesados y
realiza este proceso por capas hasta que el nucleo esta formado por hierro. La
estrella colapsa y explota en una supernova (tipo II, Ib o Ic) dejando como rema-
nente una estrella de neutrones. El origen de la presién que contrarresta el colapso
gravitacional en las estrellas de neutrones es similar al que ocurre en las enanas
bancas, la presién cudntica es provocada en este caso por neutrones (y una pe-
quena cantidad de protones) en vez de por electrones. Las estrellas de neutrones
tienen una masa de entre 1.35 y 2.1 la masa del Sol y un radio de entre 10-20
Km, por lo que su densidad es aun mayor que la que se encuentra en las enanas
blancas. El andlogo para las estrellas de neutrones al limite de Chandrasekhar de
las enanas blancas es el denominado limite de Tolman-Oppehnheimer-Volkoff [11].
Hasta hace relativamente poco se creia que el valor maximo posible para la masa
de una estrella de neutrones era de 2.9 Mg, |7], sin embargo, estudios recientes han
mostrado que este valor es 2.16 M, [12].

3.3. Ecuacién de estado para estrellas compactas

Las ecuaciones diferenciales y junto con ([9) necesitan una ecuacién
m4ds que relacione la presiéon con la densidad, considerando que p(r) = €(r)/c?
(donde €(r) es la densidad de energia) y utilizando ciertos principios de la mecanica
estadistica se puede obtener la relacién P(¢) [14]. Como ya se ha mencionado, las
enanas blancas estan formadas por electrones completamente degenerados, asi pues
se puede utilizar la estadistica de Fermi-Dirac para hallar la ecuacién de estado del
fluido formado por este plasma de electrones. Partimos de la funcion de distribucion

de Fermi
1

- 11
e(elf?—:,@)le (11)

n;, =

donde g es el potencial quimico y n; la ocupacién de estados. Esta distribucion a
temperatura nula (8 — 00) se comporta como una funcién escalén: se hace 0 si
(ex — ) > 0y se hace 1si (¢, —p) < 0. Conociendo la expresién que da el niimero
de estados disponibles para un momento k

Ark?

podemos integrarla para hallar la ocupacién n(kg) en el nivel de Fermi.

87 kr k3
e — kde - £ 13
" (27Th)3/0 3n2h3 (13)
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Ahora, la densidad de masa en términos de la masa del nucleon my viene dada

por

A
p=mmy—, (14)

donde A/Z = 2 si consideramos que la estrella estd formada mayormente por 2C
y 0. Asi, podemos calcular el valor de kp

3nip Z 1/3
my Z)

k(o) = B ( (15)

Conociendo la relacién de dispersion para una particula relativista, dada por

€ = \/(kc)2 + (mec?)?, (16)

podemos calcular la contribuciéon de los electrones a la densidad de energia

8w [*F 2 2 2 4\ii2
c(kp) = = (kc® +mic)2k*dk. (17)
La presién de un sistema con una distribucién isétropa de momento viene dada
por

1 8 e K102
P=-—0 / , (18)
3(27h)® Jo E(k)
donde el factor 1/3 viene por la isotropia. Desarrollando se llega a
8m [ ktdk
kp) = 19
p(kr) 3(27h)3 k2c? + m2ct (19)
mgcg) kF/mcC B
- /0 (12 + 1)~ 2yt du (20)
mec’ 3 211/2 : 1
= 247:2713 [(22° — 32)(1 + 2?) /2 4 3sinh~ ()] - (21)

La densidad de energia estd dominada por la densidad de masa de los nucleones
mientras que los electrones contribuyen mayormente a la presién. Asi, se busca
llegar a una ecuacién de la forma P = P(e), considerando los casos x « 1y x » 1,
es decir, kp << mecy kp >> mec respectivamente. Considerando el primer caso
se llega a

micP kp/mec micd kp/mec
Plkr) = e 2 1 -1/2 2]{74 ~ e / 4d 29
(kr) 37T2h3/0 (w”+1) ¢ 3r2h u-au (22)
B m‘écE’ kp B h? 3n’pZ 5/3 (23)
©15m2h3 \mee ) 15m2m. \ mnA ‘

Recordando la relacién € = pc? llegamos a la ecuacién de estado en el limite no
relativista
pP=K"* (24)

no—rel

R (3r2p7\"?
Kno—rel = ( TP ) . (25)

donde

1572m, \ myA
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Para el caso relativista (kp >> m,) llegamos a

4
P = Kre/13 (26>
con s
he (3n%pZ
Kooy = — . 27
' 12m2 (mNA> (27)
La ecuacién general tiene la forma
P =Ke" (28)

llamada ecuacién de estado politrépica. Para este tipo de ecuaciones el factor I,
llamado exponente adiabatico, viene dado por I' = 1 + % donde n es el indice
adiabdtico, en los casos no relativista y relativista se tiene que n= 3/2 y n = 3
respectivamente.

Para las estrellas de neutrones se realiza un procedimiento andlogo al anterior,

de tal forma que
L AN
Knofrel = ( TP ) (29)

1572m,, \ myA

y la K, no cambia. Se observa que la K,, ., es la misma para ambos tipos de
estrella pero cambiando la masa del electrén por la del neutrén.

4. Calculos numéricos

Para estudiar los limites de estabilidad y hallar el radio y la masa dada una
ecuacion se debe integrar la ecuacion que determina el equilibrio entre presién y
gravitacién (ya sea la de Tolman-Oppenheimer-Volkoff o la de Newton) junto con la
ecuacion que relaciona la masa con el radio. Para un fluido cuya ecuacion de estado
P = P(p) es conocida, podemos determinar las configuraciones de equilibrio de la
siguiente forma: Elegimos una densidad central p. que define una presiéon central
P. = P(p.), integramos las ecuaciones de M(r) y de equilibrio hasta que llegamos
al punto en el que la presion se hace nula. Llegados a este punto se puede obtener
la masa y el radio de la estrella dada una EoS y una presién central. El método
de integracion debe ser numérico, pues como se ha mencionado anteriormente hay
escasas soluciones analiticas. Existe gran variedad de métodos numéricos (Euler,
Verlet, Runge-Kutta 2° orden...), sin embargo, el escogido es el método de Runge
Kutta de 42 orden, pues es muy preciso y relativamente sencillo de implementar
en un codigo.
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4.1. Método de Runge-Kutta de 42 Orden

Para realizar la integracién se implementa el método numérico de R-K, consiste
en un método iterativo que permite calcular la solucion de una ecuacion diferencial
ordinaria con mayor exactitud que el método de Euler o el método de Verlet.

El método permite hallar una aproximacién numérica a la solucién y(z) dado
un

Y (x) = f(z,y(x)) (30)

y conociendo una condicién inicial y(xg) = yo. Este método nos permite discretizar
las ecuaciones diferenciales, en particular, para el de 4° orden se deben hallar

kO = hf<xn7 yn)v (31)
h k
h k
by = hf (0 + 50t + ). (33)
1
YUn+1 = Yn + é(ko + 2k1 + 2k2 + k3)7 (35)

donde h es el paso temporal. En el caso de nuestro problema se tienen que integrar
la ecuacién y la ecuacion @ Como la primera depende de la segunda se
debe definir una nueva serie de variables [; similares a las k; e iterarlas antes que
ellas. Ademas, en el caso de esta integracion el paso temporal h es realmente un
diferencial del radio de la estrella, que es la variable sobre la que se esta haciendo
la integracién. Integramos con la condicién P(r) > 0y con valores iniciales

P,=P, (37)

donde P, viene de sustituir py en la EoS. Se comienza el proceso desde r ~ 0[]y se
va aumentando el radio a cada paso hasta llegar al momento en el que P(R) = 0.
Este radio R es el radio final de la estrella y con él se puede hallar también la masa
final de esta.

1No se integra desde r = 0 estrictamente porque se produce una indeterminacién en la ecuacién
TOV.

10
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4.2. Resultados para estrellas de densidad constante

Para comprobar que el programa funciona correctamente estudiamos el caso
mas sencillo, la solucién analitica para una estrella de densidad constante py (se
resuelve en el anexo [B.1] La masa resultante al integrar la ecuacién TOV con la
densidad independiente de la presién viene dada por la expresion . Ademas,
sabemos que existe un limite superior para la masa.

1al olucion numérica 5 5x10%%
ucin tedrica = = =
4x10%

3x10%%

MMsq

P (dynjcrm™)

2x10%4

1x10%%

Solucién numérica ———
Solucién t$ér\ca -

o 2 4 6 8 10 o 2 4 6 8 10
R (km) R (Km)

(a) Masa vs Radio (b) Presion vs Radio

Figura 2: Resultados para densidad constante.

Comparando con el resultado tedrico de la referencia [6] y con las soluciones
tedricas que vienen dadas en el anexo[B.I]vemos que la integracién de este caso par-
ticular arroja resultados matematicamente consistentes, sin embargo, fisicamente
este resultado no tiene sentido, pues no existen estrellas cuya densidad no varie
conforme lo hace el radio.

4.3. Resultados de la integracién para enanas blancas

En la seccion se han estudiado las estrellas compactas para los casos no
relativista y relativista, en este apartado se mostraran las soluciones numéricas para
las enanas blancas y las estrellas de neutrones en ambos casos. Para que el calculo
numeérico sea computacionalmente mas sencillo es conveniente adimensionalizar las
ecuaciones (), y (9), en este caso lo hacemos siguiendo las referencias [14],
[5], [11] v [15]. En el apéndice se adjuntan los célculos asi como los valores
iniciales de las constantes que genera la factorizacion. Para las enanas blancas
se va a realizar la integracion utilizando la ecuacion de equilibrio hidrostatico de
Newton, pues las correcciones de la relatividad general no tienen mucha relevancia
para esta clase de astros [15].

11
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4.3.1. Solucién numérica para el caso no relativista

Como ya hemos visto anteriormente tenemos dos casos limite: el relativista y
el no relativista, para poder realizar la integracién se debe conocer el rango de
presiones centrales de las enanas blancas. Se realiza la simulaciéon para 3 valores
diferentes de F.

Asi, los resultados para las enanas blancas para electrones degenerados no re-
lativistas se recogen en el cuadro[I]y en la figura 3]

Py (dyn/cm?®) | Masa (M) | Radio (Km)
2,5-10% 0.796 8411.35
2,5-10% 0.393 10589.26
2,5-10% 0.198 13331.09

Cuadro 1: Resultados de la masa M respecto al radio R en una enana blanca con
electrones no relativistas.

0.8 T

0.7 e

06—

0.5 -

0.4

MMgql

03

0.2 e

By =250%x108 .
Py =2.50x10%
By =2.50x10%1
L 1

L A

1 1 1
0 2000 4000 6000 8000 10000 12000 14000

R (Km)

Figura 3: Evoluciéon de la masa M respecto al radio R en una enana blanca con
electrones no relativistas.

Se observa que cuanto menor es la presién central mayor es el radio de la estrella
pero menor su masa final.

4.3.2. Solucion numérica para el caso relativista

En el caso de una enana blanca con electrones relativistas se tienen los resul-
tados recogidos en el cuadro [2y la figura

12
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Py (dyn/cm?) | Masa (M) | Radio (Km)
5,62 - 10%° 1.431 5710.65
5,62 - 10%4 1.431 10155.14
5,62 - 10%3 1.431 18058.60

Cuadro 2: Resultados de la masa M respecto al radio R en una enana blanca con
electrones relativistas.

16 T T T T T T T

M/Mgg)

Py =5.62x1085 o
By =5.62x10%% .
By =5.62 x 1023

1 1

0 i i i i i i I
] 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
R (Km)

Figura 4: Evoluciéon de la masa M respecto al radio R en una enana blanca con
electrones relativistas.

Para este caso se puede observar que la masa es independiente de la presion
central, ademas, se constata que las estrellas para electrones no relativistas son mas
masivas que las enanas blancas relativistas. El resultado de la masa final llama la
atencion, pues esta depende directamente de las condiciones iniciales y deberia
variar para diferentes densidades centrales. Sin embargo, se debe notar que el valor
de la masa es muy préoximo al limite de Chandrashekar, por tanto es posible que
s6lo una de estas tres estrellas sea estable. Para saber cudl de ellas se deberia
analizar la curva de estabilidad de la que hablaremos al final de este trabajo.

En la figura || se observa el perfil de la presion respecto al radio para el caso
en el que Py = 2,5 - 10?3 para la enana blanca relativista y la no relativista, es
interesante comparar estas figuras pues nos dan cierta informacién acerca de la
atmoésfera de la estrella.
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Figura 5: Presiéon P respecto al radio R en enanas blancas.

Observamos que el perfil de decaimiento de la presién en el caso no relativista es
mas lento, mientras que en el caso relativista la presion se hace casi 0 a unos 2000
Km, en el caso no relativista la presion no llega a estos valores hasta los 6000 Km.
Esto significa que la atmédsfera es mucho mayor para el caso relativista que para
el caso no relativista. Por otro lado, el caso no relativista tiene menor masa pero
mayor radio, es decir, la estrella esta formada por un fluido mucho menos denso.
Esto tiene mucho sentido, pues las particulas no relativistas tienen una velocidad
mucho menor y por tanto generan una presion de degeneracién menos intensa, lo
que implica una menor densidad.

4.4. Resultados de la integracién para estrellas de neutro-
nes

Al ser objetos mucho mas densos, las estrellas de neutrones sufren las correc-
ciones de la relatividad general de forma notable, asi, se debe integrar la ecuacién

TOV (anexo [B.2).

4.4.1. Solucién numérica para el caso no relativista

El resultado esperado para una estrella de neutrones no relativista es obtener
un cuerpo con un radio entre 10-20 Km y una masa menor que 2 M.
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Py (dyn/cm?) | Masa (M) | Radio (Km)
1,63 - 10% 0.614 15.26
1,63 - 107 0.351 20.11
1,63 - 1032 0.186 25.80

Cuadro 3: Resultados de la masa M respecto al radio R en una estrella de neutrones
con neutrones no relativistas.

M/Mgg)

0.7 T
Py =1.63x10%% «
Py = 1.63x 1033
0.6 - Py =1.63x10%2

0.5 -
0.4 -
0.3
0.2

o1k

15
R (Km)

30

Figura 6: Evolucion de la masa M respecto al radio R en una estrella de neutrones
con neutrones no relativistas.

Observamos que la dependencia de la masa con la presiéon central es parecida
al caso andlogo en enanas blancas, cuando disminuye una lo hace la otra. Sin
embargo, se observa que el radio de este tipo de estrellas es mucho menor que el
de las enanas blancas, pues se debe recordar que estos astros son el estado anterior
a formar un agujero negro, estan muy cerca de la densidad limite de colapso.

Por tdltimo, para la estrella de neutrones relativista se tiene un resultado dife-
rente al esperado, pues como se ve en la figura [7] la estrella posee un radio mucho
mayor del esperado.
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Figura 7: Evolucion de la masa M respecto al radio R en una estrella de neutrones
con neutrones relativistas.

Esto ocurre debido a que en el modelo relativista las particulas tienen velocida-
des cercanas a ¢ generando asi una presiéon muy alta, al acercarse a la superficie de
la estrella la presion disminuye y el modelo no es consistente, por tanto la condicion
P(R) = 0 no se alcanza cuando deberfa. on

4.5. Resultados de la integracién para RG y Newton para
una ecuacion de estado c valores intermedios

Una vez hemos estudiado ya los casos limites para las estrellas compactas es
conveniente realizar la integraciéon con unos valores de K y I' que determinen un
caso intermedio y mas realista, pues que ninguno de los casos limite existe fisi-
camente. En este apartado se estudiaran soélo estrellas de neutrones. Este analisis
nos va a permitir observar las diferencias entre la teoria clasica y la relativista y
observar como afectan los cambios en los parametros iniciales al resultado final de
la estrella. Como ya hemos visto anteriormente para describir el fluido de este tipo
de cuerpos se debe utilizar una ecuacién de estado de forma

P=Kp". (38)
Asi pues, se han escogido los pardmetros [10]

K=2-10"° (39)
I =275 (40)

Las Figuras[8] [9] y [10] representan el resultado de esta integracién para la masa,
la presion y la densidad respectivamente mediante va aumentando el radio de la
estrella.
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Figura 8: Evolucién de la masa M respecto al radio R.

Los resultados de la integracién de las ecuaciones y @D se recogen en el
Cuadro [l

Modelo Masa (M/Mg) | Radio (Km)
Gravedad Newtoniana 2.90 17.65
Relatividad general 1.65 14.27

Cuadro 4: Resultados integracion para masa y radio.

Podemos observar que para el modelo clasico tenemos como resultado una es-
trella con mayor masa y mayor radio que la integracion de la ecuacion . Estos
resultados son fisicamente consistentes, pues como se ha mencionado anteriormen-
te, la relatividad general dota de mas fuerza a la atraccién gravitatoria, por tanto
el modelo relativista nos proporciona un astro con un radio menor, pues la presion
de degeneracion aguanta menos ante ella. Para la densidad y la presion se tienen

9y 10

6x103% T T T

T T T
Gravedad Newtoniana
Relatividad General

5x10%% -
4x10%% [
3x10%

2%10%* |-

P(dyn/cm)

1%10%* |-

1x10% i i i i i i i i

R (Km)

Figura 9: Evolucion de la presion P respecto al radio R.
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En la Figura[J] se observa que la presién cae a 0 mds lentamente para la ecua-
cién dando como resultado que el radio R sea mayor al obtenido usando la
relatividad general.

5x10%% 4 T T T
Gravedad Newtonia
Relatividad General

4.5x101% [
EESTEAN SR
3.5%10™ |-
=10t o

2.5%10™ |-

p (a/erm®)

210t =
1.5%10M o
1x10M -

LESTIRSN SR

0 I 1

R (Km)

Figura 10: Evolucion de la densidad p respecto al radio R.

Observamos que la densidad también cae a 0, de tal forma que el perfil rela-
tivista cae mas rapidamente coincidiendo en este aspecto con los resultados de la

figura [9]

4.6. Integracion variando las condiciones iniciales

En el apartado anterior se han utilizado unos valores fijos de I" y de K, ademas,
hemos observado que la teoria adecuada para describir una estrella de neutrones
es la relatividad general. Esta tltima afirmacién se hace mas evidente al variar
ligeramente la presion central alrededor del valor que hemos usado inicialmente.
Ademads, para obtener un anélisis mas profundo de la relevancia de la ecuacién de
estado es interesante realizar la integracion variando los valores de la constante K
y el indice adiabatico I'. De esta forma podemos observar como afectan los valores
iniciales a los resultados para la masa y el radio final de nuestra estrella.

4.6.1. Integracién variando la densidad central

Para la densidad central pg se tienen las figuras [11]y [12
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Figura 11: Evolucién de la masa M respecto al radio R variando la densidad central
po en gravedad newtoniana.

Para la figura[I1]se observa como el aumento de la densidad central conlleva un
aumento de la masa y el radio final de la estrella, esto se debe a que el modelo de
gravedad newtoniana no es realista para las estrellas de neutrones, por lo que no
tiene significado fisico realizar esta integracion, si seguimos aumentando el valor
de la densidad central los resultados para la masa y el radio no convergeran a un
valor limite y seguiran aumentando.

2.5 T
pp =4x101?
pp =4.5x10
o = 5x101%
2t pp=55x101 o
pp =6x101
pp = 6.5x 1014

pp =7x101
15k .

MMgq)

0.5

16

R (Km)

Figura 12: Evolucién de la masa M respecto al radio R variando la densidad central
po en relatividad general.

Por el contrario, para la figura [12] se observa como la variacion de la masa y el
radio final tienden a un valor limite cercano a 14 Km y 2-3 M, respectivamente.
Es interesante observar que el aumento de la densidad central ya no implica un
aumento del radio final de la estrella, pues a partir de py = 5,5 - 104 el resultado
decrece conforme aumenta pg. En este caso el modelo elegido es mucho mas realista
y se ajusta a la realidad fisica de estos astros, pues como ya se ha explicado en
secciones anteriores la naturaleza de la materia que forma las estrellas de neutrones
hace a estos astros uno de los objetos mas densos del universo, lo que implica que
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tienen un efecto mucho mayor en la curvatura del espacio-tiempo y, por lo tanto,
deben obedecer las ecuaciones de la relatividad general.

4.6.2. Integracién variando los valores de la constante K y el coeficiente
adiabatico I

Una vez estudiada la dependencia de los resultados al variar la densidad central
es interesante realizar el mismo proceso para las otras dos condiciones iniciales
relacionadas con la ecuaciéon de estado politropica, es decir, para la constante K y el
coeficiente adiabatico. Aunque ya hemos visto que no tiene sentido fisico el modelo
clasico es interesante seguir observando las diferencias entre este y el relativista.
Al final del presente trabajo se estudiara con mayor detalle las implicaciones que
tiene la convergencia a un valor limite y como se relaciona con la estabilidad de
estos objetos.

T
K =7x107 = : K =7x107

M/Mgg)

R (km) R(Km)

(a) Gravitacién newtoniana (b) Relatividad general

Figura 13: Evolucién de la masa M respecto al radio R variando la constante K.

De nuevo, se observa como para los mismos valores de K los resultados para
la integracién relativista crecen mas rapidamente. Sin embargo, en este caso no se
observa una convergencia en nuestro rango de valores escogidos.
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Figura 14: Evoluciéon de la masa M respecto al radio R variando el coeficiente
adiabatico.

En la figura [14] se observa el mismo fenémeno que en la figura [13] La funcién
de I' y K es caracterizar el fluido que forma la estrella, por tanto al variar estos
valores para una misma presion central estamos comparando fluidos diferentes que
forman estrellas que pueden o no existir fisicamente pero que no tendrian relacion
entre ellas. Sin embargo, mantener estas dos magnitudes fijas variando la densidad
central nos va a permitir realizar un andélisis sobre la estabilidad de un conjunto
de estrellas de neutrones formadas por el mismo fluido. Por tanto, vemos que la
presiéon central es una magnitud realmente importante en el estudio de las estrellas
de neutrones.

Los valores exactos de la masa y el radio para cada integracién se recogen en
las tablas del Anexo [Al

5. Modelo mixto para una estrella compacta

Cémo se mencionaba en [4.4.1] el resultado de la integracién para estrellas de
neutrones relativistas no nos proporciona unos valores realistas. El modelo con
valores arbitrarios visto en depende de consultar biografia y el significado fisico
de la constante K es difuso. Por tanto, se pueden mezclar los modelos relativista
y no relativista para generar un modelo facilmente comprensible y con resultados
plausibles.

En el interior de la estrella de neutrones las particulas estan muy compactadas
y como se ha visto anteriormente esto genera una mayor presién de degenera-
cién, conforme nos acercamos a la superficie dicha presion disminuye, es decir, las
particulas se mueven con menor velocidad. Por tanto, es légico crear un modelo
en el que la integracion comienza con neutrones relativistas, cuyas altisimas ve-
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locidades se generan por la inmensa presion en el interior de a estrella; mientras
que mediante nos acercamos a la superficie se vuelven no relativistas, pues pierden
velocidad al sufrir menos presion de degeneracion.

Este cambio se podria producir de forma suave, sin embargo, por complejidad
se estudiard el caso méas simple (y por tanto menos fisico), en el que dicho cambio
se produce a una presion fija y de forma abrupta.

Para una presién Py = 6,94 - 103! se obtiene el perfil de la figura [15]

1.2 T T T T T T

0.8 -

M/Mgg)
=
&
T

0.4

[

Py =6.04 x 109% .
1

i} 2 4 6 8 10 12 14 16
R (Km)

Figura 15: Evolucion de la masa M respecto al radio R para una estrella con modelo
mixto.

Es evidente que el cambio de modelo acelera la integracién, dando unos valores
para el radio y la masa maés realistas. Por otra parte, el hecho de haber cambiado el
modelo tan abruptamente provoca un cambio brusco en la funcién. Lo importante
en este modelo no es tanto el perfil como los resultados finales que nos puede dar.
Una de las cuestiones mas importantes a la hora de implementar este modelo es
establecer el lugar en el que se pasa de un estado a otro. Se debe elegir un momento
en la integracion adecuado. Este vendra dado por el valor de la presién en ese
radio P(Teampio). En este caso, tras realizar la integraciéon numerosas veces se ha
elegido que P(Tcampio) = 8,13 - 1032 dyn/cm3. Esta eleccién se basa principalmente
en la consistencia de los resultados finales, pues si se escoge un valor mayor el
cambio no llega a hacerse y estariamos en el caso de la estrella relativista. Hay que
notar también que aunque el valor de la presién es fijo, el valor de 7.qmpio varia
dependiendo de la presion central escogida.

Para diferentes presiones centrales se tienen los resultados de la figura [16]
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Figura 16: Evolucion de la masa M respecto al radio R para una estrella con modelo
mixto para diferentes presiones centrales Fj.

Los resultados se encuentran en el apéndice [A]

6. Estabilidad

Una vez se han integrado las ecuaciones para el valor de una presion central,
es decir, se han obtenido los valores del radio y de la masa para una determinada
EoS dado el valor de su presién en el centro de la estrella, se puede realizar un
analisis de la distribucién de dichos valores dependiendo del valor de py escogido.
Esto se consigue realizando la integracion para un rango de densidades o presiones
centrales.

La gréafica que se obtiene muestra la distribucion de las masas y radios que se
puede obtener dada la ecuacion de estado a partir de las condiciones de presiéon en
el centro de la estrella. A partir de dicha gréafica se obtiene informacién tal como
la maxima masa posible para los parametros escogidos en la ecuacién politropica
y la estabilidad de la estrella.

La condicién de estabilidad H viene dada por la derivada de la masa respecto a
la densidad central, de tal forma se tiene

2Esta condicién es necesaria pero no suficiente, sin embargo, dada la naturaleza de los resul-
tados podemos considerar que es un criterio adecuado en este caso.
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dM
— > 0 estable, 41
e (41)
dM
—— < 0 nestable. 42
I (42)

Asi, para el rango 3,0 - 10 g/em? — 3 - 101 g/em? de p. en la estrella de la
seccién [4.5] se obtiene la grafica de la Figura [17]

[14] [15]

25k
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15 . > . - H 4

Estrellas inestables . : :

Estrellas estables ——
1 1

11 11.5 12 12.5 13 13.5 14 14.5
R (Km)

Figura 17: Masa como funcién del radio variando la presion central para una estrella
de neutrones con I' = 2,75y K =2- 1076,

Por la condicion de estabilidad sabemos pues que solo seran estables las estrellas
cuyos valores se encuentran a la derecha del maximo, las que ocupan la parte
izquierda sufriran colapso gravitatorio.

Podemos hacer el mismo analisis para para el modelo mixto de la seccién an-
terior.
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Figura 18: Masa como funcion del radio variando la presién central para el modelo
mixto de una estrella de neutrones.

Asi, para cada tipo de estrella tenemos los valores maximos de la masa que se
ven en el cuadro [

Modelo Masa (Mg) | Radio (Km)
Valores intermedios 2.910 12.350
Modelo mixto 1.0372 7.664

Cuadro 5: Valores méximos de la masa M y el radio R en una estrella de neutrones.

7. Conclusiones

En este trabajo hemos estudiado las ecuaciones que describen las propiedades
de los fluidos que forman las estrellas compactas. Se ha visto que a través de
la ecuacion de Tolman-Oppenheimer-Volkoff y utilizando una ecuacién de estado
(en nuestro caso politrépica) se pueden hallar los valores finales del radio y masa
conociendo la densidad en el centro.

Se han estudiado los modelos limites para las enanas blancas y las estrellas de
neutrones, estableciendo que estos modelos dan resultados interesantes pero muy
alejados de los objetos que existen realmente. Por ello se han utilizado dos modelos
presumiblemente mas veraces. En el primero de ellos se utilizan valores arbitrarios
recogidos de la literatura para realizar la integracion, integrando en este modelo se
ha comprobado que la teoria de la relatividad general es la adecuada para analizar
las estrellas de neutrones, mientras que la teoria clasica de newton no arroja re-
sultados fisicamente correctos. Bajo este modelo también, se ha observado lo que
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ocurre al variar los valores iniciales de la integraciéon. De esta forma hemos obtenido
que para los dos valores relacionados con la ecuacién de estado (I' y K) el radio y
masa final de la estrella aumentan conforme dichas magnitudes lo hacen. Sin em-
bargo, para la presion central en relatividad general ocurre un fenémeno resenable,
puesto que al llegar a un valor maximo para la masa la siguiente integracién da
unos resultados menores.

En el segundo modelo se han combinado los valores de K y I' para estrellas
relativistas y no relativistas, de tal forma que se realiza el cambio entre ambos
valores en un determinado valor de la presién (matematicamente hablando es como
integrar utilizando una ecuacién de estado definida a trozos). Este modelo arroja
resultados bastante buenos que entran en el rango de las estrellas reales.

Por 1ltimo, se han analizado las condiciones de estabilidad de las estrellas dado
el valor de la presién central, de tal forma que se han obtenido unos perfiles de la
relacion masa final-radio final pudiendo conocer si la estrella es estable o colapsa
s6lo con observar donde cae en la gréfica.

26



Jorge Borque A RESULTADOS DE LA INTEGRACION

A. Resultados de la integracion

po (g/em®) | M/M, | R (Km)
4-10™ 1.81 16.23
45 - 10 2.32 16.96
5-10M 2.90 17.65
9,0 - 10 3.55 18.28
6-10™ 4.27 18.89
6,9 - 10 5.06 19.47
7-10M 5.93 20.02

Cuadro 6: Resultados de la masa M y radio R variando la densidad central py en
gravedad newtoniana.

po (g/cm?) | M/Ms | R (Km)
4.10" 1.14 13.93
4,5-10M" 1.34 14.14
5-10M 1.53 14.27
5,510 1.70 14.35
6- 10" 1.86 14.37
6,510 2.01 14.36
7101 2.14 14.33

Cuadro 7: Resultados de la masa M y radio R variando la densidad central py en
relatividad general.
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K | M/M | R (Km)
7-1077| 080 | 10.44
9-10°7| 088 | 11.84

1076 | 1.03 | 12.48
2.10° | 290 | 17.65
4.10°% | 82 | 24.95

Cuadro 8: Resultados de la masa M y radio R variando la constante K en gravedad
newtoniana.

K M/M, | R (Km)
7-1077 | 0.47 9.59
9-1077 | 0.64 10.64

107¢ 0.72 11.10
2.107% | 1.53 14.27
4-107 | 2.73 17.41

Cuadro 9: Resultados de la masa M y radio R variando la constante K en relatividad
general.

I' | M/M, | R (Km)
273 | 1.05 | 12.63
274 | 1.75 | 14.93
275 | 290 | 17.65
276 | 4.81 | 20.86
277 | 7.98 | 24.66

Cuadro 10: Resultados de la masa M y radio R variando el indice adiabético I' en
gravedad newtoniana.
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I' | M/M, | R (Km)
273 074 | 11.21
274 | 1.08 | 12.72
275 | 153 | 14.27
276 | 2.07 | 15.81
277 | 269 | 17.27

Cuadro 11: Resultados de la masa M y radio R variando el indice adiabatico I' en

relatividad general.

Py (dyn/cm?) | Masa (M) | Radio (Km)
6.94 -1033 0.95 16.59
3.47 -10% 1.17 15.71
6.94 -10% 1.13 14.63
1.74 -10% 1.03 12.97
3.47 -10%° 0.94 11.64
5.21 -10% 0.88 10.87

Cuadro 12: Resultados de la masa M y radio R en el modelo mixto para diferentes

presiones centrales.

B. Calculos

B.1. Solucion de TOV para densidad constante

La ecuacién TOV tiene un numero limitado de soluciones analiticas, y entre
ellas muchas no tienen un significado fisico relevante [9]. La solucién analitica més
sencilla se da al analizar un fluido cuya densidad es constante, en este caso la
presién P es independiente de la densidad pqg [5]

po (r<0)

0 (r

> 0)

(43)
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Para realizar este conjunto de operaciones se va a reescribir la ecuacion como

iP (p+ P)(M +4nrP)
dr r(r —2M) ’ (4

Es decir, un sistema de unidades en el que ¢ = My = G = 1 que nos permite
ignorar estas constantes y hacer més llevaderos los célculos. Con todo esto, resolver
la ecuacién @ es trivial y se obtiene

M(r) = %ﬂporg (45)

de tal forma que se puede insertar en y se tiene

dp 4 (po+ P)(po+3P)
— = ——7r :

dr 3 1 — Smpor?

(46)

Asi pues, esta ecuacién diferencial tiene variables separables y se puede integrar a
ambos lados de la igualdad con rangos de integracién desde P hasta P. = P(r = 0),

esto queda
/Pc dP’ 4 / r'dr’ (47)
= ——7 —_—.
P (po+ P')(po+3F) 37 Jo 1= 5Smpor”

Pese a que no es un calculo inmediato, resolver ambas integrales es relativamente
sencillo, la expresién resultante es

1 3P 3P. 1 8
— {ln ( i p0> —In (—+ ,00)} =—In (1 — —7Tp07“2) : (48)
2p0 P+ po Pe+ po 4po 3
simplificando e introduciendo la masa m(r) = 4mp0r g6 tiene

3P 3P. | 2
pO + — pO + C 1 o m ) (49)
po+ P poFe T
En la superficie de la estrella la presion se vuelve nula, o lo que es lo mismo

P(R) = 0. Para encontrar la expresién del radio se despeja la anterior expresién
con P =0y r = R obteniéndose

1 <p0+Pc>2
R=_— |1 0T 50
87 po { (po +3P.)%]" (50)

sustituyendo en (49) para eliminar P, se llega a (cita)

P(r) = po [ (1- 21‘;_37“2)1/2 — (1— 2512 ] -
31— 32— (1- Bz |
donde X
M= @ (52)

es la masa de la estrella.
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B.2. Adimensionalizacion de las ecuaciones TOV para la
simulacion de estrellas compactas en sus limites teéri-
cos

La ecuacién de equilibrio hidrostatico newtoniana es

dp m(r)p(r)

- _q 53

dr r2 (53)
donde sabemos que p(r) = €(r)/c*. Para adimensionalizar esta ecuacién a valores
adimensionales definimos:

M(r) = M(r)Mog, (54)
P = 60]3/, (55)
€ = €g€. (56)

Tenemos M. , P y € como los valores adimensionales. De la adimensionalizacion
de la masa llegamos a
dP
dr rz2
donde Ry = Gi\fQ = 1,47K'm. De las expresiones para P y € la ecuacién politropica
queda como

(57)

P=K¢&, (58)

con
K=Ke . (59)

La ecuacién de equilibrio hidroestéatico tiene ahora la siguiente forma

dP  aP(r)TM(r)
a2
siendo «
o= 52 ___f - (61)
Kt (Ke )T

De esta forma, despejando se llega a una expresién para obtener un ¢, depen-
diendo de un valor de « escogido. Por otro lado también se debe adimensionalizar
la ecuacién @, operando llegamos a

dM (r)
dr

— Bripr, (62)
con

47reg

p= :
MQCQ(Keg_l)%

(63)
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Asi, tenemos ambas ecuaciones diferenciales con dimensiones de Km™!. La fac-
torizacién de la ecuacion sigue los mismos pasos y da como resultado

[1 - 2R0M(r)] B 60

r

1+ 57“3&
M(r)

1 [Ro\"
K\ «

Los valores de alfa escogidos para las integraciones (dados por [15], |14], [5] vy
[6]) son los siguientes:

aPer)  aPWE [ ~ime
dr 2 [1+K }

donde 1
1

47

=—— 65
Ve (65)

Tipo de estrella a (Km) | € (erg/cm?) | 8 (Km™®)
Estrella de neutrones no relativista | 1.00 1.61 -10% 0.7636
Estrella de neutrones relativista 4.43 1.61 -10% 3.374
Enana blanca no relativista 0.05 2.49 -10%7 0.0053
Enana blanca relativista 1.47 7.46 -103° 52.46
Referencias

Max Camenzind. Compact Objects in Astrophysics. Springer, 2007.

S. Chandrasekhar. “The Highly Collapsed Configurations of a Stellar Mass.
(Second Paper.)” En: Monthly Notices of the Royal Astronomical Society
95.3 (ene. de 1935), pags. 207-225. 1sSN: 0035-8711. DOI: 10.1093/mnras/
95.3.207. eprint: https://academic.oup.com/mnras/article-pdf/95/
3/207/18326119/mnras95-0207 . pdf. URL: https://doi.org/10.1093/
mnras/95.3.207.

[3] S. Chandrasekhar. “The Maximum Mass of Ideal White Dwarfs”. En: 74
(jul. de 1931), pag. 81. DOI: 10.1086/143324.

[4] Charles W. Misner, Kip S. Thorne, John Archibald Wheeler. Gravitation.
W. H. Freeman and Company, 1973, 593-612.

[5] Ellen Egeland. “Compact Stars”. En: (2007).

[6] Jose Juan Gonzalez Avilés. “Ecuaciones de Tolman-Oppenheimer-Volkoff pa-
ra estrellas compactas, representacion paramétrica e influencia de la cons-

tante cosmolégica”. Tesis doct. Universidad Michoacana de san Nicolas de
Hidalgo, 2011.

o =

32


https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1093/mnras/95.3.207
https://academic.oup.com/mnras/article-pdf/95/3/207/18326119/mnras95-0207.pdf
https://academic.oup.com/mnras/article-pdf/95/3/207/18326119/mnras95-0207.pdf
https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1086/143324

Jorge Borque REFERENCIAS

[7]

[10]

[11]

[12]

Vassiliki Kalogera y Gordon Baym. “The Maximum Mass of a Neutron Star”.
En: The Astrophysical Journal 470.1 (1996), pags. L61-L64. por: |10.1086/
310296. URL: https://doi.org/10.1086/310296.

S. O. Kepler y col. “White dwarf mass distribution in the SDSS”. En: Monthly
Notices of the Royal Astronomical Society 375.4 (2007), 1315-1324. 1SSN:
1365-2966. DOI: 10.1111/7.1365-2966.2006.11388.%. URL: http://dx.
doi.org/10.1111/3j.1365-2966.2006.11388.x.

Ch. C. Moustakidis. The stability of relativistic stars and the role of the
adiabatic index. 2017. arXiv: |1612.01726 [gr-qc].

Charalampos Moustakidis. “Solving the neutron star TOV equations with
polytropic EoS”. En: University of thessaloniki, 2020.

J. R. Oppenheimer y G. M. Volkoft. “On Massive Neutron Cores”. En: Phy-
sical Review 55.4 (feb. de 1939), pags. 374-381. DOI: |10.1103/PhysRev.55.
374.

Luciano Rezzolla, Elias R. Most y Lukas R. Weih. “Using Gravitational-wave
Observations and Quasi-universal Relations to Constrain the Maximum Mass
of Neutron Stars”. En: The Astrophysical Journal 852.2 (2018), pag. L25.
DOI: 10.3847/2041-8213/aaa401. URL: https://doi.org/10.3847/2041-
8213/aaa401.

Robert M. Wald. General Relativity. The University of Chicago Press, 1984,
136-148.

Irina Sagert y col. “Compact stars for undergraduates”. En: Furopean Jour-
nal of Physics 27.3 (2006), 577-610. 1sSN: 1361-6404. pOI: 10.1088/0143~
0807/27/3/012. URL: http://dx.doi.org/10.1088/0143-0807/27/3/012.

Richard R. Silbar y Sanjay Reddy. “Erratum: “Neutron stars for under-
graduates” [Am. J. Phys. 72 (7), 892-905 (2004)]”. En: American Journal
of Physics 73.3 (2005), pags. 286-286. DOI: 10.1119/1 . 1852544, eprint:
https://doi.org/10.1119/1.1852544. URL: https://doi.org/10.1119/
1.1852544.

33


https://doi.org/10.1086/310296
https://doi.org/10.1086/310296
https://doi.org/10.1086/310296
https://doi.org/10.1111/j.1365-2966.2006.11388.x
http://dx.doi.org/10.1111/j.1365-2966.2006.11388.x
http://dx.doi.org/10.1111/j.1365-2966.2006.11388.x
https://arxiv.org/abs/1612.01726
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.3847/2041-8213/aaa401
https://doi.org/10.1088/0143-0807/27/3/012
https://doi.org/10.1088/0143-0807/27/3/012
http://dx.doi.org/10.1088/0143-0807/27/3/012
https://doi.org/10.1119/1.1852544
https://doi.org/10.1119/1.1852544
https://doi.org/10.1119/1.1852544
https://doi.org/10.1119/1.1852544

	Introducción
	Ecuación de Tolman-Oppenheimer-Volkoff
	Estrellas compactas
	Enanas blancas
	Estrellas de neutrones
	Ecuación de estado para estrellas compactas

	Cálculos numéricos
	Método de Runge-Kutta de 4º Orden
	Resultados para estrellas de densidad constante
	Resultados de la integración para enanas blancas
	Solución numérica para el caso no relativista
	Solución numérica para el caso relativista

	Resultados de la integración para estrellas de neutrones
	Solución numérica para el caso no relativista

	Resultados de la integración para RG y Newton para una ecuación de estado c valores intermedios
	Integración variando las condiciones iniciales
	Integración variando la densidad central
	Integración variando los valores de la constante K y el coeficiente adiabático 


	Modelo mixto para una estrella compacta
	Estabilidad
	Conclusiones
	Resultados de la integración
	Cálculos
	Solución de TOV para densidad constante
	Adimensionalización de las ecuaciones TOV para la simulación de estrellas compactas en sus límites teóricos


